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ABSTRACT OF THE DISSERTATION 

   

Digital Enhancement Techniques for Digital Fractional-N Phase-Locked Loops 

 

by 

Cristián Enrique Álvarez Fontecilla 

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) 

University of California San Diego, 2021 

Professor Ian A. Galton, Chair 

 

Phase-locked loops (PLLs) are critical components in modern electronics 

communication systems, where they are used to synthesize local oscillator signals for 

modulation and demodulation in wireless transceivers. They are also used to clock digital-to-

analog converters (DACs), analog-to-digital converters (ADCs), and digital processors.  

Most PLLs incorporate either analog filters and voltage-controlled oscillators (VCOs) 

or digital filters and digitally-controlled oscillators (DCOs). The former are called analog PLLs 



 

 

xviii 

 

and the latter are called digital PLLs. To date, analog PLLs have the best phase error 

performance, but digital PLLs have the lowest circuit area and are more compatible with highly-

scaled CMOS integrated circuit (IC) technology. Thus, improving the performance of digital 

PLLs has been the subject of intensive research for many years. 

The first chapter of this dissertation presents a multi-rate dynamic element matching 

(MR-DEM) technique and an adaptive mismatch-noise cancellation (MNC) technique that 

work together to mitigate spectral breathing in digital PLLs, a problem caused by mismatches 

among the frequency control elements (FCEs) within the DCO. It presents a theoretical analysis 

of the techniques, as well as behavioral simulation results that support the analysis. 

The second chapter of this dissertation presents delta-sigma (ΔΣ) frequency-to-digital 

converter (FDC) all-digital enhancements for FDC-based digital fractional-N PLLs. It describes 

an enhanced ΔΣ FDC architecture that has relaxed timing constraints and reduced phase-

frequency detector (PFD) output pulse-span compared to prior-art ΔΣ FDCs. It also describes 

and analyses a ΔΣ FDC forward gain calibration technique that reduces the complexity 

associated with the system’s implementation and improves the phase noise performance of 

PLLs with high loop bandwidths. 

The third chapter of this dissertation presents an integrated circuit high-performance 

PLL which implements the MR-DEM and MNC techniques presented in the first chapter. It 

demonstrates the detrimental effects of the spectral breathing phenomenon, as well as the 

effectiveness of the MR-DEM and MNC techniques to mitigate this problem.  
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CHAPTER 1  

MULTI-RATE DEM WITH MISMATCH-NOISE CANCELLATION FOR DCOS IN 

DIGITAL PLLS 

 

Abstract—Mismatches among frequency control elements in digitally-controlled 

oscillators can be a significant source of phase error in digital phase-locked loops (PLLs). This 

paper presents a multi-rate dynamic element matching technique and an adaptive mismatch-

noise cancellation (MNC) technique that work together to address this problem. The two 

techniques operate in back-ground during normal PLL operation, and the MNC technique has 

typical cold start convergence times of a few seconds. 

I. INTRODUCTION 

High-performance phase-locked loops (PLLs) are critical components in modern 

electronic communication systems. For example, in wireless transceivers they generate radio 
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April 11, 2018; date of current version August 30, 2018. This work was supported by the National Science 

Foundation under Award 1617545. This paper was recommended by Associate Editor P. Rombouts. 
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frequency local oscillator signals for up-conversion and down-conversion of transmitted and 

received signals, the phase error of which often limits overall transceiver performance. 

Most PLLs incorporate either analog filters and voltage-controlled oscillators (VCOs) 

or digital filters and digitally-controlled oscillators (DCOs). The former are often called analog 

PLLs and the latter are often called digital PLLs. To date, analog PLLs have the best phase error 

performance, but digital PLLs have the lowest circuit area and are more compatible with highly-

scaled CMOS IC technology. Thus, reducing phase error in digital PLLs has been the subject 

of intensive research and development for over a decade [1-49]. 

Nevertheless, frequency control element (FCE) mismatches in DCOs remain a 

significant source of phase error in high-performance digital PLLs [39]. This problem has only 

been addressed in prior work via an offline calibration technique that requires several minutes 

to complete [16, 18]. This paper presents a multi-rate dynamic element matching (DEM) 

technique and an adaptive mismatch-noise cancellation (MNC) technique that work together to 

address the problem. Both techniques run in background during normal PLL operation, and the 

MNC technique typically converges in a few seconds from a cold start. 

The paper describes the proposed multi-rate DEM and MNC techniques in detail. 

Section II provides DCO background information. Section III discusses the effects of FCE 

mismatches on the DCO frequency. Section IV presents an error model for FCE mismatches. 

Section V presents the multi-rate DEM technique. Section VI presents the MNC technique. 

Section VII presents behavioral simulation results that support the analysis of the paper. The 

proposed techniques are described in the context of an example to simplify the explanations. 
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II. BACKGROUND INFORMATION 

A DCO is an oscillator whose frequency is controlled by one or more FCEs, each of 

which is controlled by a 1-bit digital sequence. For instance, each FCE in an LC-based DCO 

contributes to the DCO’s tank a capacitance that takes on one of two values depending on the 

state of the FCE’s input bit. Changing the FCE’s input bit increases or decreases the DCO 

frequency by a fixed frequency step.  

The instantaneous frequency of a DCO is given by a fixed offset frequency plus ftune(t), 

where 

 
FCE

1
tune( ) ( ),

N

i
if t f t

=

=    (1) 

NFCE is the number of FCEs in the DCO, and fi(t) is the contribution of the ith FCE to the DCO 

frequency. Ideally,  

 ( )( ) [ ] ,½ti i if t b m= −    (2) 

where bi[m] is the FCE’s input bit value (either 0 or 1) over the mth clock interval, mt = ⌊ fFCEt⌋, 

fFCE is the clock-rate of the input bit, and Δi is the FCE’s frequency step size.
2 

The DCO’s input sequence, d[n], represents the ideal value of ftune(t) over the nth clock 

interval. For example, suppose d[n] is represented as a 16-bit two’s complement code where 

the least significant bit (LSB) represents a DCO frequency step of Δ (e.g., Δ = 100 Hz). Then  

 
14

15
15

0

[ ] 2 [ ] 2 [ ] ,i
i

i

d n d n d n
=

 
 
 
 

= − +   (3) 

 
2 By definition, mt is the largest integer less than or equal to fFCEt at time t, so it is a continuous-time waveform. 

Hence, bi[mt] is a continuous-time waveform even though bi[m] is a discrete-time sequence.  
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where di[n], for each i = 0, 1, …, 15, is the value of the ith bit of the code (either 0 or 1) over 

the nth clock interval.  

Ideally, ftune(t) = d[nt], where nt = ⌊ fint⌋ and fin is the clock-rate of the DCO input. 

Equations (1)-(3) with fFCE = fin imply that this can be achieved with a bank of 16 FCEs, where 

the ith FCE’s frequency step size is Δi = 2
i−1Δ, bi[n] = di−1[n] for i = 1, 2, …, 15, and b16[n] = 1− 

d15[n]. 

Unfortunately, in PLL applications that require low phase noise, such as local oscillator 

synthesis for cellular telephone transceivers, DCOs with minimum frequency steps of tens of 

Hz are required, but most existing FCEs have minimum frequency steps of tens of kHz or more 

[50, 51]. A common solution to this problem is described below for an example case in which 

ftune(t) needs to be controlled in steps of Δ, yet the smallest realizable FCE frequency step size 

is Δmin = 2
8Δ. In this case, the 8 LSBs of d[n] are said to represent the fractional part of d[n] 

because they cause DCO frequency steps that are fractions of Δmin, and the 8 most significant 

bits (MSBs) of d[n] are said to represent the integer part of d[n] because they cause DCO 

frequency steps that are multiples of Δmin. 

The idea is to have two FCE banks: an integer FCE bank controlled by the integer part 

of d[n], and a fractional FCE bank controlled by the output of an oversampling digital ΔΣ 

modulator driven by the fractional part of d[n] [2]. The ΔΣ modulator’s highpass-shaped 

quantization noise is lowpass filtered by the DCO, so provided the oversampling rate is 

sufficiently high, it negligibly contributes to the DCO’s phase error. 

Fig. 1 shows a specific example in the context of an LC-based DCO, where pt = ⌊ ffastt⌋, 

ffast ≫ fin, and dI[nt] and dF[nt] are the integer and fractional parts of d[nt], respectively. The ffast-
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clk signal is such that pt changes synchronously with nt, so that nt can be written as a function 

of pt, i.e.,  

 ( ).t tn g p=  (4) 

In this example g(pt) = ⌊(fin/ffast)pt⌋, where ffast/fin is an integer much greater than 1. 

It follows from (3) that d[nt] = dI[nt] + dF[nt], where 

 
14

15
15

8

[ ] 2 [ ] 2 [ ]i
t t tiI

i

d n d n d n
=

 
 
 
 

= − +    (5) 

and 
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0

[ ] 2 [ ].i
t tiF

i

d n d n
=

=   (6) 

As shown in Fig. 1, dF[nt] is sampled at a rate of ffast by a second-order digital ΔΣ 

modulator. The ΔΣ modulator’s output is a four-level sequence quantized to multiples of Δmin 

and can be written as 

 [ ] [ ] [ ],t t tF
y p d n e p
 

= +   (7) 

where eΔΣ[pt] is second-order highpass-shaped quantization noise plus any dither used within 

the ΔΣ modulator. A thermometer encoder maps yΔΣ[pt] to a 4-bit thermometer code which 

drives a bank of four FCEs, each with a frequency step of Δmin. It follows from (1), (2) and (7) 

that the contribution of the fractional FCE bank to the DCO frequency, fF(t), is 

 
4

1

( ) [ ] [ ].( )i
i

t tF F
f tf t d n e p


=

= = +   (8) 

The integer FCE bank is directly driven by dI[nt]. Specifically, the ith FCE, for i = 5, 6, 

…, 11, has input bi[nt] = di+3[nt] and frequency step size Δi = 2
i+3Δ, and the 12th FCE has input 
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b12[nt] = 1 − d15[nt] and frequency step size Δ12 = 2
15Δ. It follows from (1), (2) and (5) that the 

contribution of the integer FCE bank to the DCO frequency, fI(t), is  

 
12

5

( () ) [ ],tI i
i

I
f tf t d n

=

= =   (9) 

where a constant additive term has been omitted. 

The contribution of the two FCE banks to the DCO frequency is ftune(t) = fI(t) + fF(t), so 

(8) and (9) imply that 

 tune( ) [ ] [ ].t tf t d n e p


= +   (10) 

Accordingly, eΔΣ[pt] causes DCO frequency error. The DCO’s phase error is the integral 

of its frequency error, so as mentioned above, a lowpass-filtered version of eΔΣ[pt] appears as a 

component of the DCO’s phase error. Given that eΔΣ[pt] has a highpass-shaped spectrum that 

peaks at ffast/2, its contribution to the DCO’s phase error can be made negligible relative to other 

sources of phase error if ffast is large enough [2, 11, 50].  

III. EFFECTS OF FCE MISMATCHES 

The FCEs in the previous example are ideal. Unfortunately, non-ideal circuit behavior 

causes fi(t) to deviate from (2). For example, suppose for now that fi(t) is modeled as ideal 

except for a static gain error given by αi, i.e., 

 ( )( [ ] ½) .ti i i if t b m = −    (11) 

Ideally, αi = 1 for i = 1, 2, ..., NFCE, but inevitable component mismatches introduced 

during fabrication cause αi to deviate from 1. 

Repeating the analysis for the example in Fig. 1 with (11) in place of (2) gives 
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 ( )tune-idealtune( ) ( ) ( ) ( ) [ ],tF F I I F I
f t t e t e t d nf  = + + + −   (12) 

where ftune-ideal(t) is given by the right side of (10), αF and αI are the averages of αi for i = 1, 2, 3, 

4 and i = 5, 6, …, 12, respectively, 

 ( )
4

min
1

( ) ( ) [ ½]ti iF F
i

e t b p 
=

= − −    (13) 

and 

 ( )
12

5

( ) ( ) [ ] .½ti i iI I
i

e t b n 
=

= − −    (14) 

Hence, the FCE static gain errors introduce a gain factor, αF, and three additive error 

terms to ftune(t). The αF gain factor does not significantly degrade performance in typical PLLs. 

In contrast, as explained next, the three additive error terms in (12) tend to cause spurious tones 

and increase phase error in PLLs because they are nonlinear functions of d[nt]. 

 The individual bits of d[n], i.e., di[n], for each i = 0, 1, …, 15, each depend on d[n] but 

are restricted to values of 0 and 1. Hence, each di[n] is a nonlinear function of d[n]. 

Nevertheless, they can be combined as in (3) to yield d[n], which implies that multiplying d0[n], 

d1[n], …, d14[n], and d15[n] by 20, 21, …, 214, and −215, respectively, and adding the results 

causes the nonlinear components from the individual bits to cancel each other. Any deviation 

from a set of scale factors proportional to those mentioned above prevents full cancellation of 

the nonlinear components. It can be verified from (5), (13) and (14) that eF(t), eI(t), and (αI − 

αF)dI[nt] are each a function of a subset of the individual bits of d[nt], so they are nonlinear 

functions of d[nt]. 

A partial solution to this problem is to replace the thermometer encoder in Fig. 1 with a 

mismatch-shaping DEM encoder [52]. Doing so would cause eF(t) to be replaced by highpass-
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shaped noise that is free of nonlinear distortion and is uncorrelated with d[nt], so it would be 

suppressed by the DCO like the ΔΣ quantization noise. Similarly, the integer FCE bank could 

be modified to accommodate a mismatch-shaping DEM encoder clocked at a rate of fin, which 

would cause eI(t) to be replaced by shaped noise that is free of nonlinear distortion and is 

uncorrelated with d[nt]. However, fin  ffast, so less of the shaped noise would be suppressed by 

the DCO. Unfortunately, DEM as described above would not help prevent the last term in (12) 

from introducing nonlinear distortion because dI[nt] is a non-linear function of d[nt]. 

As demonstrated in [39], the last two terms in (12) increase the phase error in a PLL 

unless dI[nt] remains constant once the PLL is locked. In most published digital PLLs d[n] 

varies by much less than Δmin when the PLL is locked, and measured results are usually 

presented for PLL frequencies at which dI[nt] does not change during the measurement interval. 

This renders the last two terms in (12) constant, so they do not contribute phase error. 

Unfortunately, this is not a viable option in practice because DCO center frequency drift caused 

by flicker noise, voltage and temperature variations, and pulling from external interference 

cause d[nt] to vary by far more than Δmin over time. For instance, measurement results indicate 

that the frequency of the DCO presented in [39] varies by about −200 kHz/oC, which 

corresponds to ~7Δmin per degree Celsius. In practice, this causes the digital PLL’s phase noise 

to increase drastically from time to time as d[nt] slowly drifts past integer multiples of Δmin. 

This issue is sometimes called “spectral breathing” because the phase noise spectrum, as viewed 

on laboratory measurement equipment, appears to swell up every now and then as if it is taking 

deep breaths. During these “breaths” the PLL’s performance is extremely degraded. 

Furthermore, when the PLL is used to generate phase or frequency modulated signals, such as 
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a GFSK signal for a Bluetooth transmitter, d[nt] typically varies by more than Δmin, so there are 

no periods between “breaths” during which the phase noise performance is good. 

To address this problem, a single bank of FCEs driven by a ΔΣ modulator and a 

mismatch-shaping DEM encoder could be used, where the ΔΣ modulator oversamples d[nt] 

instead of just dF[nt]. The DEM encoder would cause any mismatches among the FCEs to 

contribute shaped noise instead of nonlinear distortion, and the oversampling would ensure that 

most of the noise is suppressed by the DCO. Unfortunately, high oversampling ratios would be 

required in practice, which makes this solution impractical because of the associated high power 

consumption. 

In the remainder of the paper, a new multi-rate DEM technique and an MNC technique 

that work together within a PLL to solve the problems that arise from FCE mismatches are 

presented. As in Fig. 1, two FCE banks are used. Both FCE banks are driven by a multi-rate 

DEM encoder, which ensures that the error arising from FCE mismatches is free of nonlinear 

distortion. In addition, the multi-rate DEM encoder avoids high power consumption because 

most of its digital logic is clocked at a rate of fin instead of ffast.
3 Much of the additive error is 

not oversampled, so instead of relying on the DCO to suppress it, the MNC technique adaptively 

measures the error and cancels it in real time.  

 
3 Although the hardware of the proposed techniques is different from that of the solution in which d[nt] is oversampled 

and a DEM encoder clocked at a high rate is used to control the FCEs, a pessimistic power consumption analysis 

suggests that the proposed techniques are at least five times more power-efficient. 
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IV. FCE MISMATCH MODEL 

FCEs with Δi > Δmin are usually built by connecting nominally identical minimum-

weight FCEs in parallel. Static mismatches among these FCEs are sources of error, but other 

non-idealities such as the non-instantaneous frequency transitions of realizable FCEs are also 

sources of error. Hence, a more comprehensive model than (11) for fi(t) is 

 ( )( ) [ ] ½ ( ),ti i i if t b m e t= −  +   (15) 

where ei(t) is error that models both the static mismatch and the non-ideal frequency transitions 

of the ith FCE. FCEs are designed such that frequency transitions caused by input bit changes 

settle within a clock period, so ei(t) only depends on bi[mt − 1] and bi[mt]. This can be modeled 

as 
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
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

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− = =

  (16) 

where e11i, e01i(t), e00i, and e10i(t) represent the error over each clock interval corresponding to 

the four different possibilities of the FCE’s current and prior input bit values [53].4  

Fig. 2 shows example waveforms associated with (15) and (16). A consequence of the 

frequency transitions settling within a clock period is that when an FCE’s input bit does not 

change between clock periods, neither does its contribution to the DCO frequency, so e00i and 

e11i are constant. In contrast, e01i(t) and e10i(t) are not constant because they represent deviations 

 
4 The FCE model given by (15) and (16) is analogous to that of a non-return-to-zero (NRZ) 1-bit DAC. To prevent 

ei(t) from depending on bi[mt − 1], return-to-zero (RZ) FCEs could be implemented by setting the FCEs to a signal-

independent state for a fraction of each clock period, but this is not practical for PLLs because it would periodically 

slew the DCO frequency and thereby introduce excessive phase noise.  
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from the FCE’s ideal instantaneous frequency transitions when its input bit changes. As shown 

in Fig. 2, the shape of each of these frequency transitions depends only on whether the 

corresponding FCE input changed from 0 to 1 or 1 to 0, and both e01i(t) and e10i(t) are 1/fFCE-

periodic. 

Experimental results suggest, at least for the LC-based DCOs presented in [36] and [39], 

that the frequency transition introduced by each FCE when its input bit changes from 0 to 1 and 

that when the input bit changes from 1 to 0 are antisymmetric to a high degree of accuracy, i.e., 

e11i − e01i(t) = − [e00i – e10i(t)]. Therefore, substituting (16) into (15), applying this observation, 

collecting terms and omitting constant additive terms yields 

 ( ) ( )½( ) [ ] ( ) [ 1] ),½ (t ti i i i i if t b m t b m t = −  + − −   (17) 

where 

 01 00 11 01
( ) 1 ( ( ) )   and  ( ) ( ).i iii i i i
t e t e t e e t = + − = −   (18) 

Given that αi(t) and γi(t) are functions of e01i(t) and e10i(t), which are 1/fFCE-periodic, they are 

also 1/fFCE-periodic. 

V. MULTI-RATE DEM 

 Starting Point: Single-Rate Segmented DEM 

Suppose the DCO’s input sequence is given by (3), and for now suppose that ΔΣ 

quantization is not necessary because FCEs with small-enough step sizes are available, i.e., Δmin 

= Δ. Even in this case, FCE mismatches are a problem because they cause nonlinear distortion. 

A conventional single-rate segmented DEM encoder can be used to prevent this problem. For 
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example, the mismatch-shaping segmented DEM encoder shown in Fig. 3 can be used with 34 

FCEs [54]. The ith FCE has input bi[nt] = ci[nt] and frequency step size Δi = KiΔ, where 

 

1
2 1 2

13

2 for 1, 2, ,13, and

2 for 27, 28, , 34.

i
i i

i

K K i

K i

−
−
= = =

= =
  (19)  

The DEM encoder’s input sequence, c[nt], is obtained from the DCO input sequence as  

 15 13[ ] [ ] 2 2 1t tc n d n= + + −  (20) 

for reasons explained in [54].  

As shown in Fig. 3, the DEM encoder consists of 33 digital switching blocks (SBs), 

labeled Sk,r for k = 1, 2, …, 16, and r = 1, 2, …, 17, configured in a tree structure. The 13 shaded 

SBs are called segmenting SBs, whereas the other 20 SBs are called non-segmenting SBs. The 

functional details of the SBs are shown in Fig. 4. The top and bottom outputs of each segmenting 

SB are ½(ck,1[nt] – 1 – sk,1[nt]) and 1 + sk,1[nt], respectively, where ck,1[nt] is the SB input 

sequence, and sk,1[nt], called a switching sequence, is 0 when ck,1[nt] is odd and ±1 otherwise. 

Similarly, the top and bottom outputs of each non-segmenting SB are ½(ck,r[nt] – sk,r[nt]) and 

½(ck,r[nt] + sk,r[nt]), respectively, where ck,r[nt] is the SB input sequence and sk,r[nt] is 0 when 

ck,r[nt] is even and ±1 otherwise.  

Regardless of the SB type, each switching sequence is zero-mean and has a first-order 

highpass-shaped power spectral density (PSD) that peaks at fin/2. It is generated in two’s 

complement format by the logic shown in Fig. 4(c), wherein dk,r[nt] is generated within each 

SB and is well-modeled as a two-level white random sequence that takes on values of 0 and 1 

with equal probability and is independent of the dk,r[nt] sequences in the other SBs. 
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 Extension to Multi-Rate Segmented DEM  

Now suppose that the smallest practical FCE frequency step size is Δmin = 2
8Δ. As the 

lower 16 FCEs in the example above all have frequency step sizes smaller than Δmin, the bottom 

16 outputs of the DEM encoder can no longer drive FCEs directly. The multi-rate DEM 

architecture shown in Fig. 5 addresses this situation, where the bottom 4 FCEs make up the 

fractional FCE bank, the top 18 FCEs make up the integer FCE bank, and wt = pt – 1 is a Tfast-

delayed version of pt, where Tfast = 1/ffast. As in Fig. 1, nt = g(pt) changes synchronously with pt. 

The block labeled slow DEM encoder in Fig. 5 is a modified version of the DEM 

encoder in Fig. 3. Its outputs c17[nt], c18[nt], …, c34[nt] are identical to those in Fig. 3, and instead 

of outputs c1[nt], c2[nt], …, c16[nt] it has an output, xf[nt], given by  

 ( )
16

1

[ ] [ ] .½t ti if
i

x n K c n
=

= −  (21) 

Each ci[nt] takes on values of 0 and 1, so (19) and (21) imply that |xf[nt]| ≤ 255Δ and xf[nt] is 

restricted to multiples of Δ. 

The slow DEM encoder could be implemented from the DEM encoder of Fig. 3 directly 

by combining c1[nt], c2[nt], …, c16[nt] as in (21), but the structure of Fig. 6 is used instead 

because is simpler. As implied by Fig. 4(b), the sum of the outputs of each non-segmenting SB 

is equal to the SB’s input, so it follows from (21), Fig. 3 and Fig. 4(a) that xf[nt] can be computed 

directly from the bottom outputs of S16,1, S15,1, …, S9,1 as 

 
16

16
,1

9

[ ] 2 [ ].k
t tf k

k

x n s n−

=

=  (22) 

Hence, as shown in Fig. 6, S1,1, S1,2, …, S1,8 are not necessary in the slow DEM encoder. 
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The Δ scale factor shown in Fig. 6 is not an actual multiplier; it just denotes that the 

subsequent digital logic should interpret the LSB of xf[nt] to represent a DCO frequency step 

size of Δ. 

As shown in Fig. 5, xf[nt] is sampled at a rate of ffast by a second-order digital ΔΣ 

modulator whose functional diagram is shown in Fig. 7. The dither sequence, dΔΣ[pt], is 

generated such that it can be well-modeled as a two-level white random sequence that is 

independent of d[nt] and xf[nt] and takes on values of 0 and Δ with equal probability. It ensures 

that the ΔΣ modulator’s quantization noise is asymptotically independent of xf[nt] and dΔΣ[pt], 

and has a PSD equal to that of the output of a filter with transfer function (1 − z
−1)2 driven by 

white noise with a variance of Δmin
2/12 [55]. The ΔΣ modulator output is quantized to values in 

the set {−2Δmin, −Δmin, 0, Δmin, 2Δmin} and is given by  

 [ ] [ ] [ ],t t tf
y p x n e p
 

= +  (23) 

where eΔΣ[pt] is second-order highpass-shaped quantization noise plus dΔΣ[pt].  

The block in Fig. 5 labeled fast DEM encoder is a conventional mismatch-shaping non-

segmented DEM encoder with a clock rate of ffast. It is implemented as a tree of non-segmenting 

SBs, and it maps yΔΣ[pt] to four 1-bit sequences, each of which drives an FCE with a frequency 

step size of Δmin [56, 57].  

Each bi[wt] in Fig. 5, for i = 1, 2, 3, 4, is clocked at a rate of ffast and toggles rapidly 

enough such that the FCE frequency transitions from the fractional FCE bank introduce high-

frequency error components to the DCO’s phase error. Such components are lowpass filtered 

by the DCO, so they are not a problem in practice provided ffast is large enough. Consequently, 
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the frequency transitions of the FCEs from the fractional FCE bank are modeled as ideal, so 

that fi(t) is given by (11) for i = 1, 2, 3, 4.  

It follows from the results presented in [53] and (11) that 

 ( ) [ ] ( ),tF F F
f t y w e t


= +   (24) 

where αF is the average of αi for i = 1, 2, 3, 4 and eF(t) is a function of the errors introduced by 

the fractional FCE bank and the switching sequences from the fast DEM encoder. The fast DEM 

encoder ensures that eF(t) is free of nonlinear distortion, uncorrelated with yΔΣ[wt], and has a 

first-order highpass-shaped PSD that peaks at ffast/2, so this term is not a problem in practice 

provided ffast is large enough. Thus, substituting (23) into (24) and neglecting eF(t) gives 

 ( ) [ ( )] [ ].t tF F Ff
f t x g w e w 


= +  (25) 

As shown in Fig. 5, the c17[nt], c18[nt], …, c34[nt] outputs of the slow DEM encoder drive 

the same FCEs as those of the DEM encoder of Fig. 3. As shown in Appendix A, this implies 

that fI(t) is given by 

 ( ) ( ) [ ( )] ( ) [ ( 1)] ( ),t tI I I I
f t t d g w t d g w e t = + − +   (26) 

where 

  , , , ,
,

( ) ( ) [ ( )] ( ) [ ( 1)] ,t tI k r k r k r k r
k r

e t t s g w t s g w = + −   (27) 

αI(t), γI(t), αk,r(t) and γk,r(t) are Tfast-periodic waveforms that depend on the errors introduced by 

the integer FCE bank, and the summation indices indicate the summation over all k and r values 

corresponding to the SBs within the slow DEM encoder. 

The contribution to the DCO frequency from both FCE banks is ftune(t) = fI(t) + fF(t), so 

(25) and (26) imply that 
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 tune( ) ( ) [ ( )] ( ) [ ( 1)] [ ] ( ),t t tI I F M
f t t d g w t d g w e w e t  


= + − + +  (28) 

where 

 ( ) ( ) [ ( ])tM I F f
e t e t x g w= +  (29) 

is called FCE mismatch error. As shown below, eM(t) is a linear combination of the switching 

sequences from the slow DEM encoder whose coefficients depend on the errors introduced by 

both FCE banks. 

The γI(t)d[g(wt − 1)] term in (28) is proportional to a Tfast-delayed version of d[g(wt)], so 

it represents a linear filtering operation. It follows from the expressions for αI(t) and γI(t) in 

Appendix A that this term tends to be much smaller than the desired signal component, 

αI(t)d[g(wt)], so it is not a problem in practice. The αFeΔΣ[wt] term is proportional to ΔΣ 

quantization noise plus dither so it is free of nonlinear distortion, is uncorrelated with the other 

terms in (28), and has a highpass-shaped PSD. The eM(t) term also has these properties because 

it is a linear combination of the switching sequences from the slow DEM encoder. The PSD of 

αFeΔΣ[wt] peaks at ffast/2, whereas the PSD of eM(t) peaks at fin/2. Hence, ffast can be increased to 

make the DCO phase error introduced by αFeΔΣ[wt] negligible, but this would not reduce the 

DCO phase error contribution from eM(t). Therefore, eM(t) is the only problematic term in (28).  

Substituting (22) and (27) into (29) yields 

  ( ), , , , ,
,

( ) [ ( )] ( ) [ ( 1)] [ ( )] ,t t tM k r k r k r k r k r
k r

e t s g w t s g w s g w  



= + − −   (30) 

where 
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+
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is constant for each k and r, even though neither αk,r(t) nor γk,r(t) are constant. As can be verified 

by substituting (18) into the expressions for αk,r(t) and γk,r(t) in Appendix A, the non-constant 

terms in each αk,r(t) are equal in magnitude but opposite in sign to the corresponding terms in 

γk,r(t), so αk,r(t) + γk,r(t), and hence δk,r, are constant. Therefore, the terms proportional to δk,r in 

(30) represent the DCO frequency error contribution from FCE static gain errors, whereas the 

terms proportional to γk,r(t) in (30) represent the DCO frequency error contribution from non-

ideal FCE frequency transitions. 

VI. ADAPTIVE FCE MISMATCH NOISE CANCELLATION 

The purpose of the MNC technique is to cancel most of the DCO phase error that would 

otherwise be caused by eM(t). To do this, the sequence 

    ( ), , , ,M ,
,

NC
[ ] [ ] [ ( )] [ ] ,t t tk rt k r k r k r k r

k r

e p a s n b s g w s n
 
 
 

= + −  (32) 

where ak,r and bk,r are called the MNC coefficients, is injected into the fractional path of the multi-

rate DEM encoder. The ideal MNC coefficient values, i.e., the values of ak,r and bk,r for which the 

DCO phase error contribution of eM(t) is minimized, are estimated with a least-mean-square 

(LMS)-like algorithm.  

In the following, it is explained how eMNC[pt] affects the DCO’s phase error, how the FCE 

mismatch error is measured, and how the MNC coefficients are adaptively computed from the 

FCE mismatch error measurement. 

A. MNC Sequence Application 

Fig. 8 shows the fractional path of the multi-rate DEM encoder shown in Fig. 5 modified 
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to accommodate MNC. The eMNC[pt] sequence is subtracted from xf[nt] prior to the ΔΣ modulator, 

and the output range of the ΔΣ modulator, the range of the fast DEM encoder, and the number of 

FCEs driven by the fast DEM encoder are all four times those of the original system to 

accommodate the resulting dynamic range increase. Thus, fF(t) is still given by (24), but now 

yΔΣ[pt] is given by the right side of (23) minus eMNC[pt]. Despite having the same qualitative 

properties as before, αF and eF(t) in (24) are slightly different in the modified system because of 

the additional FCEs.  

An analysis almost identical to that presented in Section V shows that ftune(t) is now given 

by 

 tune( ) ( ) [ ( )] ( ) [ ( 1)] [ ] ( ),t t tI I F R
f t t d g w t d g w e w e t  


= + − + +  (33) 

where  

 MNC
( ) ( ) [ ]tR M F
t e t ee w= −  (34) 

is the residual FCE mismatch error, i.e., what is left of eM(t) when eMNC[pt] is applied. It follows 

from (30), (32) and (34) that  

  ( ), -res , -r , ,es,
,

( ) [ ( )] ( ) [ ( 1)] [ ( )] ,t t tR k r k r k r
k r

k r k r
e t s g w t s g w s g w  




= + − −  (35) 

where δk,r-res and γk,r-res(t) are defined as 

 
, -res , , -res, , ,

( ) (d ) ,an
k r k F Fk r k r k rr k r

a t t b    = − = −   (36) 

respectively.  

Given that δk,r is constant, there exists an ak,r that causes δk,r-res = 0. In contrast, there is no 

bk,r that causes γk,r-res(t) to vanish completely, because γk,r(t) is not constant. However, γk,r(t) is Tfast-
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periodic so there exists a bk,r that makes the DC component of γk,r-res(t) zero, such that γk,r-res(t) is 

a linear combination of sinusoids with frequencies that are non-zero multiples of ffast [58]. 

Therefore, it follows from (36) that if 

 
fast,

,
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, 0
f st

,
a

1
( )nd ,

k r k r
r

F

Tk
k

F
r

a b d
T


 

 
= =    (37) 

for each k and r, then 

 
fast

, -res , -0 res
0  and  ( ) 0.

k r k r

T
d  = =   (38) 

In the absence of FCE static mismatches, ak,r = 0, and if the FCE frequency transitions are ideal, 

bk,r = 0. 

Phase error is the integral of frequency error, so the DCO phase error introduced by eR(t) 

is given by 

 
0

( ) ( ) .
t

R R
t e d =    (39) 

If (38) is satisfied, then (35) and (39) imply that 

 ( ) fast

, -r
,

e, , s0
[ ( 1)] [ ( )]( ( ) ,)

tt p

R k r

T

t tk r k r
k r

t us g w us g w d 
−

−= −    (40) 

where t – ptTfast = t – ⌊ ffastt⌋Tfast < Tfast. The term within the parenthesis in (40) equals zero when 

g(wt) – g(wt – 1) = 0 and sk,r[g(wt) – 1] – sk,r[g(wt)] otherwise. Given that g(wt) – g(wt – 1) can only 

take on values from the set {0, 1}, then 

 
( )( )

, ,

, ,

[ ( 1)] [ ( )]

( ) ( 1) [ ( ) 1] [ ( )] .

t tk r k r

t t t tk r k r

s g w s g w

g w g w s g w s g w

− − =

− − − −
  (41) 

Furthermore, g(wt) is a Tfast-delayed version of nt, which increases by one unit every Tin = 1/fin, so 
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g(wt) – g(wt – 1) is Tin-periodic and is given by 

 ( )in
( ) ( 1) ,t t

k

g w g w r t kT
=



−

− − = −   (42) 

where r(t) = 1 for t ∊ [Tfast, 2Tfast) and 0 otherwise. It follows from (42) that the Fourier expansion 

of g(wt) – g(wt – 1) is 

 in in
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f f
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



=

 
 

   
   
   
     

+ −   (43) 

Thus, if the conditions shown in (38) are satisfied, (40), (41) and (43) imply that θR(t) 

would be given by second-order shaped noise multiplied by a Tin-periodic waveform and a DC-

free Tfast-periodic waveform. Consequently, eR(t) would introduce components with frequencies 

around fn,m = nffast ± mfin to the DCO’s phase error, where n = 1, 2, 3, … and m = 0, 1, 2, …. It follows 

from (43) that the power of the components around frequencies fn,m with m near multiples of ffast/fin 

is very low. Therefore, θR(t) would not be a problem if ffast is large enough because eR(t) would 

only introduce high-frequency components to the DCO’s phase error that would be lowpass 

filtered by the DCO. Simulation results also suggest that θR(t) is not a problem provided the 

conditions shown in (38) are satisfied and ffast is large enough. 

B. FCE Mismatch Error Measurement 

The ideal MNC coefficient values are estimated as part of the feedback loop in a digital 

fractional-N PLL that incorporates the DCO. This is done during the PLL’s normal operation by 

adaptively adjusting ak,r and bk,r such that the conditions shown in (38) are satisfied for each k and 

r, thereby minimizing eR(t). 

The purpose of a fractional-N PLL is to generate a periodic output signal, vPLL(t), with 



 

 

21 

 

frequency fPLL = (N + α)fref, where N is a positive integer, α is a fractional value and fref is the 

frequency of a reference oscillator waveform, vref(t). The general form of a digital fractional-N 

PLL without MNC is shown in Fig. 9. It consists of a phase-error-to-digital converter (PEDC), a 

lowpass digital loop filter (DLF), and a DCO. The PEDC’s output is an fref-rate digital sequence 

of the form 

 PLL
[ ] [ ] [ ],pp n n e n= − +   (44) 

where θPLL[n] is an estimate of the PLL’s phase error and ep[n] is additive error that includes 

quantization error from the PEDC’s digitization process as well as error from circuit noise and 

other non-ideal circuit behavior in both the PEDC and reference oscillator. 

Suppose the DCO contains the multi-rate DEM structure shown in Fig. 5 modified as 

shown in Fig. 8 with fin = fref. Typically, ffast-clk is a divided-down version of vPLL(t). Given that 

fPLL = (N + α)fref, fref and ffast are incommensurate frequencies when α ≠ 0, so it is not possible for 

nt to change synchronously with pt = ⌊ ffastt⌋ if nt = ⌊ freft⌋. Therefore, as shown in Fig. 10, in practice 

the DCO input is synchronized to ffast-clk so (4) is satisfied, i.e., so nt only changes at times μn, 

which are multiples of Tfast, instead of times nTref, where Tref = 1/fref is the reference period. It is 

common practice in digital PLLs to synchronize the DLF output to the clock signal of the 

fractional path, so this is not a special requirement of the proposed system. A circuit to avoid 

metastability issues is also needed as part of the synchronization circuit shown in Fig. 10(a), but 

it has been omitted for simplicity [59]. 

A key requirement of a PLL is to suppress low-frequency DCO error, which is achieved 

by subjecting additive frequency error introduced by the DCO to a highpass filter that has at least 

one zero at DC. In the following, the impulse response of this filter is denoted as h[n], and its 
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running sum, i.e., h[0] + h[1] + … + h[n], is denoted as l[n].  

As shown in Appendix B, p[n] can be written as 

 
ideal

[ ] [ ] [ ],
R

p n p n p n= +   (45) 

where pideal[n] represents the contribution to p[n] of all noise sources except FCE mismatches and 

pR[n] is the contribution to p[n] from eR(t). Specifically, pR[n] is given by 

  fast , - , -

1

0 ,

[ ] [ ] [ ] [ 1 ],
F k r a k r

n

R
i k r

b
p n T y i y i l n i

−

=

= + − −   (46) 

where yk,r-a[i] + yk,r-b[i] is proportional to the PLL’s frequency error introduced by the sk,r[n] 

sequences. As explained in Appendix B, if ak,r and bk,r in (32) are replaced by ak,r[nt] and bk,r[nt], 

respectively, then 

 ( )1, - , -error , -error, ,
[ ] 3 [ 1] [ 1] 3 [ ] [ ]

ik k r k rr a k r k r
y i q s i a i s i a i

−
= − − − +   (47) 

and 

 ( ), - , -err, , or
[ ] [ 1] [ ] [ ],

k rrr k r kb k
y i s i s i b i= − −   (48) 

where qi–1 is the number of Tfast periods between times μi–1 and μi, and 

 
, -error , , -error ,, ,

[ ] [ ] an[ ] [ ]d 
k rk r k r k r kk rr

n na a n a b b n b= =− −   (49) 

are the MNC coefficient errors at sample time n. 

The term proportional to sk,r[i] in (47) arises because the time at which the PEDC samples 

the PLL’s phase error, which is given by μn + 4Tfast in the design example, is not equal to the time 

at which the integer FCE bank’s inputs are updated, i.e., μn + Tfast. Accordingly, the integer FCE 

bank’s inputs are updated three Tfast before the PLL’s phase error is sampled, which causes yk,r-
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a[i] to depend on sk,r[i – 1] and also on sk,r[i]. 

As implied by (45)-(48), the PEDC’s output has information regarding the MNC 

coefficient errors. The MNC coefficient estimation process described next is based on this result 

and on the properties of the switching sequences. 

C. MNC Coefficients Estimation 

A digital fractional-N PLL with the multi-rate DEM encoder and MNC technique is 

shown in Fig. 11(a). The details of the MNC logic are shown in Fig. 11(b) and Fig. 11(c), wherein 

 
, ,

0

[ ] [ ]
k r k r

n

i

n it s
=

=   (50) 

is the running sum of sk,r[n], and Ka and Kb are called the MNC gains. The MNC logic block 

consists of an adder and 25 sk,r[nt] residue estimators. 

It follows from Fig. 4 that each sk,r[n] sequence is a concatenation of sequences of the 

form 1, 0, …, 0, –1, 0, …, 0 or –1, 0, …, 0, 1, 0, …, 0, where each 0 is present only when the input 

of the sk,r[n] generator is zero [52]. Thus, |sk,r[n]| ≤ 1, |tk,r[n]| ≤ 1 and |sk,r[n] – sk,r[n – 1]| ≤ 2 for all 

n, so the multipliers in Fig. 11(c) are simple in terms of hardware. 

The sk,r[nt] residue estimators are responsible for the computation of the MNC 

coefficients. At each sample time, the MNC coefficient errors are measured and ak,r[nt] and bk,r[nt] 

are updated such that they approach the values shown in (37). The measurement of the MNC 

coefficient errors is based on the statistical properties of the switching sequences [60]. 

As explained in [57] and can be verified from Fig. 4, although each sk,r[n] sequence 

depends on the input of its corresponding SB, when it is non-zero, its sign depends on dk,r[n]. 

Given that the dk,r[n] sequences are independent of the dk,r[n] sequences in the other SBs, this 



 

 

24 

 

provides enough randomization for the sk,r[n] sequences to be uncorrelated with each other. 

Furthermore, as the dk,r[n] sequences are also independent of all electronic device noise sources 

in the PLL, each sk,r[n] sequence is uncorrelated with all such sources as well, and it is also 

uncorrelated with the PEDC’s quantization noise in PLLs where such noise source is uncorrelated 

with the PLL’s phase error [29, 39]. Hence, in such cases, the sk,r[n] sequences are uncorrelated 

with all PLL noise except the terms in p[n] arising from eR(t), i.e., pR[n]. 

As explained above, the yk,r-a[i] and yk,r-b[i] terms in p[n] depend on the MNC coefficient 

errors, and such terms are proportional to functions of the sk,r[n] sequences. Specifically, it can be 

seen from (45)-(48) that p[n] has information about an accumulated version of 

 ( )2 , , -error
[ 2 ,[ 2] ]3

n k r k r
q s n a n

−
−− −   (51) 

and that p[n] − p[n − 1] has information about 

 ( ), , , -error
[ 2] [ 1] [ 1].

k r k r k r
s n s n b n− − −−   (52) 

Therefore, it follows that the accumulator inputs in Fig. 11(c), i.e., −p[n]tk,r[n − 2] and (p[n − 1] − 

p[n])(sk,r[n − 2] − sk,r[n − 1]), when non-zero, are noisy estimates of ak,r-error[n] and bk,r-error[n], 

respectively, so they can be used to adaptively compute the ideal MNC coefficients. In practice, 

the top and bottom branches within each sk,r[nt] residue estimator interfere with each other in a 

way that makes the accumulator inputs have information about both MNC coefficient errors. 

However, extensive simulations run by the authors suggest that the MNC coefficient values 

converge to their ideal values regardless of such interferences provided the MNC gains are set 

properly.  

It would also be possible to correlate p[n − 1] − p[n] by sk,r[n − 2] to get an estimate of ak,r-

error[n]. However, as ak,r[n] is only updated when the accumulator input is non-zero, correlating 
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p[n − 1] − p[n] against sk,r[n − 2] instead of −p[n] against tk,r[n − 2] would significantly decrease 

the convergence speed of ak,r[n] because normally sk,r[n − 2] is zero more often than tk,r[n − 2]. 

Although correlating −p[n] against tk,r[n − 2] effectively increases the error variance of ak,r[n], as 

explained next, this problem can be mitigated by reducing Ka. 

As is common in most LMS-like algorithms, the choice of Ka and Kb represents a tradeoff. 

The larger the MNC gains, the faster the convergence, but the larger the error variance of ak,r[n] 

and bk,r[n]. Also, as the sk,r[nt] residue estimators comprise two LMS-like loops in parallel that 

interfere with each other, Ka and Kb each affect the convergence time and error variance of both 

ak,r[n] and bk,r[n]. Although it might be possible to develop closed-form expressions that quantify 

these tradeoffs, the authors currently use simulations to assist the design process and to choose 

the values of Ka and Kb. 

VII. SIMULATION RESULTS 

The multi-rate DEM and the MNC techniques were tested in an event-driven behavioral 

simulation of a modified version of the ΔΣ frequency-to-digital converter based fractional-N 

PLL presented in [39, 40]. As explained in [38], p[n] is given by (44) where ep[n] is first-order 

shaped quantization noise that is uncorrelated with the PLL’s phase error plus error from both 

the PEDC and reference oscillator. 

The DLF consists of two single-pole IIR stages and a proportional-integral stage. Its 

transfer function is  
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1 1
0
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1 1 1

iI
M P

i i

K
L z K K

z z



− −
=

 
 
 
 

= +
− − −

   (53) 



 

 

26 

 

where KM, KP, KI, λ0 and λ1 are constant loop filter parameters. The DCO consists of an LC 

oscillator core with a power-of-two-weighted coarse capacitor bank, an integer FCE bank and 

a fractional FCE bank. The latter two are driven by the multi-rate DEM encoder shown in Fig. 

5 and modified as shown in Fig. 8 with ffast = fPLL/8 and Δmin = 40 kHz (i.e., Δ = 156.25 Hz). 

The static gain error of the ith FCE was modeled as an additive zero-mean Gaussian 

random variable with a standard deviation of 5% of Δi divided by the square root of Δi/Δmin, 

which is consistent with measurement results obtained by the authors from the PLL IC 

presented in [36]. The FCE frequency transitions were modeled as second-order transients that 

settle within one Tfast period. The parameters of these transients, such as the damping factor and 

the natural frequency, are modelled as random variables with means and standard deviations 

determined from transistor-level simulation results. Fig. 12 shows example frequency transients 

used in the simulation.  

The simulated noise parameters of the DCO and the reference oscillator, as well as the 

PEDC internal parameters, are the same as those used in [38]. Specifically, fref = 26 MHz, N = 

134 and α = 0.0003846153, so that fPLL = 3.484 GHz and ffast = 435.5 MHz. The DLF parameters 

used were KM = 1.25, KP = 24, KI = 2–4, λ0 = 2
–3 and λ1 = 2

–2, and the MNC gains were set to Ka 

= 2
–3 and Kb = 2

–5. The simulated PLL has a bandwidth of 206 kHz and a phase margin of 63 

degrees. 

Fig. 13(a) shows the simulated PLL phase noise PSD with the multi-rate DEM technique 

disabled, i.e., with the flip-flops in both the slow and fast DEM encoders frozen. The two curves 

in Fig. 13(a) were obtained from two different simulations: one in which dI[nt] is constant and 

another one in which dI[nt] changes frequently. As mentioned in Section III, although the DCO 
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input sequence does not vary significantly in the short term once the PLL is locked, its moving 

average drifts over time such that dI[nt] eventually begins to change frequently, at which point 

it degrades the PLL’s phase noise as shown in Fig. 13(a). Once the multi-rate DEM technique 

is enabled, whether or not dI[nt] changes has no significant effect on the DCO’s frequency, so 

spectral breathing no longer occurs. 

Fig. 13(b) shows the simulated PLL phase noise PSD with the multi-rate DEM 

technique enabled for two cases: one case with just static gain errors, and the other case with 

just non-ideal frequency transitions. Fig. 13(c) shows the simulated PLL phase noise PSD 

considering both sources of error with the multi-rate DEM technique enabled and with the MNC 

technique disabled and enabled. The theoretical PLL phase noise PSD for ideal FCEs, which 

was computed using the linearized model presented in [38], is also plotted as the dashed curves 

in Fig. 13 to provide a comparison baseline. 

As shown in Fig. 13(c), when the MNC technique is enabled the resulting phase noise 

PSD matches the theoretically-predicted phase noise PSD for ideal FCEs after 13·107 reference 

periods (5 seconds) from a cold start. This implies a phase noise improvement of more than 20 

dB at an offset frequency around 10 MHz. As the FCE mismatches are mostly determined by 

circuit component mismatches, they are not expected to change significantly over time. Hence, 

once obtained, the MNC coefficients can be stored in memory and used subsequently by the 

PLL, thereby avoiding future convergence time delays. 

Fig. 14 shows the evolution of the MNC coefficient errors over time from the simulation 

used to generate the curves in Fig. 13(c). As shown in Fig. 14, some bk,r[n] coefficients initially 

move away from their ideal values. As explained above, this happens because the top and 
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bottom branches of each sk,r[nt] residue estimator interfere with each other so that the error 

estimate at the input of each accumulator is biased by the MNC coefficient error of the opposite 

branch. As suggested by Fig. 14, if the MNC gains are set properly, this is not a problem in 

practice because this effect becomes less significant as either one or both MNC coefficients 

approach their ideal values.5 

It follows from (47) and (48) that the terms proportional to ak,r-error[n] in p[n] are qn – 3 

times larger than those proportional to bk,r-error[n] (e.g., qn ≅ 16 in the design example), so for Ka 

= Kb, the error variance of each bk,r[n] is expected to be larger than that of ak,r[n]. Therefore, in 

order to make the error variance of the bk,r[n] coefficients comparable to that of the ak,r[n] 

coefficients, Kb has to be smaller than Ka. As shown in Fig. 14, this causes the bk,r[n] coefficients 

to converge to their ideal values at a slower rate than the ak,r[n] coefficients, so the convergence 

speed of the MNC technique is limited by Kb. Nonetheless, it follows from Fig. 14 that the 

ak,r[n] coefficients get close to their ideal values in less than 107 reference periods (~0.4 

seconds). Hence, as the most significant sources of phase noise are the FCE static gain errors, 

the MNC technique allows for a considerable phase noise improvement in less than half a 

second. 

To reduce the cold-start convergence time of the MNC technique, large MNC gains can 

be used initially and decreased over time [61]. Fig. 15 shows the evolution of the MNC 

coefficient errors over time for 7.8·107 reference periods (3 seconds) for an example case in 

which Ka and Kb are initially set to 2–1 and 2–2, respectively, and then divided by two at the 

 
5 Furthermore, extensive simulations run by the authors in which p[n] was subjected to pessimistic nonlinearities 

suggest that the convergence of the MNC coefficients is barely affected by nonlinearities in the PEDC. 
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times indicated by the vertical dashed lines. In this case, the MNC coefficients reach the final 

values shown in Fig. 14 in roughly 3 seconds, and the ak,r[n] coefficients get close to their ideal 

values in less than 2·106 reference periods (~0.08 seconds), which is five times faster than in 

Fig. 14. 

APPENDIX A 

It follows from Fig. 5 and (17) that 

      ( ) ( )
22

5

[ ] ( ) [ 1] ( )( ) ½ ½ .t ti iI i i i
i

f b w t b w tt  
=

 
  

−  + −= −   (54) 

Expressions for each bi[wt] = ci+12[g(wt)] in terms of d[g(wt)] and the switching sequences can 

be found by tracing through the tree of Fig. 6 and applying (20) and the expressions shown in 

Fig. 4(a) and Fig. 4(b). This leads to  
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where 

 160 for17 26 and fo 37 4,2 2ri im mi i−=   =     (56) 

and each κk,r,i is one of 0, −½, ½, −2
−k or 2−k. Combining (4), (19) and (54)-(56) yields (26) and 

(27), where αI(t) and γI(t) are the averages of αi(t) and (2−13/Δ)γi(t) for i = 15, 16, …, 22, 

respectively, 
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Each αI(t), γI(t), αk,r(t) and γk,r(t) is Tfast-periodic, because it is a linear combination of αi(t) and 

γi(t), which are Tfast-periodic. 
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APPENDIX B 

The phase error of the digital PLL shown in Fig. 9 is given by 

 
PLL PLL0

( ) ( ) ,
t

t u du =    (58) 

where ѱPLL(t) is the PLL’s frequency error at time t. The θPLL[n] term in (44) is a sampled 

version of θPLL(t) given by 

 PLL PLL
[ ] ( ),nn  =   (59) 

where τn = nTref + λn and λn is a small implementation-dependent deviation of τn from its ideal 

value. It follows from (44), (58) and (59) that 
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is the PLL’s average frequency error over the time interval [τi–1, τi] and p[0] is the initial value 

of p[n]. Fig. 9 and (61) imply that eR(t) causes a term in ѱPLL[i] given by 
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and h[j] is the impulse response of the highpass filtering operation imposed by the PLL on the 

DCO’s additive frequency error as described in Section VI-B. 
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In the design example of this paper λn = 4.2Tfast + ⅛Tfastv[n], where v[n] is an integer-

valued sequence restricted to the set {–6, –5, …, 5, 6}, so τn = nTref + 4.2Tfast + ⅛Tfastv[n]. As the 

magnitude of ⅛Tfastv[n] is at most ¾Tfast, its effect is negligible. Furthermore, for the sake of 

simplicity, τn is assumed to be given by 

 
fast

4 ,n n T = +   (64) 

where μn, as shown in Fig. 10(b), is a multiple of Tfast. Given that 0 < μn – nTref ≤ Tfast for all n 

and that Tfast is a small fraction of Tref, this approximation does not significantly affect the 

following results. Substituting (36) with ak,r and bk,r replaced by ak,r[g(wt)] and bk,r[g(wt)], 

respectively, into (35), and the result of this operation and (64) into (63) yields 
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Given that t ∊ [μn, μn+1) implies g(pt) = n – 1, it follows that g(wt) = i – 2 for t ∊ [μi–1 + 

4Tfast, μi + Tfast) and g(wt) = i – 1 for t ∊ [μi + Tfast, μi + 4Tfast), so (65) can be written as 
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where yk,r-a[i] and yk,r-b[i] are given by (47) and (48), respectively, and it has been assumed that 

qi = (μi+1 – μi)/Tfast is greater than 3 for all i (e.g., qi ≅ 16 in the design example). Substituting 

(66) into (62) and the result into (60), rearranging terms and considering that sk,r[n] = 0 for n < 

0 gives (45) and (46). 
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Figure 1: Conventional frequency control technique for an LC-based DCO. 
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Figure 2: Example waveforms related to (15) and (16) for an FCE input bit sequence of 1, 0, 1, 

1, 0. 
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Figure 3: Segmented DEM encoder example. 
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Figure 4: (a) Segmenting switching block, (b) non-segmenting switching block, and (c) 

switching sequence generator. 
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Figure 5: Multi-rate DEM encoder example. 
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Figure 6: Slow DEM encoder example. 
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Figure 7: Details of the second-order digital ΔΣ modulator. 

 

yΔΣ[pt]2
nd

-Order
Digital 
ΔΣ Mod.

FCE 2
8
Δ

FCE 2
8
Δ

Fast
DEM

Encoder b1[wt]

b16[wt]

fin-clk

ffast-clk

xf [nt]

eMNC[pt]

3
4

-b
it

 

wt = pt   1  
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Figure 9: General form of a digital fractional-N PLL. 
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Figure 10: (a) Synchronization circuit used at DCO input, and (b) illustration of the clock 

signals within the DCO, pt, and nt = g(pt) for ffast = 4.5fref. 
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Figure 11: (a) Digital fractional-N PLL with multi-rate DEM and MNC, (b) details of the MNC 

logic, and (c) details of each switching sequence residue estimator. 
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Figure 13: Simulated PLL phase noise PSD versus frequency with (a) static gain errors and 

non-ideal frequency transitions enabled and the multi-rate DEM technique disabled, (b) static 

gain errors and non-ideal frequency transitions enabled separately and the multi-rate DEM 

technique enabled, and (c) both sources of error enabled, the multi-rate DEM technique enabled 

and the MNC technique disabled and enabled. 
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Figure 14: MNC coefficient error evolution over time for Ka = 2–3 and Kb = 2–5. 
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Figure 15: MNC coefficient error evolution over time for MNC gains that change over time. 

Initially Ka = 2–1 and Kb = 2–2, and after 3.5·107 reference periods Ka = 2–6 and Kb = 2–6. 
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CHAPTER 2 

DELTA-SIGMA FDC ENHANCEMENTS FOR FDC-BASED DIGITAL 

FRACTIONAL-N PLLS 

 

Abstract— This paper describes all-digital enhancements for digital fractional-N 

phase-locked loops (PLLs) based on delta-sigma (ΔΣ) frequency-to-digital converters (FDCs). 

The enhancements include an improved dual-mode ring oscillator (DMRO)-based ΔΣ FDC 

architecture and a digital background calibration technique that compensates for the ΔΣ FDC’s 

forward path gain error. The improved ΔΣ FDC has significantly relaxed timing constraints and 

a 3× smaller phase-frequency detector output pulse-width span relative to the prior art, which 

make it simpler to implement and amenable to higher-frequency reference signals. The 

calibration technique compensates for non-ideal DMRO frequencies in the digital domain. It 

eliminates the need to tune the DMRO instantaneous frequencies as a function of the PLL 

output frequency, thereby simplifying the DMRO implementation, and it also improves the 

phase noise performance of PLLs with high loop bandwidths. 
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I. INTRODUCTION 

Digital fractional-N phase-locked loops (PLLs) based on second-order delta-sigma (ΔΣ) 

frequency-to-digital converters (FDCs) offer advantages of both analog and digital PLLs [1]–

[12]. They have the same quantization error behavior as analog PLLs based on second-order 

ΔΣ modulators, but they do not require large-area analog loop filters. 

This paper presents all-digital enhancements for ΔΣ FDCs that reduce implementation 

complexity and improve performance. The enhancements include a modified dual-mode ring 

oscillator (DMRO)-based ΔΣ FDC architecture and a digital background calibration technique 

that compensates for ΔΣ FDC forward path gain error caused by non-ideal DMRO frequencies. 

The modified ΔΣ FDC architecture has relaxed timing constraints and a 3× smaller 

phase-frequency detector (PFD) output pulse-width span compared to prior-art ΔΣ FDCs [8]–[

12]. These benefits make the new ΔΣ FDC simpler to implement [13]. They also make it 

amenable to higher-frequency reference signals for any given PLL output frequency, which is 

useful because increasing the reference frequency reduces the contributions of the reference 

signal phase noise, ΔΣ FDC quantization error, and DMRO phase noise to the PLL’s output 

phase noise [11]. 

The DMRO in a DMRO-based ΔΣ FDC is designed to oscillate at one of two 

frequencies at any given time. These frequencies, denoted as fhigh and flow in this paper, ideally 

have a specific relationship to the PLL output frequency, fPLL. In prior art DMRO-based ΔΣ 

FDCs, fhigh and flow are adjusted each time fPLL is changed to approximate this ideal relationship, 

which adds complexity to the DMRO design. Furthermore, while the PLL’s performance is 
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relatively insensitive to deviations of fhigh and flow from their ideal values for low-to-moderate 

PLL bandwidths, this is not the case for high PLL bandwidths. 

The proposed digital background calibration technique addresses these issues. Rather 

than dynamically adjusting fhigh and flow by controlling the DMRO’s analog circuitry as a 

function of fPLL, it dynamically adjusts digital circuitry to compensate for error that would 

otherwise be caused by non-ideal values of fhigh and flow. Moreover, it does so with much finer 

resolution than prior art ΔΣ FDCs are able to adjust the DMRO to tune fhigh and flow. These 

benefits greatly simplify the DMRO, which can now be designed to have fixed values of fhigh 

and flow, and significantly reduce phase noise for high PLL bandwidths. 

The remainder of the paper consists of four main sections. Section II provides an 

overview of prior-art fractional-N PLLs that incorporate ΔΣ FDCs based on DMROs. Sections 

III and IV present the proposed ΔΣ FDC enhancements described above, and Section V presents 

simulation results that demonstrate their performance.  

II. ΔΣ FDC DIGITAL FRACTIONAL-N PLL OVERVIEW 

 ΔΣ FDC-Based PLL 

A high-level block diagram of a second-order ΔΣ FDC-based fractional-N PLL is shown 

in Fig. 16. It consists of a ΔΣ FDC, a digital loop controller (DLC) with quantization noise 

cancellation (QNC), and a digitally-controlled oscillator (DCO) [8]–[12]. The signal vref(t) is t

he output of a reference oscillator with frequency fref and vPLL(t) is the PLL output waveform. 

Ideally, vPLL(t) is periodic with frequency fPLL = (N + α)fref, where N is a positive integer and α 

has a fractional value that can range from –½ to ½. 
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The ΔΣ FDC generates two fref-rate digital sequences, y[n] and –êq[n]. Specifically, 

 PLL

nd2 -order shaped version [ ] of 

[ 1] [ 2[ ] ] 2 ][ [ ] ,q q q

q ne

y n n e n ee n e n=− +− + −− −  (67) 

where eq[n] is the quantization error introduced by the ΔΣ FDC and ePLL[n] is a measure of the 

average frequency error of vPLL(t) over the nth reference period. The êq[n] sequence is an 

estimate of eq[n]. It is used to partially cancel the contribution of eq[n] at the input of the digital 

loop filter (DLF) within the DLC [12]–[15]. By cancelling the quantization error prior to the 

loop filter, QNC allows the PLL’s bandwidth to be increased without significantly degrading 

the PLL’s phase noise. 

 Original ΔΣ FDC Architecture 

A simplified block diagram of the ΔΣ FDC presented in [11], hereafter referred to as 

the original ΔΣ FDC, is shown in Fig. 17(a). It consists of a PFD with top output u(t), a multi-

modulus divider with output vdiv(t), a DMRO, a digital ring phase calculator (RPC), and a 2 – 

z–1 digital feedback block with output v[n] that controls the divider. Although not shown in Fig. 

2 for simplicity, the RPC’s accumulator clips to keep its output in the range −2 ≤ r[n] < 3. As 

explained in [10], this reduces the PLL’s worst-case locking time, but has no effect on the PLL’s 

locked behavior. The PFD and divider are identical to those in analog PLLs. 

Each reference period, the signal encoded in the width of the u(t) pulse is accumulated 

by the DMRO. Then, the outputs of the DMRO, which represent a quantized version of its 

phase, are sampled and processed by the RPC to generate y[n] and –êq[n]. 

The DMRO is implemented as a ring of NR nominally identical delay cells. Ideally, its 

instantaneous frequency is fhigh when u(t) is high and flow when u(t) is low, where 
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and A is a design parameter [11].7  

Each reference period, the quantized DMRO phase, pR[n], is computed from the DMRO 

output lines. As indicated in Fig. 2(a), pR[n] is passed through a 1 – z
–1 block, and a positive 

constant, M, is subtracted from the result prior to the multiplication by A and accumulation. 

These operations yield r[n], which is a fixed-point measure of –α – ePLL[n] in units of cycles 

per reference period. The three most significant bits (MSBs) of r[n] correspond to the integer 

part of r[n], whereas the remaining least significant bits (LSBs) correspond to the fractional 

part of r[n][11]. 

The operation of the divider is such that adjacent rising edges of vdiv(t) are separated by 

N – v[n] PLL output periods. Ideally, v[n] would be set to 2r[n] – r[n – 1], but dividers can only 

count integer numbers of PLL output periods and r[n] contains both integer and fractional parts. 

Therefore, it is necessary to instead use just the integer part of r[n], i.e., y[n], so that v[n] = 

2y[n] – y[n – 1] is integer-valued. Given that y[n] is a quantized version of r[n], the fractional 

part of r[n], i.e., −êq[n], is the negative of the corresponding quantization error. The DLC uses 

−êq[n] to perform QNC.  

As proven in [11], the behavior of the system shown in Fig. 2(a) is identical to that of 

the second-order ΔΣ modulator shown in Fig. 3(a). The phase quantization operation performed 

by the DMRO is denoted by Qr and modeled as a fine quantizer of step-size Δr = (2NR)–1. Its 

 
7 In [11], 2–J, where J is an integer, is used instead of A–1, but the structures shown in Fig. 2 do not restrict A to be 

a power of 2. 
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quantization error, eqr[n], corresponds to the residual quantization error that is left after QNC. 

The quantization operation that occurs at the output of the RPC is denoted as Qc and modeled 

as a coarse quantizer with step-size Δc = 1. If 2NR/A is integer-valued, then the blocks contained 

in the dashed contour in Fig. 3(a) are equivalent to an accumulator followed by a quantizer, Q, 

with unity step-size and associated error given by 

 [ ˆ] .] [ ][q qr qAe ne n e n+=  (69) 

In this case, y[n] is given by (67) and the system’s self-dithering property causes eq[n] 

to have a power spectral density (PSD) equivalent to that of a zero-mean white noise sequence 

with variance 1/12 [16], [17]. 

 Original ΔΣ FDC Issues 

The original ΔΣ FDC suffers from two issues. One issue is tight timing constraints on 

both the digital part of the ΔΣ FDC and the divider. The other issue is high sensitivity to non-

ideal DMRO frequencies for high PLL bandwidths. 

Once the ΔΣ FDC locks, the rising edges of vdiv(t) succeed and precede rising and falling 

edges of vref(t), respectively [10], [11]. Therefore, as implied by Fig. 17(a), after the nth rising 

edge of vdiv(t), the ΔΣ FDC must compute y[n] and use it along with y[n − 1] to form v[n], which 

the divider then uses to determine the (n + 1)th rising edge of vdiv(t). This limits the time 

available for the ΔΣ FDC to process the u(t) pulse and compute y[n] to approximately one 

reference period, and requires a divider that is capable of loading the divider modulus in the 

middle or toward the end of the divider count [10]. These features tend to increase the power 

consumption, circuit area, and complexity of the divider. 
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As explained in [11], ΔΣ FDC-based PLLs are not highly sensitive to non-ideal values 

of fhigh and flow, i.e., values of fhigh and flow that do not exactly satisfy (68), in much the same way 

that a second-order ΔΣ modulator is not sensitive to deviations in the gain of its second 

accumulator [16]. Nevertheless, the need to adjust the DMRO in the original ΔΣ FDC each time 

fPLL changes so that fhigh and flow at least approximately satisfy (68) complicates the DMRO 

design. Moreover, as shown in Section IV, the accuracy with which (68) must be satisfied 

increases significantly with PLL bandwidth to the point that process, voltage, and temperature 

variations cause fhigh and flow to deviate from their ideal values enough to significantly degrade 

the PLL’s phase noise. 

III. IMPROVED ΔΣ FDC 

 Proposed ΔΣ FDC Architecture 

The proposed ΔΣ FDC is shown in Fig. 17(b).8 It is similar to that shown in Fig. 17(a) 

except for the feedback digital block and the details of the RPC. Instead of feeding back 2y[n] 

– y[n – 1] through the divider, 2y[n – 1] is fed back directly to the input of the accumulator within 

the RPC, and only y[n – 1] is fed back through the divider. 

An argument similar to that presented in [11] shows that the resulting system’s behavior 

is identical to that of the second-order ΔΣ modulator shown in Fig. 18(b), whose behavior is 

identical to that of the system shown in Fig. 18(a) provided 2NR/A is integer-valued. 

 
8 The sequences v[n], pR[n] and dR[n] and the signals u(t) and vdiv(t) in Fig. 17(b) are not identical to those in Fig. 

17(a), but they play the same roles in both ΔΣ FDCs, which is why they share the same names.  
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A feature of the original ΔΣ FDC is that once it locks, the DMRO locks to an average 

frequency of Mfref, which minimizes the potential for fractional spurs if M is integer-valued 

[10]. Specifically, given that r[n] is bounded when the ΔΣ FDC is locked, the input to the 

accumulator within the RPC, and, hence, the M-adder output, must be zero-mean, which can 

only happen if the DMRO phase advances, on average, M cycles per reference period. 

In the proposed ΔΣ FDC, the average of the M-adder output is forced to zero by 

subtracting 2α from the accumulator’s input, so that the average DMRO frequency is given by 

Mfref. Reasoning similar to that presented above and (67) imply that without the 2α subtraction 

the local feedback around the accumulator would cause the output of the M-adder to have an 

average of –2A–1α. In this case, the DMRO would lock to (M – 2A–1α)fref, which would increase 

the potential for fractional spurs. 

The 2α subtraction slightly increases the PLL’s digital complexity relative to a 

comparable PLL based on the original ΔΣ FDC. For instance, in the PLL implementation 

described in Section V, the cycle counter and phase decoder’s output, pR[n], has 10 fractional 

bits, α has 20 fractional bits, and A = 1, so the 2α subtraction nearly doubles the number of 

fractional bits required to represent the RPC accumulator’s input. Nonetheless, the number of 

fractional bits in the DLF input is determined by α regardless of which ΔΣ FDC is used, so the 

proposed ΔΣ FDC’s 2α subtraction only affects the RPC’s accumulator. Hence, it represents 

only a minor increase in the PLLs overall digital complexity. Moreover, this increase in 

complexity is offset by the proposed ΔΣ FDC’s features described below. 

It follows from Fig. 18(b) that for the proposed ΔΣ FDC the discrete-time transfer 

function from the input to the second accumulator output has a pole at DC, which suggests that 
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the system is unstable. Although the 2α term injected within the RPC causes the DC component 

at the output of the second accumulator to be zero, noise present at this node can cause the 

magnitude of the accumulator output to grow without bound. However, the second 

accumulation shown in Fig. 18(b) is performed by the DMRO, so this is not an issue in practice 

because the DMRO behaves as an accumulator with infinite output range [10]. Specifically, 

provided the cycle counter within the RPC does not roll-over more than once per reference 

period, which can be ensured by design, then the 1 – z
–1 block within the RPC can unwrap the 

sampled DMRO phase and retrieve the information encoded in it, thereby allowing the 

magnitude of the second accumulator’s output in Fig. 18(b) to be arbitrarily large.  

While the DC pole issue is not a problem in the modified ΔΣ FDC as explained above, 

it would present practical issues if corresponding modifications were applied to the charge 

pump (CP)-based ΔΣ FDC described in [8], [9], and [12]. In CP-based ΔΣ FDCs, the CP 

performs integration in place of the DMRO, yet charge pumps do not offer the convenient roll-

over feature inherent to DMROs. 

 Proposed ΔΣ FDC Features  

Relaxed Timing Constraints: Fig. 19 shows example timing diagrams for the original 

and proposed ΔΣ FDCs, where the time sequences tn and τn, for n = 0, 1, 2, …, are the times of 

the nth rising edges of vref(t) and vdiv(t), respectively, and the nth divider modulus is the number 

of PLL output periods between τn–1 and τn. In this example, the DMRO phase is sampled at 

times γn = tn + Tref/2, where Tref = 1/fref is the reference period, and the nth divider modulus can 

be loaded at time tn at the latest.  
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In the original ΔΣ FDC, the nth divider modulus is given by N – (2y[n – 1] – y[n – 2]), 

but as illustrated in Fig. 19(a), y[n – 1] cannot be computed before the DMRO phase is sampled 

at γn–1 > τn–1. It follows that the nth divider modulus can only be loaded once y[n – 1] is ready 

around the middle or near the end of the count, which increases the divider’s complexity. For 

example, the divider in [10] required significant additional logic to meet this requirement 

compared to the original version of the divider presented in [18]. Furthermore, as the divider 

modulus must be updated before tn, the amount of time available for the ΔΣ FDC to compute 

y[n – 1] is limited to Tref/2. 

As illustrated in Fig. 19(b), the proposed ΔΣ FDC has much more relaxed timing 

constraints. In this case, the nth divider modulus is given by N – y[n – 2]. By the time of the (n 

– 1)th rising edge of vdiv(t), the ΔΣ FDC has already had a duration of more than Tref/2 to 

compute y[n – 2], so the next count can start with a known divider modulus. Alternatively, the 

computation of y[n – 2] can take up to Tref, and the divider modulus can be updated near the 

beginning of the current count. In either case, compared to the original ΔΣ FDC, the proposed 

ΔΣ FDC allows for simpler divider topologies to be used and imposes looser digital timing 

constraints on the ΔΣ FDC. 

Reduced PFD Output Span: As shown in [11], for the original ΔΣ FDC, ePLL[n] in (67) 

is given by 

 ( ) ( )PLL PLL DMRO DMROref
[ ] [ ] [ ] [ ] [ 1] ,e n n N n A n n    −= − + − −  (70) 

the eq[n] sequence is bounded by 

 1 [ ] 0,qe n −   (71) 

and the width of u(t) is given by 
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where ψPLL[n], ψref[n] and ψDMRO[n] are the phase noise changes per reference period of vPLL(t), 

vref(t) and the DMRO, respectively, and  

 ref low

high low
u

M T f
T

f f

−
=

−
 (73) 

is the average width of the u(t) pulse.  

Suppose bPLL and bDMRO are the maximum magnitudes of ePLL[n] and ψDMRO[n], 

respectively, so 

 PLL PLL DMRO DMRO
  and[ ] [ ]  e n b n b   (74) 

for all n. Then, it follows from (67), (70)-(72) and (74) that the maximum span of u(t), ΔTu, 

which is defined as 

 2max ,
nu n n uT t T − − =  (75) 

satisfies 

 ( )PLL PLLDMRO
2 3 2 .u b AbT T + +  (76) 

An analysis similar to that presented in [11] for the proposed ΔΣ FDC yields (70), (71)

, and the following expression for the width of the u(t) pulse during the nth reference period: 
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PLL ref

PLLDMRO

[ 1] [ ] [ ]

[ 1] 1[ ] [ ]2 ,
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q q

t T y n n N n

A n e n e n T

   

 

− = + − − + +

− − ++− − −
 (77) 

where Tū is also given by (73). Hence, (67), (70), (71), (74), (75) and (77) imply that, for the 

proposed ΔΣ FDC, ΔTu satisfies 
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 ( )PLL PLLDMRO
2 1 2 .u b AbT T + +  (78) 

In practice, bPLL, bDMRO << 1, so (76) and (78) imply that ΔTu for the proposed ΔΣ FDC is 

approximately a third of that of the original ΔΣ FDC.  

A smaller ΔTu allows for a larger minimum difference between the phases of vref(t) and 

vdiv(t), so it is beneficial as it mitigates spurs generated as a consequence of variations in the 

PFD supply voltage when vref(t) and vdiv(t) are close in phase [19]. Additionally, reducing ΔTu 

mitigates spurs from non-ideal DMRO behavior by increasing the time available for the 

DMRO’s frequency transients to die out each reference period [10].  

Higher-Frequency Reference Signal: The relaxed timing constraints and smaller ΔTu of 

the proposed ΔΣ FDC allows for the use of higher-frequency reference signals, which lowers 

the contribution to the PLL’s phase noise from all noise sources within the ΔΣ FDC. As in 

conventional fractional-N PLLs, the contribution of the reference signal to the PLL output phase 

noise PSD, SPLL(f), is proportional to (N + α)2 [8], [11]. Equations (67), (70) and Fig. 1 imply 

that the ΔΣ FDC quantization error and the DMRO phase noise appear first-order shaped at the 

DLF input, so their contribution to SPLL(f) is proportional to sin2(πTreff). Additionally, the PSD 

of the quantization error is proportional to Tref [11]. Therefore, increasing fref by a factor of x 

for a given fPLL with all other things being the same reduces the contributions to the PLL’s phase 

noise from the reference signal, ΔΣ FDC quantization error, and DMRO by 20log(x), 30log(x) 

and 20log(x), respectively. 
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IV. DIGITAL GAIN CALIBRATION TECHNIQUE 

 Effects of ΔΣ FDC Forward Path Gain Error 

As explained in Section III, the behavior of the system shown in Fig. 17(b) is identical 

to that of a second-order ΔΣ modulator provided (68) holds and 2NR/A is integer-valued. 

However, in practice 

 
high low 1

PLL

,
f

f f
A  −

−
=  (79) 

where the deviation of the factor δ from its ideal value of 1 is the ΔΣ FDC’s forward path gain 

error. This error degrades the system’s self-dithering property [16], [17], and, as shown below, 

it reduces the extent to which QNC cancels the error introduced by the ΔΣ FDC’s coarse 

quantization operation. 

The analysis presented in [11] can be modified with (79) instead of (68) for the proposed 

ΔΣ FDC, which yields the behavioral model of the ΔΣ FDC shown in Fig. 20(a). The model is 

similar to that shown in Fig. 18(b), except that ePLL[n] is given by (70) with δA instead of A, 

and the gain of the second accumulator is (δA)–1 instead of A–1. An analysis similar to that in 

[11] can also be performed to obtain a linearized model of the ΔΣ FDC PLL shown in Fig. 16 

with the proposed ΔΣ FDC and (79) instead of (68). The resulting model is shown in Fig. 20(b), 

where θref(t), θDMRO(t), θDCO(t) and θPLL(t) are the phase error waveforms of the reference signal, 

DMRO, DCO and PLL output, respectively,9 L(z) is the DLF’s transfer function, KDCO is the 

 
9 Reasoning similar to that presented in [8] can be applied to the linearized model shown in Fig. 20(b) to obtain 

expressions for the PLL output’s phase noise components that depend on θref(t), θDMRO(t), θDCO(t), eqr[n] and êq[n]. 
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DCO gain (i.e., the amount in Hz by which the DCO frequency changes when the DCO input 

changes by unity) and  

 ( )1 2( ) 1 1 .zH z  − −= − −  (80) 

It follows from Fig. 5(b) that the discrete-time transfer functions from eqr[n] and êq[n] 

to the input of the DLF, p[n], are given by 

      
( )
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respectively, where 
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is the discrete-time loop gain of the PLL. The right-most expression in (81) implies that if δ = 

1, then p[n] does not depend on êq[n], but if δ ≠ 1, then êq[n] leaks into the DLF input. As the 

power of êq[n] is much larger than that of eqr[n] in practice, this can be problematic, particularly 

for high PLL bandwidths. For instance, in the DMRO-based PLL presented in [10], A = 1 and 

NR = 13, so Δr = 1/26 and the power of êq[n] is approximately 28 dB larger than that of eqr[n] 

(recall that Δc = 1). In this case, (81) with A = 1 implies that a ΔΣ FDC forward path gain error 

corresponding to δ–1 = 1 ± 0.08 would introduce an additional error component that depends on 

êq[n] with approximately double the power of the component that depends on eqr[n]. This would 

significantly increase the PLL output phase noise PSD at offset frequencies where the ΔΣ FDC 

quantization error contribution dominates those of the other noise sources. 
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 Proposed Digital Gain Calibration Technique 

The proposed digital gain calibration technique is a modification of the ΔΣ FDC’s RPC, 

the details of which are shown in Fig. 6, where sgn(x) = 1 if x ≥ 0 and –1 otherwise. To minimize 

clutter, Fig. 21 only shows a portion of the RPC. The modifications that implement the gain 

calibration technique are contained entirely within the dashed contour shown in the figure, and 

except for these modifications the ΔΣ FDC is identical to that shown in Fig. 17(b). 

The gain calibration technique consists of a signed least-mean square (LMS)-like loop 

with gain K and output gn, which digitally compensates for forward path gain error caused by δ 

≠ 1. It is based on the following two results that can be derived from an analysis similar to that 

presented in [11]. The first result is that dR[n] in Fig. 17(b) can be multiplied by a constant 

factor gn to compensate for non-ideal DMRO frequencies. In the presence of this factor, the 

transfer function from êq[n] to p[n] is given by  

    ( )
( )1

1 2
1 1

1
( ) ( )
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1n

g g

z
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H z T
z

z
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− −
−

−
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 (83) 

where Hg(z) is given by (80) with δ–1 replaced by gnδ
–1 and  Tg(z) is given by (82) with Hg(z) 

and gnδ
–1 instead of H(z) and δ–1, respectively. It follows from (83) that gn = δ makes the 

contribution to p[n] from êq[n] equal to zero. The second result is that gn(dR[n] – dR[n – 1]) equals 

–v[n – 1] – α plus zero-mean error when gn is equal to its ideal value of δ, i.e., δ(dR[n] – dR[n – 

1]) = –v[n – 1] – α plus zero-mean error. 

These observations suggest that, provided it is stable, the gain calibration feedback loop 

ramps gn up or down until it reaches the point where the input to the accumulator with gain K 

is zero-mean noise. Fig. 21 implies that this happens when gn(dR[n] – dR[n – 1]) + v[n – 1] + α is 
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uncorrelated with v[n – 1] + α. Therefore, to the extent that the error component in δ(dR[n] – dR[n 

– 1]) is uncorrelated with v[n – 1] + α, the system converges to the ideal value of gn = δ. 

In addition to preventing êq[n] from leaking into the PLL loop, the proposed calibration 

technique also allows for the use of DMRO topologies with coarse frequency tuning or no 

tuning at all. This not only simplifies the design and implementation of the DMRO, but also 

simplifies the system as it renders feedback loops that tune fhigh and flow as a function of fPLL 

unnecessary. 

The proposed calibration technique somewhat increases the digital complexity of the 

ΔΣ FDC, but typically does not add significantly to the PLL’s overall power or area 

consumption. For example, in the PLL implementation described in Section V, both dR[n] and 

gn have 10 fractional bits, so 20 fractional bits are required to represent gndR[n]. Given that α 

also has 20 fractional bits, the gain calibration technique negligibly increases the number of 

fractional bits required to represent the RPC accumulator’s input. Therefore, as the calibration 

technique’s digital LMS loop is relatively simple, the fref-rate digital multiplier prior to the 

RPC’s accumulator represents most of the calibration technique’s added complexity. 

 Convergence Analysis 

Fig. 22 shows the block diagram of Fig. 5(a) modified to include the gain calibration 

technique, where εn is the error in gn at sample time n, which is defined as  

 1 1.n ng  −= −  (84) 

For any fixed value of gn and neglecting eqr[n], Fig. 22 implies that a[n] is equal to (1 + 

εn)e[n], because the two 1 – z
–1 blocks cancel the two accumulators in the path between e[n] and 

a[n]. The gain calibration loop adds v[n – 1] + α, which is an estimate of −e[n], to a[n], and 
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multiplies the result by the sign of v[n – 1] + α to obtain a measure of εn, b[n], which is 

approximately equal to – εn|e[n]|. 

More precisely, Fig. 22 and (84) imply that e[n] is given by 

 PLL
[ ] [ 1] [ ],ee n v n n= − − −−  (85) 

and that a[n] can be written as 
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where ae[n] is the contribution of eqr[n] to a[n]. Substituting (85) into (86), adding v[n – 1] + α 

to the result, and then multiplying the resulting expression by sgn(v[n – 1] + α) yields 

 [[ ] [ ],1]n enb vn b n − + += −  (87) 

where be[n] is error that arises from the error in the estimate of e[n], the contribution of eqr[n], 

and gn not being constant.  

Fig. 22 together with (84) and (87) further imply that 

 ( )1 1
1

[ 1]1 [ ],n en
K Kb nv n    − −

+
− += − +  (88) 

from which it follows that 

 ( )1 1
1

[ 1]1 [ ],n en
K Kb nv n    − −

+
= − +− +  (89) 

where ͞εn and ͞be[n] are the expected values of εn and be[n], respectively, conditioned to the 

sequence v[n – 1]. 

When δ ≠ 1, the self-dithering property of the ΔΣ FDC is not perfect, so eqr[n] can be 

correlated with sgn(v[n – 1] + α). Furthermore, it follows from Fig. 16 that 
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so Fig. 20(b) and v[n – 1] = y[n – 2] imply that the term ψPLL[n] = θPLL(τn) – θPLL(τn–1) in ePLL[n], 

which depends on a low-pass filtered version of p[n], can also be correlated with sgn(v[n – 1] + 

α). As be[n] depends on both eqr[n] and ePLL[n], it follows from these observations that ͞be[n] in 

(89) is not zero, so be[n] biases the LMS loop and causes gn to converge to a value that is slightly 

different than δ. However, numerous simulations run by the authors suggest that the magnitude 

of this bias is sufficiently small that ͞be[n] can be neglected in the remainder of the analysis. 

Hence, (89) reduces to 

 ( )1
1

[ 1 .1 ] nn
v nK   −

+
−= − +  (91) 

The recursive application of (91) to itself yields 

 ( )1
1 0

0

,[1 1]
n

n
i

v iK   −
+

=

− − +=  (92) 

which implies that, on average, εn+1 tends to zero provided K is chosen such that 

 ( )1

0

lim 1 0[ 1] .
n

n
i

v iK −

→
=

− − =+  (93) 

As |v[n – 1] + α| is bounded and is regularly non-zero, (93) is easy to satisfy in practice. 

 Gain Calibration Technique for CP-Based ΔΣ FDCs  

The digital gain calibration technique shown in Fig. 21 can be modified to apply to the 

CP-based ΔΣ FDC shown in Fig. 23(a) [8], [9], [12]. The modified version of the digital gain 

calibration technique is shown in Fig. 23(b). Its implementation details are almost identical to 

those in Fig. 21, except for an extra 1 – z
–1 block. In the CP-based ΔΣ FDC, the CP and 
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subsequent analog-to-digital converter (ADC) play the same role as the DMRO in the DMRO-

based ΔΣ FDC. The DMRO-based ΔΣ FDC already has a 1 – z
–1 block following the DMRO, 

which is needed as part of the circuitry that makes it possible to read out the DMRO’s phase 

error [10], but this block is not necessary in the CP-based ΔΣ FDC. The additional 1 – z
–1 block 

in Fig. 23(b) compensates for the absence of a 1 – z
–1 block at the output of the ADC in the CP-

based ΔΣ FDC architecture. 

V. SIMULATION RESULTS 

This section presents results from bit-exact, event-driven, behavioral C code simulations 

of the fractional-N PLL of Fig. 16 with the proposed ΔΣ FDC and digital gain calibration 

technique. All digital operations were simulated with fixed-point arithmetic. The PLL’s DLF 

consists of a loop gain multiplier with gain KM, two single-pole IIR stages with poles at λ0 and 

λ1, and a proportional-integral stage with proportional path gain KP and integral path gain KI. 

Its transfer function is given by  

 
( )

1

1 1
0

( ) .
1 1 1

I
P

i
M

ii

K
L z K K

z z



− −
=

 
 
 
 

= +
− − −

  (94) 

The parameters used for the simulations are listed in Table 1. 

Fig. 24 shows the simulated PLL phase noise PSD with and without gain calibration 

enabled for four different combinations of PLL bandwidth and ΔΣ FDC forward path gain. For 

each case it also shows the theoretical PLL phase noise PSD with gn = δ as a black dashed 

curve, and the theoretical combined contribution to the PLL phase noise from eqr[n] and êq[n] 
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as colored dashed curves.10 As demonstrated in the figure, the higher the PLL bandwidth, the 

more sensitive the PLL’s phase noise is to the ΔΣ FDC quantization error, which becomes more 

dominant when less filtering is applied to p[n]. Consequently, deviations of δ–1 from its ideal 

value of 1 cause a significant degradation of the PLL phase noise PSD for high PLL bandwidth 

settings.  

Given that NR = 31, the power of êq[n] is approximately 36 dB larger than that of eqr[n]. 

Therefore, in the absence of gain correction, it follows from (81) with A = 1 that the power of 

the additional quantization error component seen by the PLL loop is approximately 22 dB and 

16 dB higher than that of the eqr[n] component for δ–1
 = 0.8 and δ–1

 = 1.1, respectively. This is 

supported by the simulation results shown in Fig. 24(a) and Fig. 24(c), where the spot phase 

noise degradation at a 3 MHz offset frequency is approximately 20 dB and 15 dB, respectively.  

Fig. 25 shows εn versus time for several values of K with a PLL bandwidth of 1 MHz 

and δ = 0.8.11 Equation (92) with ε0 in place of ͞ε0, i.e., 

 ( )1
0

0

[ 1]1 ,
n

i

vK i  −

=

− +−  (95) 

is also plotted (as a dashed curve) for each value of K to provide a comparison baseline and 

show that the evolution of gn follows the trend predicted by the analysis in Section IV-C. The 

simulated PLL phase noise PSD after gn converged was nearly identical to that shown in Fig. 

24(a) with gain calibration enabled. In the K = 2
–2 case, however, the total integrated jitter 

increased slightly to 688 fsrms because of the relatively large variance of εn. As shown in the 

 
10 The curves corresponding eqr[n] and êq[n] were generated under the assumption that both sequences are white. 

However, the sequences are not necessarily white if δ ≠ 1, which is why the simulated curves in Fig. 24 deviate 

somewhat from their respective theoretical predictions, particularly in the δ–1 = 0.8 case. 
11 The resolution of the gain calibration technique’s accumulator was limited to 1 integer bit and 36 fractional bits, 

but its output, gn, was truncated to have only 10 fractional bits to reduce hardware complexity.  
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figure’s inset, εn crosses the −0.01 mark for the first time in about 50 reference periods (1.9 μs) 

and 400 reference periods (15.4 μs) for K = 2–2 and K = 2−6, respectively, and the absolute value 

of the mean error after convergence is lower than 0.043% of δ in all cases.  

As in most LMS-like algorithms, the choice of K represents a tradeoff between 

convergence speed and the error variance of gn [20], [21]. Although it might be possible to 

derive a closed-form expression that quantifies this tradeoff for the proposed calibration 

technique, the authors currently choose the value of K based on simulation results.  

Fig. 26 shows normalized histograms of τn – tn – Tū, where Tū was calculated using (73)

, for both the original ΔΣ FDC and the proposed ΔΣ FDC. The u(t) pulse widths were measured 

for over one million reference periods after the gain calibration had converged with K = 2
–9. The 

1 MHz-bandwidth set of parameters with δ = 0.8 was used for the simulations in Fig. 26(a) and 

Fig. 26(b), whereas the same parameters except for α, which was set to 0.401008987426758, 

were used for the simulations in Fig. 26(c) and Fig. 26(d). 

Although (76) and (78) do not show an explicit dependence of the u(t) pulse-width span 

on α in either ΔΣ FDC version, it follows from (67) and Fig. 17 that different ΔΣ FDC output 

levels are exercised for different values of α. Accordingly, different values of α cause eq[n] to 

take different values with higher probability than others, which affects the histogram shapes 

shown in Fig. 26 but not the  maximum u(t) pulse-width.  

As explained in Section III-B, the span of the u(t) pulse-width in the proposed ΔΣ FDC 

is approximately three times smaller than that of the u(t) pulse-width in the original ΔΣ FDC, 

which is supported by the simulation results shown in Fig. 26. As shown in Fig. 26(a), the span 

of u(t) in the original ΔΣ FDC goes from –3TPLL to 3TPLL, although it reaches the extremes 
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values only rarely. As demonstrated by the results in Fig. 26(c), the span is about 5TPLL for a 

larger value of α, and the extreme values in this case (i.e., around –2.4TPLL and 2.6TPLL) are 

reached with higher probability compared to Fig. 26(a). Conversely, as shown in Fig. 26(b) and 

Fig. 26(d), the proposed architecture’s u(t) pulse-width span does not vary significantly with α, 

and as suggested by (78), it is approximately limited to 2TPLL. 

VI. CONCLUSION 

This paper presents all-digital enhancements of digital fractional-N PLLs based on ΔΣ 

FDCs. The enhancements comprise an improved DMRO-based ΔΣ FDC architecture and a 

digital background gain calibration technique. The former reduces the span of the PFD output 

pulse-width and significantly relaxes the timing constraints imposed on the ΔΣ FDC’s digital 

portion and divider, which makes the system amenable to simpler divider topologies and higher-

frequency reference signals. The latter compensates for non-ideal DMRO frequencies in the 

digital domain, thereby facilitating the use of simple DMRO topologies with fixed values of 

fhigh and flow, and improving the phase noise performance of high-bandwidth PLLs. 
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Figure 16: High-level block diagram of a second-order ΔΣ FDC-based digital fractional-N PLL 

with quantization noise cancellation (QNC).  
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Figure 17: (a) Simplified block diagram of the DMRO-based ΔΣ FDC described in [11], and 

(b) simplified block diagram of the proposed ΔΣ FDC. 
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Figure 18: Signal processing equivalents of the ΔΣ FDCs shown in Fig. 17(a) and Fig. 17(b) 

when they are locked. 
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Figure 19: Example timing diagram of (a) the original ΔΣ FDC and (b) the proposed ΔΣ FDC. 
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Figure 20: (a) Behavioral model of the proposed ΔΣ FDC with (79), where Qr and Qc are 

replaced by the additive error sources eqr[n] and êq[n], respectively, and (b) linearized model of 

the ΔΣ FDC-based PLL shown in Fig. 16 with the proposed ΔΣ FDC and (79). 
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Figure 21: Digital gain calibration technique shown in the context of the proposed DMRO-

based ΔΣ FDC architecture. 
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Figure 22: Rearranged version of the behavioral model shown in Fig. 20(a) modified to 

accommodate the proposed gain calibration technique. 
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Figure 23: (a) Simplified block diagram of CP-based ΔΣ FDC, and (b) digital gain calibration 

technique shown in the context of the CP-based ΔΣ FDC architecture. 
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Figure 24: Simulated PLL phase noise PSD with and without gain calibration enabled for four 

combinations of PLL bandwidth (BW) and δ 
–1. The black and colored dashed curves 

correspond to the theoretical phase noise PSD for gn = δ and the combined contribution to the 

PLL phase noise from eqr[n] and êq[n], respectively. 
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Figure 25: Sequence εn as a function of n for several values of K, where εn calculated via (95) 

is plotted as a dashed curve for each case. 
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Figure 26: Normalized histogram of u(t) pulse width minus Tū calculated via (73) for the 

original FDC [(a) and (c)] and the proposed FDC [(b) and (d)], where α = 0.001008987426758 

for (a) and (b) and α = 0.401008987426758 for (c) and (d). 
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TABLES 

Table 1: Parameters used for the simulation. 

Design Parameters Value 

Reference 

Source 

Frequency, fref 26 MHz 

Phase noise (white) −155 dBc/Hz 

DCO 
DCO gain, KDCO 40 kHz 

Phase noise (1) −130, −125 and −150 dBc/Hz 

DMRO 

Number of stages, NR 31 

Frequencies, flow, fhigh 

150 MHz, 3.0 GHz (nominal) 

225 MHz, 2.5 GHz (δ–1
 = 0.8) 

142 MHz, 3.3 GHz (δ–1
 = 1.1) 

Phase noise (1) −99, −109 and −150 dBc/Hz 

FDC 
Fixed count, M 40 

A 1 

DLF 

Loop gain multiplier, KM 1.5 

Proportional gain, KP 26 25 

Integral gain, KI 2–2 2–4 

IIR poles, λ0, λ1 2–1, 20 2–2, 2–1 

PLL 

Settings 

Integer multiplier, N 110 

Fractional multiplier, α 0.001008987426758 

Output frequency, fPLL 2.86 GHz 

Loop bandwidth 1 MHz 500 kHz 
1 1/f 3, 1/f 2 and white phase noise components at 1 MHz offset. 
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CHAPTER 3  

SPECTRAL BREATHING AND ITS MITIGATION IN DIGITAL FRACTIONAL-N 

PLLS 

 

Abstract— Although digital phase-locked loops (PLLs) offer several advantages over 

their analog counterparts, they suffer from a major disadvantage that is rarely mentioned in 

published papers. The disadvantage, known as spectral breathing, is caused by component 

mismatches among the frequency control elements within a PLL’s digitally-controlled 

oscillator (DCO). The mismatches introduce DCO frequency modulation nonlinearity which 

fluctuates and, therefore, causes erratic variations in the PLL’s measured phase noise spectrum 

as the DCO’s center frequency drifts. The phenomenon is called spectral breathing because the 

measured phase noise spectrum tends to slowly swell and contract over time as if taking breaths 

of air. During these breaths, the PLL’s phase noise often becomes severely degraded. This paper 

presents an experimental demonstration of the spectral breathing phenomenon and its solution 

in a digital fractional-N PLL. The demonstrated solution is a multi-rate dynamic element 

matching technique and a mismatch-noise cancellation technique that together eliminate 

spectral breathing. 

I. INTRODUCTION 

Digital fractional-N phase-locked loops (PLLs) offer several advantages over analog 

PLLs such as lower loop filter circuit area and compatibility with highly-scaled CMOS IC 
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technology [1]–[14]. However, unlike their analog counterparts, digital PLLs suffer from a 

problem called spectral breathing which can significantly degrade phase noise performance. 

Spectral breathing is the result of nonlinear frequency modulation caused by inevitable 

mismatches among the frequency control elements (FCEs) in a PLL’s digitally-controlled 

oscillator (DCO) [15]. Flicker noise inevitably causes the DCO’s center frequency to drift over 

time, so different FCEs are exercised as the PLL adjusts the DCO’s input sequence to 

compensate for the drift. This causes the DCO’s frequency modulation nonlinearity and, 

therefore, the PLL’s measured phase noise spectrum to swell up from time to time as if taking 

breaths of air. 

The effect is particularly significant in the large percentage of digital PLLs that use a 

digital delta-sigma (ΔΣ) modulator to oversample the fractional part of the DCO input. In such 

PLLs, the ΔΣ modulator drives a bank of FCEs called the fractional FCE bank and the integer 

part of the DCO input drives a separate bank of FCEs called the integer FCE bank. The 

fractional FCE bank’s FCEs are exercised many times per reference period because they are 

driven by the oversampling ΔΣ modulator. In contrast, the integer FCE bank’s FCEs are 

exercised at most once per reference period because they are driven directly by the integer part 

of the DCO’s input sequence. Accordingly, mismatches within the integer FCE bank are the 

main problem; error from FCE mismatches within the fractional FCE bank is spread over a 

much larger frequency range and, thus, contributes much less to the DCO’s phase noise than 

error from FCE mismatches within the integer FCE bank. 

Perhaps because the problem is not visible when measurements are restricted to time 

periods during which the integer FCE bank input bits do not change, it is seldom mentioned in 
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the published literature. Nevertheless, in practice the integer FCE bank input bits do change, at 

least over time periods of several seconds because of the DCO’s center frequency drift, so the 

problem is significant in applications. 

To the knowledge of the authors, the phenomenon was first reported and explained, 

although not yet named, in [2]. As the PLL presented in [2] uses the DCO frequency control 

method described above which was already well-known and widely-used at the time, the 

authors of [2] were surprised to find that FCE mismatches caused the PLL’s measured phase 

noise spectrum to significantly vary over time. 

Apart from applying dynamic element matching (DEM) clocked at the ΔΣ modulator 

output rate to all the FCEs, which would be prohibitively power-hungry among other issues, 

only three solutions have been proposed to date that mitigate spectral breathing [15]. An offline 

calibration technique is proposed in [16] and [17] to compensate for FCE mismatches, but the 

technique requires several minutes to complete. A digital integer-boundary avoider circuit prior 

to the DCO is proposed in [3], yet the technique is only effective in cases where the integer 

FCE bank input bits change relatively infrequently. To the authors’ knowledge, the only 

published comprehensive solution is the combination of a multi-rate DEM (MR-DEM) 

technique and a mismatch-noise cancelation (MNC) technique [15]. 

This paper presents a fractional-N digital PLL IC that incorporates the MR-DEM and 

MNC techniques to avoid spectral breathing. In addition to providing the first experimental 

demonstration of the techniques proposed in [15], it presents implementation details, 

refinements, and practical observations that are not presented in [15].  
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II. BACKGROUND INFORMATION 

 Conventional DCO Frequency Control Technique 

Most fractional-N digital PLLs have the general structure shown in Fig. 27(a), which 

consists of a phase-error-to-digital converter (PEDC), a digital loop filter (DLF), and a DCO. 

The PLL’s input, vref(t), is generated by a reference oscillator not shown in the figure and the 

PLL’s output, vPLL(t), ideally is periodic with frequency fPLL = (N + α)fref, where fref is the 

reference oscillator frequency, N is a positive integer, and α is a fractional value. The PEDC 

generates an fref-rate sequence of the form −θPLL[n] + ep[n], where θPLL[n] is the PLL’s phase 

error and ep[n] represents the combined effect of all other errors. The PEDC output is filtered 

by the DLF, and the DLF output, d[n], controls the DCO frequency. 

The DCO’s instantaneous frequency, fDCO(t), can be written as a fixed offset frequency 

plus ftune(t), where ftune(t) depends on the states of the DCO’s FCEs. Ideally, ftune(t) = d[nt], where 

nt = n over the nth period of the fref-rate clock that updates d[n], so nt is a continuous function 

of time that takes on values n = 0, 1, 2, 3, … as t increases. If d[n] is represented as a b-bit two’s 

complement code sequence and its least-significant bit (LSB) represents a frequency step of Δ, 

then, d[nt] = (–2b−1db–1[nt] + 2b−2db–2[nt]   …   20d0[nt])Δ, where di[nt] is the ith bit of the d[nt] 

code for i = 0, 1, …, b − 1. In principle, the DCO could be implemented with b FCEs, where 

the ith FCE increases or decreases fDCO(t) by 2iΔ whenever the FCE’s input bit changes from 0 

to 1 or 1 to 0, respectively. In this case, the input to the ith FCE would be di[nt] for i = 0, 1, …, 

b − 2, and 1 − di[nt] for i = b − 1. Unfortunately, in most PLLs this would require FCEs with 

impractically small frequency steps. 
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Fig. 27(b) shows an example configuration of a DCO control technique that is widely 

used to circumvent this problem [1]. In this example, the minimum practical FCE frequency 

step is Δmin = 28Δ, and d[n] is decomposed into an integer part, dI[n], that takes on values that 

are multiples of Δmin, and a fractional part, dF[n], that takes on values in the range {0, Δ, 2Δ, 

…, Δmin – Δ}. The dI[n] sequence drives an integer FCE bank directly. The dF[n] sequence is 

oversampled at a rate of ffast > fref and re-quantized by a digital ΔΣ modulator. The ΔΣ modulator 

output is converted to a thermometer code that drives a fractional FCE bank which consists of 

four FCEs, each with a frequency step of Δmin. Thus, ftune(t) is equal to d[nt] plus ffast-rate 

highpass-shaped ΔΣ modulator quantization error that is lowpass filtered by the DCO. 

Ideally, the contribution to fDCO(t) from the ith FCE instantaneously increases or 

decreases by Δi when the FCE’s input bit changes from 0 to 1 or 1 to 0, respectively, where Δi 

is the FCE’s nominal frequency step. In practice, non-ideal circuit behavior causes the FCE’s 

frequency transitions to be non-instantaneous, and component mismatches cause its frequency 

step to deviate somewhat from Δi as illustrated in Fig. 27(c). These nonidealities introduce 

input-code-dependent DCO frequency modulation nonlinearity. As illustrated in Fig. 27(c), this 

causes the PLL’s phase noise spectrum to vary over time as the DCO’s center frequency, and, 

hence, dI[n], drift [15]. 

  MR-DEM and MNC Techniques 

Fig. 28(a) shows a high-level diagram of a digital fractional-N PLL that includes the 

MR-DEM and MNC techniques. The system is similar to that shown in Fig. 27(a), except for 

the addition of two digital blocks: an MR-DEM encoder that is built into the DCO and an MNC 

logic block. 
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The MR-DEM encoder is based on the same principle as mismatch-shaping DEM 

encoders [18]. The idea is to shuffle the error introduced by FCE mismatches, so that ftune(t) 

equals a scaled version of d[nt] plus additive highpass-shaped error that depends on pseudo-

random digital sequences that are known to the system because they are generated within the 

MR-DEM encoder. This additive error has both fref-rate and ffast-rate components. Most of the 

fref-rate error component in ftune(t) is canceled by the MNC technique, which applies a least-

mean-square (LMS)-like algorithm to compute digital coefficients with which it forms a 

correction sequence, eMNC[p], that is injected into the MR-DEM encoder. The ffast-rate error 

component is not canceled by the MNC technique, but its high sample-rate in conjunction with 

its highpass spectral shape ensures that most of its contribution to the DCO’s phase noise gets 

suppressed by the DCO’s first-order lowpass frequency-modulation-to-phase-noise transfer 

function.  

Fig. 28(b) shows the details of the MR-DEM technique for an example case where d[n] 

has 16 bits. It consists of an MR-DEM encoder that comprises a slow DEM encoder, a second-

order digital ΔΣ modulator, and a fast DEM encoder. The slow DEM encoder is a modified 

version of a conventional segmented DEM encoder, the details of which are described shortly, 

and the fast DEM encoder is a conventional non-segmented DEM encoder. The slow DEM 

encoder is clocked by the fref-rate clock signal, clkref(t), whereas the MR-DEM encoder’s 

fractional path, which consists of the digital ΔΣ modulator and the fast DEM encoder, is clocked 

by the ffast-rate clock signal, clkfast(t). 

The signal processing details of the slow DEM encoder are shown in Fig. 29, where the 

Δ multiplication prior to the xf[n] output denotes that the LSB of xf[n] represents a frequency 
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step of Δ. The slow DEM encoder consists of 25 digital switching blocks (SBs), labeled Sk,r for 

k = 1, 2, …, 16 and r = 1, 2, …, 17. The shaded SBs are called segmenting SBs, whereas the 

remaining SBs are called non-segmenting SBs. The functional details of each SB type are also 

shown in Fig. 29, where ck,r[n] is the input sequence of Sk,r. The outputs of each segmenting SB 

are ½(ck,1[n] – 1 – sk,1[n]) and 1 + sk,1[n], where sk,1[n], called a switching sequence, is 0 when 

ck,1[n] is odd and ±1 otherwise. The outputs of each non-segmenting SB are ½(ck,r[n] – sk,r[n]) 

and ½(ck,r[n] + sk,r[n]), where sk,r[n] is 0 when ck,r[n] is even and ±1 otherwise. Each switching 

sequence is zero-mean and has a highpass-shaped power spectral density that peaks at fref/2. 

As explained in [15], in the absence of the MNC technique the MR-DEM encoder would 

cause 

( )tune , , fast
,

, , ,
,

( ) [ ] [ ] ( ) ( ) [ 1] [ ] ,t t t tk r k r k r k r k r
k r k r

f t d n s n t t s n s np   + + − −   (96) 

where δk,r and γk,r(t) are constant and 1/ffast-periodic waveforms, respectively, that depend only 

on FCE errors, and pfast(t) is a series of unit-amplitude, 1/ffast-width pulses that go high whenever 

nt changes.12 As implied by (96), the MR-DEM technique causes ftune(t) to be a linear function 

of d[nt] at the expense of introducing two additive error terms. One of the error terms is caused 

by FCE static gain errors, i.e., mismatch-induced errors in the FCEs’ frequency step-sizes. The 

other error term is inter-symbol interference (ISI) that results from non-instantaneous rise and 

fall frequency transients of individual FCEs [15]. 

The details of the MNC logic are shown in Fig. 30(a). It consists of 25 sk,r[n] residue 

estimators that each compute a correction sequence corresponding to one of the slow DEM 

 
12 The summation indices in (96) indicate the summation over all k and r values corresponding to the SBs within the 

slow DEM encoder. 
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encoder’s switching sequences, and an adder that combines these sequences to form eMNC[p]. 

As shown in Fig. 30(b), each sk,r[n] residue estimator comprises two branches, one to compute 

the correction sequence associated with FCE static gain error, and another to compute the 

correction sequence associated with ISI error, hereafter referred to as the static-error and ISI-

error correction branches, respectively. 

As indicated in Fig. 30, the MNC logic block’s output is 

 ( )MNC , , fast
,

, , ,
,

[ ] [ ] [ ] ( ) [ ] [ 1] [ ] ,
k r k r k r k

k r k r
r k r

e p n s n ta p b n s n s n + = − −   (97) 

where ak,r[n] and bk,r[n] are measures called MNC coefficients that correspond to δk,r and γk,r(t), 

respectively. As explained in [15], the MNC coefficients converge such that eMNC[p] is a 

sampled measure of the additive error terms in (96). As illustrated conceptually in Fig. 30(c), 

when injected into the DCO as shown in Fig. 28(b), eMNC[p] largely prevents these terms from 

contributing to the DCO’s phase noise. 

III. IMPLEMENTATION DETAILS 

The MR-DEM and MNC techniques were implemented as modifications to the 6.5 GHz 

digital fractional-N PLL presented in [4]. As the underlying PLL is explained in detail in [4], 

only the additional implementation details relevant to the MR-DEM and MNC techniques are 

presented here. 

 MR-DEM Encoder 

The high-level details of the implemented MR-DEM encoder are identical to those 

shown in Fig. 28(b). The second-order digital ΔΣ modulator is implemented as an error 
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feedback structure to reduce its hardware complexity [19]. The fast DEM encoder is 

implemented as a 4-layer tree of non-segmenting SBs with first-order highpass-shaped 

switching sequences [20], [21]. The slow DEM encoder is implemented as shown in Fig. 31. 

The SBs within the slow and fast DEM encoders are identical to the adder-free SBs described 

in [22], except for a modification made in the slow DEM encoder’s SBs for them to 

accommodate both white and first-order highpass-shaped switching sequences. 

It follows from Fig. 29 that the slow DEM encoder bottom output, xf[n], is given by 

 16
,1

16

9

2 [ ],k
k

k

s n
=

−  (98) 

which can be computed by combining the bottom outputs of S16,1, S15,1, … and S9,1 as indicated 

in Fig. 29. However, in this work xf[n] is instead computed without using adders to reduce the 

block’s hardware complexity. As explained shortly, the LSB, c8,1-LSB[n], of the input to S8,1, 

c8,1[n], corresponds to a quantized version of dF[n], and its quantization error is proportional to 

(98). The proposed slow DEM encoder architecture takes advantage of this property to generate 

xf[n] by simply combining the bits of the dF[n] and c8,1-LSB[n] sequences as indicated in Fig. 31.  

Fig. 31 implies that 
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and the SB signal processing operations shown in Fig. 29 imply that 
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As explained in [22], the segmenting SBs use negative-extra-LSB encoding, so c8,1-

LSB[n] has a negative weight. This with the segmenting SB details presented in [22] implies that 

c8,1-LSB[n] is given by minus the right side of (100) with c[n] replaced by dF[n]/Δ, i.e., 
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Substituting (101) into (99) yields (98) plus a –1 offset. This offset is not a problem in practice 

because it is suppressed by a zero-frequency zero in the PLL’s transfer function. 

 MNC Logic 

The MNC logic implementation details are shown in Fig. 32. Each variable is 

represented in fixed-point, two’s complement format, and its number of bits is specified via the 

notation {bI, bF}, where bI and bF are the numbers of integer and fractional bits, respectively. 

The braces and bF are omitted in cases where bF = 0. 

Each sk,r[n] residue estimator computes two sequences,    ek,r-stat[n] and ek,r-ISI[n]. The 

ek,r-stat[n] sequences are combined to form eMNC-stat[n], which corresponds to the first summation 

in (97), i.e., the part of eMNC[p] associated with FCE static gain errors. The ek,r-ISI[n] sequences 

are combined and then multiplied by the unit-amplitude pulse sequence, pfast(t), to form eMNC-

ISI[p], which corresponds to the second summation in (97), i.e., the part of eMNC[p] associated 

with FCE ISI errors. Although not shown in Fig. 32, eMNC-stat[n] and eMNC-ISI[p] are combined 

at the ΔΣ modulator’s input in Fig. 2(b) to form eMNC[p]. 

As explained in [21], each sk,r[n] is a concatenation of sequences of the form 1, 0, …, 0, 

–1, 0, …, 0 or –1, 0, …, 0, 1, 0, …, 0. Thus, |sk,r[n]| ≤ 1 and |sk,r[n] – sk,r[n – 1]| ≤ 2 for all n, and 

the running sum of sk,r[n] never exceeds 1 nor –1. However, after startup, the finite state 
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machines that generate the switching sequences do not necessarily start at the beginning of their 

respective cycles, which could cause the magnitudes of the running sums of some switching 

sequences to exceed 1. This issue is avoided by the inclusion of a ±1 clipper within each sk,r[n] 

accumulator as shown in Fig. 32.  

Each MNC coefficient within each sk,r[n] residue estimator is the output of a 29-bit 

clipping accumulator. The 20 LSBs of the coefficients are dropped prior to their respective 

multiplication by sk,r[n] and sk,r[n – 1] – sk,r[n], which reduces power consumption at the expense 

of reducing the accuracy with which eMNC[p] cancels the additive error terms in (96). The 

number of bits to drop was determined with the aid of simulations performed by the authors 

using a bit-accurate, event-driven, C-language, custom PLL simulator such that the contribution 

to the PLL’s phase noise from the residual error that is left after MNC is applied is negligible.   

The Ka and Kb gains are restricted to powers of 2 so the implementation of their 

respective multipliers only involves bus-shifting. Consequently, as shown in Fig. 32, the MNC 

logic requires no actual digital multipliers. 

 DCO FCE Banks 

The DCO consists of a single-turn center-tapped inductor, a cross-coupled NMOS pair, 

a tail resonant tank [23], a triode-MOS tail source, and integer and fractional FCE banks. The 

implemented FCEs are of the type presented in [2], and the minimum-size FCE has an 

equivalent frequency step of Δmin = 160 kHz at 6.5 GHz. The integer FCE bank comprises eight 

32×Δmin FCEs and five pairs of 16×, 8×, 4×, 2× and 1× Δmin FCEs, whereas the fractional FCE 

bank comprises sixteen Δmin FCEs. All FCEs are implemented by connecting one or more Δmin 

FCEs in parallel. 
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Both FCE banks are laid out as illustrated in Fig. 33, where the FCEs are indexed 

according to their respective control bits. Each FCE is driven by a flip-flop clocked by clkfast(t), 

followed by a buffer. The size of each buffer is scaled according to the number of parallel Δmin 

FCEs it drives. 

As shown in Fig. 33, the ten largest FCEs of the integer FCE bank, FCEs 25 to 34, are 

split into two halves each, which are laid out in a common-centroid fashion to avoid the FCE 

mismatches from being exacerbated. As explained in Section II-B, the MNC technique cancels 

much of the error that arises from FCE mismatches, but the larger the FCE mismatches, the 

larger the required dynamic range of eMNC[p] and the larger the resulting output dynamic range 

of the MR-DEM encoder’s fractional path. A larger fractional path output dynamic range is 

undesirable in practice as it increases the MR-DEM encoder’s power consumption, as well as 

the number of control lines that need to be routed from the DCO control to the FCE banks’ 

drivers. Therefore, care was taken with the layout to minimize FCE mismatches. 

IV. MEASUREMENT RESULTS 

The prototype IC consists of the digital fractional-N PLL as well as a serial peripheral 

interface (SPI) and additional circuitry used for testing. The IC was fabricated in the Global-

Foundries 22 nm CMOS 22FDX technology.  

The IC’s place-and-route (PNR) digital block has a 0.8 V power supply and is clocked 

by an ffast-rate clock, where ffast = fPLL/8. However, most of the PNR digital block’s sub-blocks 

are clocked by fref = 80 MHz clocks that are derived from the ffast-rate clock. The maximum 

value of ffast is 830 MHz, although the PNR digital block was designed to run at a clock-rate as 
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high as 1 GHz to provide design margin. The PNR digital block’s area is 0.0482 mm
2, half of 

which corresponds to the circuitry associated with the MR-DEM and MNC techniques.  

Fig. 34 shows the measured PLL phase noise at fPLL = 6.56 GHz for a PLL bandwidth 

of 900 kHz under various conditions. The signal source analyzer’s averaging option was set to 

32 when taking each measurement result shown in the figure. In Fig. 34(a), the MR-DEM 

technique is disabled, i.e., it is configured to operate as a conventional DCO control technique,13 

the MNC technique is disabled, and the measurement was taken over a time period wherein 

dI[n] did not vary. Thus, the phase noise profile shown in Fig. 34(a) corresponds to a standard 

phase noise profile, as reported in most published papers that report digital PLL results. Fig. 

34(b) shows the measured PLL phase noise for the same conditions of Fig. 34(a), except that 

the measurement time duration was increased and the instrument’s persistence option was 

enabled. The PLL was left running for 2 hours for the measurement, and d[n] was regularly 

monitored through the SPI to check for integer-boundary crossings. As shown in Fig. 34(b), the 

PLL phase noise varies significantly over time, such that the spot phase noises at 20 kHz and 1 

MHz offset frequencies vary by 9 dB and 11 dB, respectively. The d[n] sequence crossed three 

integer boundaries several times during the measurement. Additional measurements performed 

by the authors indicate that phase noise profiles almost identical to that shown in Fig. 34(b) can 

be easily obtained in a few minutes, or even in a few seconds if less averaging is used. 

Fig. 34(c) shows the measured PLL phase noise for the same conditions of Fig. 34(b), 

except with the MR-DEM and MNC techniques both enabled. In this case, d[n] crossed two 

 
13 Specifically, the slow DEM encoder’s randomization is disabled, in which case the slow DEM encoder 

behaves as a conventional encoder. The digital ΔΣ modulator and fast DEM encoder were enabled for all the 

measurements reported in this paper. 
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integer boundaries several times during the measurement. As demonstrated in Fig. 34(c), the 

PLL phase noise varies much less with the proposed techniques enabled. Even at offset 

frequencies lower than 100 kHz, where the phase noise profile is expected to vary somewhat 

because of the algorithm used by the instrument to compute the spectrum, the variations in Fig. 

34(c) are considerably less significant than those in Fig. 34(b) (e.g., less than 2 dB versus more 

than 9 dB at a 20 kHz offset frequency). As explained below, the ISI-error correction 

branch of the MNC technique does not perfectly cancel the ISI component of the error at the 

PLL output. This is reflected in Fig. 34(c) as a slight phase noise increase at offset frequencies 

above 10 MHz. 

Fig. 34(d) shows the measured PLL phase noise for the same conditions of Fig. 34(c), 

except that the MR-DEM technique was disabled and the MNC technique’s coefficients were 

frozen after convergence but prior to the measurement. In this case, d[n] crossed two integer 

boundaries several times during the measurement. The phase noise profile shown in Fig. 8(d) 

is similar to that shown in Fig. 34(c), except for slightly larger variations at offset frequencies 

below 200 kHz and at a 1 MHz offset frequency, and the phase noise at offset frequencies above 

10 MHz which does not exhibit the excess noise shown in Fig. 34(c). The increase in phase 

noise variation at low offset frequencies in Fig. 34(d) compared to Fig. 34(c) happens because 

MNC coefficient noise gets sampled, and, hence, locked in when the MNC coefficients are 

frozen. Hence, in this configuration, the PLL’s performance is expected to be similar to that of 

the PLL without the MR-DEM and MNC techniques enabled but with considerably smaller 

FCE mismatches. 



 

 

95 

 

Fig. 35 shows the measured PLL phase noise at fPLL = 6.56 GHz with the signal source 

analyzer’s averaging option set to 32 and different combinations of the proposed techniques 

enabled and disabled. The PLL bandwidth was set to 900 kHz in each case. Fig. 35(a) shows 

the effect on the PLL phase noise of the MR-DEM technique in the absence of MNC compared 

to the baseline case of Fig. 34(a). As shown in the figure, the spot phase noise increases by up 

to 11.5 dB compared to the case of Fig. 34(a), whereas the total integrated jitter from 10 kHz 

to 80 MHz, σTJ, increases from 176 fsrms to 190 fsrms. Fig. 35(b) shows the measured PLL phase 

noise with the MR-DEM technique and only the static-error correction branch of the MNC 

technique enabled. The spot phase noise around a 20 MHz offset frequency decreases by 8 dB, 

which corresponds to most of the noise introduced by the MR-DEM technique. Fig. 35(c) shows 

the measured PLL phase noise with the MR-DEM technique and both branches of the MNC 

technique enabled. As shown in Fig. 35(c), the improvement after applying ISI error correction 

results in a 1.2 dB spot phase noise reduction around a 20 MHz offset frequency, and the 

resulting phase noise profile still shows some residual error, although its effect on σTJ is almost 

negligible.  

As explained in [15], each bk,r[n] coefficient in (97) converges to a value proportional 

to the average over 1/ffast of its respective γk,r(t) coefficient in (96). Consequently, the ISI-error 

correction branch of the MNC technique does not perfectly cancel the third term from the right 

side of (96). Nonetheless, as demonstrated in Fig. 35, this is not a problem in practice because 

the power of the ISI-error component introduced by the MR-DEM technique is much smaller 

than that of the static-error component. Additional measurements taken by the authors for the 

same conditions used to generate Fig. 34(d), except with the MNC technique’s ISI-error 
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correction branch disabled, yielded phase noise profiles virtually identical to that shown in Fig. 

34(d). This suggests that, at least in the case of the presented prototype IC, the ISI-error 

correction branch of the MNC technique could be omitted to save both power and area without 

significantly affecting the effectiveness of the MR-DEM and MNC techniques to mitigate 

spectral breathing. 

Although originally intended to work with highpass-shaped switching sequences, the 

MNC technique also works with white switching sequences. Fig. 36 shows measured PLL 

phase noise profiles similar to those shown in Fig. 35(a) and Fig. 35(c) but for white switching 

sequences within the slow DEM encoder. As shown in Fig. 36(a), the PLL phase noise is 

severely degraded when enabling MR-DEM in this case. The spot phase noise increases by up 

to 12.6 dB, and σTJ increases from 176 to 425 fsrms. Nonetheless, as shown in Fig 36(b), the 

MNC technique cancels most of the noise introduced by the MR-DEM technique, except for a 

small portion for the reasons explained above. As in the case with highpass-shaped switching 

sequences, most of the noise in Fig. 36(a) gets cancelled when enabling the MNC technique’s 

static-error correction branch; the ISI-error correction branch accounts for less than a 1 dB 

reduction. 

Table 2 summarizes the increase of the PNR digital block’s power consumption for 

different combinations of the MR-DEM and MNC techniques enabled and disabled. As shown 

in the table, the proposed techniques increase the power consumption by up to 1.64 mW and 

1.4 mW when using highpass-shaped and white switching sequences, respectively. In both 

cases, the most significant contributor is the ISI-error correction branch of the MNC technique.  
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The proposed techniques can be used without significantly increasing the PLL’s power 

consumption by freezing the MNC coefficients after convergence and disabling the MR-DEM 

technique, in which case the PLL’s power consumption only increases by 250 μW. However, 

as demonstrated in Fig. 34(c) and Fig. 34(d), the effectiveness of the techniques to mitigate 

spectral breathing is slightly reduced is in this case. 

Additional measurements taken by the authors suggest that the proposed techniques 

have no effect on the PLL’s fractional spur performance. In contrast, the reference spur power 

increases by 10 dB (from –80 dBc to –70 dBc) as a result of enabling MR-DEM, but it does not 

increase when MNC is enabled with its coefficients frozen and MR-DEM is disabled.  

Although the reference spur is expected to increase when enabling MR-DEM due to 

coupling from the DCO control lines to the DCO outputs, the authors believe that the reported 

increase of 10 dB is exacerbated by a layout issue in the DCO, which was not caught prior to 

fabrication because of a post-layout extraction tool flaw. As explained in [4], this issue caused 

the DCO’s quality factor to be significantly lower than expected even after FIB surgery. 

Consequently, the DCO outputs swing is extremely low, even when raising the DCO tank’s 

supply voltage to 0.9 V, and the DCO is highly sensitive to interference from other circuit 

blocks. 

V. CONCLUSION 

This paper presents the first experimental demonstration of the MR-DEM and MNC 

techniques described in [15], which mitigate the spectral breathing problem in digital PLLs that 
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results from non-ideal FCE behavior. Additionally, implementation details as well as practical 

observations that complement the techniques’ descriptions in [15] are presented.  

The MR-DEM technique linearizes the DCO input-output characteristics at the expense 

of additive highpass-shaped error which depends on known digital sequences. This error has a 

component that arises from FCE static gain errors, and another component that arises from ISI, 

both of which are cancelled by the MNC technique. By freezing the MNC coefficients after 

convergence and disabling MR-DEM, the presented techniques significantly mitigate the 

spectral breathing problem while only negligibly increasing the PLL’s total power 

consumption. 

Measurement results suggest that for this particular DCO design, the power of the ISI 

component of the DCO error is much less significant than that of the component that arises 

from FCE static gain errors. Furthermore, the results suggest that white switching sequences 

can be used in the MR-DEM technique’s slow DEM encoder to reduce digital logic complexity, 

thereby reducing both power and area consumption. 
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Figure 27: (a) General form of a digital fractional-N PLL (b) conventional DCO control 

technique, and (c) illustration of the effects of non-ideal FCE behavior on the PLL’s phase noise 

spectrum. 
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Figure 28: (a) Block diagram of a digital fractional-N PLL with the MR-DEM and MNC 

techniques, and (b) MR-DEM technique details.  
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Figure 29: Slow DEM encoder signal processing. 
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Figure 31: Adder-free slow DEM encoder implementation. 
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Figure 32: MNC logic bit-level implementation. 



 

 

104 

 

 

18

15

1314

1211

910

FCE 27 (½)

FCE 28 (½)

FCE 29 (½)

FCE 30 (½)

20

16FCE 31 (½)

FCE 32 (½)

FCE 33 (½)

FCE 34 (½)

FCE 22 FCE 26 (½)

FCE 25 (½)FCE 8

17

FCE 34 (½)

FCE 33 (½)

FCE 32 (½)

FCE 31 (½)

19

FCE 30 (½)

FCE 29 (½)

FCE 28 (½)

FCE 27 (½)

FCE 21FCE 25 (½)

FCE 26 (½) FCE 7

b1-34[p]
34

 Δmin Minimum-
sized FCE

2

4

3

3

3

3

2

4

3

3

3

3

1

34

65

78

2

Dummy 
cell

clkfast(t)

Integer 

& 

Fractional 

FCE Bank 

Drivers

Integer

Fractional

 

Figure 33: Integer and fractional FCE banks layout. 
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Figure 34: Measured PLL phase noise at fPLL = 6.56 GHz for (a) conventional DCO control 

technique with constant dI[n], (b) conventional DCO control technique and persistence enabled 

for 2 hrs. (c) MR-DEM and MNC enabled and persistence enabled for 2 hrs., and (d) MR-DEM 

disabled, MNC enabled with coefficients frozen after convergence, and persistence enabled for 

2 hrs. 
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Figure 35: Measured PLL phase noise at fPLL = 6.56 GHz for (a) MR-DEM enabled and MNC 

disabled, (b) MR-DEM and MNC (stat. branch only) enabled, and (c) MR-DEM and MNC 

(both stat. and ISI branches) enabled 
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Figure 36: Measured PLL phase noise at fPLL = 6.56 GHz with MR-DEM enabled for (a) MNC 

disabled, and (b) MNC (both stat. and ISI branches) enabled. 
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TABLES 

Table 2: PNR digital block power consumption. 

MR-DEM 

MNC Power increase (mW) (1) 

Stat.-error 

branch 

ISI-error 

branch 

MNC coeffs. 

update active 

MNC coeffs. 

frozen 

Disabled  Enabled Enabled - 0.25 

First-Order Highpass-Shaped sk,r[n] 

Enabled 

Disabled Disabled 0.52 0.52 

Enabled Disabled 0.92 0.57 

Enabled Enabled 1.64 0.86 

White sk,r[n] 

Enabled 

Disabled Disabled 0.43 0.43 

Enabled Disabled 0.83 0.47 

Enabled Enabled 1.40 0.70 

1 With respect to the case where MR-DEM and MNC are disabled. 
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