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publication in IEEE Transactions on Circuits and Systems~II: Analog and D:igi-
tal Signal Processing, each paper forming a separate chapter of the dissertation.
Specifically, the first paper has been reviewed by the IEEE, revised, and accepted
for publication, the second paper has been submitted to the IEEE for review, and
the third paper is in preparation for review, and is in large ready for submission.
Furthermore, the research covered in Chapter 1 has been presented at the 1996
IEEE International Symposium on Circuits and Systems, May 12-15, 1996, At-
lanta, Georgia, and the research covered in Chapters 2 and 3 is to be presented at
the 1997 IEEE International Symposium on Circuits and Systems, June 9-12, 1997,
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ABSTRACT OF THE DISSERTATION

Analyses of Dynamic Element Matching Techniques

for Data Conversion
by

Henrik Tholstrup Jensen
Doctor of Philosophy in Electrical and Computer Engineering

(Communication Theory & Systems)
University of California, San Diego, 1997

Professor Ian Galton, Chair

IDEALLY, a digital-to-analog converter (DAC) circuit converts a sequence of
numbers represented in a digital format into exactly the same sequence of num-

bers represented in an analog format. As an example, the digital sequence
dn]={---,2,13,2,1,---}
could ideally be converted into analog form as the sequence of voltages
ai[n] = {---, 2V, 1V, 3V, 2V, 1V, ... 1.

However, non-idealities associated with the DAC fabrication process result in circuit
imperfections which cause non-ideal behavior of the DAC. As an example, a fabri-

Xiv



cated DAC might convert the digital sequence d into analog form as the sequence

of voltages

aniln] = {---, 2.1V, 0.9V, 3.0V, 2.1V, 0.9V, --- }.

Thus, a practical DAC introduces analog error, defined as
ai[n] = ani[n] = {---, —0.1V, 0.1V, 0.0V, -0.1V, 0.1V, - -- }.

In general, the analog error is a non-linear function of the digital input, so the
DAC is a non-linear device, and the analog error tends to be strongly correlated
with the digital input. This unfortunate property causes the DAC to be the per-
formance limiting component in many electronic systems. For example, such is
the case with direct digital synthesizers, which—using mostly digital circuitry—
generate high spectral-purity sinusoidal analog signals in wireless communications
systems. Another application wherein the analog error has detrimental effects is in
the oversampling AY data converter.

In this dissertation, recently developed digital signal processing algorithms—
also known as dynamic element matching (DEM) techniques—designed to eliminate
or minimize the detrimental effects of the analog error are presented and their
performance analyzed. Rather than simply trying to minimize the analog error by
improvements in the DAC fabrication process, the non-ideal behavior is accepted
as inevitable, but its detrimental effects are mitigated using a DEM technique.
Various DEM techniques are presented, each of which is optimal for a particular
DAC application. In all cases, a drastic decrease of the detrimental effects of the
analog error has been verified with theoretical analyses and demonstrated with

simulation data.
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Chapter 1

A Low-Complexity Dynamic Element Matching
DAC for Direct Digital Synthesis'

Henrik T. Jensen, Student Member, IEEE, and lan Galton, Member, IEEE}

Abstract—This paper presents and analyzes a new dynamic element matching tech-
nique for low harmonic distortion digital-to-analog conversion. The benefit of the tech-
nique over the prior art is significantly reduced hardware complexity with no reduction
in performance. It is particularly appropriate for applications such as direct digital
synthesis in wireless communications systems, wherein low hardware complexity is es-
sential in addition to low harmonic distortion.

I. INTRODUCTION

S a largely digital technique for generating high spectral-purity sinusoidal ana-
log signals, direct digital synthesis (DDS) is increasingly used in wireless com-
munications systems. The main limitation in most DDS systems is imposed by
the front-end digital-to-analog converter (DAC) required to convert the digitally
synthesized sinusoidal sequence into an analog waveform. In particular, non-ideal
circuit behavior causes the DAC to introduce DAC noise. At least a component of

the DAC noise is a non-linear function of the input sequence, so harmonic distortion

T Accepted for publication: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL
SIGNAL PROCESSING

i The authors are with the Department of Electrical and Computer Engineering, UNIVERSITY OF CALIFORNIA,
SAN DIEGO, La Jolla, CA 92093-0407, USA; email: htjensen@ece.ucsd.edu and galton@ece.ucsd.edu
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2
is introduced that places an upper bound on the achievable spurious-free dynamic
range (SFDR) of the overall system. As shown in {1] DDS applications typically
require only moderate resolution (e.g., 5-12 bits) provided the harmonic distortion
introduced by the DAC is low. For example, an extremely low-complexity digital
portion of an 8-bit DDS system has been demonstrated that is capable of achieving
a minimum SFDR of 90 dB provided the minimum SFDR of the DAC is 90 dB or

greater.

Thus, a remaining problem is to develop moderate-resolution DACs that achieve
such low levels of harmonic distortion. In the past, dynamic element matching
(DEM) techniques have been successfully applied to decorrelate the DAC noise
from the input signal in various DAC topologies. A particularly promising topology
involves the use of a bank of 1-bit DACs, the outputs of which are summed together
to yield a single multi-bit DAC [2], [3], [4]. For most digital input values, there are
many possible input codes to the bank of 1-bit DACs that nominally yield the de-
sired analog output value. Thus, the DAC noise arising from errors introduced by
the 1-bit DACs can be “scrambled” by randomly selecting one of the appropriate
codes for each digital input value. Although DACs based on this approach have
been shown experimentally [2], [3] and through quantitative analysis [4] to achieve
excellent SFDRs, the presented DACs suffer from excessive digital hardware com-
plexity. For example, an 8-bit DAC based on the approach used in [2] requires 1024

binary switches and 1024 independent random control bits.

This paper presents a new DEM technique suitable for DACs applicable to
DDS. The DEM technique scrambles the DAC noise such that conversion perfor-
mance similar to that of the prior art is achieved, but with much lower hardware
complexity. The proposed DEM technique allows for a varying degree of scram-

bling, providing a trade-off between harmonic distortion suppression and hardware



3
complexity. Two versions of the architecture are considered separately: a version
with the full degree of scrambling, referred to as full randomization DEM, and a
version with a reduced degree of scrambling, referred to as partial randomization
DEM. With full randomization DEM, the DAC noise is white and the SFDR is
optimal (infinite, in principle). Theoretical results quantifying the performance of
full randomization DEM are presented and closely supported by simulation results.
Simulations indicate that very good SFDR performance is achieved with partial
randomization DEM, and while both DEM versions have much lower hardware
complexity than the prior art, the greatest hardware-efficiency is offered by par-
tial randomization DEM. To illustrate these results, example 8-bit DACs with 0.5%
static analog mismatch errors are considered in detail; 502 binary switches and 8 in-
dependent random bits are required to implement full randomization DEM, whereas
merely 46 binary switches and 3 independent random bits are required with partial

randomization DEM to provide more than 97 dB of SFDR.

The remainder of the paper is divided into sections as follows. Section II re-
views the architectures of the low-harmonic distortion DACs presented in [2], [3],
and [4] and presents the two versions of the proposed architecture. Section III
presents performance details for full randomization DEM. Section IV provides an
IC fabrication yield estimate for full randomization DEM based on the results of
the theoretical analysis. In Section V it is demonstrated by means of simulation
results how partial randomization DEM can significantly suppress harmonic distor-
tion while offering additional hardware reductions. A quantitative discussion of the
hardware requirements of full randomization DEM and partial randomization DEM
is given in Section VI. The theoretical results stated in Section III are derived in

detail in the appendices.
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Figure 1.1: The high-level topology of the low-harmonic distortion DACs presented in (2] and [4].

II. LOW-HARMONIC DISTORTION DAC APPROACHES

A. Background and Prior Art
The high-level topology shared by the DACs presented in [2] and [4] is shown in
Figure 1.1. The digital input, z[n], is a sequence of unsigned b-bit binary numbers
less than 29, i.e,
z[n] € {0,1,...,Zmaz}:, ZTmaz = 2b 1.
The DAC consists of a digital encoder, 2° one-bit DACs referred to as unit DAC-
elements, and an analog output summing node. At the high level of Figure 1.1, the

digital encoder maps each input sample to 2° output bits, z1[n]...Zq(n], such that

2b
Zx,[n] = z[n]. (1)
i=1
The unit DAC-elements operate according to
_J1+ep, ifzn]=1
wl) = { 1+ = @)

where y.[n] denotes the analog output of the b ynit DAC-element, and ep, and

e;, are errors in the analog output levels arising from inevitable non-idealities in



5
the IC fabrication process. Throughout the paper, these errors are assumed to be
time-invariant, but otherwise arbitrary [2] and are referred to as static DAC-element
errors. The r*® unit DAC-element is said to be selected when z.[n] = 1. The DAC
output y[n] is formed by the analog output summing node such that

26
y[n] =Y _iln]. (3)

i=1
It follows from (1), (2), and (3) that y[n] = z[n] in the absence of static DAC-

element errors. However, as shown in [5], with non-zero static DAC-element errors,

the DAC output has the form
y[n] = az(n] + B + e[n], (4)

where o is a constant gain, 8 is a DC offset, and e[n] is a conversion error term
referred to as DAC noise. The purpose of the digital encoder is to scramble the
DAC noise by randomly selecting the unit DAC-elements such that e[n] is white and
uncorrelated with z[n]. To accomplish this objective, the digital encoders of the
prior art employ a thermometer-encoder and a scrambler. During each clock period,
the thermometer encoder deterministically sets z[n] of its 25 output bits to “1” and
the remaining 2% — z[n] of its output bits to “0”. The scrambler randomly permutes
the resulting 2° bits, thereby selecting z[n] of the unit DAC-elements at random.
As explained in [2], the effect is to randomly modulate the DAC noise without
modulating the signal component of the DAC output. The random modulation
effectively converts the harmonic distortion, i.e., spurious tones, into white noise.
The scrambler implements the random permutation using a network of binary
switches, each controlled by a random control bit. The binary switch is a simple
2-input X 2-output device that, depending upon the value of the random control
bit, either passes the inputs directly through to the outputs or connects the inputs

to the outputs in reverse order. The random control bit of each binary switch is
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Figure 1.2: A 3-bit version of the proposed DAC architecture.

ideally a white random bit-sequence, statistically independent of the random control
bits applied to the other binary switches. Thus, implementing the digital encoders
presented in [2] and [4] requires as many random control bits as binary switches.
The digital encoder in [4] is capable of randomly connecting its 2°-bit inputs to its
2%.bit outputs in any of the 2°! possible combinations. The digital encoder in [2]
implements only a subset of all combinations, being capable of randomly connecting
its inputs to its outputs in 962"~ possible combinations. As will be seen, the digital
encoder proposed in this paper implements significantly fewer random input-output

mappings than the prior art, yet provides white DAC noise, nonetheless.

B. Proposed DAC topology
The proposed dynamic element matching DAC architecture is shown in Fig-

ure 1.2. To simplify the figure, a 3-bit example is shown. The DAC is of the general
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Figure 1.3: Details of (2) the switching block Sk ., and (b) the binary switch.

topology introduced in [5]. The tree-structured digital encoder consists of three
layers of switching blocks, each labeled Sy ., where k denotes the layer number and

r denotes the position of the switching block in the layer.

Figure 1.3a shows the functional details of the switching block Sk r. The switch-
ing block has one k+ 1-bit input, two k-bit outputs, and a random control bit input,
ck[n]. The random control bit is common to all the switching blocks within the
kt® layer (for clarity, the random control bits are not shown in Figure 1.2). The
Sk switching block operates such that when ck[n] is high, the most significant bit
(MSB), by, of the input is mapped to all & bits of the top output, and the remaining
k bits of the input are mapped directly to the k bits of the bottom output. When
ck[n] is low, the situation is as above except that the mappings are interchanged.
Thus, it follows that S, can be implemented using & binary switches, all controlled
by ck[n]. Figure 1.3b shows the binary switch controlled by cx[n]. The process of
randomly mapping the input to the outputs is referred to as random switching. At
the outermost layer, i.e., k = b, the DAC input z[n] is assigned to the Sp; input bits
by through by, and a zero is assigned to the input bit g, as indicated in Figure 1.2.

It is shown in appendix 1.A that the digital encoder obtained by interconnecting



the switching blocks of Figure 1.3a as shown in Figure 1.2 indeed satisfies (1).
Motivated by the results of the simulated performance presented in sections
IIT and V, two versions of the proposed architecture are now defined. The term
full randomization DEM refers to a DAC with random switching in all layers, i.e.,
layers 1 through b. The term partial randomization DEM refers to a DAC with
random switching in a limited number of layers, i.e., in layers R through b, where
2 < R < b-1. As an example of partial randomization DEM, consider the 8-bit
DAC of Figure 1.4, where random switching is performed in layers 6 through 8.
Layers 1 through 5 have no effect on the scrambling of the DAC noise, so it follows
that these layers can be eliminated and substituted by eight nominally identical
DAC banks, each with a 6-bit input. The details of the DAC bank are shown
in Figure 1.5. The LSB of the input controls a unit DAC-element, whereas the

remaining 5 bits control a 5-bit conventional DAC.

III. PERFORMANCE DETAILS FOR FULL RANDOMIZATION DEM

A. Simulation Results

The simulated performance of an example 8-bit DAC with the proposed architec-
ture is presented in Figure 1.6. Each graph in the figure shows the simulated power
spectral density (PSD) relative to z2,,, of a particular signal of the DAC driven by
a dithered and DC offset sinusoid. Specifically, z[n] was formed by adding dither
to the sequence Asin(wgn) + DC;, where A = 126, wp = 2602_4587"7 and DC, = 127.5,
and then quantizing the result to 8 bits. The dither added to the sinusoidal input
was a white sequence with a triangular probability density function supported on
(—1,1), so the quantization error was white noise [6].

Figure 1.6a corresponds to y[n] of an ideal DAC (i.e., a DAC with no static DAC-

element errors, so y[n] = z{n]), Figure 1.6b corresponds to y[n] with no random
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Figure 1.5: Details of the DAC bank.

switching (the digital encoder thus being equivalent to a thermometer encoder),

Figure 1.6c corresponds to y[n] with full randomization DEM, and Figure 1.6d

corresponds to the signal y[n] — z[n] with full randomization DEM. The static

mismatch errors were chosen randomly from a normal distribution with a standard

deviation of 0.5%. This represents a conservative estimate relative to the static

DAC-element errors expected in practice, but serves to demonstrate the robustness
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Figure 1.6: Simulated PSDs relative to z2,,, of an example 8-bit DAC. The plots show (a) the ideal
DAC output y[n], (b) the DAC output y[n] with no random switching, (c) the output y[n] with full
randomization DEM, and (d) the signal y[n] — z[n] with full randomization DEM.

of the proposed DEM technique (2], [7].

As is evident from the numerous spurs distributed across the spectrum in Fig-
ure 1.6b, rather severe harmonic distortion results from the static DAC-element
errors in the absence of random switching. The maximum-amplitude spur occurs
at a frequency of approximately 1.5 radians, and has power ~69.86 dB below the

power of the desired sinusoidal signal of frequency wp. Numerous additional simula-
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tions performed by the authors show that the DAC exhibits similar behavior when
driven by inputs of different frequencies. It follows that merely 69.86 dB of SFDR
is provided. The data in Figure 1.6c indicates that harmonic distortion is not vis-
ible with full randomization DEM. As demonstrated by the simulation results and
confirmed in the following section, the DAC easily provides 90 dB of SFDR and is
thus applicable to the DDS system mentioned in the Introduction.

Additional details of the simulation results are as follows. The PSDs were each
estimated by averaging 16 length-2!8 periodograms [8]. The frequency scales were

normalized such that 7 corresponds to half the clock rate of the DAC.

B. Performance Equations

A detailed theoretical performance analysis of full randomization DEM is given
in appendix 1.B and appendix 1.C. However, for the purpose of comparing sim-
ulation results and theory, the main results of the analysis will be stated in the
following.

For a b-bit version of the proposed DAC architecture, let z[n] be a deterministic
input sequence and let z(9)[n] denote the it bit of z[n], 1 < ¢ < b. In accordance with
the usual definitions, let the time-average means of z[n], z¥[n], and z®[n])z([n]

be defined as

and
i L5 (1500
= lim — i j
Moo= Jin 53 00090,
respectively, and let the time-average autocorrelation of z[n] be defined as

P

- 1 &
Ryz[k] = lim B Z z{n]zn + k).
n=1
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The time-average autocorrelation of y[n] is defined analogously with z replaced by
y in the above definition. The two main theoretical results of this paper can now

be stated as follows:

Result 1. The output of the proposed DAC with full randomization DEM can be
written in the form

y[n] = az(n] + 5 + e[n], (5)

where e[n] is a zero-mean, white random process of the form

b
eln] = > wiln]zVn], (6)
=1
and each w;[n] is a zero-mean, white random process.

Appendix 1.A provides exact formulae for the constants « and 3 in (5), and expres-
sions for w;[n] in (6) are developed in appendix 1.B. For now, it suffices to know
that the random processes w;[n] depend only upon the static DAC-element errors
and are zero-mean, white, and uncorrelated with z[n]. Notice that the above results
hold for any underlying statistical distribution or correlation properties of the static

DAC-element errors.

Result 2. If M, and R;.[k] exist, then

_My =aM,;+ (7)
and
Ryy[k] = @’ Rz [k] + 7 + 525[K], (8)
with probability 1, where
7=2afM, + %, (9)

and

b b—1 b
7 = Z”ﬁ Mo + Z Z Yig M- (10)
i=1

j=1li=j+1
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Appendix 1.B provides formulae for the constant coefficients +; and +; j in (10). For
now, it suffices to know that these coefficients depend only upon the static DAC-
element errors. As before, this result holds for any underlying statistical distribution

or correlation properties of the static DAC-element errors.

C. Comparison of Simulation Results and Theory

To summarize, (8) states that Ry,[k] consists of a scaled version of R..[k],aDC
offset and white DAC noise. This general conclusion is similar to the corresponding
result in [4] and is clearly supported by the simulation results of Figure 1.6.

It follows from (5) that a non-unity value of a causes a term corresponding to
(a — 1)z[n] to occur in the signal y[n] — z[r]. This scaled version of z{n] occurring

in y[n] — z[n] therefore has power
AP, = 10logy [(@ ~1)%] dB (11)

relative to the power of z[n]. Similarly, it follows from (5) that the DC component

occurring in y[n] — z[n] has power

APpc = 101logyg [(a -1+ =M%)2] dB (12)
relative to (M;)2. To compare these predictions with the simulation results, the
randomly chosen static DAC-element errors of the example 8-bit DAC were summed
according to the formulae for a and 3 given in appendix 1.A, and resulted in o —
1 = —6.4361 x 10~ and B = 7.5634 x 1072, respectively. Evaluating (11) and
(12) with these values of o and f results in AP, = —63.83 dB and APpc =
—85.95 dB. Measuring the offsets corresponding to AP, and APpc using the data
of Figure 1.6a and Figure 1.6d yields ~63.82 dB and —85.96 dB, respectively, in

agreement with theory. Furthermore, evaluating (10) for the simulated values of

static DAC-element errors yields a power of the DAC noise of 2 = -75.45 dB
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relative to z2,,,. Numerically integrating the DAC noise component of the PSD
of Figure 1.6d results in —75.44 dB, in agreement with theory. As an additional
comment pertaining to the details of Figure 1.6, it is evident from a comparison of
Figure 1.6c and Figure 1.6d that ° is negligible relative to the power of the white

quantization error and dither term of z[n].

D. An Interpretation of the Performance Equations

The most significant performance equations in the above are (8) and (10) which
state that the DAC noise is white and give a formula for the power of the DAC noise,
respectively. As is evident from (10), 2 is a linear combination of the time-average
means of the individual bits of z[n] plus a linear combination of the time-average
means of the products of pairs of bits of z[n]. If z[n] is the quantized version of a
sinusoid A sin(wn), it follows that > depends on both amplitude A and frequency
w. This is different from the architecture presented in [4] for which 72 only depends
on signal amplitude. To demonstrate typical behavior of 72, Figures 1.7a-d show
plots of 32 in dB relative to z2,,_ for four nominally identical 8-bit versions of the
proposed DAC. The DACs differed only in the static DAC-element errors, which
were randomly chosen from a normal distribution with a standard deviation of
0.5%. In each case, the DAC was driven by a sinusoidal input and the plot shows
&2 computed using (10) as a function of input amplitude and frequency. In general,
only minor dependency on frequency is observed, whereas dependency on amplitude
is stronger. Notice that there is no clear trend in &2 as a function of amplitude,
which is in contrast to the behavior of 32 in [4] wherein 52 decreases with increasing
amplitude.

Figures 1.8a-d show plots of @2 in dB relative to z2,,, for the same four example

8-bit DACs as in Figure 1.7 when driven by the sum of two DC offset sinusoids, i.e.,

z[n] being the quantized version of z1[n]+z3[n]+Zmaz/2, Where z1[n] = A; sin(win)
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Figure 1.7: Plots of 7 in dB relative to z2,,, for four nominally identical 8-bit versions of the

proposed DAC. The DACs in (a) through (d) differed only in the static DAC-element errors, which
were randomly chosen from a normal distribution with a standard deviation of 0.5%. In each case,
the DAC was driven by a sinusoidal input and the plot shows @ computed using (10) as a function
of input amplitude and frequency.

and zp[n] = Az sin(wzn). In each plot, the amplitude of each sinusoidal component
was fixed at A; = Ao = 63, and 72 computed using (10) is shown as a function
of w; and wy. Again, 72 exhibits little dependency on input frequency and attains
average values of —74.82 dB, ~77.84 dB, —73.02 dB, and —~74.33 dB, respectively.
Thus, the random variation of the static DAC-element errors of the example DACs

causes a spread in the average value of 72 of 4.82 dB.
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Figure 1.8: Plots of 2 in dB relative to z2_, for the same four example 8-bit DACs as in Figure 1.7

when driven by the sum of two sinusoids. In each plot, the amplitude of each sinusoidal component
was fixed, and 7 computed using (10) is shown as a function of the frequencies of the sinusoidal
components.

IV. IC FABRICATION YIELD ESTIMATION

With knowledge of the statistical distribution of the static DAC-element er-
rors, an IC fabrication yield estimate of the proposed DAC architecture with full
randomization DEM can be performed using (10). IC fabrication yield estimation
data provides a means by which to estimate the percentage of fabricated DACs

that will result in a value of @2 less than any value of interest. The IC fabrication
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Figure 1.9: IC fabrication yield estimation data for (a) 4-bit, (b) 6-bit, (c) 8-bit, and (d) 10-bit
versions of the proposed DAC. The static DAC-element errors were chosen from a normal distribution
with a standard deviation ranging from 0.05% to 2%. In each case, from top to bottom, the curves
show the largest of the smallest 95%, 65%, 35%, and 5% of &° values in dB relative to z7,..,
respectively, when driving the DAC by a sinusoidal input.

vield estimation procedure used in the following was first introduced in [4] and is
based upon the idea of computing a large number of samples of &2 for a given level
of static DAC-element errors, thereby generating data that closely resemble the

corresponding statistical distribution of 2.

For example, Figures 1.9a-d show IC fabrication yield estimation data corre-
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sponding to 4-bit, 6-bit, 8-bit, and 10-bit DACs, respectively. In each case, from
top to bottom, the curves show the largest of the smallest 95%, 65%, 35%, and
5% of o2 values in dB relative to z2,,,, respectively, when driving the DAC by
a maximum-amplitude, DC offset sinusoidal input of frequency wy = %g. Each
figure shows &2 versus increasing standard deviation of the static DAC-element er-
rors, and each yield estimation is based upon 5000 calculated values. The static
DAC-element errors were chosen as samples of independent, normally distributed
random variables with a standard deviation ranging from 0.05% to 2%. This partic-
ular choice of static DAC-element errors was made for demonstration purposes only;
any other distribution could have been used without changing the yield estimation
procedure.

For example, with a standard deviation of 0.5%, the data of Figure 1.9c predicts
that 95% of all 8-bit DACs will satisfy 72 < —72 dB relative to z2,,, and that 5%
will satisfy 72 < —81 dB relative to z2,,,. Thus, 90% of all 8-bit DACs fabricated
satisfy

—-81dB < g2 < -72dB

relative to z2 ... This conclusion is supported by the data of the simulated example
8-bit DAC of Figure 1.6, for which 32 = —75.44 dB relative to zZ,,,, and by the
four example 8-bit DACs of Figure 1.7, for which 52 equals —75.53 dB, —78.35 dB,
—73.91 dB, and —75.57 dB, respectively, all relative to z2,,,.

As mentioned previously, when driving the DAC by a sinusoidal input, 72 de-
pends on both amplitude and frequency. With a strong dependency, this property
would limit the usefulness of the IC fabrication yield estimation technique in that
the resulting data only would be applicable to DACs driven by a particular sinusoid.
However, as was demonstrated in Figure 1.7, @ is largely independent of sinusoidal

frequency, and repeating the yield estimate calculations with maximum-amplitude
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sinusoidal inputs of several different frequencies gives results very close to the data
presented in Figure 1.9. As was also demonstrated with the data in Figure 1.7, no
clear trend in @2 as a function of sinusoid amplitude is observed, and repeating the
yield estimate calculations with sinusoids of different amplitudes gives results very
close to the data in Figure 1.9. Consequently, when computing a large number of
values of @2, the spread of 72 caused by varying amplitude is largely absorbed in the
spread of @* caused by varying random mismatch errors. It follows that Figure 1.9
represents IC fabrication yield estimation data valid for sinusoidal inputs of any

amplitude and frequency.

V. PERFORMANCE DETAILS FOR PARTIAL RANDOMIZATION DEM

In practice, a number of factors other than the static DAC-element errors limit
the SFDR. achievable by the DAC. Non-ideal circuit behavior such as clock-skew,
clock coupling, and finite slew-rates inevitably contributes to harmonic distortion of
the DAC output. Thus, the total amount of harmonic distortion of the DAC can be
viewed as the effects of two components, namely a component caused by the static
DAC-element errors and a component caused by all other non-ideal circuit behavior.
To the extent that the latter component is below—or can be attenuated to—the
maximum allowable level of harmonic distortion for a given DAC application, a
better “engineering solution” to mitigate the effects of the static DAC-element errors
might be to merely attenuate the resulting harmonic distortion to the maximum
allowable level, thereby possibly reducing the hardware requirement of the DEM
technique. The simulation results presented in the following indicate that partial

randomization DEM indeed offers such an option.

A. Simulation Results

Simulation results for partial randomization DEM is shown in Figure 1.10. In
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Figure 1.10: Simulated PSDs relative to z2,,, of an example 8-bit DAC with partial randomization
DEM. The plots show (a) y[n] — z[n] with random switching in layer 8, (b) y[n] — z[n] with random
switching in layers 7 and 8, (c) y[n] — z[n] with random switching in layers 6 through 8, and (d) y[n]
with random switching in layers 6 through 8.

particular, Figures 1.10a-c correspond to the signal y[n] — z[n] with random switch-
ing in layer 8, layers 7 and 8, and layers 6 through 8, respectively. Figure 1.10d
corresponds to y[n] with random switching in layers 6 through 8. In all cases, the
DAC input and static DAC-element errors were identical to those used for the full

randomization DEM example of Figure 1.6. The simulation results indicates that
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the harmonic distortion is gradually attenuated as the number of layers with ran-
dom switching is increased. The maximum-amplitude spurs of Figures 1.10a-c have
powers —73.55 dB, —89.47 dB, and —97.49 dB, respectively, relative to the power of
the desired sinusoidal signal of frequency wg. Several simulations using other sinu-
soid frequencies and amplitudes similarly support these findings. Consequently, the
SFDRs provided by the DAC are 73.55 dB, 89.47 dB, and 97.49 dB, respectively.
The parameters used to compute the PSDs were identical to the parameters used

to compute the PSDs of Figure 1.6.

To summarize the simulation results of Figure 1.10, partial randomization DEM
increasingly suppresses harmonic distortion as the number of layers with random
switching is increased, and may suffice to provide the necessary dynamic range for
a given application. For example, three layers of random switching would suffice
to provide the desired minimum 90 dB of SFDR for an 8-bit DAC applicable to
the DDS system mentioned in the Introduction. As quantified in the next sec-
tion, the hardware complexity of the digital encoder is greatly reduced with partial

randomization DEM.

Additional research is needed to theoretically quantify the performance of par-
tial randomization DEM. Among the goals for such research would be a determina-

tion of a guaranteed minimum SFDR given a specific degree of randomization.

VI. HARDWARE COMPLEXITY OF THE DIGITAL ENCODER

The hardware complexity of the digital encoder is a function of both the required
number of binary switches and the required number of random control bits. As will
be shown in the following, the proposed architecture has much lower hardware

complexity than the prior art.
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Figure 1.11: Digital hardware required to implement the digital encoders presented in (2] and of
the proposed architecture versus the DAC bit-resolution. The table entries are given as pairs (z/y),
where z is the number of binary switches and y is the number of random control bits.

A. Full Randomization DEM

To determine the number of required binary switches, recall that the switching
block Sk, requires k binary switches. From this, it can be shown that the total
number of binary switches required by the digital encoder of a b-bit DAC is ob+1 _
b — 2. It can furthermore be shown that the numbers of required binary switches
of the digital encoders presented in [2] and [4] are b26=1 and (b - %)2”, respectively.
The number of random control bits required for the proposed digital encoder is

simply b, whereas the digital decoders in [2] and [4] require the same number of

random control bits as binary switches.

It follows that the number of required random control bits has been reduced
ezponentially in b compared to the prior art, and that the numnber of required binary
switches has been reduced linearly in b. As an example, an 8-bit DAC with the
digital encoder architecture presented in (2] requires approximately twice as many
binary switches as the proposed architecture, whereas 128 times as many random

control bits are required.

A detailed comparison of the hardware complexity of moderate-resolution DACs
is shown in Figure 1.11. The figure shows the hardware complexity of the digital
encoder presented in [2] and the proposed architecture for bit-resolutions 6 through
12. The table entries are given as pairs (z/y), where z is the number of binary

switches and y is the number of random control bits, respectively.
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Figure 1.12: Hardware complexity versus the range of layers with random switching of an example
8-bit digital encoder. The table entries are given as pairs (z/y), where z is the number of binary
switches and y is the number of random control bits.

B. Partial Randomization DEM

As discussed previously, very low hardware complexity is achievable with partial
randomization DEM. To obtain a precise count of the hardware requirement, sup-
pose that the digital encoder implements random switching in layers R through b.
It can be shown that the number of required binary switches is (E+ 1)2b—R+1_p_2.
The required number of random control bits is simply b6 — R + 1 (i.e., the number
of layers with random switching).

As an example, it follows that the 8-bit DAC with random switching in layers 6
through 8 requires 7 x 8 — 8 — 2 = 46 binary switches and merely 3 random control
bits. This should be compared to the requirement of 502 binary switches and 8
random control bits for full randomization DEM and the requirement of 1024 binary
switches and 1024 random control bits for the digital encoder in [2]. To further
illustrate the reduction of hardware complexity when using partial randomization
DEM, the hardware complexity of an 8-bit example DAC versus the range of layers
with random switching is tabulated in Figure 1.12.

Finally, it should be mentioned that the reduction in hardware complexity ob-
tained with the proposed digital encoder architecture also yields a major simplifica-
tion in VLSI layout; generating and routing 1024 random control bits is significantly

more difficult than generating and routing 8 or fewer random control bits.

VII. CONCLUSION

A new hardware-efficient dynamic element matching DAC architecture appro-
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priate for DDS has been presented. The proposed architecture is significantly more
hardware efficient than the prior art, yet provides similar performance with respect
to suppression of harmonic distortion.

For full randomization DEM, quantitative results giving the power of the white
conversion noise have been stated and proven, and yield estimates have been pre-
sented for selected bit-resolutions and VLSI process statistics. Computer simulation
results have been presented that fully support the theoretical results for an example
8-bit DAC applicable to a certain DDS system.

Simulation results show that harmonic distortion is greatly suppressed with
partial randomization DEM, which offers a considerable additional reduction in
hardware complexity. It has been shown that for an example 8-bit DAC with partial
randomization DEM, merely 3 layers of random switching suffice to provide greater
than 90 dB of SFDR, as desired for the DDS application in question. Additional
research is needed to theoretically quantify the performance of partial randomization
DEM. Of particular interest would be the determination of a guaranteed minimum
SFDR given a specific degree of randomization.

Non-ideal circuit behavior such as clock-skew, clock-coupling, and finite slew
rates inevitably contributes to harmonic distortion of the DAC output. Such non-
ideal circuit behavior is typically quite implementation dependent, and research
to quantify and mitigate its effects must likely be performed on a case-by-case
basis. Nevertheless, the results presented in this paper are still applicable is such
situations. In particular, partial randomization DEM promises to offer the option of
reducing the hardware complexity of the DEM technique to a minimum while still
attenuating harmonic distortion resulting from static DAC-element errors below the

level of inevitable harmonic distortion.
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Figure 1.13: The signal processing equivalent of the switching block Sk ..

APPENDIX 1.A

The purpose of this appendix is to verify that the output y[n] of the proposed
DAC architecture with full randomization DEM or partial randomization DEM is of
the general form stated in [5], which will be repeated shortly for convenience. Then,
in appendix 1.B, the general form of the DAC noise e[n] given here is re-written to
the form stated in Result 1 of Section III, and an expression for the variance of e[n]
is derived.

Before stating the general form of the DAC output as derived in [5], a few defi-
nitions are first presented. The DACs considered in [5] have switching blocks that
perform the signal processing operations depicted in Figure 1.13, and as is shown
below, the switching blocks of the DAC architecture proposed in this paper can
also be viewed as shown in Figure 1.13. The k + 1-bit input of Sk, is denoted
Tk r[n], and the two k-bit outputs are denoted Tg-1.2r-1[n] and zx_j or[n], respec-
tively. The i*® bit of zx,[n] is denoted :z:g)r[n] The sequence si .[n] is generated

within the switching block, and, as can be verified from the figure,

Skr[n) = Tp-12r-1{n] — Tk-1,2¢[n]- (13)

The results in [5] giving the general form of the DAC output can now be stated as

follows:

Claim A. The output y[n] of a b-bit version of the proposed DAC architecture



with full randomization DEM or partial randomization DEM is of the form

y[n] = az[n] + B + e[n], (14)
where
1 &
a= 1+—27;Z(3h,- —ey,), (13)
i=1
2b
‘B = Z €l;, (16)
i=1
and
b 20~k
e[n} = Z Z A rskr[n)- (17)
k=1 r=1
In (17),
. (r—1)2F 4251
Ak,r = ok Z [(ehi - eli) - (ehi+2k—1 Ol k-1 )] (18)
i=(r-1)2%+1

and s .[n] is defined by (13). These results do not depend upon any particular

form or statistical properties of the static DAC-element errors.

Proof. As shown in [5], to prove the above claim for the DAC with full random-

ization DEM, it suffices to verify

zp,1[n] = z[n], (19)
_ [ even if zi,[n] is evey;
Sk,rln] = {odd if zx [n] is odd; (20)

and

lsk,r[n” < min{z -[n], 2k — :z:k,,.[n]}. (21)
To accomplish this, a definition of the numerical value of Tk [n] is needed.

Definition. The numerical value of the input and outputs of the switching block

proposed in this paper must be interpreted according to

k
Tk [n] = Z 2'_1:1:53[71] + :cgfl [n]. (22)

=1
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Thus, zi -[n] is the sum of a conventional k-bit unsigned binary number and an

“extra LSB”, :vg’)l [n].

First, to verify (19), recall that the input to the switching block S ; was defined

in Section II according to
.'Egoz[ ] 0 and x}:i[n] = z(i) [n]’ 1<i<b.

Inserting this in (22) yields (19).
Next, it will be shown that the switching blocks presented in this paper perform

signal processing according to Figure 1.13 such that

dr [n], if cg[n] = 0;
Skrln] = { —kélk[,rgn], if Ci{n% =1 (23)

where

di¢[n] = 7. [n] ~ 2z ], (24)

and ck[n] is the random control bit of the ktt layer. Then, (23) and (24) will be
used to verify (20) and (21).
Suppose ci[n] = 0. It follows from Figure 1.3, (13), and (22) that

k-1
Skrln] = 22' -1 (') [n + z(o) 2[n] - (Z 2i-1 4 1) a:gcz[ ]. (25)

i=1 i=1
Collecting and rearranging terms using (22) yields sx,[n] = dir[n]. Similarly, it
follows that sg r[n] = —dir[n] when cg[n] = 1. This verifies (23) and (24).

To verify (20), notice that the term 2kz§ck3[n] in (24) is even because k is a
positive integer. Thus, if zx .[n] is even, d [n] is even, and if zx ;[n] is odd, di [n]
is odd.

To verify (21), notice that if :vg?[n] =1, (22) implies 251 < x4 .[n] < 2%. Thus,
from (23) and (24),

|skr[n]| = 2F =z, [n] < Tk [n]-



Similarly, if :cgckz[n] =0, (22) implies 0 < x4 .[n] < 2571, and thus
Isk,r[n]l = zg[n] < 2k _ Tk 1],

which verifies Claim A for full randomization DEM.

The digital encoder with partial randomization DEM employing random switch-
ing in layers R through b is equivalent to the digital encoder of full randomization
DEM for which ¢i[n] = 1, k = 1,2,..., R — 1. Thus, it follows that Claim A also

holds for partial randomization DEM. m

APPENDIX 1.B
The purpose of this appendix is to verify that the DAC noise e[n] has the form
stated in Result 1 of Section III, and to provide an expression for the variance of

e[n].

Claim B1. For a b-bit version of the DAC architecture with full randomization

DEM, the DAC noise is a zero-mean, white random process of the form

b
e[n] = > _ wilnj¥n], (26)

i=1

where each w;[n] is a zero-mean, white random process of the form

wi[n] = W; pyfn)- (27)
In (27),
joi=1 ’
w;j = Z (€hm — €1m) — 2 @ = 1) (28)
m=(j—1)2-1+1
and b
haln] = D Pcisln] + (1 - cifn]) + 1. (29)

j=1
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The above results do not depend upon any particular form or statistical properties

of the static DAC-element errors.

Proof. By virtue of Claims A and B1, it is sufficient to show that (17) is equivalent
to (26), which will be accomplished by induction. First, notice that substituting

(22) into (23) and (24) with k = b and using z;[n] = 0 gives
-1
spafn) = (-1) 7D @100 = 3 2120 m]),
i=1

which, combined with (18), yields

(1~cy[n])28 -1 +25!

b-1
1 .
Apispi[n] = [2—b:1- E (en,, — €l —a+1)} [2b"lx(b)[n]— E 2114 )[n]}
i=1

m=(1—cp[n])26~1 +1

(30)
To establish the induction basis, let b = 1. Then, from (17),
e[n] = A1,181‘1[’n], (31)
and inserting (30) yields
(1~c1[n])+1
=] S (e — et —a+1)|cPfnl
m=(1~c;[n])+1
This can be written as
e[n] = w [n]:z:(l)[n] (32)

where

win] = wypm  and  kfn]=(1-aln]) +1,

so e[n] has the form of (26) for b = 1. Since ci{n] is a white random process with
possible values 0 and 1, it follows that hi[n] is a white random process with possible
values 1 and 2. But hj[n] determines the value of w;[n] to be either w;; or wyp,

and thus wy[n] is a white random process. It follows from (32) that e[n] is a white
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random process. Furthermore, (23) and (31) show that e[n] is zero-mean, and it
follows from (32) that w;[n] is zero-mean.

Next, suppose the claim holds for 1 < b < . It will be shown that the claim

holds for &’ + 1. Notice that (17) may be written as

e[n] = Api1,15p+1,1[n] + e1[n] + es[n], (33)
where
b 2b'—k
elln] =Y Y Agrseelnl, (34)
k=1 r=1
and
b 26'—/:
ealn] =D D" Ay op-kSgpqav-kln]- (35)
k=1 r=1

It will next be argued that e;[n] = 0if cy,1[n] = 1, and that eg[n] = 0 if cpr41[n] = 0.
Suppose cy41[n] = 1. Since :z:(b'“)[n] is either O or 1, it follows from Figure 1.3
and (22) that zp 1[n] is either 0 or 2%, Consequently, all the 7y .[n],1 < k < ¥,1<
r < 29—k are either 0 or 2%. Thus, by (24) and (34), e1[n] = 0. Similar reasoning
verifies that es[n] = 0 if cy41[n] = 0.
Using (30) and invoking the induction hypothesis, (33) may be written as

e[n] =

(1=cy (2" +2” b gi-1 v .
Z (en,, — e, —o+ 1)} [m(b +in] — Z @,—x(’)[n]] + Z wi[n]z(')[n].

m=(1—cb:+1[n])2b'+1 =1 =1

(36)
From (33), it follows that

bl
i ei[n], if cyp|n| =05
Zwi[n]x( )[In] = exfn] + e2fn] = {eé%‘n{, if CZ'-;%”% =1,

=1
where w;[n] is calculated from (27) with b = &'. The desired result can now be shown

by comparing the coefficients of z()[n], 1 < i < b + 1, in (36) with the coefficients
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determined from (26) with b = b + 1. The coefficient of z®+1)[n] in (36) is

! U
(1~cy 4y [n])2" +28

Z (eh,, — €lm — @+ 1), (37)

m=(1-cy ., [n])2%' +1
which equals wy,1[n], as asserted. Next, suppose cy4+1[n] = 0. The coefficient of

z®[n], 1 <i <V, in (36) is then

. 2b'+1
21—1
wi[n] - = z (en, — €1, —a+1).
m=2b'+1

Inserting the definition of w;[n] with b = b’ and rearranging terms yields

hi[ﬂ.]2i—1

Z (en,, — €1, — a+1),

m=(hifn]-1)2i-1+1
which equals w;[n] with b = ¥ + 1. For ¢y +1[n] = 1, it can similarly be shown that
the coefficient of z([n] in (36) is

@ +hifn))2 !

Z (en,, — €1, —+1),

m=(2% +h;[n]-1)2i-1 +1
as asserted. It follows from (37) that wy41[n] is a white random process. Thus,
by the induction hypothesis, e[n] is a white random process. Also by the induction
hypothesis, e;[n] and ez[n] in (33) are each zero-mean. It then follows from (23)

and (24) that e[n] and wy 1;[n] are zero-mean random processes. W

Claim B2. The variance of e[n] is given by

b b~1 b
Var{e[n]} = Z v z®[n] + Z Z ¥i,j 29 [n}z0n],

i=1 j=1i=j+1

where
2b-—i+l

1 2
Vi = o Z (wij) (38)
j=1



and
2b—-i

1
Yij = o1 Z Wi 2k—1W; 2k - (39)
k=1

Proof. Since e[n] is zero-mean, Var{e[n]} = E{(e[n])?}, where E{-} denotes the
statistical expectation operator. Using (26) and rearranging terms results in
b b—=1 b
Var{e[n]} = S E{(win])*} sm] +23" Y E {wilnlwjlnl} 2P[rlzPn], (40)
i=1 j=li=j+1

where use was made of the equality (z()[n])? = z()[n]. To evaluate (40), consider
first E {(wi[n])?}. By the definition in (29), hi[n] can be viewed as the value as-
sociated with a (b — 7 + 1)-bit binary number, offset by 1, where the values of the
bits are determined by c[n], k = 4,4+ 1,...,b. The two possible values of ci[n]
are equally probable and ci[n] is independent of c;j[n], k& # j, so it follows that
the 26=i+1 different values of h;[n] are equally probable. It then follows from (27)
that the 20=*+! different values of w;[n] are equally probable, i.e., w;[n] = w;; with

probability 55:1,? Thus,

2b—i+l
1
E {(wiln])?} = =T Z (wij)?, (41)
i=l1
as asserted.
It will next be shown that

E {wi[n]wj[n]} = 51:_—]- ,; Wi 2k —1 Wi 2k - (42)
As derived in the above, w;[n] depends on ck[n], k = i,i+1,...,b, and w;[n] depends
on ck[n], k = j,j+1,...,b. Thus, it follows that w;[n] assumes one of 2i=J equally

probable values depending upon the value of w;[n]. Specifically, for a given value of

wi[n], (27) may be rewritten as

wiln] = wigk_14q-r); k€ {1,2, . ..,2”"'}, re {0,1}, (43)
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where r is the value of ¢;[n]. As can be verified from (29), the possible values of
w;[n] can then be specified in terms of k, r, and an integer parameter m according

to
'l.l)][n] € {wj,2i"j(2k—2+r)+m :m=12,..., 21.-_]'} ’ (44)

where each value occurs with probability 5,1—_—1— Combining (43) and (44) yields

2b—t 2
E {wi[n]wj[n]} = 2—,,_17521_] Z (Z W; 9k—1+(1-r) (Z W) 9i~i (2k—247)+ )) :
r=0 .
To proceed with the verification of (42), it will be shown in the following that
9i—i
Z W, 9i~3 (% —247)+m = Wi2k—1+r (46)

m=1
From (28) it follows that (46) can be verified by establishing the appropriate limits
for the summation of the terms (ep, — ej,, —a+1). The lower summation limit on

the left-hand side of (46) can easily be found to be
[(2k—1+7)-1]2"1+1. (47)

Similarly, the upper summation limit on the left-hand side of (46) can be found to
be
(2k —1+7)27L. (48)

Then (46) follows from (28) using (47) and (48). Furthermore,

1

Z Wi 2k —1+(1~r) Wi 2k—1+4r = 2wi,2k—1wi,2ka
r=0

and (45) reduces to (42). Claim B2 follows from (40), (41), (42), and the definitions

ofyiand v;j. W
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APPENDIX 1.C

The purpose of this appendix is to verify the time-average properties of the

DAC output with full randomization DEM as stated in Section III by Result 2,

given here in its complete form as:
Claim C. If M, and R..[k] exist, then
M, =oM:+0 (49)
and
Ryylk] = o*Rolk] + 7 + 56[K), (50)

with probability 1, where a is given by (15), B is given by (16),
7 = 208M; + B, (51)

and

b b-1 b
FP=D M+, D %M (52)
i=1

j=1i=j+1

In (52), v and +; ;j are given by (38) and (39), respectively.

Proof. From Result 1 it follows that
E {y[n]} = azln] + B,
and consequently, ,
lim = > {yln]) = ol + 6.

To deduce that (49) holds with probability 1, it suffices to show that y[n] obeys
the strong law of large numbers. By the Kolmogorov Criterion, it suffices to show
that y[n] has finite variance. This follows immediately because z[n] and the static

mismatch errors are bounded.



35
To verify (50), consider first the statistical autocorrelation of y[n] defined as

Ryy[n, k] = E {y[n]y[n + k]} . From Result 1 it follows that
Ryyln, k] = E {(ez[n] + B+ e[n]) (az[n + k] + B + e[n + K])} -

Expanding, collecting terms, and making use of the facts that e[n] is a zero-mean,

white random process and z([n] is deterministic, results in
Ryy[n., k] = c?z[n)z(n + k] + af(z[n] + z[n + k]) + B2 + o2[n]é[k],

where

o%[n] = E {€%[n]} = Var {e[n]}.

Then using Claim B and the definitions of 7 and 72,

P
1 _ 25 — =2
P{r%o 5 ;Ryy[n, k] = o Ry (k] + 77 + T25[k].

An argument identical to that presented for the corresponding result in [4] estab-
lishes (50) with probability 1. m
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Chapter 2

An Analysis of the Partial Randomization

Dynamic Element Matching Technique'

Henrik T. Jensen, Student Member, IEEE, and Ian Galton, Member, IEEE}

Abstract—Partial randomization DEM was recently introduced as a promising DEM
technique for low harmonic distortion digital-to-analog conversion. The DEM technique
is well-suited for applications such as direct digital synthesis in wireless communication
systems for which low hardware complexity is essential in addition to low harmonic dis-
tortion. Previously reported simulation results demonstrate that partial randomization
DEM greatly attenuates harmonic distortion resulting from static errors in the analog
output levels of the DAC, while offering considerable savings in hardware compared to
other DEM techniques. This paper presents the first quantitative performance analysis
of partial randomization DEM. As a main result, the minimum spurious-free dynamic
range provided by the digital-to-analog converter has been quantified as a function of
its hardware complexity and the analog output level errors.

I. INTRODUCTION

D IRECT digital synthesis (DDS) has emerged as an efficient and flexible method
of generating analog signals of high spectral purity [1]. A key component of a
DDS system is the digital-to-analog converter (DAC), which must introduce very

little harmonic distortion to honor the spectral purity of the synthesized digital

T Under review: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL
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signal. Unfortunately, non-ideal circuit behavior in practical DACs inevitably gives
rise to DAC noise that consists largely of harmonic distortion and ultimately limits

the achievable DDS performance.

Dynamic element matching (DEM) has emerged as a means of mitigating the
deleterious effects of non-ideal circuit behavior in DACs by essentially causing a
large portion of the DAC noise to be broken into white noise instead of harmonic
distortion. Partial randomization DEM was recently introduced as a promising DEM
technique for low harmonic distortion DACs (2]. As will be shown in this paper, the

technique offers a trade of spur suppression for hardware complexity.

The partial randomization DEM DAC incorporates a bank of coarse DAGs,
referred to as DAC-elements, the outputs of which are summed together to yield a
composite DAC. Inevitable non-ideal circuit behavior results in analog output errors
of the DAC-elements, giving rise to DAC noise. The DAC noise can be viewed as
consisting of two components, namely a component caused by the static part of
the analog output errors, and a component caused by the dynamic part of the
analog output errors. To the extent that the latter component is below—or can
be attenuated to—the maximum allowable level of harmonic distortion for a given
DAC application, a good “engineering solution” to mitigate the effects of the static
analog output errors is to merely attenuate the resulting harmonic distortion to
the maximum level that can be tolerated. Simulations reported in [2] indicate that
partial randomization DEM can be used to achieve this result, while offering a
significant reduction in hardware complexity over other DEM techniques. However,

this finding was supported by simulation results only.

This paper provides a rigorous analysis of the performance of partial random-
ization DEM. In particular, given a desired minimum SFDR and knowledge of the

statistics of the static analog output errors, the analysis can be used to quantify
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the hardware requirement of the DEM technique for any DAC bit-resolution of in-
terest. As an example, the theoretical results are applied in an IC fabrication yield
estimation analysis of the minimum SFDR provided by the 8-bit version of the

DAC.

The remainder of the paper is divided into sections as follows. Section II reviews
the proposed DAC architecture. Section III provides performance details of partial
randomization DEM with simulation results and performance equations. Section
IV presents the IC fabrication yield estimation technique for partial randomization
DEM based upon the results of the theoretical analysis. The appendices provide

derivations of the theoretical results stated in Section III.

II. ARCHITECTURE

To review the architecture of the proposed DAC, consider the example 8-bit
version shown in Figure 2.1. The digital input, z[n], is a sequence of unsigned 8-bit
numbers less than 256. The DAC consists of 3 layers of digital devices, each referred
to as a switching block and collectively referred to as the digital encoder, followed
by an array of 8 DAC-banks, each labeled DB;, and an analog output summing
node. The number of layers is referred to as the randomization indez, I, (ie., I =3
in Figure 2.1) and the layers are numbered 6 through 8. Each switching block is
labeled S, where k denotes the layer number and r denotes the position of the

switching block in the layer.

Figure 2.2 shows the functional details of the switching block Sk r. The switching
block has one k + 1-bit input, two k-bit outputs, and an input for a random control
bit, cx[n]. The random control bit ck[n] is common to all the switching blocks in the
kt® layer, and is ideally a white random bit-sequence, statistically independent of

the random control bits applied to the other layers. When c[n] is high, the MSB of
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Figure 2.1: An 8-bit version of the proposed DAC architecture with randomization index I =3.The
layers are numbered 6 through 8.

the input is mapped to all k bits of the top output, and the remaining & bits of the
input are mapped directly to the & bits of the bottom output. When cx[n] is low,
the mappings are interchanged. This process of randomly mapping the input to the
outputs is referred to as random switching. As indicated in Figure 2.1, the DAC
input z{n] is assigned to the Sy ; input bits b; through b, and a zero is assigned to
the input bit bg.

Figure 2.3 shows the functional details of the i*h DAC-bank. As shown in Fig-
ure 2.3a, the DAC-bank has a 6-bit input, z;[n], and an analog output, y:[n]. It is
functionally equivalent to a 5-bit conventional DAC and a 1-bit conventional DAC,
with y;[n] formed as the sum of the outputs of the two conventional DACs. Notice

that z;[n] corresponds to the sequence T5,i[n] with the notation in Figure 2.2, where
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Figure 2.3: Details of the DAC-bank corresponding to the example 8-bit DAC of Figure 2.1. (a) The
interconnection of the 5-bit and 1-bit conventional DACs, and (b) the assignment of the input bits.

the subscript “5” has been omitted for convenience. The DAC-bank input z;[n] is

interpreted as a sequence of unsigned integers in the range 0,1,...,32, formed as
(0 . i )
2] + Y27 2 [n), (1)
i=1

where xgj) [n] denotes the jt* bit of z;[n]. As shown in Figure 2.3b, the input to
the 5-bit conventional DAC consists of the five MSBs of z;[n], and is interpreted
as a sequence of unsigned integers in the range 0,1,...,31. The input to the 1-bit

conventional DAC is the LSB of z;[n], and is interpreted as a sequence of numbers
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Figure 2.4: An implementation of the DAC-bank using an (ideal) R — 2R ladder network.

that are either 0 or 1.

Figure 2.4 shows an implementation of the DAC-bank using an R — 2R ladder
network. Notice that the network has been modified slightly compared to the tradi-
tional architecture in that an extra switch has been introduced at the right-most 2R
resistor to implement the one-bit DAC in Figure 2.3a. For the case of ideal circuit

behavior, it is easy to verify that the node voltages, V;, satisfy

.
V. = yideal _ VREF

It follows that the binary weighted currents, I;, are given by
. V:
I = ideal _ "]
i=1 2R 3)

The output voltage, yi[n], is dependent upon the currents flowing through the feed-

back resistor, Rg, such that

5
wln] = 4% n] = Rr Y I;
=0 (4)

RpVRer | (0) d ()
= %55 [:z:i [n] + E 207 [n]]

i=1
With appropriate values of Vrgr, Rr, and R, (4) can be made to equal (1) or a

scaled version thereof, if desired. It will shortly be considered how non-ideal circuit

behavior affects the performance of the DAC-bank.
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The 8-bit version of the proposed DAC with randomization index 3 shown in
Figure 2.1 can easily be modified to accommodate other bit-resolutions and/or
randomization indices. For example, another layer of switching blocks, denoted layer
5, could be added. In this case, each of the switching blocks in this layer would have
5-bit outputs, and the number of DAC-banks would increase two-fold to 16. The
DAC-banks would each consist of a 4-bit conventional DAC and a 1-bit conventional
DAC. In general, more layers require more hardware, but—as will be shown—also
provide greater suppression of harmonic distortion.

The switching blocks of the digital encoder can be constructed using binary
switches [2]. The binary switch is a 2-input x 2-output device that simply either
passes the inputs directly through to the outputs or connects the inputs to the out-
puts in reverse order, depending upon the value of ck[n]. The hardware complexity
of the digital encoder is a function of both the required number of binary switches
and the required number of random control bits, and was discussed in detail in
[2]. For convenience, the formulae dictating the hardware requirements of partial
randomization DEM are repeated in the following. For a b-bit version of the DAC

with randomization index I, the number of binary switches required is
Nps = (b—I+2)2! —b~2, (5)
and the number of random control bits is simply
Ny =1. (6)

Thus, the 8-bit DAC of Figure 2.1 requires 46 binary switches and 3 random control

bits.

III. PERFORMANCE DETAILS
During each sample interval, the DAC-bank output y;[n] ideally equals the ana-

log representation of its digital input z;[n]. With this assumption, it was shown
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in [2] that interconnecting the switching blocks and DAC-banks in the network of
Figure 2.1 results in a DAC for which

y[n] = z[n]. (7)
However, in practice, the DAC-banks operate such that
vi[n] = zi[n] + A{zi[n]}, (8)

where the A{-} are errors associated with the 33 analog output levels that arise
from non-ideal circuit performance. As an example of how these errors might arise,
consider again an implementation of the DAC-bank using an R—2R ladder network,
as shown in Figure 2.5. Non-ideal IC fabrication processing and non-zero ohmic
switch resistance result in errors, ARy, of the resistor values and thus perturb the
node voltages Vj. Specifically, the node voltages deviate from their ideal values given
by (2) as

V= Vil + A, ©)
where the AV] are functions of the resistor errors A Ry. As a consequence, the binary

weighted currents into the op-amp summing node deviate by some quantity, Alj,

from their ideal values given by (3) according to
I; = I}deal + Al (10)
It follows from (2) through (4), (9), and (10) that

5
yiln] = (Rr + ARF) [(I:;“m' + AL ePn) + Y (1% + AL 2 [n]
=1

5
= %l n] + 3 A;z0[n,
Jj=0
where

Aj = ALiRr + ARfpl;. (11)



46

Veer T %Rl Vs %fz Vs ij Vs R;/%/‘R‘ v R‘A"zfs Vi

2R+AR 2R+AR, 2R+AR, 2R+AR, 2R+AR, 2R+AR,

15 ,4 I_; 12 Il ,0

RF+ARF

x:”[n]---- , x:”[nl---- ) x:‘"[nl---- o x’fz'[n]---- x:”[n]---- ) .t:m[n]----

).v,- [n]

4+
[ o )

Figure 2.5: The DAC-bank implemented using an R — 2R ladder network with resistor errors and
non-zero ohmic switch resistance.

Thus, each analog output level error can be written as a linear combination of the
individual bits of z;[n].
The analog output level error of the DAC-bank will subsequently be assumed

to be of the form

5
Afzin]} = ePn], (12)
—
where ) )
B e
i1 ) e if £’ [n] = 1;
eV n|= . . 13
i {egj) if z7[n] = 0, (13)

and where the eﬁlj) and e,(j ) are time-invariant, but otherwise arbitrary, and are
referred to as static DAC-element errors. Notice that (13) allows for asymmetric
contributions of :z:gj ) [n] in (12), depending upon whether :cgj ) [n] is 0 or 1. This form
of the analog output level error accommodates for other popular architectures that
can be used to realize the DAC-bank, including the weighted resistor network DAC,
the binary weighted current-steering DAC, and the charge scaling DAC [3].

With non-zero static DAC-element errors, it was shown in [2] that the DAC

output has the form

y[n] = az(n] + B + e[n],

where « is a constant gain, 8 is a DC offset, and e[n] is a conversion error term
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Figure 2.6: Simulated PSDs relative to z2,,, of an example 8-bit DAC implemented using R — 2R
ladder network DAC-banks. The resistor errors were normally distributed of standard deviation
o = 1%. Plot (a) shows the DAC input z{n] (and thus the ideal DAC output y[n]), and (b) through
(d) show the DAC output y[n] with randomization indices 1, 2, and 3, respectively.

referred to as DAC noise.

A. Simulation Results
The performance of partial randomization DEM is demonstrated in Figure 2.6
with simulation results of an example 8-bit version of the proposed DAC. The DAC-

banks were each simulated as an R— 2R ladder network with R = 2R. The resistor
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errors AR;, were chosen as samples of independent, normally distributed random
variables with standard deviation ¢ = 1% relative to the nominal resistor values.

Thus, the static DAC-element errors satisfied
e,(zj) =A; and efj) =0,

with A; given by (11). It should be emphasized that this particular choice of static
DAC-element errors was made for simulation purposes only; the theoretical results
developed in this paper do not depend upon any specific statistical distribution or
correlation properties of the static DAC-element errors.

Each graph in Figure 2.6 shows the simulated power spectral density (PSD)
of y[n] in dB relative to z2,,, where Tmss = 255, when driving the DAC by a
dithered and DC offset sinusoid. Specifically, z[n] was formed by adding dither to
the sequence A sin(won) + DC;, where A = 126, wg = %Z—gﬂ', and DC, = 127.5, and
then quantizing the result to 8 bits. The dither added to the sinusoidal input was a
white sequence with a triangular probability density function supported on (—1,1),
so the quantization error was white noise [4].

Figure 2.6a corresponds to an ideal DAC (i.e., 2 DAC with no static DAC-
element errors, so y[n] = z[n]), and Figures 2.6b through 2.6d correspond to a DAC
with non-zero static DAC-element errors and randomization indices 1, 2, and 3,
respectively. As is evident from the numerous spurs distributed across the spectrum
in Figure 2.6b, quite severe harmonic distortion results from the static DAC-element
errors with only one layer of random switching. With the particular choice of static
DAC-element errors used for the plots of Figure 2.6, the maximum-amplitude spur
occurs at a frequency of approximately 2.87 radians, and has power 58.1 dB below
the power of the desired sinusoidal signal. Thus, the SFDR. provided by the DAC
of this example is 58.1 dB. The simulation results of Figures 2.6c and 2.6d indicate

that the SFDR increases as the randomization index increases; the SFDR provided
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by the DAC in Figure 2.6¢c is 64.7 dB, whereas the SFDR provided by the DAC
in Figure 2.6d is 84.6 dB. Additional simulations using other sinusoid frequencies
yield similar findings.

Additional details of the simulation results are as follows. The PSDs were each
estimated by averaging 16 length-2!8 periodograms [5]. The frequency scales were
normalized such that w corresponds to half the clock rate of the DAC.

B. Performance Equations

A complete theoretical analysis of partial randomization DEM is given in the
appendices. For the purpose of comparing simulation results and theory, this section
presents the main results of the analysis.

Consider a b-bit version of the proposed DAC architecture with randomization
index I, i.e., with random switching in layers b — I +1,b ~ I +2,...b. Let z[n] be
a deterministic input sequence and let z(/)[n] denote the §*B bit of z[n], 1 < j < b.
In accordance with the usual definitions, let the time-average means of z[n], z®9(n),

and ) [n]z()[n] be defined as

and
i RSN
. . - 1 —— 1
Mx(‘-]) Ph_)rl}” P ; z [n]z [n]’
respectively, and let the time-average autocorrelation of z[n] be defined as

P
— 1
Ry [k] = Ph_*rr;0 B ,?;1 z[n]z[n + k).
The time-average autocorrelation of y[n] is defined analogously with z replaced by

y in the above definition. The two main theoretical results of this paper can now be

stated as follows:



Result 1. The DAC output can be written in the form
y[n] = az[n] + B + e[n] (14)
where
e[n] = win] + s[n|, (15)

w(n] is a zero-mean, white random process of the form

b
wln] = Z win) z[n), (16)
i=1

w;[n] is a zero-mean, white sequence uncorrelated with z[n], and s[n] is a determin-

istic sequence of the form
b—I
sfn] = siz@n]. (17)
i=1

Appendix 2.A provides formulae for the constants « and G in (14), and develops
expressions for w;[n] in (16) and s; in (17). For now, it suffices to know that the

constant coefficients s; depend only upon the static DAC-element errors.

Result 2. If M, and R..[k] exist, then
Ryy(k] = Re,z, [F] + 7 + T24[k], (18)

with probability 1, where
n= Z,B—Mz, + ﬁ2’ (19)

and

b b-1 b
F=Y WMo+, Y %My (20)

i=1 j=1i=j+1

In (18), zs[n] is the sequence resulting from lumping az[n] and s[n] together, i.e.,

z4[n] = az[n] + s(n]. (21)
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Appendix 2.B provides formulae for the constant coeficients v; and 7i; in (20). For
now, it suffices to know that these coefficients depend only upon the static DAC-
element errors. It must be mentioned that Result 1 and Result 2 are independent
of the underlying statistical distribution or any correlation properties of the static

DAC-element errors.

C. Comparison of Simulation and Theory

To summarize, (14) through (17) imply that y[n] consists of a scaled version of
z[n], a DC-offset, and DAC noise, e[n], which consists of the sum of white noise,
w[n], and a signal dependent component, s[n]. Thus, s[n] accounts for all spurious
tones present in y[n], and, as can be seen from (17), the tones result from a linear
combination of the input-bits z(1)[n] through z®~D{n]. Given knowledge of z[n] and
the static DAC-element errors, these equations fully quantify all harmonic distortion
present in y[n].

The validity of the detailed knowledge of the spurious content of y[n] implied
by Result 1 can be demonstrated by computer simulation. As an example, each plot
in Figure 2.7 shows the simulated PSD relative to z2,.. of selected signals of the
example 8-bit DAC used for Figure 2.6d. The DAC was driven by the same dithered
and DC offset sinusoid, and the randomization index was fixed at 3. Figure 2.7a
shows the sequence y[n]—z[n]. As expected from (14), the resulting sequence appears
to consist of a scaled version of z[n], white noise, and spurious tones. Figure 2.7b
shows e[n] formed as the sequence y[n] — azn] — B, and it appears to consist of
white noise and spurious tones. Figure 2.7c shows w(n] formed as the sequence
y[n] — @ z[n] — B — s[n], where s[n] is given by (17). As expected, w[n] appears to
be a zero-mean, white noise random process. Figure 2.7d shows the corresponding
s[n] as computed using (17). Notice that superimposing the results of Figure 2.7c
and Figure 2.7d yields the results of Figure 2.7b, as expected from (15). Thus, the
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Figure 2.7: Simulated PSD relative to z2,, of selected signals of the example 8-bit DAC used for
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Figure 2.6d. The DAC was driven by the same dithered and DC offset sinusoid, and the randomiza-
tion index was fixed at 3. Figures 2.7a through 2.7d show the sequences y[n] — z[n], e[n], w[n], and
s[n], respectively.

formulae for y[n], e[n], w[n], and s[n] are supported by the simulation results of

Figure 2.7.

The power of w(n] is given by (20), and the validity of this expression can also
be demonstrated using the simulation results of Figure 2.7. Specifically, evaluating

(20) for the simulated values of static DAC-element errors and the input sequence
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applied to the DAC yields a power of w[n] of > = —54.14 dB relative to z2,4,-
Numerically integrating the results of Figure 2.7c yields —54.15 dB relative to T2 0

in agreement with the theoretical result.

D. An Interpretation of the Performance Equations

The theoretical results presented above are used in the following to develop a
simple expression for the guaranteed minimum SFDR resulting from partial ran-
domization DEM. A few definitions helpful in this development are first presented.

Let Z* denote the set of indices ¢ in (17) such that s; > 0, i.e.,

It ={i:5; >0} (22)
and let Z~ be the set of indices ¢ in (17) such that s; <0, i.e.,

I-={i:5;<0} (23)

Let st denote the sum of all positive s;, i.e.,

st=Y s, (24)

s = Z Si, (25)

i€l~
and let A, .. denote half the difference of s* and 57, i.e.,
+ — -—
Appee = E 25, (26)

Parseval’s relation implies that the power of s[n] equals the sum of the powers of the
distinct spurs occurring in the PSD of s[n]. Thus, worst-case SFDR performance
occurs when the power of s[n] is at maximum and it consists of as few distinct

spurs as possible. Since s[n] is real, its PSD is symmetric, and the minimum number
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of distinct spurs is two, corresponding to non-zero frequencies w; and —ws. Since

z®[n] € {0,1}, it follows from (17) that s~ < s[n] < s*. Thus, worst-case total spur
2

Smaz’

and the power of each spur is bounded by A? /2. The amplitude

Smaz

power is A
of the signal component of y[n] for a maximum-amplitude sinusoidal input signal is
OZmaz/2- It follows that the DAC provides an SFDR of at least (@Zmaz/2Asmqz)>-
Stating this result in dB yields

Minimum SFDR : 20 log; ( 20‘;'"” ) dB. (27)
Smazx

IV. IC FABRICATION YIELD ESTIMATION

With knowledge—or an assumption—of the statistical distribution of the static
DAC-element errors, (20) and (27) allow for IC fabrication yield estimations of &2
and the minimum SFDR, respectively. The IC fabrication yield estimation procedure
presented in the following was first introduced in [6], and is based upon the idea
of computing a large number of samples of the parameter of interest for a given
level of static DAC-element errors, thereby employing the law of large numbers to
generate data that closely resemble the corresponding statistical distribution of the
parameter.

An example IC fabrication yield estimation of the minimum SFDR computed
using (27) and its supporting equations is shown in Figure 2.8. Specifically, the
figure shows the minimum SFDR for the 8-bit version of the DAC implemented
using R — 2R ladder network DAC-banks with normally distributed resistor errors
of standard deviation o ranging from 0.05% to 2%, and randomization index ranging
from 1 to 7. Figures 2.8a through 2.8d show the smallest of the largest 5%, 35%,
65%, and 95% values, respectively. Each plot was based upon 104 calculated values.
For example, with ¢ = 1% and randomization index 3, Figure 2.8a predicts that

merely 5% of all 8-bit DACs provide at least 81.0 dB SFDR, while Figure 2.8d
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Figure 2.8: An IC fabrication yield estimation of the minimum SFDR of the 8-bit version of the DAC

implemented using R — 2R ladder network DAC-banks. The resistor errors were normally distributed

of standard deviation o ranging from 0.05% to 2%, and the randomization index ranged from 1 to 7.

Plots (a) through (d) show the smallest of the largest 5%, 35%, 65%, and 95% values, respectively.

predicts that 95% of all 8-bit DACs provide at least 65.7 dB SFDR. Thus, 90% of

all 8-bit DACs with randomization index 3 fabricated in a VLSI process resulting

satisfy

in normally distributed resistor errors with standard deviation ¢ = 1%

(28)

65.7 dB < Minimum SFDR < 81.0 dB.

An interesting conclusion to be drawn from Figure 2.8 is that the estimated mini-
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mum SFDR increases by approximately 10 dB per unit increment of the randomiza-
tion index, independent of the standard deviation of the resistor errors. Additional
computations suggest that this conclusion generalizes to DACs of any bit-resolution
of interest. It should be mentioned that in the special case of full randomization
DEM [2], i.e., with random switching in all 8 layers, the DAC-noise is fully uncor-
related with z[n]. Harmonic distortion is therefore completely eliminated and the
DAC—in principle—provides an infinite SFDR. Thus, the 10 dB increase of the
minimum SFDR per increment of the randomization index does not apply in the

case of incrementing the number of random layers from 7 to 8.

At first glance, the above estimates for the minimum SFDR achievable with
partial randomization DEM may seem overly conservative given that the example
8-bit DAC used for the plots of Figure 2.6 achieved an SFDR of 84.6 dB with
randomization index 3. Recall, however, that the IC fabrication yield estimation
represents worst-case performance, where it is assumed that all power in s{n] is
lumped into two spurs occurring at frequencies +w; and —ws. When driving the
DAC by a (dithered) sinusoid, typically many spurs occur in the PSD of e[n], as
observed in Figure 2.9a, which is Figure 2.6b repeated here for convenience. The
occurrence of numerous spurs results in decreased power of the maximum-amplitude
spur—and thus an increased SFDR—relative to worst-case performance. Figure 2.9b
shows the PSD of e[n] of the same 8-bit DAC used for the plot of Figure 2.9a, but
driven by a sequence z[n] chosen such that the resulting PSD of s[n] consists of only
two spurs. In this case, the maximum-amplitude spur has power —75.1 dB relative

to (@Tmaz)?/8, in support of (28).

An example IC fabrication yield estimation of &2 computed using (20) is shown
in Figure 2.10. Specifically, the figure shows 72 in dB relative to z2,,, for the 8-bit
version of the DAC implemented using R — 2R ladder network DAC-banks with
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Figure 2.9: Simulated PSDs of e[n] relative to z2,,, of the example 8-bit DAC. The randomization
index was fixed a 3, and the plots show (a) e[n] resulting from the dithered sinusoidal input, and
(b) e[n] resulting from an input sequence z[n] chosen such that the PSD of s[n] consists of only two
spurs.

normally distributed resistor errors of standard deviation o ranging from 0.05% to
2%, and randomization index ranging from 1 to 7. Figures 2.10a through 2.10d show
the smallest of the largest 95%, 65%, 35%, and 5% values of &2, respectively, when
driving the DAC by a maximum-amplitude, DC offset sinusoidal input of frequency
wo = 2—6%11'. Each plot was based upon 3000 calculated values. For example, with
o = 1% and randomization index 3, Figure 2.10a predicts that 95% of all 8-bit
DAGs satisfy a2 < —53.2 dB relative to z2,,,, while of Figure 2.10d predicts that
5% of all 8-bit DACs satisfy 2 < —63.6 dB relative to z2,,,. Thus, 90% of all

fabricated 8-bit DACs satisfy

-63.6 dB < 7 < —53.2 dB (29)

relative to z2,,,. This conclusion is supported by the results of the simulated ex-

ample 8-bit DAC of Figure 2.6, for which 72 = —54.2 dB relative to 2.0
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the DAC implemented using R — 2R ladder network DAC-banks. The resistor errors were normally

distributed of standard deviation o ranging from 0.05% to 2%, and the randomization index ranged

from 1 to 7. Plots (a) through (d) show the largest of the smallest 95%, 65%, 35%, and 5% values,
V. CONCLUSION

A detailed analysis of partial randomization DEM originally proposed in [2]

respectively.
increasingly suppressed as the randomization index is increased. Specifically, it was

has been presented. It was demonstrated using simulation results and shown with
theory that harmonic distortion resulting from the static DAC-element errors is

observed that when implementing the DAC-banks using R
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with normally distributed resistor errors, the estimated minimum SFDR. increases
by approximately 10 dB per increment of the randomization index, independent of
the particular DAC bit-resolution.

An IC fabrication yield estimation of the minimum SFDR has been presented
that, given knowledge of the statistics of the static DAC-element errors, can be used
in the design of a DAC with minimum hardware complexity while still providing
the SFDR required for a given application. An IC fabrication yield estimation of
the noise-floor as a function of the resistor errors and the randomization index has
also been presented.

Harmonic distortion resulting from inevitable non-ideal circuit behavior such as
clock-skew, non-linear settling, and finite slew-rates has not been considered in this
paper. Such non-ideal circuit behavior is typically quite implementation dependent,
and research to quantify and mitigate its effects must likely be performed on a
case-by-case basis. However, as has been shown, using partial randomization DEM,
the harmonic distortion resulting from static DAC-element errors can be attenuated
to the level of inevitable harmonic distortion, independent of the particular circuit

technology.
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APPENDIX 2.A
The purpose of this appendix is to verify the form of the DAC output as stated
by Result 1 of Section III.

Claim A. Consider a b-bit version of the proposed DAC architecture with ran-
domization index I, 1 < I < b, i.e., with random switching in layers b~ I + 1,b —
I+2,...,b. In this case, the DAC-banks consists of a b — I-bit conventional DAC
and a 1-bit conventional DAC. Suppose that the analog output level error of the
it* DAC-bank is of the form given by the generalized versions of (12) and (13). Let
z[n] be a deterministic input sequence and let £ [n] denote the j** bit of z(n],

1 < j < b. The output of the DAC can then be written in the form
y[n] = az[n] + B + e[n] (30)

where

e[n] = w(n] + s{n|, (31)

and w(n] is a zero-mean, white random process of the form

b
win] =Y wiln]z9n], (32)
=1
and s[n] is a deterministic sequence of the form
b1 .
sfn] =Y _ siz¥n). (33)
i=1
In (30),
ol o-1
a=1+— b ZZ(e(J) (]) (34)
i=1 j=0
and
2l b-1

B=3 e (35)

i=1 j=0
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In (32), each wi[n] is a zero-mean, white random process of the form

o1 ] Winn] ifi>b-1I;
wiln] = { Wipey — 5 £i<b=1; (36)

where
joi-b+I-1 b1
3 S — ey~ 2N a-1) fi>b-I;
Wij = N m=(j-1)2i~t+I-141 k=0 (37)
ey) —ef) — 27} (a - 1) ifi<b—I;
and
( b—i .
Z2Jci+j[n] +(1~¢ln))+1 ifi>b~1I;
hifn] = { 7T (38)
> 27l pyjln] +1 ifi<b-1I.
\ J=1
In (33) and (36),
NS 0 _ _(0)
Si = ——27 Z( w],k + ehk - elk - (a - 1)) . (39)
k=1 ‘j=1
J#i

The above results do not depend upon any particular form or statistical properties

of the static DAC-element errors.

Proof. To prove Claim A, several of the theoretical results developed in [2] will be

used. For convenience, these are repeated in the following.

Results for full randomization DEM. For a b-bit version of the DAC architec-
ture with full randomization DEM, the output of the DAC can be written in the
form

y[n] = azn] + B + e[n], (40)

where

2b
1
a = 1+‘2—bZ(ehi —ey), (41)
=1
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2b
B=> e, (42)

=1

and e[n] is a zero-mean, white random process of the form

b
e[n] = Z wi[n] 29 [n]. (43)

i=1

In (43), each w;[n] is a zero-mean, white random process of the form

wi[n] = Wi h;(n]» (44)
where
j2i—l .
wij= Y, (ehm —eln) 27 Ha=1) (45)
m=(j—1)2i-1+1
and b
hi[n] = Z 2jc,-+j[n] + (1 —ci[n]) + 1. (46)
j=1

The above results do not depend upon any particular form or statistical properties

of the static DAC-element errors.

As explained in [2], partial randomization DEM with randomization index I is

equivalent to full randomization DEM with the restriction that
ck[n]=1 for k=1,2,...,b—1, (47)

so that the layers 1 through b—I can be eliminated and substituted with an array of
DAC-banks, each consisting of a b~ I-bit conventional DAC and a 1-bit conventional
DAC. Specifically, since the static DAC-element errors of full randomization DEM
are denoted ey, and ¢;;, 1 <7 < 25 the restriction (47) implies that the itk DAC-
bank operates according to (12) and (13), where the static DAC-element errors

associated with the b — I-bit conventional DAC satisfy

i2b=1—gi~1 i20~f—gi-t

eg) = Z hm and eg) = Z €l s (48)

m=i2b—1-2i41 m=i20—1-2i 41
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and the static DAC-element errors associated with the 1-bit conventional DAC
satisfy

e}l) = €h; and eg)) =€, ;- (49)

In the following, the results for partial randomization DEM stated in Claim A
will be shown to be equivalent to the results for full randomization DEM with the
restriction (47).

First, the formulae for a and 3 given by (34) and (35) are developed. As noted
above, the results for full randomization DEM hold for arbitrary values of the static

DAC-element errors ep,, and e,. In particular, if in (48) the following choice is made

ehm =€, =0 for 2T 941 <m <2t - 2L (50)
then
eg;) = ehizb-l_zj—l and eg) = elizb—l_zi—l for j=1,2,..., b—1I. (51)

It follows using (48) through (51) that for fixed value of 1,

izb—l

S (en, —e;) = Z<e"’ e?), (52)

j=(i-1)20~141

and thus
ol p-1 ) ()
E (en; —e1) =) :(6(1 -e)
i=1 i=1 j=0

which shows that (34) is equivalent to (41). Similarly,

of b-1
Zez =33 e,
i=1 i=1 j=0

which shows that (35) is equivalent to (42).
Next, the formulae (36) through (39) detailing the form of the DAC noise will be
verified. For the case i > b— I, it is straight-forward to show that (36) through (38)
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follow from (43) through (46). Specifically, it suffices to show that (37) is equivalent

to (45). For this purpose, the use of (52) and some algebraic manipulations result

in
j2i—l j2i—b+[—l b—1I
= (k) _ (k)
> (lem—en)= > > (€h, = €i)s
k=(—1)2i-141 m=(j_1)2i—b+[—l+1 k=0

which suffices to show the asserted result. Notice that it follows directly from [2]
that w;[n] is zero-mean, since the possible values of w;[n] are unaffected by (47).
For the case i < b — I, it will first be shown that w;; in (37) with subscript
defined by (38) is equivalent to w; ; in (45) with subscript defined by (46) and the
restriction (47). For this purpose, notice that with the restriction (47), it follows
after some algebraic manipulations that (46) can be written as
I
hi[n] = (Z 2l _rijln] + 1) gb=T+1-i _q (53)
=1

Thus, if in (38) h;[n] = j, it follows that (563) may be written as
h;[n] — j2b—I+1—i -1.

But, as follows from (45) and some algebraic manipulations,

jab-I_gi-1

Wy job—T+1—i1 = Z (Ehm = €lm) = 27 a~1),
m=j2b-1-2i+1

which—referring to (48)—is equivalent to (37), as asserted. It will next be shown
that w;[n] is zero-mean. It follows from (44) through (46) that the effect of the
restriction (47) is to reduce the set of possible values of w;[n] to a subset of the set
of values otherwise possible. Therefore, with the restriction (47), w;[n] in (44) is a
white random process, generally with a non-zero mean value. Denoting this mean

value s;, (43) may be written as

b ' b—1I _ b1 .
e[n] = Z wi[n] ®[n] + Z(wi[n] — 53) zW[n] + Z sizH[n].
i=1 i=1

i=b—I+1



Defining the white, zero-mean random processes w;[n] as in (36) results in
b _ b1 _
e[n] = Z wiln] 2@ [n] + Z s;z®[n],
i=1 i=1

or, referring to (32) and (33),
e[n] = wln] + s[n},

as asserted in (31). It remains to verify (39) by establishing that w;[n] in (36) is
indeed zero-mean. From (38) it follows that there are 2/ possible equally probable

values of w;i[n]. Specifically, during the nt® sample period,
wi[n] = wij — s;, where je€{1,2,.. ., 20

Then, by definition,

E{wl[n]} = Z(wu 5i),

j=1
and defining s; as in (39) yields

9! ~I
E{win]} = = Z( w,ﬁegm ef?)_(a—l))

=.’ 1_

z%i<i O _ ) - 2b—I(a_1)>

J=1 “i=0

= 7(2”(0: OB 1))
=0,

as asserted. ®m
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APPENDIX 2.B

This appendix states and proves an expression for the variance of the zero-mean,

white random process w(n].

Claim B. The variance of w[n| is given by

b b-1 b
Var{w[n]} = Y %z + Y Y %520 nlzm],

i=1 j=1i=j+1
where
( 1 2b—l+l
5=t Z (w,J)2 ifi>b-1,
=
i = of ! (54)
1
o7 Y (wij—s)? fi<b-I;
\ j=1
and
Yij =
( 1 2b—i
=51 Z Wi 2k—1W; 2k ifi,j>b-1;
k.—-
2b_" 1 21—6+[ -1 -1
< 21-1 Z Z Wi 2(k+1)~ IZ (w; gi-tt1-1(oppy4m — S5) 1 >0—1, j<b~1T;
l—O k=0 m=0
o= 1Z(wtk (w]k—s]) ifi,7<b-1.
\
(55)

Proof. Since w(n] is zero-mean, Var{w[n]} = E{(w(n])?}, where E{-} denotes the

statistical expectation operator. Using (16) and rearranging terms results in
b . b=1 b ’ _
Var{w[n]} = Y E{(wiln])?} 2Dn]+2) " Y E{wiln]wjln]} sOnlzD(n]. (56)
i=1 j=li=j+1
Consider first E {(wi[n])?}. As indicated by (36), two cases are of interest:

For i > b— I, the corresponding result in Appendix B of [2] is directly applicable to
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obtain the result asserted in (54), since the possible values of w;[n] are unaffected
by (47).

For i < b—1I, it follows from (38) that there are 21 possible equally probable values
of w;[n], dictated by cx[n],k =b—I+1,b—I+2,...,b. Using (36) and applying
the definition of statistical expectation gives the result asserted in (54).

Consider next E {w;[nJw;j[n]}, where 1 < j < ¢ < b. Three cases are of interest:
For i,7 > b — I, the corresponding result in Appendix B of [2] is directly applicable
to obtain the result asserted in (54).

For %, j < b—I, the probability of a specific value of w;[n] is -2lr, as discussed above. It
follows from (38) that the value of w;j[n] fully depends upon w;[n]; suppose that the
value of w;[n] is w;  — s; for some k € {1,2,..., 21}. Then there is only one possible
value of wj[n], namely w;  — s;. Applying the definition of statistical expectation—
and accounting for the factor of 2 occurring in (56)—gives the result asserted in
(55).

Fori>b—I and j < b— I, each of the 25-*+! possible values of w;[n] occurs with

probability 55:1;1— From (38) it follows that for integer parameters k and [,
wi[n] = wigk41)-1, Where k€ {0,1,...,2b‘i - 1} and e {0,1}. (57)

For fixed value of w;[n], i.e., for fixed values of k and ! in (57), there are i—b+I-1
possible equally probable values of wj[n]. Using (38) and a number of algebraic ma-
nipulations, these values can be expressed in terms of k, [, and an integer parameter

™m as
i—b+I—1
wj[n] = W 9i-b+I-1(2htl)+m — i1 where m € {0, 1,...,207 0= 1} .

Again, applying the definition of statistical expectation—and accounting for the

factor of 2 occurring in (56)—verifies the result asserted in (55). m
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APPENDIX 2.C
The purpose of this appendix is to verify the time-average properties of the
DAC output as stated in Result 2 of Section IIL

Claim C. If M, and R..[k] exist, then Ry,[k] is given by (19), (20), and (21) with
probability 1. In (20), v; and 7; j are given by (54) and (55), respectively.

Proof. From Claim A and (21) it follows that
y[n] = z4[n] + B + w(n].
The statistical autocorrelation of y[n] can then be written in the form
Ryy[n, k] = E{(zs[n] + B+ w[n]) (zs(n + k] + B + w(n + k])} -

It is easy to verify that if M, and R,,[k] exist, then My, and R,z,[k] exist, since
a and the s; are finite. Arguments fully identical to those presented for the corre-

sponding result in [2] can then be used to establish Claim C. m
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Chapter 3

Yield Estimation of a Second-Order
AY.ADC Employing a Noise-Shaping DAC'

Henrik T. Jensen, Student Member, IEEE, and Ian Galton, Member, IEEE i

Abstract—Various dynamic element matching techniques for noise-shaping DACs
have recently been proposed and their efficiency in AY data converter applications
demonstrated with simulation results and in actual circuit implementations. However,
no theoretical quantification of the effects of the noise-shaping DAC on the overall AY
data converter converter performance has been published to date. Such work is pre-
sented in this paper for a second-order AXADC employing a first-order noise-shaping
DAC, and the results are applied in an IC fabrication yield estimation analysis of the
AXADC conversion precision. As an example, to the extend that performance is lim-
ited by static DAC element errors, 90% of all AXADCs employing a 2-bit noise-shaping
DAC fabricated with 1% element matching provide a conversion precision of between
13.0 and 14.8 bits when operating at an oversampling ratio of 128. The second-order
AY modulator considered here is of particular interest because of its wide-spread use
in commercial products.

I. INTRODUCTION

S is well-known, errors in the analog output levels of conventional multi-bit
DACs employed in AY data converters introduce DAC noise that resides in

the signal-band and thus deteriorates the performance of the AY data converter

T In preparation for: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL
PROCESSING

i The authors are with the Department of Electrical and Computer Engineering, UNIVERSITY OF CALIFORNIA,
SAN DIEGO, La Jolla, CA 92093-0407, USA; email: htjensen@ece.ucsd.edu and galton@ece.ucsd.edu
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[1], [2]- Specifically, the effects of the DAC noise are a limited spurious-free dy-
namic range (SFDR) and a drastic reduction of the conversion precision compared
to ideal performance. A number of investigators have recently proposed dynamic
element matching techniques for multi-bit noise-shaping DACs in an on-going effort
to develop practical multi-bit DACs for use in A data converters (3], [4], [5]. By
moving most of the DAC noise out of the signal-band, noise-shaping DACs do not
significantly deteriorate the performance of AX data converters. While all publica-
tions of proposed noise-shaping DAC architectures have presented simulation and
experimental results that indicate promising noise-shaping properties, no work that

theoretically quantifies the performance has been published previously.

This paper presents such a theoretical analysis for the first-order noise-shaping
DAC proposed in [5] employed in a second-order AXADC. While the theory de-
veloped is applicable to any bit-resolution of interest, an example AXADC with a
2-bit quantizer and a 2-bit version of the noise-shaping DAC is considered in detail.
The second-order AY modulator is considered specifically because it is widely used
in both single and multi-stage commercial ADCs. To date, these ADCs mainly use
one-bit quantizers because of the element matching errors in conventional multi-bit
DACs. However, multi-bit quantization offers the benefit of a many-fold increase of
the no-overload range compared to one-bit quantization [6], so it stands to reason
that a practical multi-bit noise-shaping DAC is highly desirable for such A% modu-
lators. Thus, while the introduction of hardware-efficient noise-shaping DACs—such
as the first-order version in [5]—has made it feasible to employ a noise-shaping DAC
in the second-order AX modulator, the lack of theoretical performance analyses has
rendered IC fabrication yield estimation of the overall AY data converter perfor-

mance difficult.

The results of this paper do allow for an IC fabrication yield estimation analysis
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Figure 3.1: The architecture of the second-order AZADC.

of a second-order AY. data converter employing a noise-shaping DAC. Specifically,
for the first-order noise-shaping DAC in [5], results are presented that allow for a
theoretical prediction of the power spectral density (PSD) of the DAC noise given
knowledge of the statistics of the static analog output level errors. The performance
of an example 2-bit noise-shaping DAC employed in a AXADC is demonstrated
with simulation results, and a comparison between simulated and predicted PSDs is
provided. An IC fabrication yield estimation of the power of the DAC noise residing
in the signal-band of the AXADC is presented. This data is subsequently used to
generate an IC fabrication yield estimation of the overall conversion precision of
the second-order ASADC. For example, with an oversampling ratio of 128, the
IC fabrication yield estimation shows that 90% of all AXADCs fabricated with
normally distributed static analog output level errors of standard deviation o = 1%

achieve a conversion precision of between 13.0 and 14.8 bits.

[I. THE ARCHITECTURES OF THE AXADC AND THE DAC

Many references exist on the analysis and implementation of the second-order
ATADC [1], [7]. Figure 3.1 shows the architecture of the particular second-order
AXADC to be considered in detail in this paper. The analog input and the digital
output are denoted z[n] and y[n], respectively. The coarsely quantized AXADC
output is generated by a 2-bit uniform quantizer with quantization levels 0, A, 24,

and 3A, where the quantizer step-size, A, is the spacing between the quantization
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Figure 3.2: The architecture of the 2-bit noise-shaping DAC.

levels. It follows that the quantizer no-overload range is given by

(51, 6) = (54, 78). (1

A 2-bit version of the first-order noise-shaping DAC proposed in [5] is employed in
the feedback path of the AL modulator loop. Figure 3.2 shows the architecture of
the first-order noise-shaping DAC. For simplicity, the quantizer step-size A is taken
to be unity in the following. The DAC input, zp[n], is identical to the AXADC
output y[n|, and is thus a sequence of unsigned 2-bit binary numbers in the range
0 through 3. The DAC consists of 2 layers of digital devices, each referred to as a
switching block, followed by 4 one-bit DACs, each referred to as a unit DA C-element,
and an analog output summing node which generates the DAC output, yp [n]. Each
switching block is labeled S, where k denotes the layer number and r denotes
the position of the switching block in the layer. The signal-processing details of
the switching blocks are shown in Figure 3.3a. They have one digital input, = .[n],
and two digital outputs, Tx—12-—1[n] and zx_; 2-[n], respectively. The outputs are

formed according to

—

Tp-12r~1[n] = %(-'Bk,r[n] +spr(n)) and zp-19:[n] = S (@kr[n] = skr(n]),  (2)

[ 3]

where s [n] is a switching sequence generated according to the signal-processing

algorithm of Figure 3.3b. The structure of Figure 3.3b closely resembles a first-order
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Figure 3.3: (a) The general form of the switching blocks. (b) Details of the generation of the switching
sequence s .[n].

AY modulator with no input signal, except for the LSB multiplier and the one-bit
dithered hard limiter. The one-bit dithered hard limiter operates according to

1, if ugr[n] =1,
v n] =< —1, if ugr[n] = —1; (3)
dir[n], if ug (0] =0;

where v, [n] is the output of the device, ux [n] is the input of the device, and di.r[n]
is a random +1 sequence that is white, independent of zj »[n], and uncorrelated with
the dy, »[n] sequences in the other switching blocks.

A hardware-efficient gate-level implementation of the 2-bit DAC is suggested in
Figure 3.4. A pair of flip-flops, FF; and FFs, two tri-stateable buffers, a random
binary sequence, T r[n], and two simple binary adders perform the switching block
calculations defined in Figure 3.3. The random binary sequences ¢ -(n] are white,

mutually uncorrelated, and independent of the switching block inputs. Binary se-
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Figure 3.4: A hardware-efficient gate-level implementation of the 2-bit DAC.

quences that well approximate the desired statistics can be generated using simple
feedback shift registers [8]. The least-significant bit (LSB) of the switching block
input is used to gate the clock signal applied to the flip-flops. Initially, the buffer
associated with 7 -[n] is enabled by setting the FF; output Q1 to “1” so that Q> as-
sumes a random value when FF is clocked by the LSB. At the subsequent clocking
of FF5, the output Q9 assumes the complementary value because of the feedback
of @,. This two-state process is repeated with additional clockings of FF; and FFs.
The binary adders form the sum of the switching block input and the outputs of
FF,. It can be verified that calculating these sums and subsequently right-shifting

the results as indicated in Figure 3.4 has the effect of computing (2).

III. PERFORMANCE DETAILS

The analog section of the noise-shaping DAC of Figure 3.2 can be implemented
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with four switched-capacitor unit DAC-elements connected to the summing node of
an integrator. During each sample period, the *® unit DAC-element ideally transfers
a unit amount of charge into the summing node if z.[n] = 1, and no charge is
transferred into the summing node if z.[n] = 0. However, in practice, the unit
DAC-elements operate according to
il = {3 20

where y,[n] denotes the analog output of the r® unit DAC-element, and ey, and e,
are errors in the analog output levels. The errors are assumed to be time-invariant,
but otherwise arbitrary, and are referred to as static DAC-element errors.

As shown in [5], interconnecting the switching blocks and unit DAC-elements in
the network of Figure 3.1 results in a DAC for which yp[n] = zp[n] in the absence
of static DAC-element errors. However, with non-zero static DAC-element errors,

the DAC output has the form
ypln] = azp[n] + B8 + ep[n], (4)

where « is a constant gain, 8 is a DC offset, and ep[n] is the DAC noise. The
constants o and B depend only upon the static DAC-element errors; formulae for
these parameters applicable to arbitrary DAC bit-resolution b have been derived in

[5], and are repeated here for convenience as

2b
1
a=1+ % Z(ehi - ey;) (5)

i=1

and

2b
B=Y e, (6)

i=1

The DAC of Figure 3.2 achieves first-order noise-shaping by decorrelating ep(n]
from zp[n] and spectrally shaping ep[n] such that its PSD ideally resembles that
of white noise filtered by the highpass filter H(z) = 1 — 27 1.
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Figure 3.5: The signal-processing equivalent of the second-order AXADC of Figure 3.1.

For the purposes of this paper, the ALADC input z[n] is assumed to be amplitude-
limited to within the AX ADC no-overload range, defined as the range of input val-
ues for which the quantizer operates within its no-overload range (1). A conservative
derivation of the ALADC no-overload range is given in Appendix 3.A, the result of

which is repeated here for convenience as
(1, 0) = (4,24). (7)

With this condition satisfied, the quantization noise, eg [n], introduced by the quan-
tizer is commonly modeled as an additive white-noise process, uncorrelated with the
ATZADC input [1]. As shown in Appendix 3.C, ep[n] is uncorrelated with zp[n],
and it follows that the signal-processing equivalent of the AXADC of Figure 3.1 is
given by Figure 3.5, where the signals z[n], eg[n], and ep[n] are uncorrelated. With
a linear systems analysis it can be shown that the transfer functions between the

AXADC output y[n] and the signals z[n], eg[n], and ep[n], are given by

?(?) = Nx(2)D(2) = 271 D(2), (8)
1-*21:.2(2) = No(2)D(2) = (1 - 27 1)2D(2), (9)

and
_Y_(z_).. = ND(z)D(z) = (z"l - 2)2—1D(Z), (10)

Ep(z)



respectively, where the term
Diz)=[1+2a-1)z +(1-a)z7! (11)

can be viewed as a distortion of the ideal transfer functions Nx(z), Ng(z), and
Np(z), resulting from a non-unity value of a. As will be demonstrated in the next
section, the significance of D(z) for practical values of o is vanishingly small. No-
tice that (10) reflects the importance of highpass shaping of ep[n]; the magnitude
of Np(z) increases monotonically from unity at low frequencies to three at high
frequencies, and it follows that any DAC noise introduced in the frequencies corre-
sponding to the signal-band appears unattenuated in the AXADC output.

From Figure 3.5 it is seen that both of the noise-sources eg[n] and ep[n] con-
tribute to the overall conversion error at the output of the AXADC. This error will
subsequently be referred to as the AX ADC noise, espc[n]- Using (8) and (11), the

AYADC noise can be written in the form
eapc(n] = y[n] + 2(a — Vy[n — 1]+ (1 — e)y[n — 2] - z[n - 1]. (12)

While this particular form is not very useful for a statistical analysis, it does provide

a simple formula by which to compute e4pc[n| for simulation purposes.

A. Simulation Results

Simulated performance of the second-order AXADC of Figure 3.1 is presented
in Figure 3.6. Each plot in the figure shows the PSD in dB relative to A? of a
particular signal of the ACADC with a sinusoidal excitation. The PSDs were each
calculated by averaging 100 length-2!3 periodograms [9]. The frequency scales were
normalized such that unity corresponds to half the sample rate of the AXADC
output. The static DAC-element errors of the 2-bit DAC were chosen randomly

from a normal distribution with standard deviation ¢ = 1%. It should be mentioned
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Figure 3.6: Simulated PSDs of the second-order AZADC. (a) and (b), the AZADC noise and the
DAC noise, respectively, when employing a conventional 2-bit DAC, (c) and (d), the ASADC output
and the DAC noise, respectively, when employing the 2-bit noise-shaping DAC (plotted against a
linear frequency scale), and (e) and (f), the ALADC noise and the DAC noise, respectively, when
employing the 2-bit noise-shaping DAC (plotted against a logarithmic frequency scale).
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that this particular choice of static DAC-element errors was made for demonstration
purposes only; the theoretical results presented in the next section do not depend
upon any underlying statistical distribution or correlation properties of the static

DAC-element errors.

Figures 3.6a and 3.6b show the ALADC noise e4pc[n] and the DAC noise ep[n],
respectively, when employing a conventional DAC in the ALADC. The results were
formed using (12) and (4), and are plotted against a logarithmic frequency scale
normalized such that unity corresponds to half the sampling rate. Each of Fig-
ures 3.6c through 3.6f shows a particular signal of the ALADC when employing the
first-order noise-shaping DAC. Specifically, Figure 3.6c shows the ALADC output
y[n], Figure 3.6d shows the DAC noise ep[n] formed using (4), Figure 3.6e shows
the ALADC noise e pc|[n] formed using (12) and plotted against a logarithmic fre-
quency scale, and Figure 3.6f shows ep[n] plotted against a logarithmic frequency

scale.

Figures 3.6a and 3.6b clearly demonstrate the detrimental effects of the DAC
noise when employing a conventional DAC in the AXADC. A considerable amount
of the DAC noise resides in the signal-band, thereby severely decreasing the overall
conversion performance. Furthermore, the occurrence of spurious tones limits the
SFDR achievable by the AZADC. The results of Figures 3.6¢ through 3.6f demon-
strate the spectral shaping of e4pc[n] and ep(n], respectively, when employing the
first-order noise-shaping DAC in the AZADC. From Figure 3.6f it is seen that the
DAC noise exhibits first-order behavior, i.e., a decrease by 6 dB of the noise-floor per
octave decrease in frequency. Notice also the absence of spurious tones in the DAC
noise; ep[n] and z[n] are uncorrelated and ep[n] resembles highpass filtered white
noise. Consequently, the SFDR of the AZADC is not limited by the DAC noise.

Because of a considerable difference in the power-levels at high frequencies between
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eg(n] and ep[n], the ALADC noise of Figure 3.6e exhibits both first-order and
second-order behavior. Specifically, while eg[n] and ep[n] contribute with compara-
ble powers at frequencies around w, = 1072, the AZADC noise exhibits dominant
first-order behavior for frequencies less than w, and dominant second-order behavior

for frequencies higher than w,.

B. Performance Equations
For a statistical analysis of e4pc(n], notice that (9) and (10) imply that the

PSD of e4pc(n] is given by

Seapceanc(€) = Seqeq(e™)|Ng(e*) D(€™)® + Sepep (™) |Np(e™) D (™)
(13)
where Sepeq (€7%) and Sepep(€7*) denote the PSDs of eg[n] and ep[n], respectively.
For the model of eg[n] used in Figure 3.5,

A2

SeQeQ(ejw) = E (14)

To evaluate (13), it remains to develop an expression for Sepep, (e7¥). This is done in
detail in the appendices; the main result for a b-bit version of the DAC will merely

be stated here as

b
Sepen(€™) =D WSk(e), (15)
k=1

where the constants <y, are given by

2b—k

=Y A, (16)

r=1

where
(r-1)2F+2F-1

Ak,r = 2_k Z [(eh,’ - eli) - (ehi+2k—1 - eli+2k—1 )] . (17)
i=(r—1)2%+1
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Figure 3.7: Theoretically computed PSDs of the second-order ASADC plotted against logarithmic
scales. (a) The AZADC noise, and (b) the DAC noise.

As shown in the appendices, the terms Sk(e’”) occurring in (15) depend only upon
the DAC input zp[n], and an algorithm to compute the Si(e?™) is provided.
Figure 3.7 presents the theoretically computed PSDs relative to A? of the
AYADC noise and the DAC noise. Specifically, Figure 3.7a shows e4pc[n] as com-
puted using (13) and plotted against a logarithmic scale, and Figure 3.7b shows
ep[n] as computed using (15) and plotted against a logarithmic scale. The plots are

in agreement with the simulation results of Figure 3.6e and Figure 3.6f, respectively.

C. The AYADC Conversion Precision

A standard measure of the AXADC conversion precision is the power of the
AYADC noise with the restriction that the signal component of the AXADC output
y[n] be an undistorted version of the ALADC input z([n]. As asserted previously,
z[n] is subjected to the linear distortion D(z) given by (11), whose deviation from
unity depends only on a. Although—as will be demonstrated shortly—the effects
of D(z) on the AZADC conversion precision can be neglected for practical values

of a, it will be taken into account here for completeness.
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It follows from (11) that the signal distortion can be compensated for using an

equalization filter of the form
E(z)=[DE) 1 '=1+2a-1)z1+(1-a)z7% (18)

As can easily be verified, E(1) = a and E(—1) = 4 — 3a. Writing o in the form
@ = 1 + A,, where A, represents the deviation of a from unity, it follows that
1 — E(1) = —Aq and 1 — E(—1) = 3A,. Thus, the deviation of |E(z)| from unity
is three times greater at high frequencies than at low frequencies. Because of over-
sampling, the range of frequencies of interest is limited to low frequencies, and it fol-
lows that relatively little distortion is introduced inside the signal-band. Figure 3.8
illustrates typical behavior of the equalization filter over all frequencies. Specifically,
the figure shows the magnitude response of E(2) corresponding to a = 1.008, which
was the value of a of the simulated AXADC of Figure 3.6. The peak deviation of
|E(z)| from unity over all frequencies is 0.20 dB, whereas the peak deviation of
|E(z)| from unity for frequencies corresponding to an oversampling ratio of 2 or
greater is merely 0.10 dB. Thus, it is likely that the signal distortion D(z) need not
be compensated for in a practical design, since it will have minimal effect on the

AXADC conversion precision.
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As found previously, the ALADC noise consists of additive components resulting
from the DAC noise and the quantization noise. The power of the AL ADC noise
residing in the signal-band after signal equalization can therefore be written in the

form

PCADC:'PGD +Peqa (19)

where P.,, and P, denote the power of the DAC noise and the power of the quanti-
zation noise, respectively, residing in the signal-band after signal equalization. From

(10), (15), and (18), it follows that

b
PeD = Z'ykpep_ks (20)
k=1
where
1 [F : .
Poe =55 [ Se(e)INo(e) s @)
TJ-%

and where N denotes the oversampling ratio corresponding to the signal-band of

interest. Similarly, it follows from (9), (13), and (18) that

A? [N .
P == No(e¥)|? dw. 22
@ = 5i- _ﬁl ()| (22)

It is customary to determine the conversion bit-precision of the AZADC by
the number of bits that a uniform quantizer would require to generate quantization

noise of power equal to Pe,,.. A commonly used formula for this purpose is

1 a? ]
R=-lo , 23

where R is the number of bits, o is determined from the no-overload range (d;, )

of the ADC as

o= @‘%@, (24)

and P, is the power of the ASADC noise residing in the signal band [10]. The

significance of employing a multi-bit quantizer rather than a 1-bit quantizer in
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the ALADC becomes apparent from (23) and (24). For example, the AXADC no-
overload range (7) resulting from the use of a 2-bit quantizer is at least five-to-six
times larger than the no-overload range of the AXADC when employing a 1-bit
quantizer [6]. Ignoring the effects of the DAC noise, it follows from (23) that the

improvement of the AXADC conversion precision is at least 2.5 bits.

IV. IC FABRICATION YIELD ESTIMATION

With knowledge of the statistical distribution of the static DAC-element errors,
the results of the previous section allow for an IC fabrication yield estimation of the
power of DAC noise residing in the signal-band and the overall ALADC conversion
precision. The IC fabrication yield estimation procedure used in the following is
based upon the idea of computing a large number of samples of the parameter of
interest for a given statistical distribution of the static DAC-element errors, thereby
generating data that closely resemble the corresponding statistical distribution of

the parameter.

An algorithm to compute an IC fabrication yield estimation of the power of the

DAC noise residing in the signal-band, P., is as follows:

1. Calculate (21) for the oversampling ratio of interest. This quantity is indepen-

dent of the static DAC-element errors, and need thus only be calculated once.
2. Choose the values of the static DAC-element errors given knowledge of the
underlying statistical distribution.
3. Calculate the v, using (16).
4. Calculate P, using (20) and the data from step 1.

5. Repeat steps 2 through 4 for a number of samples large enough to employ the law
of large numbers to generate data that accurately resemble the corresponding

statistical distribution of P,
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Figure 3.9: An IC fabrication yield estimation of the power of the DAC noise residing in the signal-
band, P.,, of the 2-bit noise-shaping DAC. The static DAC-element errors were chosen from a
normal distribution with standard deviation ¢ ranging from 0.05% to 2%, and the oversampling
ratio ranged from 16 to 512. Plots (a) and (b) show the largest of the smallest 95% and 5% values
of P,,, respectively.

An example IC fabrication yield estimation of P, is shown in Figure 3.9. Specifi-
cally, the figure shows Pe, in dB relative to A2 of the 2-bit DAC as a function of N
and the static DAC-element errors. The oversampling ratio ranged from 16 to 512,
and the static DAC-element errors were chosen randomly from a normal distribu-
tion with standard deviation o ranging from 0.05% to 2%. Each IC fabrication yield
estimation was based upon 10% calculated samples. Figures 3.9a and 3.9b show the
largest of the smallest 95% and 5% values of P, respectively. For example, with
N = 128 = 27 and static DAC-element errors with standard deviation o = 1%,
Figure 3.9a predicts that 95% of all 2-bit DACs have signal-band noise powers less
than —89.2 dB relative to A%, while Figure 3.9b predicts that merely 5% of all 2-bit
DACs have signal-band noise powers less than —102.6 dB relative to A2, Thus, 90%
of all 2-bit DACs fabricated with normally distributed static DAC-element errors

of standard deviation o = 1% satisfy

-89.2dB < P, < —102.6dB. (25)
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Figure 3.10: An IC fabrica(.ti)on yield estimation of the AZADC conversio(n i)it-precision, R. The static
DAC-element errors were chosen from a normal distribution with standard deviation o ranging from
0.05% to 2%, and the oversampling ratio ranged from 16 to 512. (2) and (b) show the largest of the
smallest 95% and 5% values of R, respectively.

relative to A2, For the purpose of comparing theoretical results with simulated
results, numerically integrating the simulated PSD of ep[n| of Figure 3.6d over the
range of frequencies corresponding to an oversampling ratio of 128 yields P, =
—93.7 dB relative to A2, in support of (25).

The IC fabrication yield estimation of P., can be used to generate an IC fabrica-
tion yield estimation of the overall AZADC conversion precision using the following
algorithm:

1. Calculate (22) for the oversampling ratio of interest. Fe, is independent of the
static DAC-element errors, and need thus only be calculated once.

2. To each IC fabrication yield estimation datum of P., obtained in the above,
add the quantity from step 1 to obtain the power of the AXADC noise, Fe ¢
relative to A2

3. The AXADC conversion bit-precision corresponding to Pe,,. is determined
from (23), (24), and (7).

An IC fabrication yield estimation of the AXADC conversion bit-precision is shown
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in Figure 3.10. For the same example as in the above, Figure 3.10a predicts that
95% of all ALADCs have conversion precisions less than 14.79 bits, while Fig-
ure 3.10b predicts that merely 5% of all ALADCs have conversion precisions less
than 13.00 bits. It follows that 90% of all AXADCs fabricated with normally dis-

tributed static DAC-element errors of standard deviation o = 1% satisfy
13.00 bits < R < 14.79 bits. (26)

Again, for the purpose of comparing theoretical results with simulated results, nu-
merically integrating the simulated PSD of e4p¢{n] of Figure 3.6d over the range of
frequencies corresponding to an oversampling ratio of 128 yields Fe,,, = —93.3 dB
relative to A2. This value of Pe, . is equivalent to a conversion precision of R =
13.70 bits, in support of (26). To conclude the comparison with the performance
of the conventional DAC, it should also be mentioned that numerically integrat-
ing the noise-floor of Figure 3.6b over the range of frequencies corresponding to an
oversampling ratio of 128 yields Pe, . = ~71.6 dB relative to A?, equivalent to
a conversion precision of R = 10.10 bits. Thus, for this example, the use of the
first-order noise-shaping DAC increases the AXADC conversion precision by more
than 3 bits, corresponding to about 30%.

The result in (26) can be used to quantify the detrimental effect of the DAC noise
of the 2-bit noise-shaping DAC on the AZADC conversion precision. Specifically,
evaluating (22) for N = 128 yields F., = —103.3 dB relative to A2, In the absence
of DAC noise, P, = Peq, and the corresponding conversion precision found using
(23) is 15.36 bits. Thus, for 90% of all AXADCs, the detrimental effect, AR, of the

DAC noise on the conversion bit-precision satisfies
—2.36 bits < AR < -0.57 bits. (27)

As demonstrated by Figure 3.6 and Figure 3.7, the AXADC noise exhibits both

first-order and second-order behavior, resulting from the effects of ep[n] and eg[n],
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Figure 3.11: A quantification of the detrimental effects of the DAC noise. (a) The ideal AXADC
conversion bit-precision (solid line), and the IC fabrication yield estimation of Figure 3.10 corre-
sponding to static DAC-element errors with standard deviation o = 1% (dashed lines). (b) An IC
fabrication yield estimation of the detrimental effect (measured in bits) of the DAC noise on the
ATADC conversion precision corresponding to static DAC-element errors with standard deviation

o =1%.

respectively. Exactly which term dominates Pe,,. depends upon the signal-band
under consideration but, in general, the effects of ep[n] dominates at high over-
sampling ratios, and the effects of eg[n] dominates at low oversampling ratios. It
follows that the detrimental effect of the DAC noise on the AXADC conversion
precision varies with the oversampling ratio. As an example, the dashed lines in

Figure 3.11a show the IC fabrication yield estimation of Figure 3.10 for the case of
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static DAC-element errors with standard deviation ¢ = 1% and oversampling ratio
ranging from 16 to 512. Also shown (solid line) is the ideal ALADC performance,
i.e., the conversion bit-precision achieved in the absence of DAC noise. Figure 3.11b
quantifies the effect of the DAC noise on the ALADC conversion bit-precision cor-
responding to the data of Figure 3.11a. Specifically, the dashed lines correspond to
the bounding limits of AR calculated by forming the difference between each of the
dashed lines in Figure 3.11a and the solid line in Figure 3.11a, respectively. For ex-
ample, the figure shows that for 90% of all ALADCs operating at an oversampling
ratio of 512, the detrimental effect of the DAC noise on the conversion precision is
bounded by

—4.39 bits < AR < -2.14 bits,

whereas for N = 16, the detrimental effect of the DAC noise is merely

—0.23 bits < AR < -0.01 bits.

VI. CONCLUSION

The performance of a second-order AXADC employing a multi-bit first-order
noise-shaping DAC proposed in [5] has been analyzed in detail. Results that allow
for a theoretical quantification of the effects of the DAC noise on the AXADC noise
have been developed. It was demonstrated how knowledge of the statistics of the
static DAC-element errors allowed for an IC fabrication yield estimation analysis of
the AXADC conversion precision.

Focus was brought upon an example AXADC employing a 2-bit noise-shaping
DAC fabricated with normally distributed static DAC-element errors of standard
deviation o = 1%. To the extend that performance is limited by static DAC element
errors, it was found that with an oversampling ratio of 128, the conversion preci-

sion provided by 90% of all fabricated AXADCs is greater than 13.0 bits but less
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than 14.8 bits. The detrimental effect of the DAC noise on the AXADC conversion
precision was quantified to be greater than —2.4 bits, but less than —0.6 bits.

Other non-ideal circuit behavior such as clock-skew, non-linear settling, and
finite slew-rates may impose additional limitations on the achievable conversion
precision of the second-order AXADC. Although the effects of these error sources
have not been considered in this paper, the results presented here still remain valid
as upper bounds on the performance of the data converter, independent of the

particular circuit technology used in an implementation.
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APPENDIX 3.A

Claim A. The quantizer of the AXADC of Figure 3.1 operates within the no-

overload range at all times provided (7) is satisfied.

Proof. Recall that a uniform quantizer with input zg[n], no-overload range (d;, 65),
and step-size A operates such that the quantization noise eg[n] satisfies
A, A
leg[n]| < > if zg[n] € (61,0n), and  |eg[n]| > > if zg[n] & (41, 0r).
(28)
Assuming that @ = 1 in Figure 3.5, it can be verified that the transfer function

between z[n] and zg[n] is

Xo(z) _ _ -1
Y(;)— = S(Z) =2z , (29)
and that the transfer function between eg[n] and zg[n] is
Xo(2) _ — _=lpg _ -1
E_Q(z—) =Q(z)=-2""(2-27"). (30)

It follows from (29) and (30) that zg[n] depends on the previous sample of z[n]
and the previous two samples of eg[n]. Claim A can now be shown by induction as
follows.

To establish the induction basis, consider sample-time n = 1. Suppose that the
initial condition of both integrators in Figure 3.5 is zero. Then zg[0] = 0, and con-
sequently eg[0] = 0. With the assumption of (7) being satisfied, zg[1] € (A, 24),
and leg[1}| < %—. It follows that no overload occurs at sample-time n = 1.

Next, consider the sample-time n + 1. By the induction hypothesis, no overload

has occurred previously, i.e., |eg[k]] < % for k =0,1,...,n ~ 1,n. It follows from
(30) that

aln -+ 111 < [2eqln]l + leqln — 1]| < 35,
where g[n + 1] denotes the output of the filter Q(2) at sample-time n + 1. Thus,

z[n] — 3—? <zg[n+1] <zn]+ %
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It follows from (1) that quantizer overload is avoided if

A 3A TA
z[n] — 22—- > ——?— and z[n]+ — < —+-,

which can be re-arranged as (7). =

APPENDIX 3.B
The purpose of this appendix is to present a derivation of the bulk of the results
regarding the PSD of the output of the noise-shaping DAC as stated in Section III.
A few helpful definitions are first given.
In accordance with the usual definitions, let the statistical mean and the time

average of a sequence z[n] be defined as

mz[n] = E{z[n]} (31)
and
M, = lim l51311:[11,] (32)
z Pooco P ’

respectively, where E{-} denotes the statistical expectation operator. Furthermore,

let the statistical autocorrelation and the time average autocorrelation of z[n] be

given by
R:z[n, m] = E{z{n]z[n + m]} (33)
and ~ . P
Ros[m] = Jim = ; zln]z[n + m, (34)

respectively. The time average power spectral density—referred to here as the PSD—
is defined as the Fourier transform of (34), i.e.,
. w .
Szz(€7Y) = Z R;z[m]e™ ™.
m=-=-00

The main theoretical result of this paper can now be stated as follows:
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Claim B. Consider the b-bit version of the first-order noise-shaping DAC of Fig-
ure 3.2 driven by a deterministic input zp[n)], for which M, and Ry pz,[m] exists.

The PSD of the DAC output yp[n] can be written in the form
Sypup () = &?Szpzp(€™) + Sepep (€7) + 2176 (w), (35)
where « is given by (5), and
7= 2afMzp, + B, (36)

where 3 is given by (6). The sequence ep[n] is a zero-mean random process such

that Sepe,(€’“) has the form stated in (15).

Proof. To verify (35), consider first the statistical autocorrelation of yp[n]. From

(4) it follows that
Rypypln,m] = E{(azp[n] + B +ep[n]) (azp[n +m]+ B+ epln +m])}. (37)

As shown in Appendix 3.C, ep[n] is a zero-mean random process, i.e., mep[n] = 0.
Making use of this and the fact that zp[n] is deterministic, (37) can be rewritten

in the form
Rypyp[n,m] = o®zp[nlzp[n+m]+Repepln, m]+ab(zp[n]+zp[n+m]) +42. (38)

Using (32), (34), and (36),

P P
n=1

P P
.1 = .1 -
lim — § :Ryoyo[n,m] = &’ Rzpaplm] + Ph—IEéo P E :Reoeo[na m] + 7.
n=1

Arguments similar to the ones presented in the proof of the time average results in
[11] establishes

Rypyplm] = &*Repoplm] + Repeplm] +7 (39)
with probability 1. Fourier transforming (39) then yields (35). To complete the proof

of Claim B, it remains to develop an expression for Repep[n, m].



As shown in [5], the DAC noise has the form

b 2tk

epln] =Y Y Agrsirlnl, (40)

k=1 r=1

where the Aj ,. are constants given by (17). It follows that
R.pep [na m] = E{eD[n]eD[n + m]}
b 2tk b 2tk
= E{ (Z Z Akvrskrr[n]) (Z Z Akarskar[n + m]) }
k=1 r=1 k=1 r=1
As shown in Appendix 3.C, the switching sequences sk r[n] are mutually uncorre-
lated, and therefore

b 2b—k

Repepln,m] = Z Z Ai,,.Rsk'rsk‘r [n, m].
k=1 r=1

As also shown in Appendix 3.C, the autocorrelations of the switching sequences

within each layer are equal. Thus, with the compact notation
R .si.[1s m| = Rg[n, m],

it follows that ,
ReDeD[na m] = Z ’YkRk[na m]1

k=1
where the ;. are defined in (16). Thus,
— b ——
Repeplm] = Y veRi[m)].
k=1

The time-average autocorrelation functions R[m] depend only upon zp([n], and an

algorithm for their calculation is given in Appendix 3.D. =

APPENDIX 3.C
This appendix presents derivations of the statistical properties of the DAC noise

asserted in Appendix 3.B.
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Figure 3.12: The details of the generation of the switching sequences Sk.r[n].

dk'r[’l]
uy [0]=0 if u;u[n]=01
, . n=l , . P d ,
up [n]= ‘jg_osk.,[ll ukr[n] . if u}“[n]toj‘{\' sk',-[n’]

Figure 3.13: A signal-processing equivalent of Figure 3.12 when z{"\[n] = 1.

Claim C. The DAC noise ep[n] given by (40) is a zero-mean random process. The
switching sequences si »[n] are mutually uncorrelated, and the statistical autocorre-

lations of the s -[n] within each layer are identical, i.e., R, s, [n,m] = Rg[n, m).

Proof. To show that ep[n] is zero-mean, notice that it follows from (40) that
it suffices to show that the switching sequences s [n] are zero-mean. For that
purpose, consider again the details of the generation of the sy -[n], as depicted in
Figure 3.12. The operation of the 1-bit dithered hard limiter is defined in terms of
the sequences dy [n], vk r[n], and ug,[n] as given by (3). It follows from the figure
that s ,[n] = 0 if a:;co,),[n] = 0. Thus, the claim is trivial for z}col[n] = 0. As is easy
to verify, if :z:g]l[n] =0, then ug .[n + 1] = ugs[n]. It follows that for non-zero values
of x}co,),[n], the system of Figure 3.12 is equivalent to the system of Figure 3.13,

where s}, [n] consists of the non-zero samples of sgr[n| in Figure 3.12, and where

up, (0] = 0 indicates an initial condition of zero of the discrete-time integrator. From
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Figure 3.13 it is easy to verify that for n > 0,

__ [ dis[n], if n is even;

S;W'[n] - { —dgr[n—1], else; (41)

Since dy -[n] is zero-mean, it follows that s [n] is zero-mean. Thus, Sk.r[n] is zero-
mean, as asserted.

To show that the s .[n] are mutually uncorrelated, notice that it follows from
the previous that it suffices to show E {sk,r[n]sj-,q[n]} =0, for k # 7 and r # q. This
holds trivially when si-[n] = 0 and/or sj4[n] = 0. It follows from (41) that the
sequence of samples of sk [n] where both sir[n] # 0 and sj4[n] # 0 can be written
in the form

sz,r[n] = zk,r[n]a

where z .[n] is zero-mean since dg r[n] is zero-mean. Similarly,

39",q[n] = Zjq [TL],

where z;4[n| is zero-mean. Since the sequences di r[n] and djq[n] are mutually un-

correlated, z¢ r[n] and zj4[n] are mutually uncorrelated, and thus

E {sz,r[n]s.lj,,q[n]} = 0’

and it follows that E {sr([n]s;jq[n]} =0, as asserted.

To show that the statistical autocorrelations of the sy .[n] within each layer are
equal, notice that it follows from the above that the probability density function
(PDF) of s[n] fully depends upon the PDF of z{)[n]. Thus, the PDF of s .[n]
fully depends upon the PDF of z [n]. Since the discrete-time integrators all have
equal (zero) initial conditions, it suffices to show that the PDF's of the zy -[n] within
each layer are equal. This will be shown by induction.

To establish the induction basis, notice that the claim obviously holds true for

k = b. Next, suppose the claim holds true for k=b,b—1,...,7+ 1,7, where j > 1.
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It must be shown that the claim holds true for k = j —1. It follows from the defining

equations
Tj-12r-1[n} = %(-’Bj,r[n] +8jr[n]) and zj19-(n] = %(z,-,,[n] - sjr[n]), (42)

that ;1 2,—1[n] and ;1 or[n] have equal PDF’s by invoking the induction hypoth-
esis and by noticing that it follows from (41) that s;[n] is either 1 or —1 with equal
probability, or identically zero. This is sufficient to show the claim, since a recur-
sive argument can be used to establish that the remaining ;- ;[n] sequences of the

j—15t layer have PDF's that are equal to the PDFs of 21 2r—1[n] and zj_12-[n]. =

APPENDIX 3.D
This section describes an algorithm by which to compute the time-average au-
tocorrelation functions Ry[m].
It follows from the discussion in Appendix 3.C that a state transition diagram
for skr[n] can be depicted as in Figure 3.14. The states correspond to the possi-
ble values of the discrete-time integrator output, and pi r[n] is the probability that

zkr[n] equals one, ie., pgr[n} = P {175:03

[n] = 1}. For example, transition from state
“Q” to state “-1” can only occur when xg[n] = 1, in which case the state transition
probability is p"%[n]. Transition to the state “1” is equally likely. By the recursive na-
ture of the DAC architecture, py r[n] depends upon the switching sequences in layers
k,k+1,...,b, which, in turn, depend upon input bits z(®[n], z[n), ...,z n)].
Thus, pxr[n] is time-varying and the state transition probabilities are therefore
time-varying.

When considering the limiting properties of the resulting state transition chain,
it is useful to divide the chain into non-recurrent state transition paths and recur-

rent state transition paths. Notice that it follows from the symmetry of the state

transition diagram that state “0” is a recurrent state of all recurrent state transition
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Py, (n]/2 P (nl/2
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Figure 3.14: A state transition diagram for si.[n]. The states correspond to the possible values

of the discrete-time integrator output, and p;.[n] is the probability that £ [n] equals one, i.e.,

pe.[n] = P{ziy[n] = 1}.
paths. A useful result to be used in the following is stated next.

Claim D. Suppose the state transition chain is started in state “0” at timen = 0.
Let t;, to, ... be the times when all recurrent state transition paths return to state

“0”. Then E {skr[0]sk-[m]} =0 for allm > t;.

Proof. From the state transition diagram of Figure 3.14 it follows that sg.[0] is
either —1 or 1 with probability &._‘5_[0_]’ or identically zero. Similarly, si -[t1] is either
—1 or 1 with probability p—"'#, or identically zero. Since the possible transitions
to non-zero states at time t; are controlled by di [n], they occur independently of

the possible transitions to non-zero states at time 0. Thus,

E {sk.r[0]skr[t1]} = [(—1)(—1) +(=1)(1) + ()(-1) + (1)(1)] Pk,;[Ol pk,;[tl]

=0

(43)

Similar reasoning verifies E { sk -[0]sk-[m]} =0 form > ¢;. =

To allow for the computation of a state transition chain, the pg[n] must be
computed. As found in the above, it suffices to compute one py .[n] within each
layer, say pk1[n], from which the state transition chain for Sk,1[n] can be determined.
A recursive algorithm to compute pg ;[n]—derived from Figure 3.12 and (42)—is as

follows:
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function pi( integer j, integer z([n])
if j = k then
return LSB(z{n])
else
if u;1[n] = 0 then
return } [pi(i~1, (sfn] +LSB(a{n]))/2) +prG 1, (cln] ~LSB(z[n))/2)]
else

return p(j — 1, (zln] ~ (u1[] x LSB(z[n])))/2)

Thus, p 1[n] is found by computing pi(b, zp[n]).

An algorithm to compute Ri[m] can now be stated as follows:

1.
2.

Let Ri[m] denote an initially empty list.

Starting in state “0” at time 0, traverse the recurrent state transition paths
until they all arrive at state “0” at time ¢;. Label each state transition with the
corresponding transition probability pg 1[n].

For 0 < n < t;, compute all possible values of
Alm] = (@) G)(P{skr[n] = i})(P{skr[n + m] =3}), i=%£1,7==%l,

for all m such that 0 < n+ m < t;, and where P{sg [n] =i} is the probability
that sk [n] = i, given by the product of the transition probabilities along the
path leading to the state under consideration.

Add the samples of A[m] to the samples of Ri[m], i.e., Rk[m] = Rg[m] + A[m].

. Repeat steps 2 through 4 with starting time ¢; and ending time ¢;4 for a number

of iterations, K, large enough to employ the law of large numbers to ensure that

;I;Rk[m] (44)
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equals R[m] with the desired accuracy. In the limiting case, i.e., for K — oc.

(44) equals Ry[m] with probability 1.
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