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ABSTRACT OF THE DISSERTATION 

   

Spurious Tone Mitigation in Fractional-N Phase-Locked Loops 

 

by 

Eythan Familier 

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) 

University of California, San Diego, 2016 

Professor Ian A. Galton, Chair 

 

Fractional-N phase-locked loops (PLLs) are widely used to synthesize local 

oscillator signals for modulation and demodulation in communication systems. Their 

phase error inevitably consists of both a periodic component made up of spurious tones 

and a random component called phase noise. Spurious tones are particularly harmful to 

the performance of typical communication systems, so most communication standards 

stipulate stringent limits on their maximum power in relevant frequency bands. 

High-performance PLLs generally contain noise-shaping coarse quantizers to 

control their output frequency. Such quantizers are a fundamental source of spurious 
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tones in the PLL’s phase error. This is because spurious tones are inevitably induced when 

the quantizer’s quantization noise is subjected to nonlinear distortion from analog circuit 

imperfections. This dissertation presents a rigorous analysis of this effect and a way to 

mitigate it through the use of a class of digital quantizers with first and higher-order 

highpass shaped quantization noise which are optimized for spurious tone and phase noise 

mitigation. 

The first chapter of this dissertation presents a mathematical analysis of spurious 

tone generation via nonlinear distortion of quantization noise. It proves that subjecting 

the quantization noise running sum of a digital quantizer to a nonlinearity of a certain 

order will inevitably induce spurious tones, and shows the relation between such 

nonlinearity order and the range of values the quantization noise running sum takes. The 

results are general and apply to any digital quantizer. 

The second chapter of this dissertation presents a class of digital quantizers with 

optimal immunity to nonlinearity-induced spurious tones and with first-order highpass 

shaped quantization noise. It presents design solutions for digital quantizers with 

quantization noise that can be subjected to nonlinear distortion of a given order without 

inducing spurious tones, and relies on the results from the first chapter to prove that the 

presented solutions are optimal in terms of spurious tone generation. 

The third chapter of this dissertation presents digital quantizers with second and 

third-order highpass shaped quantization noise which can be optimized for either spurious 

tone or phase noise mitigation. These quantizers can replace the often-used delta-sigma 
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modulators in high-performance PLLs to either improve spurious-tone performance at 

the expense of slightly higher PLL phase noise or lower PLL phase noise.  

The fourth chapter of this dissertation present an integrated circuit PLL which 

implements the second and third-order digital quantizers presented in the third chapter. It 

demonstrates record-setting spurious tone performance due to the use of these digital 

quantizers and to a new linearity-enhancement PLL timing scheme.
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CHAPTER 1  

A FUNDAMENTAL LIMITATION OF DC-FREE QUANTIZATION NOISE 

WITH RESPECT TO NONLINEARITY-INDUCED SPURIOUS TONES 

 

Abstract—Fractional-N phase-locked loops (PLLs) are widely used to synthesize local 

oscillator signals for modulation and demodulation in communication systems. Such 

PLLs generate and subsequently lowpass filter DC-free quantization noise as part of their 

normal operation. Unfortunately, the quantization noise and its running sum inevitably 

are subjected to nonlinear distortion from analog circuit imperfections which causes 

spurious tones in the PLL output signal that can degrade communication system 

performance. This paper presents the first general mathematical analysis of this 

phenomenon. It proves that if the running sum of the quantization noise, t[n], satisfies tlow 

< t[n] ≤ thigh for all n, where tlow and thigh are integers, then subjecting t[n] to kth-order 

distortion for at least one k {1, 2, 3, …, thigh − tlow} will result in spurious tones for most 

fractional-N PLL output frequencies regardless of how the quantization is performed. It 

also shows that quantizers exist which are optimal in the sense that subjecting the running 

                                                           
Manuscript received January 25, 2013; revised April 26, 2013; accepted May 07, 2013. Date of publication 

May 16, 2013; date of current version July 22, 2013. The associate editor coordinating the review of this 

manuscript and approving it for publication was Prof. Ljubisa Stankovic. This work was supported by the 

National Science Foundation under Award 0914748. 

The authors are with the Department of Electrical and Computer Engineering, University of California at 

San Diego, La Jolla, CA 92093-0407 USA (e-mail: galton@ucsd.edu). 

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org. 

Digital Object Identifier 10.1109/TSP.2013.2263504 
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sum of their quantization noise to kth-order distortion for any k {1, 2, 3, …, thigh − tlow – 

1} does not result in any spurious tones. In a typical fractional-N PLL, the larger the range 

of t[n] the greater the power of the PLL’s phase noise, so these results imply a 

fundamental tradeoff between phase noise power and spurious tones in PLLs. 

I. INTRODUCTION 

 

Fractional-N phase-locked loops (PLLs) are widely used to synthesize local 

oscillator signals for modulation and demodulation in communication systems, as they 

can provide fine frequency tuning resolution with relatively low power consumption and 

integrated circuit area [1], [2]. Ideally, a fractional-N PLL’s output signal is perfectly 

periodic, so its phase increases linearly with time. Unfortunately, non-ideal circuit 

behavior causes the actual phase of the output signal to deviate from its ideal phase, where 

the deviation is referred to as phase noise. The phase noise inevitably consists of both 

periodic components called spurious tones and random components. Spurious tones are 

particularly harmful to the performance of typical communication systems, so most 

communication standards directly or indirectly stipulate stringent limits on the maximum 

power of the spurious tones in addition to specifying the maximum tolerable power of the 

overall phase noise in relevant frequency bands [3]. 

Fractional-N PLLs generally contain noise-shaping coarse quantizers, most 

commonly implemented as digital delta-sigma (ΔΣ) modulators, which have recently 

been shown to be a significant, albeit indirect, source of phase noise spurious tones [4]–
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[10]. The output frequency of a fractional-N PLL is controlled by a digital codeword that 

represents a rational number, α, between 0 and 1. The coarse quantizer operates on α and 

generates a digital sequence that can be viewed as the sum of α and DC-free quantization 

noise [11]–[13]2. The quantization noise is converted into analog form, integrated, and 

lowpass filtered within the PLL, and the resulting waveform directly adds to the PLL 

phase noise [1]. Unfortunately, the quantization noise and its running sum are subjected 

to nonlinear distortion from inevitable analog circuit imperfections, and this can induce 

spurious tones even when the quantization noise itself is free of spurious tones.  

This problem is mitigated in the fractional-N PLL presented in [7] wherein the 

successive requantizer proposed in [6] is used in place of a ΔΣ modulator. The successive 

requantizer offers the advantage that its quantization noise and the running sum of its 

quantization noise remain free of spurious tones even when subjected to the type of 

nonlinear distortion commonly imposed by non-ideal circuit behavior in PLLs. This 

enables the PLL presented in [7] to achieve state-of-the-art spurious tone performance, 

but a price is paid for this benefit. In return for the enhanced immunity to nonlinearity-

induced spurious tones, the power of the quantization noise introduced by the successive 

requantizer is significantly higher than that of a comparable ΔΣ modulator. The PLL 

presented in [7] employs a technique known as phase noise cancellation to overcome this 

problem at the expense of additional power consumption and circuit area. 

No previous publications have addressed the question of whether the tradeoff 

between immunity to nonlinearity-induced spurious tones and increased quantization 

                                                           
2  A sequence whose running sum is bounded for all time is said to be DC-free. 
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noise power observed in the successive requantizer is inevitable. This is an important 

question because if the tradeoff were just an idiosyncrasy of the successive requantizer, 

it might be possible to design an improved coarse quantizer with good immunity to 

spurious tones that is not subject to the tradeoff. This paper answers this question. 

The results of the paper prove that spurious tones are inevitably generated for 

most values of α when the running sum of DC-free quantization noise from a quantizer 

operating on α is subjected to the type of nonlinear distortion typically imposed by 

fractional-N PLLs. Specifically, if the running sum of the quantization noise, t[n], 

satisfies tlow < t[n] ≤ thigh for all n, where tlow and thigh are integers, then subjecting t[n] to 

kth-order distortion for at least one k in the set {1, 2, 3, …, thigh− tlow} will result in 

spurious tones for most values of α regardless of how the quantization is performed. The 

paper also shows that quantizers exist which are optimal in the sense that subjecting the 

running sum of their quantization noise to kth-order distortion for any value of k in the 

set {1, 2, 3, …, thigh − tlow – 1} does not result in any spurious tones. Therefore, the results 

imply a fundamental tradeoff between phase noise power and spurious tone suppression 

in a PLL.  

The remainder of the paper consists of three main sections. Section II describes 

the details of the spurious tone problem in fractional-N PLLs, Section III presents and 

proves the theoretical results outlined above, and Section IV presents a method of 

quantization that is optimal in the sense described above. 
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II. SPURIOUS TONES IN FRACTIONAL-N PLLS 

 

 A Tone Definition Based on the Periodogram 

Consider a discrete-time complex-coefficient image-rejection bandpass filter with 

a positive-frequency passband centered at any non-zero frequency ωp and an adjustable 

equivalent noise bandwidth, Δωp, wherein the passband’s peak power gain times Δωp is 

unity. A sequence applied to the filter is said to contain a tone at ωp if the squared 

magnitude of the output of the filter grows without bound as Δωp is reduced to zero. This 

description of a tone is consistent with the way that tones are measured in the laboratory 

using a spectrum analyzer [14]. 

An example of such a bandpass filter has a length-L impulse response given by 

 

 11
if 0 1,

[ ]

0, otherwise,

pj L n

L

e n L
h n L

  
  

 


 (1) 

where Δωp goes to zero as L goes to infinity. If the filter is applied to a sequence, x[n], 

the squared magnitude of the filter output at time index n = L − 1 can be written as 

 

2
1

,

0

1
( ) [ ] p

L
j k

x L p

k

I x k e
L









  . (2) 

The expression given by (2) for any positive integer L and any 0  |p|  π is known as 

the periodogram [15]. Therefore, the periodogram performs a function analogous to that 

of a laboratory spectrum analyzer, where increasing L in the periodogram is akin to 

decreasing the resolution bandwidth of the spectrum analyzer. 

Accordingly, a mathematical definition of a tone that reflects the way that tones 

are measured in the laboratory is as follows. 



6 

 

 

 

 

Definition: Given any ωp  0, x[n] contains a tone at ωp if Ix,L(ωp) is unbounded 

as L  . 

The definition implies that a sequence x[n] is free of tones if and only if Ix,L(ω) is 

bounded in L for all 0 < |ω|  π.3 

 Spurious Tone Generation in Fractional-N PLLs 

Ideally, a fractional-N PLL generates a periodic output signal vout(t) with 

frequency fPLL = fref(N + α), where fref is the frequency of a reference oscillator, N is an 

integer, and 0  α < 1. In practice, however, the output signal is more accurately modeled 

by 

 ( ) (2 ( )),out PLL PLLv t g f t t    (3) 

where g is a 2π-periodic function and θPLL(t) is the phase noise of the PLL [16].  

As shown in Fig. 1, a typical fractional-N PLL consists of a phase detector, a 

lowpass loop filter, a voltage controlled oscillator (VCO), a frequency divider, and a 

noise-shaping coarse quantizer that introduces DC-free quantization noise. The phase 

detector drives the loop filter with a signal that represents the phase difference between 

the reference oscillator and frequency divider outputs. The instantaneous frequency of 

the VCO output signal deviates from its center frequency by an amount proportional to 

                                                           
3 An alternative definition of a tone could be constructed based on traditional power spectral density (PSD) 

functions. However, the periodogram-based definition is preferred in this work for two reasons. First, the 

periodogram can be computed for any signal, whereas the PSD is only defined for a relatively small class 

of signals. Second, the phase noise performance of PLLs is usually quantified by time averages using 

laboratory equipment such as spectrum analyzers, not by ensemble averages. In this sense, the periodogram 

provides a meaningful representation of the power spectrum as used in practice. 
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the output of the loop filter at each point in time. The frequency divider output is a two-

level signal in which the nth and (n+1)th rising edges are separated by N + y[n] cycles of 

the VCO output, where y[n] for each n is an integer generated by the coarse quantizer. 

The PLL feedback loop adjusts the output frequency so as to zero the DC component of 

the phase detector output, causing the output frequency to settle to fref times the average 

of N + y[n]. If y[n] could be set to α for all n, the PLL would have the desired output 

frequency. However, practical frequency dividers can only count integer numbers of 

VCO cycles, so y[n] must be integer-valued. Therefore, the coarse quantizer ensures that 

y[n] is integer-valued but averages to α in time. This results in the desired PLL output 

frequency, but the deviations of y[n] from α contribute an extra component to the PLL’s 

phase noise. 

In general, y[n] can be viewed as a representation of α quantized to be integer 

valued, and thus can be written as y[n] = α + s[n], where s[n] is the quantization noise of 

y[n]. As explained in the introduction, it is desirable to engineer both s[n] and its running 

sum t[n], defined by 

 
0

[ ] [ ],
n

k

t n s k


  (4) 

to be free of spurious tones and also such that sequences resulting from nonlinearly 

distorting s[n] and t[n] are free of spurious tones. In practice, it is most critical for t[n] to 

have these properties, because spurious tones generated by nonlinearly distorting s[n] 

usually can be sufficiently mitigated by well-known frequency divider linearization 

techniques such as periodically resynchronizing each frequency divider output rising 

edge to the next rising edge of the VCO output signal [17]. 
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As described in the introduction, it is usually highly undesirable for the phase 

noise of a PLL to contain tones, so any tones in a PLL’s phase noise are usually referred 

to as spurious tones. Given that this paper describes a spurious tone generation 

mechanism in PLLs, all tones in the following will be denoted as spurious tones. 

Nevertheless, from a mathematical point of view there is no distinction between tones 

and spurious tones. 

A sequence x[n] is said to be immune to spurious tones up to order h if xp[n] is 

free of tones for all positive integers p  h. Based on simulation and experimental results, 

the nonlinearities to which t[n] is subjected in a PLL tend to be well-modeled as truncated 

memoryless power series, i.e. functions of the form 

 
2

0 1 2( [ ]) [ ] [ ] ... [ ]k

kf t n a a t n a t n a t n      (5) 

for some positive integer k [6], [7], [18]. Thus, mitigating spurious tone generation in a 

PLL can be achieved by ensuring that t[n] is immune to spurious tones up to a certain 

order. As explained in the introduction, s[n] is required to be DC-free, which means that 

t[n] is bounded, so 

 [ ]low hight t n t   (6) 

for all n, where tlow and thigh are integers. Larger values of thigh − tlow offer more flexibility 

in the design of the coarse quantizer, which can be exploited to increase the order of the 

spurious tone immunity of t[n]. The results presented in Section III show that the 

maximum attainable order of spurious tone immunity t[n] can achieve is bounded by (thigh 

− tlow – 1) regardless of how the quantization is performed. 
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III. THEORY OF SPURIOUS TONES IN DC-FREE QUANTIZATION 

NOISE 

 

The following theorem shows that it is not possible to quantize most values of α 

such that the quantization noise is DC-free and its running sum is immune to spurious 

tones up to order thigh − tlow. The result is general in that it holds regardless of how the 

quantization is performed. 

Theorem: Let α be a constant that satisfies 0 < α < 1, let s[n] be a sequence such 

that 

 [ ] [ ]y n s n   (7) 

is integer-valued for all n, and let 

 
0

[ ] [ ]
n

k

t n s k


 . (8) 

If 

 [ ]low hight t n t   (9) 

for all n, where tlow and thigh are integers, and 

 ,
P

Q
   (10) 

where P and Q are relatively prime integers with Q > thigh − tlow, then 

  
2

1
2

,
0

1
(2 )p

L
p j fn

t L
n

I f t n e
L








   (11) 

is unbounded in L for at least one p {1, 2, …, thigh − tlow} and at least one f {α, 2α, …, 

(Q – 1)α}. 

 A practical implication of the theorem is that trying to develop a coarse quantizer 

applicable to fractional-N PLLs that eliminates the spurious tone generation mechanism 
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described in Section II-B is futile. The coarse quantizer in any fractional-N PLL consists 

entirely of digital logic and its variables are represented by finite-width data buses, so all 

variables associated with the coarse quantizer, including α, are rational numbers. In 

particular, this implies that α satisfies (10). Furthermore, the coarse quantizer in a 

fractional-N PLL is required to have DC-free quantization noise. Thus, any coarse 

quantizer applicable to a fractional-N PLL must satisfy the theorem’s hypothesis. The 

theorem places no other restrictions on the quantizer; the quantization noise can be 

deterministic or probabilistic and the theorem does not make any assumptions whatsoever 

about the quantizer’s structure. 

 Another practical implication of the theorem is that the order of immunity to 

nonlinearity-induced spurious tones of t[n] from the coarse quantizer in a fractional-N 

PLL can only be increased at the expense of increasing the range of values spanned by 

t[n]. The sequence t[n] can be viewed as a lowpass filtered version of the quantization 

noise, so increasing its range tends to increase the power of the quantization noise at low 

frequencies where the PLL’s loop filter provides little or no attenuation. The portion of 

t[n] within a fractional-N PLL’s bandwidth is an additive component of the PLL’s phase 

noise, so all other things being the same, increasing the range of t[n] increases power of 

the PLL’s phase noise [1]. Furthermore, most integrated circuit based fractional-N PLLs 

use a phase-frequency detector and charge pump to implement the phase detector in Fig. 

1, so the larger the magnitude of t[n] at any time index n, the longer the current sources 

in the charge pump are turned on during the nth reference period. Increasing the on-time 

of the current sources causes more of the current source noise to be converted to phase 
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noise, so all other things being the same, increasing the range of t[n] also increases the 

power of the phase noise component contributed by the charge pump.  

Proof of the Theorem: 

Equations (7) and (8) imply that 

 
0

[ ] [ ] ( 1) ,
n

k

t n y k n 


    (12) 

which can be written as 

 
0

[ ] [ ] ( 1) ( 1) ,
n

k

t n y k n n 


        (13) 

where x    denotes the largest integer less than or equal to x and x  denotes the 

fractional part of x, i.e. x x x     . Let 

 
0

[ ] [ ] ( 1)
n

k

r n y k n 


      (14) 

with which (13) can be written as 

 [ ] [ ] ( 1) ,t n r n n     (15) 

By definition, r[n] is an integer-valued sequence.4 Furthermore, 

  [ ] 1, 2, ,low low highr n t t t    (16) 

for all n, because t[n] is bounded according to (9) and the last term in (15) is non-negative 

and less than 1. 

Let 

    
2

1

,
0

1
.p

L
p j n

t L
n

I t n e
L








   (17) 

Substituting (15) into (17) results in 

                                                           
4 It follows from this and (15) that the fractional part of t[n] is periodic, so it consists entirely of spurious 

tones. The fractional part operator is a memoryless nonlinearity, so this demonstrates that it is not possible 

for t[n] to be immune to spurious tones for all memoryless nonlinearities.  
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  
2

1

,
0

1
( [ ] ( 1) ) .p

L
p j n

t L
n

I r n n e
L

 






    (18) 

Let L = RQ, where R is any positive integer, and  = 2i/Q, where i {1, 2, …, 

Q – 1}. Then (18) can be written as 

 

 

,

2
211 ( )

0 0

2

1
[ ] ( 1) .

pt RQ

iQR j kQ np Q

k n

i
I

Q

r kQ n kQ n e
RQ






  

 

 
 

 

   

 (19) 

Given that α = P/Q, where P and Q are relatively prime integers (so they have no 

common integer factors other than 1), the smallest value of n greater than zero for which 

nα is integer-valued is Q. Therefore,  1n   is a periodic sequence with period Q, so  

    1 1kQ n n      (20) 

for each integer k. Substituting (20) into (19), interchanging the summations, and 

rearranging factors gives 

 

 

,

2
21 1

0 0

2

1
[ ] ( 1) .

pt RQ

iQ R j np Q

n k

i
I

Q

R
r kQ n n e

Q R






  

 

 
 
 

 
    

 
 

 (21) 

Given that r[kQ + n] is integer-valued and bounded according to (16), this can be 

rewritten as 

 

  

,

2
21

0 1

2

, ( 1) ,

p

high

low

t RQ

itQ j np Q

R

n m t

i
I

Q

R
P m n m n e

Q






 

  

 
 
 

 
   

 
 

 (22) 

where 
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  
1

0

1
, [ , , ],

R

R

k

P m n k m n
R






   (23) 

and 

 
1, if [ ] ,

[ , , ]
0, otherwise.

r kQ n m
k m n

 
 


 (24) 

The summation in (23) counts the number of times that r[kQ + n] = m over the R 

consecutive values of k from 0 to R – 1. It follows that PR[m, n] has the same properties 

as a probability distribution in m for each n and each R, i.e., 

  0 , 1RP m n   (25) 

and 

  
1

, 1.
high

low

t

R

m t

P m n
 

  (26) 

Equation (22) can be rewritten as 

  

2
21

( )

,
0

2
,p

iQ j n
p Q

Rt RQ
n

i R
I n e

Q Q





 



 
 

 
  (27) 

where 

     ( )

1

, ( 1) .
high

low

t
pp

R R

m t

n P m n m n 
 

    (28) 

Thus, the right side of (27) is R/Q times the squared magnitude of the discrete Fourier 

transform (DFT) of βR
(p)[n]. A necessary condition for the DFT of βR

(p)[n], i.e.,  

  
21

( )

0

,

iQ j n
p Q

R

n

n e




 



  (29) 

to converge to 0 for every i = 1, 2, …, Q − 1 as R goes to infinity, and, therefore, for R/Q 

times the DFT of βR
(p)[n] to be bounded in R for every i = 1, 2, …, Q − 1, is 

 
( )[ ] as ,p

R pn b R    (30) 

where bp does not depend on n. Given that L = RQ, it follows that (30) is also a necessary 

condition for (11) to remain bounded in L. 
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Suppose the theorem is false. Then the above implies that there must exist Q 

probability distributions in m, P[m, n] for n = 0, 1, 2, …, Q − 1, each of which must satisfy 

  
1

[ , ] ( 1)
high

low

t
p

p

m t

P m n m n b
 

    (31) 

for p = 1, 2, …, tdiff, where 

 diff high lowt t t  . (32) 

Additionally, given that P[m, n] for n = 0, 1, 2, …, Q − 1 are probability distributions, 

(31) must hold for p = 0 and b0 = 1. Thus, (31) represents Q(tdiff + 1) equations that must 

be satisfied by tdiffQ probability values and tdiff values of bp. This can be viewed a linear 

system of Q(tdiff + 1) equations with tdiffQ + tdiff unknowns. With Q > tdiff, the system has 

more equations than unknowns, so if the theorem is false the equations must be linearly 

dependent. 

The equations represented by (31) for each n {0, 1, 2, …, Q − 1} and all p {0, 

1, …, tdiff − 1} can be written as 

    x x M p b  (33) 

with values of x given by 

  1 ,x n    (34) 

where 

 

     

     

     

22 2

11 1

( )

1 1 ... 1

1 2 ...

,1 2 ...

... ... ... ...

1 2 ...
diffdiff diff

low low high

low low high

tt t

low low high

x

t x t x t x

t x t x t x

t x t x t x
 



 
 

     
 

     
 
 
 
      

M

 (35) 
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  1 2 11 ... ,
diff

T

tb b b b  (36) 

and 

 
  

 

1

[ 1, ] [ 2, ] [ , ] .
T

low low high

n

P t n P t n P t n



  

p
 (37) 

Furthermore, the equations represented by (31) for each n {0, 1, 2, …, Q − 1} and p = 

tdiff can be written as 

     ,
diff difft tx x bm p  (38) 

with x given by (34) and  

 
      

( )

1 2 ... .

diff

diffdiff diff

t

tt t

low low high

x

t x t x t x



    

m

 (39) 

It follows from the lemma presented in the Appendix that ( )
difft xm  can be 

expressed in terms of M(x) as 

      ,
difft x x xm r M  (40) 

where the kth element of r(x) is given by 

        
1 2 1

1 2 11 ...

1 diff

t kdiff

t k diffdiff

t k

i i i

i i i t

y x y x y x
 

 



    

  , (41) 

with 

  ( )
qi low qy x t i x   . (42) 

Therefore, (38) and (40) imply 

      .
difftb x x x r M p  (43) 

 

Substituting (33) into this result yields  

 ( ) .
difftb x r b  (44) 

If the theorem is false, (44) must hold for all values of x in the set 
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  , 2 , , ,Q    (45) 

with Q > tdiff. The set contains Q distinct values of x because P and Q are relatively prime 

integers, so (44) must hold for more than tdiff distinct values of x if the theorem is false. It 

follows from (41) and (42) that the first element of r(x) is a polynomial in x of degree tdiff, 

and each of the other elements of r(x) is a polynomial in x of degree less than tdiff. Given 

that the first element of b is non-zero, this implies that 

 ( )
difftx br b  (46) 

is a polynomial of degree tdiff. Therefore, (46) has tdiff roots, so there can be at most tdiff 

distinct values of x that satisfy (44). This contradicts the supposition that the theorem is 

false. ■ 

The theorem presented above implies that it is not possible to quantize most values 

of α such that the quantization noise is DC-free and its running sum is immune to spurious 

tones up to order thigh − tlow. As explained below, this bound on performance is tight in 

the sense that quantizers exist with the property that the running sum of their quantization 

noise is immune to spurious tones up to order thigh − tlow − 1. The theorem implies that a 

quantizer with this property is optimal with respect to spurious tone immunity in the sense 

that the running sum of its quantization noise has the highest possible order of immunity 

to spurious tones. 

The successive requantizer provides an existence proof that quantizers exist which 

are optimal with respect to spurious tone immunity. As an example, the successive 

requantizer proposed in [6] and demonstrated in the fractional-N PLL integrated circuit 

presented in [7] is shown in Figs. 2 and 3. For this particular successive requantizer, α 

can be any multiple of 2−16 that is non-negative and less than 1. As shown in Fig. 2, the 
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successive requantizer multiples α by 216 and processes the integer-valued result via a 

cascade of 16 quantization blocks, each of which simultaneously quantizes by one bit and 

halves each sample of its input sequence. The implementation details of each quantization 

block are shown in Fig. 3. As proven in [6], y[n] is an integer-valued quantized version 

of α, its quantization noise is DC-free with thigh − tlow = 4, and the running sum of its 

quantization noise is immune to spurious tones up to order 3. 

The results in [6] are extended in [19] to show that for each positive integer Nt ≥ 

2 there exist multiple successive requantizers that have thigh − tlow = 2Nt and for which the 

running sum of their quantization noise is immune to spurious tones up to order 2Nt − 1. 

Therefore, each of these successive requantizers is an optimal quantizer with respect to 

spurious tone immunity in the sense that the running sum of its quantization noise has the 

highest possible order of immunity to spurious tones. 

While the theorem quantifies the relationship between the value of Q and the 

possible frequencies of the nonlinearity-induced spurious tones, it does not quantify the 

power of the nonlinearity-induced spurious tones. This is because the theorem is 

applicable to any quantizer with DC-free quantization noise, whereas the effect of varying 

Q on quantizer performance for a particular quantizer depends on the quantizer’s design. 

For example, in most delta-sigma modulators with DC-free quantization noise the 

nonlinearity-induced spurious tone powers are strongly dependent on Q, whereas for the 

successive requantizer described above computer simulations suggest that they are nearly 

independent of Q. Thus, the effect of varying Q on quantizer performance must be 

evaluated in a quantizer specific fashion. 
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IV. ALTERNATE METHOD OF OPTIMAL QUANTIZATION 

 

The successive requantizer is not the only type of quantizer that is optimal with 

respect to spurious tone immunity. An alternate method of quantization that is optimal 

with respect to spurious tone immunity is presented in this section. Unlike the successive 

requantizer, the idea upon which it is based follows directly from the proof of the theorem 

presented in Section III, so it gives some insight into the connection between the 

quantization process and the theorem. 

Suppose that a quantized sequence with mean  = P / Q, where P and Q are 

relatively prime integers, is to be generated, and that the running sum of the quantization 

noise is required to satisfy –Nt < t[n]  Nt over all n for some positive integer Nt. Thus, 

tlow = –Nt and thigh = Nt. By the analysis presented in the proof of the theorem up to (31), 

a necessary condition for t[n] to be immune to spurious tones up to order thigh – tlow – 1 = 

2Nt – 1 is that there exist Q probability distributions in m, P[m, u], where m {–Nt + 1, –

Nt + 2, …, Nt} and u {0, 1, 2, …, Q – 1}, which satisfy (31) for p = 1, 2, …, 2Nt – 1. It 

follows from (31) that these probability distributions must satisfy 

 

 

 

1

1

[ , ] ( 1)

[ , 1] ( 2) ,

t

t

t

t

N
p

m N

N
p

m N

P m i m i

P m i m i





 

 

 

   





 (47) 

for all i {0, 1, 2, …, Q – 2}, and p {1, 2, 3, …, 2Nt – 1}. To be probability distributions, 

they must also be non-negative and satisfy 
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1

[ , ] 1,
t

t

N

m N

P m u
 

  (48) 

for all u {0, 1, 2, …, Q – 1}. Any set of P[m, n] that satisfy (47) and (48), can be used 

to generate r[n] such that 

 [ ] { 1, 2,..., }t t tr n N N N      (49) 

for all n and 

 

1

0

1
lim [ , , ] [ , ]

R

R
k

k m u P m u
R







  (50) 

where 

 
1, if [ ] ,

[ , , ]
0, otherwise.

r kQ u m
k m u

 
 


 (51) 

This can be done either probabilistically or deterministically. For each n, once r[n] is 

known the running sum of the quantization noise, the quantization noise, and the 

quantizer output can be calculated using 

 [ ] [ ] ( 1)t n r n n    , (52) 

 [ ] [ ] [ 1]s n t n t n   , (53) 

and 

 [ ] [ ]y n s n  , (54) 

respectively. 

For instance, as done in the following examples, r[n] can be generated as a 

sequence of independent random variables with probability distributions 

 Pr( [ ] ) [ , mod ]r n m P m n Q   (55) 

for all m {–Nt + 1, –Nt + 2, …, Nt} and all integers n. It follows from (52) that [ ]pt n  is 

a sequence of independent random variables, and from (47) that the mean of [ ]pt n  is 
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independent of n for p {1, 2, 3, …, 2Nt – 1}. It follows that [ ]pt n  is white noise and is 

therefore free of spurious tones for each p {1, 2, 3, …, 2Nt – 1}. 

There are many sets of non-negative P[m, u] values that satisfy the system of 

equations specified by (47) and (48), because the system is under-constrained; it has (Q 

– 1)(2Nt – 1) + Q equations and 2NtQ unknowns. Therefore, additional constraints can be 

imposed on the P[m, u] values. For example, imposing additional constraints of the form 

 

 

 

2

1

2

1

[ , ] ( 1)

[ , ] ( 1)

t
t

t

t
t

t

N
N

m N

N
N

m N

P m i m i

P m u m u





 

 

 

  





 (56) 

for as many i, u {0, 1, 2, …, Q – 1} as possible has the effect of minimizing spurious 

tone power in 
2 [ ]tNt n . 

Two quantization noise running sum sequences, t1[n] and t2[n], based on the 

method described above are presented below and demonstrated by simulation to have 

optimal orders of spurious tone immunity. The magnitude bounds on t1[n] and t2[n] are 

Nt1 = 2 and Nt2 = 3, respectively, and the quantized sequences corresponding to t1[n] and 

t2[n] have means of 1 = 1/5 and 2 = 1/7, respectively. The P[m, u] values found in both 

cases are presented in matrices P1 and P2, defined by 

 ( , ) [ , 1]k tki j P N i j   P  (57) 

for i {1, 2, …, 2Ntk}, j {1, 2, …, Q}, and k = 1 or 2: 
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 
 
 
 

  
 
 
 
 
 

P , (58) 

 

2

132 66 30 12 4 1 5

16807 16807 16807 16807 16807 16807 343
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 
 
 
 
 
 
 
 
 

 (59) 

Figs. 4 and 5 show the estimated power spectra of 1 [ ]pt n  for p {1, 2, 3, 4} and 

2 [ ]qt n  for q {1, 2, …, 6}. The figures demonstrate that spurious tones in 1 [ ]pt n  are 

present only when p = 2Nt1 = 4 and that spurious tones in 2 [ ]qt n  are present only when q 

= 2Nt2 = 6. This supports the assertion that both examples represent optimal quantization 

in terms of spurious tone immunity. 

APPENDIX 

 

The following lemma is used in the proof of the theorem in Section III. 
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Lemma: Given arbitrary a1, a2, …, an, let V be the following nxn matrix: 

 

1 2 3

2 2 2 2

1 2 3

1 1 1 1

1 2 3

1 1 1 ... 1

...

... .

... ... ... ... ...

...

n

n

n n n n

n

a a a a

a a a a

a a a a   

 
 
 
 
 
 
 
 

V  (60) 

Then, the row vector 

  1 2 3 ...n n n n

n na a a av  (61) 

can be expressed as 

 ,n  v r V  (62) 

where r is a row vector whose elements are given by 
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 (63) 

Proof: 

Consider the polynomial 

 1 2( ) ( )( ) ( ),nP x x a x a x a      (64) 

which can be expanded as 

 

1 1 2

1 1 2

1 2

1 2

1 2

1 1

1 ...

( ) ...

( 1) ... .
n

n

n n n

i i i

i n i i n

n

i i i

i i i n

P x x x a x a a

a a a

 

    

    

   

 

 


 (65) 

It follows from (64) that ak is a root of P(x) for any k {1, 2, …, n}, i.e. 

 ( ) 0.kP a   (66) 

Additionally, it is seen from (65) that P(ak) can be expressed as 
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 ( ) ( )( ),n

k kP a a k  r V  (67) 

where (r∙V)(k) is the kth element of the vector r∙V. Therefore, (66) and (67) yield 

 ( )( ) ,n

kk a r V  (68) 

which proves the result.  ■ 
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Figure 1: Block diagram of a fractional-N PLL. 
 

 

1st
Quantization 

Block
216α

19 18

x2[n]

2nd
Quantization 

Blockx1[n]

16th
Quantization 

Block

34

x16[n]
y[n]=α+s[n]

Successive Requantizer

 

Figure 2: High-level diagram of an example successive requantizer. 
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Combinatorial Logic Truth Table:
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Figure 3: Details of each quantization block within the example successive requantizer. 
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CHAPTER 2 

A CLASS OF QUANTIZERS WITH DC-FREE QUANTIZATION NOISE AND 

OPTIMAL IMMUNITY TO NONLINEARITY-INDUCED SPURIOUS TONES 

 

Abstract—Fractional-N phase-locked loops (PLLs) typically use noise-shaping coarse 

quantizers to control their instantaneous output frequency. The resulting quantization 

noise and its running sum inevitably get distorted by non-ideal analog components within 

the PLL, which induces undesirable spurious tones in the PLL’s output signal. A recently 

proposed quantizer, called a successive requantizer, has been shown to mitigate this 

problem. Its quantization noise and the running sum of its quantization noise can be 

subjected to up to 5th-order and 3rd-order nonlinear distortion, respectively, without 

inducing spurious tones. This paper extends the previously published successive 

requantizer results to design successive requantizers whose quantization noise running 

sum sequences can attain such immunity to nonlinearity-induced spurious tones up to 

arbitrarily high orders of distortion. It also presents successive requantizers whose 
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quantization noise and quantization noise running sum sequences have optimally reduced 

susceptibility to nonlinearity-induced spurious tones. 

I. INTRODUCTION 

 

Fractional-N phase locked loops (PLLs) are widely used to synthesize local 

oscillator signals in communication systems [1], [2]. They typically use noise-shaping 

coarse quantizers, most commonly implemented as digital delta-sigma (ΔΣ) modulators, 

to quantize digital sequences that control their output frequency. Each quantized sequence 

can be viewed as the sum of the quantizer’s input sequence plus DC-free quantization 

noise [3]–[5].6 In practical PLLs, the quantization noise and its running sum inevitably 

are subjected to nonlinear distortion from analog circuit imperfections within the PLL. 

This has the undesirable effect of inducing spurious tones in the sequences, even when 

the undistorted sequences are free of spurious tones [6]–[12]. Spurious tones induced in 

this fashion are referred to as nonlinearity-induced spurious tones. 

Most communication applications require the power of spurious tones to be very 

low, as they ultimately appear in the PLL’s output signal and can be critically harmful to 

communication system performance. One way to minimize spurious tone power is to 

make the analog circuitry of the PLL very linear. Unfortunately, improving analog circuit 

linearity tends to increase power dissipation and integrated circuit area significantly. 

Alternatively, the coarse quantizer can be designed to ensure that the quantization noise 

                                                           
6 A sequence whose running sum is bounded for all time is said to be DC-free. 
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and its running sum remain free of spurious tones even when subjected to the type of 

nonlinear distortion commonly imposed within the PLL. 

A sequence x[n] is said to be immune to spurious tones up to order h if xp[n], for 

p = 1, 2,…, h, are free of spurious tones. A recently proposed quantizer, called a 

successive requantizer, was introduced in [6] and implemented as part of a phase-noise 

cancelling PLL in [7] to mitigate the power of nonlinearity-induced spurious tones. Its 

quantization noise and the running sum of its quantization noise are immune to spurious 

tones up to orders 5 and 3, respectively. 

This paper extends the previously published successive requantizer results to 

design successive requantizers with higher immunity to nonlinearly-induced spurious 

tones. It proves that the order up to which the quantization noise running sum of a 

successive requantizer is immune to spurious tones can be arbitrarily increased at the 

expense of increasing the range of values spanned by the quantization noise running sum. 

In a PLL, increasing this range tends to increase the quantization noise power, and, 

therefore, the phase noise. Hence, a tradeoff exists between enhanced immunity to 

nonlinearity-induced spurious tones and increased phase noise power. The paper also 

presents successive requantizers that are optimal in the sense that their quantization noise 

and quantization noise running sum are immune to spurious tones up to the maximum 

possible orders for the range of values spanned by the quantization noise running sum. 
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II. SUCCESSIVE REQUANTIZER BACKGROUND 

 

 Spectral Properties of Interest 

The periodogram of any sequence x[n] is defined as 

 

2
1

,

0

1
( ) [ ]

L
j n

x L

n

I x n e
L








   (69) 

for any positive integer L [13]. By definition, x[n] contains a tone at ωn  0 if Ix,L() is 

unbounded at ω = ωn as L   [6], [14]. In a PLL, the nonlinearities to which the 

quantization noise sequence s[n] and the quantization noise running sum sequence 

 
0

[ ] [ ]
n

k

t n s k


  (70) 

are subjected tend to be well-modeled as truncated memoryless power series [7]. 

Therefore, this work focuses on the properties of 
,

( )qs L
I   and 

,
( )pt L

I   for integer values 

of q and p up to some maximum values. 

 Successive Requantizer Architecture 

As shown in Fig. 6, a typical fractional-N PLL consists of a phase detector, a 

lowpass loop filter, a voltage controlled oscillator (VCO), a frequency divider, and a 

noise-shaping coarse quantizer that introduces DC-free quantization noise. Its purpose is 

to generate a periodic or frequency modulated output signal with an instantaneous 

frequency of (N + x[n])fref, where N is a positive integer, x[n] is a sequence of fractional 

values, and fref is the frequency of a reference oscillator. In most applications x[n] is 

constant, and in other applications it varies slowly. The PLL’s feedback loop adjusts the 
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output frequency to be fref times the average of the divider modulus N + xK[n]. If xK[n] 

could be set to x[n] for all n, the PLL would have the desired output frequency. However, 

practical frequency dividers can only count integer numbers of VCO cycles, so xK[n] must 

be integer-valued. Therefore, the coarse quantizer ensures that xK[n] is integer-valued but 

averages to x[n] in time. This results in the desired PLL output frequency, although the 

deviations of xK[n] from x[n] contribute an extra component to the PLL’s phase noise. As 

explained in the introduction, the coarse quantizer can be implemented as the successive 

requantizer presented in [6]. 

The high-level architecture of the successive requantizer is shown in Figs. 7 and 

8, wherein all node variables are integer-valued sequences in two’s complement format. 

The successive requantizer consists of K serially-connected quantization blocks, each of 

which quantizes its input by 1 bit, so the successive requantizer quantizes its input by K 

bits. Its input, 

 0[ ] 2 [ ]Kx n x n , (71) 

is a B-bit sequence which satisfies |x0[n]|  2B–2 for all n. The dth quantization block’s 

input, xd[n], and output, xd+1[n], are related through 

  1

1
[ ] [ ] [ ]

2
d d dx n x n s n   , (72) 

where sd[n] is a sequence generated by the quantization block’s sequence generator. The 

sequence generator (Fig. 8) generates sd[n] as a function of the parity sequence, od[n], 

which at each time, n, is 1 if sd[n] is odd and 0 if sd[n] is even. It chooses sd[n] to have 

the same parity as xd[n] for each n so that xd+1[n] is an integer-valued sequence, and to 

have a sufficiently small magnitude that the two’s complement representation of xd+1[n] 
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requires one less bit than that of xd[n]. Hence, the output of the successive requantizer is 

a two’s complement integer-valued sequence given by 

 0[ ] 2 [ ] [ ] [ ] [ ]K

Kx n x n s n x n s n    , (73) 

where 

 

1

0

[ ] 2 [ ]
K

d K

d

d

s n s n






  (74) 

is the quantization noise. The running sum of sd[n] is 

 
0

[ ] [ ]
n

d d

k

t n s k


 , (75) 

so (74) implies that the running sum of the quantization noise can be written as 

 

1

0

[ ] 2 [ ]
K

d K

d

d

t n t n






 . (76) 

The lowest integer bound on the magnitude of each td[n] sequence is denoted as Nt, so 

|td[n]| ≤ Nt for all d and n. Therefore, it follows from (76) that |t[n]| < Nt for all n. 

As shown in [6], if the sequence generator is designed such that the probability 

mass function (pmf) of sd[n] for each n depends only on od[n] and td[n – 1], then td[n] is 

a discrete-valued Markov random sequence conditioned on od[n]. Hence, for any parity 

sequence, od[n], the evolution of td[n] from times u to u + m can be represented by an m-

step (2Nt + 1)(2Nt + 1) state transition matrix, { [ ]}do nA [u, m], where the element on the 

ith row and jth column is 

 
 { [ ]}[ , ] ( , ) Pr( [ ] ( ) | [ ] ( ),

[ ]; 1, 2,..., )

do n d d

d

u m i j t u m j t u i

o n n u u u m

   

   

A t t
 (77) 

and 

 ( 1 ... )T

t t tN N N  t . (78) 
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It follows from the properties of state transition matrices that for m > 1 { [ ]}do nA [u, m] can 

be expanded as a product of one-step state transition matrices as 

 
{ [ ]}

{ [ ]} { [ ]} { [ ]}

[ , ]

[ ,1] [ 1,1] [ 1,1].

d

d d d

o n

o n o n o n

u m

u u u m    

A

A A A
 (79) 

As is also shown in [6], { [ ]}do nA [v – 1, 1] at each time index v is equal to one of 

two one-step state transition matrices, denoted as Ae and Ao: when od[v] = 0, { [ ]}do nA [v – 

1, 1] = Ae, and when od[v] = 1, { [ ]}do nA [v – 1, 1] = Ao. It follows from (75) that 

 [ ] [ ] [ 1]d d ds n t n t n   , (80) 

so the Ae and Ao matrices describe the probabilistic behavior of each sd[n] sequence and 

determine the orders up to which s[n] and t[n] are immune to spurious tones. In any given 

successive requantizer they completely specify the required behavior of the combinatorial 

logic block and, conversely, can be deduced from the combinatorial logic block. 

 Each td[n] sequence satisfies |td[n]|  Nt for all n, so it follows from (80) that each 

sd[n] sequence satisfies |sd[n]|  2Nt for all n. Therefore, (74) implies that |s[n]| < 2Nt for 

all n, and that the output of the successive requantizer, given by (73), satisfies |xK[n]|  

2Nt for all n. Since xK[n] is represented by a (B – K)-bit sequence, 

 2log 4 1tB K N  (81) 

must hold. 

Figs. 7 and 9 imply that the dth quantization block of the successive requantizer 

contains combinatorial logic that depends on the Ae and Ao matrices, a pseudo-random 

number generator, a (B – d)-bit adder, a 2log 4 1tN -bit adder, and 2log 4 1tN  flip 
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flops, where x  denotes the smallest integer greater than x. With K blocks, where K is 

usually close to B in magnitude, the computational complexity of the successive 

requantizer is a logarithmic function of Nt and a quadratic function of B. As an example, 

the implementation of the successive requantizer in 0.18 m 1P6M CMOS technology in 

[7], for which Nt = 3 and K = 19, and the related pseudo-random number generator, 

requires 1049 gates, 114 flip flops, and 232 1-bit adders, and occupies an area of 0.142 

mm2. 

 Example Successive Requantizers 

If the combinatorial logic implements the truth table shown in Fig. 9(a), then Nt = 

1, 

 

1 0 0 0 1 0

0 1 0 ,  and 1/ 2 0 1/ 2

0 0 1 0 1 0

   
   

    
   
   

e oA A . (82) 

It can be verified from the results presented in [15] that in this case t[n] and s[n] are free 

of spurious tones. However, the results presented in [14] and simulations support the 

conclusion that spurious tones are generated for some successive requantizer input 

sequences when t[n] or s[n] are subjected to second-order nonlinear distortion. Therefore, 

t[n] and s[n] are immune to spurious tones only up to order 1.  

As proven in [7], if the combinatorial logic implements the truth table shown in 

Fig. 9(b), then Nt = 2, 
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1/ 4 0 3/ 4 0 0

0 5/8 0 3/8 0

, and 1/8 0 3/ 4 0 1/8

0 3/8 0 5/8 0

0 0 3/ 4 0 1/ 4

0 3/ 4 0 1/ 4 0

3/16 0 3/ 4 0 1/16

.0 1/ 2 0 1/ 2 0

1/16 0 3/ 4 0 3/16

0 1/ 4 0 3/ 4 0

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

e

o

A

A

 (83) 

In this case it follows from the results in [6] and [14] that t[n] and s[n] are immune to 

spurious tones up to orders 3 and 5, respectively. 

 Additional Successive Requantizer Properties 

The Ae matrices in the examples presented above have the property that Ae(i, j) = 

0 whenever i + j is odd, and Ao(i, j) = 0 whenever i + j is even; such matrices are referred 

to as even-entries matrices and odd-entries matrices, respectively. As is evident in the 

example Ae and Ao matrices presented above, the row vectors of both even-entries and 

odd-entries matrices alternate between two types of vectors: vectors whose odd-indexed 

elements are zero, referred to as even-entries vectors, and vectors whose even-indexed 

elements are zero, referred to as odd-entries vectors. For example, an even-entries vector 

ve is such that ve(i) = 0 whenever i is odd.   

These properties of Ae and Ao hold in general as a result of (80). For any n at 

which od[n] = 0, sd[n] is even, so (80) implies that the probability that td[n] and td[n−1] 

have different parities is zero. Similarly, for any n at which od[n] = 1, sd[n] is odd, so the 

probability that td[n] and td[n−1] have the same parity is zero. This implies that the 
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successive requantizer is such that Ae matrices are always even-entries matrices, and Ao 

matrices are always odd-entries matrices.  

Not only are the Ae and Ao matrices for any given successive requantizer even-

entries and odd-entries (2Nt + 1)(2Nt + 1) stochastic matrices, respectively, as described 

above, but the converse is also true: any even-entries and odd-entries (2Nt + 1)(2Nt + 1) 

stochastic matrices can be used as the Ae and Ao matrices, respectively, with which to 

design a successive requantizer. This is because any such matrices provide a complete 

description of the pmf of sd[n] conditioned on od[n] and td[n – 1] at each n, and any chosen 

pmf can be realized with arbitrarily high accuracy using combinatorial logic elements and 

a pseudo-random number generator. 

It is convenient to define a (2Nt + 1)(4Nt + 1) stochastic matrix that describes the 

evolution of sd[n] from times u to u + m, with elements given by 

 
 { [ ]}[ , ] ( , ) Pr( [ ] ( ) | [ ] ( ),

[ ]; 1, 2,..., )

do n d d

d

u m i j s u m j t u i

o n n u u u m

   

   

S s t
 (84) 

where 

 (2 2 1 ... 2 )T

t t tN N Ns    . (85) 

As shown in [6], the dependence of the pmf of sd[n] on od[n] implies that, at each time v, 

{ [ ]}do nS [v – 1, 1] is equal to one of two matrices, denoted as Se and So. When od[v] = 0, 

{ [ ]}do nS [v – 1, 1] = Se, and when od[v] = 1, { [ ]}do nS [v – 1, 1] = So. With (77) and (84) this 

implies that for m > 1 

 
  

{ [ ]}

{ [ ]}

[ , ]

[ , 1] 1 [ ] [ ] .

d

d

o n

o n d d

u m

u m o u m o u m     e o

S

A S S
 (86) 
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Equation (84) implies that each nonzero element in Se and So is equal to an element 

in Ae and Ao, respectively. Specifically, for i, j, and k such that s(k) = t(j) – t(i), the 

element in the ith row and kth column of Se is equal to that in the ith row and jth column 

of Ae, and the element in the ith row and kth column of So is equal to that in the ith row 

and jth column of Ao. Hence, Se and So can be deduced from Ae and Ao as 

 

( , )

( , 2 1),  if 2 2 4 2 ,       

0,                              if  2 1 , 4 3    

t t t

t t

i j

i j i N N i j N i

j N i j N i



        


     

x

x

S

A  (87) 

for x = e or o. 

III. OPTIMAL QUANTIZATION IN TERMS OF IMMUNITY TO 

SPURIOUS TONES 

 

 Theory on Optimal Quantization 

The one-step state transition matrices, Ae and Ao, are said to ensure order-p t[n]-

convergence if there is a constant bp such that 

 ( )

{ [ ]} 2 1lim [ , ]
d t

p

o n p N
m

u m b 


A t 1  (88) 

for all parity sequences {od[n], d = 0, 1,…, K – 1} and any integer u, where 

     ( ) 1 ...
T

p pp p

t t tN N N  t , (89) 
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2 1tN 1  is a length-(2Nt + 1) vector whose elements are all 1, and the convergence of the 

vector sequence in (88) is exponential.7 Similarly, they are said to ensure order-q s[n]-

convergence if there is a constant cq such that 

 ( )

{ [ ]} 2 1lim [ , ]
d t

q

o n q N
m

u m c 


S s 1  (90) 

for all parity sequences {od[n], d = 0, 1,…, K – 1} and any integer u, where 

       ( ) 2 2 1 ... 2
T

q q qq

t t tN N N  s , (91) 

and the convergence of the vector sequence in (90) is exponential. 

Theorems 1 and 2 state sufficient conditions for t[n] and s[n], respectively, to be 

immune to spurious tones up to any given order. 

Theorem 1: Suppose that Ae and Ao ensure order-p t[n]-convergence for all 

positive integers p  ht, where ht is a positive integer. Then, t[n] is immune to spurious 

tones up to order ht. 

Proof: The proof is identical to that of Theorem 1 in [6] except with equation (29) 

in [6] replaced by 

   2 1 1 2| | min{ , }

1 2 1 2[ ] [ ] p

n n n np p

t
E t n t n C D D     (92) 

for some positive constants D1 and D2 and a constant 0 <  < 1, (31) in [6] replaced by 

                                                           
7 A length-m vector sequence b[0], b[1], … converges exponentially to a vector b if there exist constants 

C  0 and 0 <  < 1 such that |b[n] – b|  Cn1m for all integers n  0. 
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 

   

1 2 1 2

1 2

1 2

1 2 1 2

1 2 1 2 2 1

1

1 1
min{ , }

2,1 1 2

0 0

1 1
1 2

0 0 0 1 0 1

1 1 1
1

2

0 0 0

1 2 1 2

1
| |

2 2

1 1
2 2 ,

1 1

L L
n n n n

n n
n n

L L
n n n n

n n n n L n n L

L L L
n n

n n n

L

J D D
L

D D

L L

D
D

L

D D D D

 

  

 



 

 


 


 


         

  

  

 

 
   

 

   
    

   


   

 

 

  

  

 (93) 

and Lemma 1 in [6] replaced by Lemma 1 in the appendix of this paper. ■ 

Theorem 2: Suppose that Ae and Ao ensure order-q s[n]-convergence for all 

positive integers q  hs, where hs is a positive integer. Then, s[n] is immune to spurious 

tones up to order hs. 

Proof: The proof is identical to that of Theorem 2 in [6] except with p replaced 

by q, equation (36) in [6] replaced by 

   2 1 1 2| | min{ , }

1 2 1 2[ ] [ ] q

n n n nq q

s
E s n s n C E E     (94) 

for some positive constants E1 and E2 and a constant 0 < β < 1, and Lemma 2 in [6] 

replaced by Lemma 2 in the appendix of this paper. ■ 

Theorem 3 provides sufficient conditions on Ae and Ao for t[n] to be immune to 

spurious tones up to order 2Nt – 1. 

Theorem 3: Let Ae and Ao be (2Nt + 1)(2Nt + 1) matrices with elements that 

satisfy 

 
  2 1

21
, ,  if  is even,

( , ) 12

0,                                              if  is odd,  

t

t T

N

N
i j i j

i j j

i j



  
   

   
 

e

Q PQ
A  (95) 
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  2 1

0,                                             if  is even,

( , ) 21
, ,  if  is odd, 

12 t

t T

N

i j

i j N
i j i j

j




  
    

oA
Q PQ

 (96) 

where Nt is any integer greater than 1, Q is the Nt(2Nt + 1) matrix 

 

1 0 ... 0 0 0 ... 0 1

0 1 ... 0 0 0 ... 1 0

... ... ... ... ... ... ... ... ...

0 0 ... 1 0 1 ... 0 0

 
 

 
 
 

 

Q  (97) 

and P is any NtNt matrix whose elements satisfy 

 
2 1

21
| ( , ) |

12 t

t

N

N
i j

j

 
  

 
P  (98) 

and for each row i 

 
2 1

21
| ( , ) |   

12 t

t

N

N
i j

j

 
  

 
P  (99) 

for at least one j {2, 4,…, Nt} if Nt is even and one j {1, 3,…, Nt} if Nt is odd. Then, 

t[n] is immune to spurious tones up to order 2Nt – 1. 

 Note that the Ae and Ao matrices given by (83) satisfy the conditions of Theorem 

3. Specifically, (95) and (96) with 

 
1/8 1/ 4

1/16 1/8

 
  
 

P  (100) 

yield the Ae and Ao matrices given by (83). 

Proof of Theorem 3: It is first shown that Ae and Ao are valid one-step state 

transition matrices for the successive requantizer, i.e. that they are stochastic even-entries 

and odd-entries matrices, respectively. These results are then used to show that Theorem 

1 holds for ht = 2Nt – 1, which completes the proof. 
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By definition, Ae and Ao are even-entries and odd-entries matrices, respectively. 

To show that they are stochastic matrices, it is sufficient to show that all their elements 

are nonnegative and that the sum of the elements on each row of each matrix is 1. 

It follows from (95) and (96) that a sufficient condition for the elements of Ae and 

Ao to be nonnegative is 

   2 1

21
( , )

12 t

tT

N

N
i j

j

 
  

 
Q PQ  (101) 

for all i, j {1, 2,…, 2Nt + 1}. The matrix Q can be written as 

  , ,
t t tN N N Q I 0 J , (102) 

where 
tNI  is the NtNt identity matrix, 

tN0  is a length-Nt vector whose elements are all 

0, and 
tNJ  is the NtNt exchange matrix, i.e. the NtNt matrix for which all the elements 

in the anti-diagonal are 1 and all other elements are 0. Thus, 

 0

t t

t t

t t t t

N N

T T T

N N

N N N N

 
 

  
   

P 0 PJ

Q PQ 0 0

J P 0 J PJ

. (103) 

The definition of exchange matrices implies that 

  ( , ) ( , 1 )
tN ti j i N j  PJ P , (104) 

  ( , ) ( 1 , ),   and
tN ti j N i j  J P P  (105) 

  ( , ) ( 1 , 1 )
t tN N t ti j N i N j    J PJ P  (106) 

for all i, j {1, 2,…, Nt}. Combining (105) and (106) yields 

    ( , ) ( , 1 )
t t tN N N ti j i N j  J PJ J P , (107) 

which with (103) and (104) implies 

    ( , ) ( ,2 2 )T T

ti j i N j   Q PQ Q PQ  (108) 
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for all i, j {1, 2,…, 2Nt + 1}. It follows from (98), (103), and (105) that (101) is satisfied 

for all j {1, 2,…, Nt } and i {1, 2,…, 2Nt + 1}. This, with (108), implies that 

 

  

2 1

2 1

,

21
, if 1 1,

12

21
, if 2 2 1

2 12

t

t

T

t

tN

t

t tN

t

i j

N
j N

j

N
N j N

N j







  
    

 


         

Q PQ

 (109) 

for all i {1, 2,…, 2Nt + 1}. Binomial coefficients have the property that 

 
22

2 11

tt

t

NN

N jj

  
   

    
 (110) 

for all j {1, 2,…, 2Nt + 1}, so (109) is equivalent to (101) for all i, j {1, 2,…, 2Nt + 

1}. This completes the proof that the elements of Ae and Ao are nonnegative. 

To show that Ae and Ao are stochastic matrices, it remains to show that the sum 

of the elements in each of their rows is 1. It follows from (95) and (96) that the sum of 

the elements on the ith row of Ae or Ao can either be written as 

  
2 1 2 1

2 1
1,  odd 1,  odd

21
( , )  or

12

t t

t

N N
t T

N
j j j j

N
i j

j

 


 

 
 

 
  Q PQ  (111) 

  
2 2

2 1
2,  even 2,  even

21
( , )

12

t t

t

N N
t T

N
j j j j

N
i j

j
 

 
 

 
  Q PQ . (112) 

It follows from (108) that the second sum in each of (111) and (112) is 0. The first sums 

in (111) and (112) can be rewritten as 

 
2 1 2 1

2
1 1

2 21
( 1)   and

1 12

t t

t

N N
t t j

N
j j

N N

j j

 

 

    
     

     
   (113) 

 
2 1 2 1

2
1 1

2 21
( 1)

1 12

t t

t

N N
t t j

N
j j

N N

j j

 

 

    
     

     
  , (114) 
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respectively. The Binomial Theorem implies that the first and second sums in each of 

(113) and (114) equal 
2(1 1) tN  and 

2(1 1) tN , respectively. Thus, (113) and (114) each 

evaluate to 1, so the sum of the elements on each row of Ae and Ao is 1. 

To complete the proof of the theorem it is sufficient to prove that Ae and Ao ensure 

order-p t[n]-convergence for all positive integers p  2Nt – 1 so that Theorem 1 can be 

applied. This is done in two parts. First, it is shown that Ae and Ao are centrosymmetric8, 

that all their even-entries row vectors have at least 1 + / 2
t

N    nonzero entries, and that 

all their odd-entries row vectors have at least 1 +  1 / 2tN     nonzero entries.9  With 

Lemma 3 in the appendix, this shows that Ae and Ao ensure order-p t[n]-convergence for 

all odd positive integers p  2Nt – 1. Second, it is shown that for each even positive integer 

p  2Nt – 1 

 
( ) ( )

2 1t

p p

p Nb  e oA t A t 1  (115) 

for some constant bp. With Lemma 4 in the appendix, this shows that Ae and Ao ensure 

order-p t[n]-convergence for all even positive integers p  2Nt – 1. 

 Combining (104) and (105) yields 

    ( , ) ( 1 , 1 )
t tN N t ti j N i N j    PJ J P  (116) 

for all i, j {1, 2,…, Nt}. This, with (103) and (106), implies that 

    ( , ) (2 2 ,2 2 )T T

t ti j N i N j    Q PQ Q PQ  (117) 

for all i, j {1, 2,…, 2Nt + 1}. It follows from (110) and (117) that 

                                                           
8 An N×M matrix A is said to be centrosymmetric if A(i, j) = A(N + 1 – i, M + 1 – j) for all i {1, 2, …, N} 

and j {1, 2, …, M}. 
9 For any number x, x    denotes the largest integer not greater than x. 
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 

 

2 1 2 1

221 1
( , )

(2 2 ) 112 2

(2 2 ,2 2 )

t t

tt T

N N

t

T

t t

NN
i j

N jj

N i N j

 

  
    

     

    

Q PQ

Q PQ

 (118) 

for all i, j {1, 2, …, 2Nt + 1}. This, with (95) and (96), implies that Ae and Ao are 

centrosymmetric. 

 Let vo be any odd-entries row vector of either Ae or Ao. It follows from (95) and 

(96) that there is a value of i {1, 2,…, 2Nt + 1} such that the elements of vo can be 

written as 

   2 1

( )

21
, , if 1, 3, , or 2 1,

12

0, if 2, 4, , or 2 .

t

t T

tN

t

j

N
i j j N

j

j N





  
    

  
 

ov

Q PQ  (119) 

It follows from (110) that 

 
2 1 2 1

2 21 1

1 12 2t t

t t

N N

t t

N N

N k N k 

   
   

      
 (120) 

and from (108) that 

    ( , 1 ) ( , 1 )T T

t ti N k i N k     Q PQ Q PQ  (121) 

for each k {1, 2,…, Nt}. Therefore, it is not possible for (119) to be zero for both j = Nt 

+ 1 − k and j = Nt + 1 + k for any k {1, 3,…, Nt } if Nt is odd or any k {2, 4,…, Nt} if 

Nt is even. As indicated by (103), (QTPQ)(i, Nt + 1) = 0, so if Nt is even then vo(Nt + 1) is 

nonzero. Equations (103), (105), and (121) with the theorem’s stated conditions under 

which (99) holds imply that if Nt is odd there is a value of k {1, 3, …, Nt} for which 

(119) is nonzero for both j = Nt + 1 − k and j = Nt + 1 + k. These results imply that vo has 

at least 1 + Nt / 2 nonzero elements if Nt is even and at least 1 + (Nt + 1) / 2 nonzero 

elements if Nt is odd, or, equivalently, that vo has at least 1 +  1 / 2tN     regardless of 
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whether Nt is even or odd. Almost identical reasoning leads to the conclusion that each 

even-entries row vector of either Ae or Ao has at least 1 + / 2
t

N    nonzero entries. 

Suppose p is even. It follows from (78), (95), and (96) that the ith element of Aet(p) 

or Aot(p) can be written as 

  
2

2 1
2,  even

21
( 1 ) ( , )

12

t

t

N
tp T

t N
j j

N
N j i j

j


  
     

  
 Q PQ  (122) 

or 

  
2 1

2 1
1,  odd

21
( 1 ) ( , )

12

t

t

N
tp T

t N
j j

N
N j i j

j






  
     

  
 Q PQ . (123) 

Given that 

    1 1 (2 2 )
p p

t t tN j N N j        (124) 

for all j {1, 2,…, 2Nt + 1}, (122) and (123) can be rewritten as 

 

 

   

 

2

2 1
2,  even

2,  even

21
1

12

1 ( , )

( ,2 2 )

t

t

t

N
p t

tN
j j

N
p T

t

j j

T

t

N
N j

j

N j i j

i N j






 
   

 

  


  




 Q PQ

Q PQ

 (125) 

and 

 

 

   

 

2 1

2 1
1,  odd

1,  odd

21
1

12

1 ( , )

( ,2 2 ) ,

t

t

t

N
p t

tN
j j

N
p T

t

j j

T

t

N
N j

j

N j i j

i N j








 
   

 

  


  




 Q PQ

Q PQ

 (126) 

respectively. It follows from (108) that the second sums in (125) and (126) equal 0. 

Therefore, subtracting (125) from (126) yields 
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  
2 1

2 1
1

21
1 ( 1)

12

t

t

N
p tj

tN
j

N
N j

j






 
    

 
 . (127) 

The expression in (127) is 0 for each p {2, 4,…, 2Nt – 2} [16]. Thus, for each such p, 

(122) and (123) are equal, so there exists a value bp such that (115) holds. ■ 

Theorem 4 proves that Theorem 2 cannot hold for hs = 4Nt – 2, although as shown 

by example in the next section it can hold for hs = 4Nt – 3. 

Theorem 4: There do not exist Ae and Ao matrices such that Theorem 2 holds for 

hs = 4Nt – 2. 

Proof: The proof is by contradiction. Suppose Theorem 2 holds for hs = 4Nt – 2. 

Let u be any integer and od[n] be a parity sequence that satisfies 

 
0,  if  is even,

[ ]
1,  if  is odd  

d

m
o u m

m


  


 (128) 

for all positive integers m. By Lemma 5, { [ ]}do nA [u, m] is either an even-entries or an odd-

entries matrix for each positive integer m, so its row vectors alternate between even-

entries and odd-entries vectors. For each m, let ve[m] be an even-entries row vector in 

{ [ ]}do nA [u, m]. It is first shown that 

  
4

2

lim [2 ] [2 1] ( ) (2 1 ) 0
tN

q

t
m

j

m m j N j




      e o e ev S v S  (129) 

for all q {0, 1,…, 4Nt – 2}. This is then used to prove that 

   4 1lim [2 ] [2 1]
t

T

N
m

m m 


  e o e ev S v S 0 . (130) 

Finally, it is shown that 

    lim [2 ] [2 1] 0 1 0 1 ... 0 1
T

m
m m


   e o e ev S v S . (131) 

However, (130) implies that 

    lim [2 ] [2 1] 0 1 0 1 ... 0 0
T

m
m m


   e o e ev S v S , (132) 
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which contradicts (131), so Theorem 2 must not hold for hs = 4Nt – 2. 

By assumption, Ae and Ao ensure order-q s[n]-convergence for each positive 

integer q  4Nt – 2. With (86), this implies that, for each such q, 

 
   ( )

{ [ ]}

2 1

lim [ , 1] 1 [ ] [ ]
d

t

q

o n d d
m

q N

u m o u m o u m

c





    



e oA S S s

1
 (133) 

for some constant cq. Given (128), (133) implies that 

 ( )

{ [ ]} 2 1lim [ ,2 1]   and
d t

q

o n q N
m

u m c 


 eA S s 1  (134) 

 ( )

{ [ ]} 2 1lim [ ,2 ]
d t

q

o n q N
m

u m c 


oA S s 1 , (135) 

so 

 ( )lim [2 1]   andq

q
m

m c


 e ev S s  (136) 

 ( )lim [2 ] q

q
m

m c


e ov S s . (137) 

Therefore, for q {1, 2,…, 4Nt – 2}, 

   ( )lim [2 ] [2 1] 0q

m
m m


  e o e ev S v S s , (138) 

or, equivalently, 

  
4 1

( )

1

lim [2 ] [2 1] ( ) ( ) 0
tN

q

m
j

m m j j





    e o e ev S v S s . (139) 

Since Se and So are stochastic matrices, 

 4 1 4 1 2 1t t tN N N   e oS 1 S 1 1 . (140) 

Given that { [ ]}[ , ]
do n u mA  is a stochastic matrix for each m, this implies that 

 
{ [ ]} 4 1 { [ ]} 4 1

{ [ ]} 2 1 2 1

lim [ , ] lim [ , ]

lim [ , ] ,

d t d t

d t t

o n N o n N
m m

o n N N
m

u m u m

u m

 
 

 




 

e oA S 1 A S 1

A 1 1
 (141) 

so (134) and (135) and, consequently, (139) also hold for q = 0. 

Note that if j = 1, (87) implies that Se(i, j) = So(i, j) = 0 for all i except i = 2Nt + 1, 

and if j = 4Nt + 1, (87) implies that Se(i, j) = So(i, j) = 0 for all i except i = 1. Additionally, 



51 

 

 

 

since, for each m, ve[m] is an even-entries vector, (ve[m])(1) = (ve[m])(2Nt + 1) = 0. Thus, 

for j {1, 4Nt + 1} and each m, 

  [2 ] [2 1] ( ) 0m m j  e o e ev S v S . (142) 

This implies that (139) can be rewritten as 

  
4

( )

2

lim [2 ] [2 1] ( ) ( ) 0
tN

q

m
j

m m j j




    e o e ev S v S s . (143) 

This, with (85), implies that (129) holds for q {0, 1,…, 4Nt – 2}. 

Equation (129) for all q {0, 1,…, 4Nt – 2} can be written in matrix form as 

 
4 1lim [ ]

t

T

N
m

m 


 x M 0 , (144) 

where x[m] is the length-(4Nt – 1) subvector of (ve[2m]So – ve[2m – 1]Se) formed by rows 

2 through 4Nt, i.e. 

    [ ] ( ) [2 ] [2 1] ( 1)m j m m j   e o e ex v S v S  (145) 

 for 1  j  4Nt – 1, and M is the (4Nt – 1)(4Nt – 1) matrix 

 

4 21 2

4 21 2

4 21 2

4 21 2

1 (2 1) (2 1) ... (2 1)

1 (2 2) (2 2) ... (2 2)

1 (2 3) (2 3) ... (2 3)

... ... ... ... ...

1 ( 2 1) ( 2 1) ... ( 2 1)

t

t

t

t

N

t t t

N

t t t

N

t t t

N

t t t

N N N

N N N

N N N

N N N









   
 

   
   
 
 
       

. (146) 

Matrix M is a square Vandermonde matrix [17]. No two elements in the second column 

of M are equal to each other, so it follows from the properties of Vandermonde matrices 

that the determinant of M is nonzero, which implies that M is invertible. Right 

multiplying both sides of (144) by the inverse of M yields 

 
4 1lim [ ]

t

T

N
m

m 


x 0 . (147) 

Since (142) holds for j {1, 4Nt + 1}, (147) implies that (130) holds. 
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Given that Ae is an even-entries matrix, Ae(i, j + i – 2Nt – 1) = 0 whenever j is 

even, because i + (j + i – 2Nt – 1) is odd. Therefore, (87) implies that Se(i, j) = 0 whenever 

j is even. In particular, it follows that the sum of the even-indexed entries in each row of 

Se is 0. Given that Ao is an odd-entries matrix, Ao(i, j + i – 2Nt – 1) = 0 whenever j is odd, 

because i + (j + i – 2Nt – 1) is even. Therefore, (87) implies that So(i, j) = 0 whenever j is 

odd, so the even-indexed entries in each row of So include all of the row’s non-zero 

entries. It follows that the sum of these entries must be unity because So is a stochastic 

matrix. These results imply that 

 
   

2 1

lim [2 ] [2 1] 0 1 0 1 ... 0

lim [2 ] .
t

T

m

N
m

m m

m






  



e o e e

e

v S v S

v 1
 (148) 

This is equivalent to (131), because ve[m] is a row vector of a stochastic matrix.  ■ 

 Optimal Successive Requantizers 

Given any quantizer, let ot and os denote the orders up to which t[n] and s[n], 

respectively, are immune to spurious tones, and let Nt denote the smallest integer for 

which |t[n]|  Nt over all n. The design strategy for the successive requantizer presented 

in this paper is to find Ae and Ao matrices that maximize the values of ot and os. 

The results of [14] prove that ot  2Nt – 1 regardless of the quantizer used. 

Theorem 3 shows that for a successive requantizer, there exist Ae and Ao matrices that 

ensure ot = 2Nt – 1. Thus, successive requantizers are optimal quantizers in terms of the 

order up to which t[n] can be immune to spurious tones. 

In this paper, Ae and Ao matrices for Nt = 2, 3, 4, and 5 are presented for which ot 

= 2Nt – 1 and which satisfy Theorem 2 for hs = 4Nt – 3, which implies that os = 4Nt – 3. 
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As proven by Theorem 4, 4Nt – 3 is the maximum value of hs for which Theorem 2 can 

hold. Thus, the matrices presented are optimal in the sense that ot and hs are as large as 

possible for the corresponding values of Nt. 

The procedure to find the Ae and Ao matrices is to use (95)–(97) and find the 

elements of matrix P by solving the system of equations 

 

( ) ( ) ( )

( )

2 1,t

q q q

q

q Nc 

 

 

e e e o o e

o o

A S s A S s A S s

A S s 1
 (149) 

with Se and So given by (87), for all even positive integers q  4Nt – 4 and any constants 

c2, c4,…, 4 4tNc  , following the constraints specified in Theorem 3. By Theorem 3, these 

Ae and Ao matrices guarantee that ot = 2Nt – 1. As shown in the proof of Theorem 3, Ae 

and Ao satisfy the conditions of Lemma 3 in the appendix, so Ae and Ao ensure order-q 

s[n]-convergence for all odd q. Additionally, since the system of equations specified by 

(149) holds, it follows from Lemma 6 in the appendix that Ae and Ao ensure order-q s[n]-

convergence for all even positive integers q  4Nt – 4. Thus, hs = 4Nt – 3. 

For each Nt, the system of equations specified by (149) was solved using Matlab’s 

solve() function [18]. For Nt = 2, the Ae and Ao matrices found are those presented in [6] 

and given by (83). For each Nt = 3, 4, and 5, 
tNP , i.e., the P matrix from which Ae and 

Ao can be constructed using (95)–(97), is 
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 3

1 1 1

32 8 32

1 1 5

48 12 48

3 1 5

160 24 96

 
 
 
 
 
 
 
 
 

P , (150) 

 
4

1 3 63 21

128 64 400 64

3 9 7 63

512 256 128 640
,   and

7 1 7 1

3200 64 128 16

3 3 1 7

512 80 32 256

 
 
 
 
 

  
 
 
 
 
 

P  (151) 

 5

1 1 355 3 458

512 64 6083 640 1193

1 1 51 39 337

640 80 1000 1600 2122

67 37 380 177 139

64000 3200 7179 8053 6736

3 67 101 3 51

64000 6400 7578 80 1280

1 67 31 41 104

512 6400 2560 1600 8781

 
  

 
 
 
 
 
 
 
 
 
 
 

 

P , (152) 

respectively. 

The immunity to spurious tones achieved for each Nt suggests that os can be 

increased by increasing Nt, but this result has yet to be proven theoretically for arbitrary 

values of Nt. 

A quantization noise sequence, s[n], was generated by simulating a successive 

requantizer with Nt = 3, wherein Ae and Ao are constructed from the P3 matrix in (150). 

Fig. 10 shows estimated power spectra of s[n] before and after the application of 8th and 

9th order distortion, and Fig. 11 shows estimated power spectra of the running sum of the 
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quantization noise t[n] before and after the application of 5th and 6th order distortion. As 

expected, the power spectra of sp[n] for p = 1, 8, and 9 and tp[n] for p = 1 and 5 show no 

visible spurious tones, as os = 4Nt – 3 = 9 and ot = 2Nt – 1 = 5, while that of t6[n] shows 

spurious tones. Similarly, a quantization noise sequence, s[n], was generated by 

simulating a successive requantizer with Nt = 4, wherein Ae and Ao are constructed from 

the P4 matrix in (151). Fig. 12 shows estimated power spectra of s[n] before and after the 

application of 12th and 13th order distortion, and Fig. 13 shows estimated power spectra 

of the running sum of the quantization noise t[n] before and after the application of 7th 

and 8th order distortion. As expected, the power spectra of sp[n] for p = 1, 12, and 13 and 

tp[n] for p = 1 and 7 show no visible spurious tones, as os = 4Nt – 3 = 13 and ot = 2Nt – 1 

= 7, while that of t8[n] shows spurious tones. Simulations of successive requantizers for 

which Nt = 5, with Ae and Ao as constructed from the P5 matrix in (152) can also be 

performed to corroborate that, for this case, os = 4Nt – 3 and ot = 2Nt – 1 as well. 

APPENDIX 

 

Lemma 1: Suppose the conditions of Theorem 1 are satisfied. Then, for each p  

ht and each set of parity sequences {od[n], d = 0, 1,…, K – 1}, there exists a constant pt
C

, positive constants D1, D2, and a constant 0 < α < 1 such that for integers n1  n2 (92) 

holds. 

Proof: Without loss of generality, let n2 > n1. It follows from (76) that tp[n1]t
p[n2] 

can be expressed as 
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1 2

1 2

1 2

1 2

1 2

1 2

1 1 1
2

1 1 1

0 0 0

1 1 1

2 2 2

0 0 0

2 2 [ ] 2 [ ] ... 2 [ ]

2 [ ] 2 [ ] ... 2 [ ] ,

p

p

p

p

p

p

K K K
cc cpK

c c c

c c c

K K K
dd d

d d d

d d d

t n t n t n

t n t n t n

  


  

  

  

   
     

    

   
      
    

  

  

 (153) 

so E{tp[n1]t
p[n2]} can be written as 

 

1 1

1 1

1 1 1 1
... ...2

0 0 0 0

2 1

1

2 ... ... 2

[ ] [ ] .

p p

p p

i i

K K K K
c c d dpK

c c d d

p

d c

i

E t n t n

   
    

   



 
  

 

  



 (154) 

The above expression is a linear combination of terms of the form 

 
1

1 2 1 2

0

( , ) [ ] [ ]j j

K
p q

j j

j

Q n n E t n t n




 
  

 
 , (155) 

where pj and qj are non-negative integers less than or equal to p for all j {0, 1,…, K – 

1}. It thus suffices to establish a bound for Q(n1, n2) of the form 

 2 1 1

1 2 3 1 2( , ) n n nQ n n C C C     (156) 

for some constant C3 and some positive constants C1 and C2. 

Equation (155) can be written in terms of conditional expectations as follows:  

 



1 1

1 2 1 2 1

0 0

( , ) [ ] [ ] | [ ];

0,1,..., 1 .|

ji

K K
qp

i j d

i j

Q n n E t n E t n t n

d K

 

 

 
  

 

 

 
 (157) 

By the law of total expectation, the inner expectation in (157) can be conditioned on 

additional variables as long as the outer expectation in (157) is computed over all possible 

values of those additional variables. Thus, (157) can be rewritten as 
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

1 1

1 2 1 2 1

0 0

1 2

( , ) [ ] [ ] | [ ], [ ];

0,1,..., 1, 1,..., .|

ji

K K
qp

i j d d

i j

Q n n E t n E t n t n o n

d K n n n

 

 

 
  

 

   

 
 (158) 

As proven in [6], the inner expectation in the right side of (158) equals 

  
1

2 1 1 2

0

[ ] | [ ], [ ]; 1,...,j

K
q

j j j

j

E t n t n o n n n n




  . (159) 

Therefore, Q(n1, n2) can be rewritten as 

 




1 1

1 2 1 2 1

0 0

1 2

( , ) [ ] [ ] | [ ], [ ];

1,..., .|

ji

K K
qp

i j j j

i j

Q n n E t n E t n t n o n

n n n

 

 


 



 

 
 (160) 

By the conditions of the lemma, for each j {0, 1,…, K – 1}, the vector sequence 

{ { [ ]}jo nA [n1, n2 – n1]
( )jq

t , n2 = n1 + 1, n1 + 2, …} converges exponentially to 2 1j tq Nb 1  as 

n2 – n1  . Thus, there exist constants 
jqC   0 and 0 < α < 1 such that 

 2 1
( )

{ [ ]} 1 2 1 2 1 2 1[ , ] j

j j t j t

q n n

o n q N q Nn n n b C  

   A t 1 1 . (161) 

It follows from (77) that the ith entry of the vector { [ ]}jo nA [n1, n2 – n1]
( )jq

t  can be written 

as 

 





 

2 1

2 1

1

( )

1 2

2 1 1 2

Pr [ ] ( ) | [ ] ( ), [ ];

1,..., ( )

[ ] | [ ] ( ), [ ]; 1,..., .

t

j

j

N

j j j

k

q

q

j j j

t n k t n i o n

n n n k

E t n t n i o n n n n





 

  

   

 t t

t

t

 (162) 

This, with (161), implies that 

 
 

2 1

2 1 1 2[ ] | [ ], [ ]; 1,...,

.

j

j

j

q

j j j q

n n

q

E t n t n o n n n n b

C  

  


 (163) 
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It follows that 

 
 

2 1

1 1

2 1 1 2

0 0

[ ] | [ ], [ ]; 1,...,j

j

K K
q

j j j q

j j

n n

q

E t n t n o n n n n b

C 

 

 



  



 
 (164) 

for some positive constant Cq. 

Consider the expression 

 

1 1

1 2 1

0 0

( , ) [ ]i

j

K K
p

q i
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Using (160), this expression can be rewritten as 
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Given that, for any random variable x, |E{x}|  E{|x|}, the expression in (166) is less than 

or equal to 
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Since the magnitude of each ti[n] sequence is bounded by Nt and each pi is less than or 

equal to p, the expression in (167) is itself less than or equal to 
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With (164), (165)–(168) imply that 
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for some constant C1  0. By similar reasoning, it can be established that 
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for some constant C2  0. Using the triangle inequality, 
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 (171) 

Therefore, it follows from (169)–(171) that (156) holds.           ■ 

Lemma 2: Suppose the conditions of Theorem 2 are satisfied. Then, for each q  

hs and each set of parity sequences {od[n], d = 0, 1,…, K – 1}, there exists a constant qs
C
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, positive constants E1, E2, and a constant 0 < β < 1 such that for integers n1  n2 (94) 

holds. 

The proof is identical to that of Lemma 1 except with s[n], 
jqc , and { [ ]}do nS [n1, n2 

– n1] playing the roles of t[n], 
jqb , and { [ ]}do nA [n1, n2 – n1], respectively.          ■ 

Lemma 3: Suppose that Ae and Ao are centrosymmetric, that all their odd-entries 

row vectors contain at least 1 + ( 1) / 2
t

N     nonzero entries, and that all their even-entries 

row vectors contain at least 1 + / 2
t

N    nonzero entries. Then, Ae and Ao ensure order-

p t[n]-convergence and order-q s[n]-convergence for all odd positive integers p and q. 

Proof: Let od[n] be any parity sequence, u be any integer, and p and q be any odd 

integers. It is first shown that Ae and Ao ensure order-p t[n]-convergence. 

It follows from (78) that the elements of t(p) satisfy 

 
( ) ( )( ) (2 2 )p p

tj N j   t t . (172) 

For any integers m1 and m2 > 0, (79) implies that { [ ]}do nA [m1, m2] is either a one-step state 

transition matrix or can be expanded as a product of such matrices. Since each such matrix 

equals Ae or Ao, the conditions of the lemma imply that { [ ]}do nA [m1, m2] is 

centrosymmetric or can be expanded as a product of centrosymmetric matrices. 

Therefore, by the properties of centrosymmetric matrices, { [ ]}do nA [m1, m2] is 

centrosymmetric [19]. This, together with (172), implies that the elements of { [ ]}do nA [m1, 

m2]t
(p) satisfy 
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 (173) 

where the last expression can be rewritten as 
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Thus, the elements of { [ ]}do nA [m1, m2]t
(p) satisfy 
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Let m be any integer greater than 1. Given (79), { [ ]}do nA [u, m]t(p) can be written 

as 

 
( )

{ [ ]} { [ ]}[ ,1] [ 1, 1] .
d d

p

o n o nu u m A A t  (176) 

Therefore, the ith element of { [ ]}do nA [u, m]t(p) equals 
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Let (Ai,1, Ai,2,…, ,2 1ti NA  ) be a permutation of 

   [ ][ ,1] ( , ), 1,2,...,2 1
do n tu i j j N A  (178) 

which satisfies 

 ,1 ,2 ,2 1...
ti i i NA A A     (179) 

and (t1, t2,…, 2 1tNt  ) a permutation of 

   ( )

[ ][ 1, 1] ( ), 1,2,...,2 1
d

p

o n tu m j j N   A t  (180) 
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which satisfies 

 1 2 2 1...
tNt t t    . (181) 

Then, it follows from (177) and from the rearrangement inequality that 
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1
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d

N
p

o n i j j

j

u m i A t

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 A t . (182) 

Given (175) and that the elements of { [ ]}do nA [u, 1] are all nonnegative, Ai,jtj  0 for j {Nt 

+ 1, Nt + 2,…, 2Nt + 1}. Thus, (182) implies that 
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1 1
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t t

d

N N
p
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j j

u m i A t t A
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It is now shown that 

 
2 1

, ,

1 1

1
t tN N

i j i j

j j

A A


 

   . (184) 

Since { [ ]}do nA [u, 1] is stochastic, all of its elements are nonnegative, and the sum of the 

elements in each of its rows is 1. Additionally, since it equals either Ae or Ao, { [ ]}do nA [u, 

1] is either an even-entries or an odd-entries matrix, so its row vectors alternate between 

even-entries and odd-entries vectors. Suppose Nt is even. If the ith row of { [ ]}do nA [u, 1] is 

an even-entries row then Ai,j = 0 for j {1, 3,…, 2Nt + 1}. By the conditions of the lemma, 

Ai,j is nonzero for at least 1 + Nt / 2 values of j {2, 4,…, Nt, Nt + 2,…, 2Nt}, so it is 

nonzero for at least 1 value of j {Nt + 2, Nt + 4,…, 2Nt}, which implies that (184) holds. 

Similarly, if the ith row of { [ ]}do nA [u, 1] is an odd-entries row then Ai,j = 0 for j {2, 4,…, 

2Nt}. By the conditions of the lemma, Ai,j is nonzero for at least 1 + Nt / 2 values of j {1, 

3,…, Nt – 1, Nt + 1,…, 2Nt + 1}, so it is nonzero for at least one value of j {Nt + 1, Nt + 
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3,…, 2Nt + 1}, which implies that (184) holds. Now suppose Nt is odd. If the ith row of 

{ [ ]}do nA [u, 1] is an even-entries row then Ai,j = 0 for j {1, 3,…, 2Nt + 1}. By the 

conditions of the lemma, Ai,j is nonzero for at least 1 + (Nt – 1) / 2 values of j {2, 4,…, 

Nt – 1, Nt + 1,…, 2Nt}, so it is nonzero for at least 1 value of j {Nt + 1, Nt + 3,…, 2Nt}, 

which implies that (184) holds. Similarly, if the ith row of { [ ]}do nA [u, 1] is an odd-entries 

row then Ai,j = 0 for j {2, 4,…, 2Nt}. By the conditions of the lemma, Ai,j is nonzero for 

at least 1 + (Nt + 1) / 2 values of j {1, 3,…, Nt, Nt + 2,…, 2Nt + 1}, so it is nonzero for 

at least 1 value of j {Nt + 2, Nt + 4,…, 2Nt + 1}, which implies that (184) holds. 

 It follows from (183) and (184) that 
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where β is the smallest nonzero element of Ae and Ao, i.e. 

     
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Since (185) holds for any integers u and m > 1, it follows that, for m > 2, 
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where the last inequality holds because { [ ]}do nA [u + m – 1, 1] is stochastic, so all of its 

elements are nonnegative and the sum of the elements in each of its rows is 1. Thus, 
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{ [ ]}lim max [ , ] ( ) 0
d

p

o n
m i

u m i
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with exponential convergence. 

Note now that (175) implies that 
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for each m, so 

   ( )

{ [ ]}lim min [ , ] ( ) 0
d

p

o n
m i
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with exponential convergence as well. Hence, (188), (190), and the squeeze theorem from 

calculus imply that Ae and Ao ensure order-p t[n]-convergence. 

The proof that Ae and Ao ensure order-q s[n]-convergence is similar. It follows 

from (85) that the elements of s(q) satisfy 

 
( ) ( )( ) (4 2 )q q

tj N j   s s . (191) 

Given that Ae and Ao are centrosymmetric, (87) implies that Se and So are also 

centrosymmetric. For any integers m1 and m2 > 0, (79), (86), and the conditions of the 

lemma imply that { [ ]}do nS [m1, m2] is centrosymmetric or can be expanded as a product of 

centrosymmetric matrices. Therefore, { [ ]}do nS [m1, m2] is centrosymmetric. This, together 

with (191), implies that the elements of { [ ]}do nS [m1, m2]s
(q) satisfy 
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The rest of the proof follows from reasoning similar to that presented above from (175) 

to (190). ■ 

Lemma 4: Let 
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( ) ( )

2 1t

p p

p Nb  e oA t A t 1  (193) 

for some integer p and some constant bp. Then, Ae and Ao ensure order-p t[n]-

convergence. 

Proof: Let od[n] be any parity sequence and u be any integer. It follows from (79) 

that for each integer m > 1 { [ ]}do nA [u, m] can be written as 

 { [ ]} { [ ]} { [ ]}[ , ] [ , 1] [ 1,1]
d d do n o n o nu m u m u m   A A A . (194) 

Since { [ ]}do nA [u + m – 1, 1] equals either Ae or Ao, (193) and (194) imply that 

 
( )

{ [ ]} { [ ]} 2 1[ , ] [ , 1]
d d t

p

o n p o n Nu m b u m  A t A 1 . (195) 

Additionally, { [ ]}do nA [u, m – 1] is stochastic, so 

 { [ ]} 2 1 2 1[ , 1]
d t to n N Nu m   A 1 1 . (196) 

Therefore, 

 
( )

{ [ ]} 2 1[ , ]
d t

p

o n p Nu m b A t 1 , (197) 

so for each integer m  1 

 ( )

{ [ ]} 2 1 2 1[ , ]
d t t

p

o n p N Nu m b   A t 1 0 , (198) 

which proves the lemma.                                                  ■ 

Lemma 5: Given any parity sequence od[n] and any integers u and m > 0, { [ ]}do nA

[u, m] is either an even-entries or an odd-entries matrix. 

Proof: It follows from (80) that 

 
 

1 1

[ ] [ ] [ 1]

[ ] [ ].

u m u m

d d d

k u k u

d d

s k t k t k

t u m t u

 

   

  

  

 
 (199) 

Since sd[n] and od[n] have the same parity at each n, the parity of each sd[k], for k = u + 

1, u + 2,…, u + m, is fixed, i.e., each sd[k] is either even or odd. Therefore, the parity of 

the sum in the left side of (199) is also fixed. If the sum is even, (199) implies that the 
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probability that td[u + m] and td[u] have different parities is zero. Similarly, if it is odd, 

the probability that td[u + m] and td[u] have the same parity is zero. Therefore, (77) implies 

that { [ ]}do nA [u, m] is either an even-entries or an odd-entries matrix.          ■ 

Lemma 6: Let (149) hold for some integer q and some constant cq. Then, Ae and 

Ao ensure order-q s[n]-convergence. 

Proof: Let od[n] be any parity sequence and u be any integer. It follows from (79) 

and (86) that for each integer m > 2 { [ ]}do nS [u, m] can be written as 

 { [ ]} { [ ]} { [ ]}[ , 2] [ 2,1] [ 1,1].
d d do n o n o nu m u m u m    A A S  (200) 

The rest of the proof is almost identical to the proof of Lemma 4, with { [ ]}do nA [u + m – 2, 

1] { [ ]}do nS [u + m – 1, 1], s(q), and cq playing the roles of { [ ]}do nA [u + m – 1, 1], t(p), and bp, 

respectively.                                                                                    ■ 
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Figure 6: Block diagram of a fractional-N PLL. 
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Figure 7: High-level block diagram of a successive requantizer. 
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o d[n] =  0  

td[n−1]  rd[n ] sd[n ] 

1 −1 or 0  0  

0  −1 or 0  0  

−1 −1 or 0  0  

 

o d[n] =  1  

td[n−1]  rd[n ] sd[n ] 

1 −1 or 0  −1 

0  −1 −1 

0  0  1  

−1 −1 or 0  1  

 

Case Nt = 1, rd[n] in {–1, 0}

(a)

o d[n] =  0  

td[n−1]  rd[n ] sd[n ] 

2 ≥  0  and ≤  3 0  

2  ≤  −1 or ≥  4  −2 

1  ≤  −1 or ≥  6  0  

1  ≥  0  and ≤  5 −2 

0  0  or 1  2  

0  ≤  −1 or ≥  4  0  

0  2  or 3  −2 

−1 ≤  −1 or ≥  6  0  

−1 ≥  0  and ≤  5 2  

−2 ≥  0  and ≤  3 0  

−2 ≤  −1 or ≥  4  2  

 

o d[n] =  1  

td[n−1]  rd[n ] sd[n ] 

2 ≤ −1 or ≥  4  −1 

2  ≥  0  and ≤  3 −3 

1  ≥  1  and ≤  3 1  

1  ≤  −1 or ≥  4  −1 

1  0  −3 

0  ≥  0  1  

0  ≤  −1 −1 

−1 ≥ 1  and ≤  3 −1 

−1 ≤ −1 or ≥  4  1  

−1 0  3  

−2 ≤  −1 or ≥  4  1  

−2 ≥ 0  and ≤  3 3  

 

Case Nt = 2, rd[n] in {–8, –7,…, 7}

(b)

Combinatorial Logic Truth Tables:

 

Figure 9: Example combinatorial logic truth tables of sequence generators corresponding 

to the one-step state transition matrices in (a) equation (82) and (b) equation (83). In both 

cases, rd[n] is a sequence of independent and identically distributed random variables 

which follow a uniform distribution. 
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Figure 10: Estimated power spectra of the quantization noise of a simulated successive 

requantizer for which Nt = 3 before and after the application of 8th and 9th order nonlinear 

distortion. 
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Figure 11: Estimated power spectra of the running sum of the quantization noise of a 

simulated successive requantizer for which Nt = 3 before and after the application of 5th 

and 6th order nonlinear distortion. 
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Figure 12: Estimated power spectra of the quantization noise of a simulated successive 

requantizer for which Nt = 4 before and after the application of 12th and 13th order 

nonlinear distortion. 
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Figure 13: Estimated power spectra of the running sum of the quantization noise of a 

simulated successive requantizer for which Nt = 4 before and after the application of 7th 

and 8th order nonlinear distortion. 
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CHAPTER 3 

SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 

FOR LOW PHASE NOISE AND NONLINEARITY-INDUCED SPURIOUS 

TONES IN FRACTIONAL-N PLLS 

 

Abstract—Noise shaping digital quantizers, most commonly digital delta-sigma (ΔΣ) 

modulators, are used in fractional-N phase-locked loops (PLLs) to enable fractional 

frequency tuning. Unfortunately, their quantization noise is subjected to nonlinear 

distortion because of the PLL’s inevitable non-ideal analog circuit behavior, which 

induces spurious tones in the PLL’s phase error. Successive requantizers have been 

proposed as ΔΣ modulator replacements with the advantage that they reduce the power 

of these spurious tones. However, the quantization noise from previously published 

successive requantizers is only first-order highpass shaped, so it usually causes more PLL 

phase noise than that from the second-order and third-order ΔΣ modulators commonly 

used in PLLs. This paper presents second-order and third-order successive requantizers 

to address this limitation. Additionally, successive requantizer design options are 

presented that result in either lower-power spurious tones or lower phase noise compared 

to ΔΣ modulators when used in PLLs. 
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I. INTRODUCTION 

 

Fractional-N phase-locked loops (PLLs) typically incorporate all-digital delta-

sigma (ΔΣ) modulators to enable fractional frequency tuning [1]–[3]. A ΔΣ modulator’s 

output sequence can be written as the sum of its input sequence plus quantization noise. 

The quantization noise causes the PLL’s phase error to contain a component proportional 

to a lowpass filtered version of the running sum of the quantization noise [4]11. In practice, 

non-ideal analog circuit behavior in the PLL causes the PLL’s phase error to also contain 

components proportional to nonlinearly distorted versions of both the quantization noise 

and its running sum. Unfortunately, these nonlinearly distorted sequences contain 

spurious tones, even when the quantization noise and its running sum are free of spurious 

tones [5]–[15]. This is problematic in high-performance applications such as wireless 

communication systems which tend to be extremely sensitive to spurious tones. 

The successive requantizer was proposed in [7] as a digital ΔΣ modulator 

replacement to address this issue. The nonlinearities to which the quantization noise and 

its running sum are subjected in PLLs tend to be well approximated by truncated 

memoryless power series [7], [8]. Therefore, the successive requantizer in [8] was 

designed to produce quantization noise, s[n], with the property that sp[n] for p = 1, 2, 3, 

4, and 5 are free of spurious tones, and such that its running sum, t[n], has the property 

that tp[n] for p = 1, 2, and 3 are free of spurious tones. The successive requantizer was 

                                                           
11 In this paper, a PLL’s phase error refers to the difference between the PLL’s actual and ideal phases and 

a PLL’s phase noise refers to all stochastic components of its phase error (e.g. such as those caused by 

thermal noise). 
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demonstrated in a PLL with record-setting spurious tone performance in [8]. 

Unfortunately, its quantization noise is only first-order highpass shaped, whereas most 

ΔΣ modulators used in PLLs have second-order or third-order highpass shaped 

quantization noise to reduce the quantization noise contribution to the PLL’s phase noise 

[4].12 This issue was addressed in [8] via a quantization noise cancelation technique at the 

expense of increased PLL circuit area and power consumption. 

This paper presents extensions of previously published results that enable 

successive requantizers with second-order and third-order highpass shaped quantization 

noise to address this limitation. It also presents design techniques that optimize the 

successive requantizers to either minimize PLL phase noise or spurious tone power 

depending on the PLL’s target specifications.  

In both cases, the successive requantizers achieve higher than first-order 

quantization noise shaping in return for not ensuring that sp[n] for p ≥ 2 is free of spurious 

tones. In practice, this is not a significant limitation because in most PLLs the frequency 

divider output edges are resynchronized to voltage controlled oscillator edges which tends 

to make the nonlinear distortion applied to s[n] negligible [4]. Therefore, the design 

option presented in the paper to minimize spurious tones focuses on nonlinearity applied 

to the quantization noise running sum at the expense of only a slight increase in PLL 

phase noise. Specifically, it ensures that tp[n] for p = 1, 2, …, h are free of spurious tones, 

where h is a positive integer. The other design option results in successive requantizers 

                                                           
12 A sequence is said to be first-order highpass shaped if its running sum is bounded but the running sum 

of its running sum (i.e. its double running sum) is not bounded. Similarly, a sequence is said to be second-

order highpass shaped if both its running sum and its double running sum are bounded but its triple running 

sum is not bounded. 
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that, like ΔΣ modulators, do not ensure that tp[n] is free of spurious tones for p ≥ 2. 

Instead, they offer the advantage of introducing lower PLL phase noise than their ΔΣ 

modulator counterparts when used in typical PLLs.  

Therefore, the contribution of this paper is a family of replacements for the 

commonly-used second-order and third-order ΔΣ modulators in fractional-N PLLs, each 

member of which either improves PLL spurious-tone performance at the expense of 

slightly higher PLL phase noise or lowers PLL phase noise. Unlike previous work, this is 

achieved without the high area and power consumption of phase noise cancellation 

techniques. 

The paper consists of four main sections. Section II presents the second-order 

successive requantizer architecture. Section III presents two second-order successive 

requantizer designs which highlight a tradeoff between nonlinearity-induced spurious 

tone power and low-frequency quantization noise power. Section IV presents a second-

order successive requantizer with lower low-frequency quantization noise power than a 

second-order ΔΣ modulator. Section V presents a third-order successive requantizer with 

lower low-frequency quantization noise power than a third-order ΔΣ modulator. 

II. SECOND-ORDER SUCCESSIVE REQUANTIZER ARCHITECTURE  

 

A high-level diagram of a successive requantizer is shown in Fig. 14. Its 

sequences are all integer-valued and represented in two’s complement format. It 

processes a B-bit input sequence x0[n] through K serially-connected quantization blocks 
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to produce a (B – K)-bit output sequence xK[n]. The dth quantization block, for each d = 

0, 1, …, K−1, divides its input, xd[n], by two and quantizes the result by one bit such that 

its output sequence has the form 

 
1

[ ] [ ]
[ ]

2
d d

d

x n s n
x n


 , (201) 

where sd[n]/2 can be viewed as quantization noise. The sd[n] sequence generator 

generates sd[n] to have the same parity as xd[n] for all n (otherwise xd+1[n] would not be 

integer-valued) and with a small enough magnitude that xd+1[n] can be represented with 

one less bit than xd[n]. As explained in [7], it follows that the output of the successive 

requantizer can be written as 

 0[ ] 2 [ ] [ ]K

Kx n x n s n  , (202) 

where 

 

1

0

[ ] 2 [ ]
K

d K

d

d

s n s n






  (203) 

is the quantization noise of the successive requantizer.  

The running sums of sd[n] and s[n] are defined as 

 
0 0

[ ] [ ],    [ ] [ ],
n n

d d

k k

t n s k t n s k
 

    (204) 

respectively. Therefore, (203) implies that  

 

1

0

[ ] 2 [ ]
K

d K

d

d

t n t n






 . (205) 

It follows from (203)–(205) that the statistical properties of s[n] and t[n] are determined 

by the behavior of the sd[n] sequence generators. 
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 A first-order sd[n] sequence generator, i.e. one in which sd[n] is first-order 

highpass shaped, is shown in Fig. 15 [7]. It contains a pseudo-random number generator 

that outputs a sequence of independent, identically and uniformly distributed pseudo-

random variables rd[n], a delayed accumulator block that takes sd[n] and outputs td[n – 

1], and a combinatorial logic block that generates sd[n] as a function of the lowest 

significant bit (LSB) of xd[n], td[n – 1], and rd[n] such that td[n] is bounded for all n. It 

follows that td[n] is a deterministic function of td[n – 1], the parity of xd[n], and rd[n]. 

Fig. 16 shows the proposed second-order sd[n] sequence generator. It contains a 

pseudo-random number generator that outputs rd[n] as in the first-order case, a 

combinatorial logic block, and two difference blocks. As shown in the figure, the 

combinatorial logic block generates a bounded sequence ud[n] conditioned on its delayed 

version ud[n – 1], a parity sequence od[n], and rd[n]. As can be seen from Fig. 16, 

 [ ] [ ] [ 1]d d dt n u n u n    (206) 

and 

 [ ] [ ] [ 1]d d ds n t n t n   , (207) 

so ud[n] is the running sum of td[n] and the double running sum of sd[n]. Unlike in the 

first-order sd[n] sequence generator, in the second-order sd[n] sequence generator both 

the running sum and the double running sum of sd[n] are bounded, so sd[n] is second-

order highpass shaped. 

 As described above, sd[n] must have the same parity as xd[n] for all n, i.e.  

 [ ]mod2 [ ]mod2d dx n s n . (208) 
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This imposes some restrictions on the combinatorial logic. It can be seen from Fig. 16 

that 

  [ ] [ ] [ 1] mod 2d d do n x n t n    (209) 

which, with (206), can be written as 

  [ ] [ ] [ 1] [ 2] mod 2d d d do n x n u n u n     .  (210) 

Equations (206) and (207) imply that 

 [ ] [ ] 2 [ 1] [ 2]d d d ds n u n u n u n     . (211) 

For any integers a and b, [(a mod 2) + (b mod 2)] mod 2 = (a + b) mod 2, and (2a) mod 

2 = 0, so it follows from (208), (210), and (211) that the combinatorial logic must generate 

ud[n] such that 

  [ ] [ 1] mod 2 [ ]d d du n u n o n   . (212) 

The number of bits in the successive requantizer output is determined by the range 

of values covered by x0[n] and by the sd[n] sequences. It follows from (201) that for each 

0  m  K – 1 

 0

0

[ ] [ ] 2 [ ] 2 [ ]
m

m d m

m m d

d

x n s n x n s n 



    (213) 

and 

 
1 1

1 0

0

[ ] 2 [ ] 2 [ ]
m

m d m

m d

d

x n x n s n   





  . (214) 

Let Ns be the smallest positive integer greater than or equal to 2 such that 

 [ ]  for all  and each {0,1,..., 1}d ss n N n d K   . (215) 
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If the range of the input to the successive requantizer is restricted as 

 02 [ ] 0K x n   , (216) 

it follows from (213)–(215) that 

 2 2 [ ] [ ] 2  for 0 1K m

s m m sN x n s n N m K         (217) 

and 

 2 [ ]     for 1K m

s m sN x n N m K      . (218) 

This implies that xm[n] + sm[n] for 0 ≤ m ≤ K – 1 and xm[n] for 1 ≤ m ≤ K can be represented 

with  1

2log 2K m

sN  
 

  bits, where, for any value x, x    is the smallest integer greater 

than or equal to x. The dth quantization block  represents xd[n] and xd[n] + sd[n] with B – 

d bits and xd+1[n] with B – (d + 1) bits, so it follows that the successive requantizer 

requires at least B = K + 1 +  2log sN    bits for its input, or, equivalently, 1 + 

 2log sN    bits for its output. 

 For example, if Ns = 8, as in some of the example successive requantizers in the 

following section, and (216) holds, the successive requantizer input must have at least B 

= K + 4 bits, and its output must have at least 4 bits to cover the range {–8, –7, …, 7}. A 

similar analysis yields that if the range of x0[n] is restricted as 

 02 [ ] 2K Kx n     (219) 

then the successive requantizer requires at least B = K + 2 +  2log sN    bits for its 

input, or, equivalently, 2 +  2log sN    bits for its output. 
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 As illustrated via examples in the next sections, the choice of Ns represents a 

tradeoff between PLL spurious tone performance and quantization noise power: 

increasing Ns provides flexibility which can be used to improve spurious tone 

performance, but it also tends to increase quantization noise power [12]. 

 It follows from Figs. 14 and 16 that the computational complexity of the 

successive requantizer is a logarithmic function of Ns and a quadratic function of the 

number of quantization blocks K. The dth pseudo-random number generator can be 

implemented with a modified linear-feedback shift register (LFSR) that simultaneously 

generates multiple bits that are well-modeled as zero-mean, white, and independent of 

each other [16]. 

III. SECOND-ORDER SUCCESSIVE REQUANTIZERS WITH HIGH 

IMMUNITY TO SPURIOUS TONES 

 

The combinatorial logic block of a second-order sd[n] sequence generator can be 

described by two state transition matrices, Ae and Ao, which define the probability mass 

function (pmf) of ud[n] conditioned on ud[n – 1] and od[n] for each n. Specifically, if ud[n] 

takes values in {Nu, Nu – 1, …, –Nu}, where Nu is a positive integer, then Ae and Ao are 

(2Nu + 1)(2Nu + 1) matrices with elements 

 
( , ) Pr( [ ] ( ) | [ 1] ( ), [ ] 0),

( , ) Pr( [ ] ( ) | [ 1] ( ), [ ] 1)

d d d

d d d

i j u n j u n i o n

i j u n j u n i o n

e

o

A u u

A u u

    

    
 (220)for all i, 

j ∈ {1, 2, …, 2Nu + 1}, where 
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  ( 1) ...
T

u u uN N Nu    .13 (221) 

The combinatorial logic block is deterministic, so the probabilities in (220) arise from the 

random sequence, rd[n], which is assumed, by design, to be uniformly distributed for all 

n. This implies that the probabilities in (220) must be of the form k / 2b, where k ∈ {0, 1, 

…, 2b} and b is the number of bits used to represent rd[n]14. The only other requirements 

the state transition matrices must satisfy are that their rows add to 1–so that the pmf is 

valid–and that 

 
( , ) 0     : odd and

( , ) 0     : even.

i j i j

i j i j

e

o

A

A

  

  
 (222) 

The last requirement is needed to satisfy (212). Equation (221) implies that if i + 

j is even then u(i) + u(j) is even, whereas if i + j is odd then u(i) + u(j) is odd. This and 

(220) imply that if Ae(i, j) ≠ 0 for some odd i + j, there is a non-zero probability that ud[n 

– 1] + ud[n] is odd when od[n] = 0, which contradicts (212). Similarly, if Ao(i, j) ≠ 0 for 

some even i + j, there is a non-zero probability that ud[n – 1] + ud[n] is even when od[n] 

= 1, which contradicts (212) as well. 

As an example, if Nu = 2 and rd[n]  {–8, –7, …, 7}, then 

                                                           
13 In this paper, the ith entry of a vector v is denoted by v(i), whereas the ith row, jth column entry of a 

matrix M is denoted by M(i, j). 
14 Since ud[n] conditioned on ud[n – 1] and od[n] is a deterministic function of rd[n], the 2b values rd[n] can 

take map to M ≤ 2b values of ud[n] for each ud[n – 1] and od[n]. Since rd[n] is uniformly distributed, the 

probability that ud[n] = u equals k / 2b, where k is the number of different rd[n] values that map to u. 
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1/ 4 0 3 / 4 0 0

0 5 / 8 0 3 / 8 0

and 1/ 8 0 3 / 4 0 1/ 8

0 3 / 8 0 5 / 8 0

0 0 3 / 4 0 1/ 4

0 3 / 4 0 1/ 4 0

3 /16 0 3 / 4 0 1/16

0 1/ 2 0 1/ 2 0

1/16 0 3 / 4 0 3 /16

0 1/ 4 0 3 / 4 0

e

o

A

A

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (223) 

describe valid behavior for the combinatorial logic block. A truth table for combinatorial 

logic that implements the behavior specified by (223) can be constructed from (220) and 

(221) with Nu = 2. For example, the elements in the third row of Ae, i.e. 1 / 8, 0, 3 / 4, 0, 

and 1 / 8, are the probabilities that ud[n] = u(1) = 2, ud[n] = u(2) = 1, ud[n] = u(3) = 0,  

ud[n] = u(4) = –1, and ud[n] = u(5) = –2, respectively, conditioned on ud[n – 1] = u(3) = 

0 and od[n] = 0. Therefore, if ud[n – 1] = 0 and od[n] = 0, the combinatorial logic must set 

ud[n] = 2 with probability 1 / 8, ud[n] = 0 with probability 3 / 4, and ud[n] = –2 with 

probability 1 / 8. Given that rd[n] is uniformly distributed among the sixteen integers from 

–8 to 7, one way to do this is to map two of these integers to ud[n] = 2, another two to 

ud[n] = –2, and the rest to ud[n] = 0; e.g., set ud[n] = –2 if rd[n] = 0 or 1, ud[n] = 2 if rd[n] 

= 2 or 3, and ud[n] = 0 otherwise. A complete truth table, an example of which is shown 

in Fig. 17, can be constructed by applying this procedure to every row of Ae and Ao. 

Note that the rows in both Ae and Ao of (223) alternate between two types of 

vectors: vectors whose odd-indexed elements are zero, referred to as even-entries vectors, 
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and vectors whose even-indexed elements are zero, referred to as odd-entries vectors. 

This is a consequence of (222) and holds for all valid state transition matrices.  

 State transition matrices such as those in (223) were used in [13] to describe the 

combinatorial logic block in first-order sd[n] sequence generators. For such sd[n] 

sequence generators, the state transition matrices define the pmf of td[n] conditioned on 

td[n – 1] and a parity sequence. In contrast, the state transition matrices in second-order 

sd[n] sequence generators define the pmf of ud[n] conditioned on ud[n – 1] and the parity 

sequence od[n], as described by (220) and (221). Therefore, if the same state transition 

matrices are used to describe the combinatorial logic block of a first and a second-order 

sd[n] sequence generator, and if the parity sequences of both generators are equal, td[n] in 

the first-order sd[n] sequence generator and ud[n] in the second-order sd[n] sequence 

generator are statistically equivalent. Furthermore, since td[n] and ud[n] are defined as the 

running sums of sd[n] and td[n], respectively, sd[n] in the first-order sd[n] sequence 

generator and td[n] in the second-order sd[n] sequence generator are statistically 

equivalent as well. 

For any positive integer h, a sequence x[n] is said to be immune to spurious tones 

up to order h if xp[n] for p = 1, 2, …, h are free of spurious tones. In [13], conditions are 

presented on the state transition matrices of a first-order successive requantizer, i.e. a 

successive requantizer which uses first-order sd[n] sequence generators, that make td[n] 

and sd[n] immune to spurious tones up to orders h1 and h2, respectively, for each d, where 

h1 and h2 are positive integers which do not depend on the parity sequences of the sd[n] 

sequence generators. It is also shown in [13] that such conditions make t[n] and s[n] 
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immune to spurious tones up to orders h1 and h2, respectively. Therefore, in a second-

order successive requantizer, such conditions make ud[n] and td[n] immune to spurious 

tones up to orders h1 and h2, respectively, for each d. Additionally, as can be verified with 

identical reasoning to that used in [13] for the first-order successive requantizer, they 

make 

 
0

[ ] [ ]
n

k

u n t k


   (224) 

and t[n] immune to spurious tones up to orders h1 and h2, respectively. For example, it 

was proven in [13] that, in a first-order successive requantizer, state transition matrices 

(223) make s[n] immune to spurious tones up to order 5. Therefore, in a second-order 

successive requantizer, these state transition matrices make t[n] immune to spurious tones 

up to order 5. Fig. 18 shows plots of simulated power spectra of t[n] as generated with a 

second-order successive requantizer that implements the state transition matrices in (223) 

and of the running sum of the quantization noise of a dithered second-order ΔΣ modulator, 

tDS[n], before and after the application of fourth and fifth-order nonlinear distortion. As 

expected, the simulated power spectra of t4[n] and t5[n] show no visible spurious tones, 

whereas those of t4
DS[n] and t5

DS[n] do. 

Fig. 18 also shows that t[n] has significantly higher low-frequency power 

spectrum content than tDS[n]. One of the contributions of this paper is to reduce this 

content by modifying Ae and Ao subject to t[n] maintaining a minimum desired order of 

immunity to spurious tones.  
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It follows from Theorem 2 and Lemmas 3 and 6 in [13] and the parallels of first 

and second-order successive requantizers described above that sufficient conditions to 

make t[n] immune to spurious tones up to order ht, where ht is a positive integer, are that 

C1) Ae and Ao are centrosymmetric15 with all their odd-entries row vectors containing 

at least 1 + ( 1) / 2
u

N     nonzero  

entries and all their even-entries row vectors containing at least 1 + / 2
u

N    nonzero 

entries (where x    denotes the greatest integer that is less than or equal to x), and that 

C2) For each positive even integer p  ht 

 
( ) ( ) ( ) ( )

2 1u

p p p p

p Nce e e o o e o oA T t A T t A T t A T t 1     , (225) 

where cp is a constant, 

 

( , )

( , 2 1), if 2 2 4 2 ,

0, if  2 1 , 4 3

u u u

u u

i j

i j i N N i j N i

j N i j N i

x

x

T

A



        


     

 (226) 

for x = e or o, 

       ( ) 2 2 1 ... 2
T

p p pp

u u uN N Nt    , (227) 

and 2 1uN1   is a length-(2Nu + 1) vector whose elements are all 1. 

For example, if Ae and Ao are given by (223), Te and To, computed using (226), are 

given by 

                                                           
15 An NxN centrosymmetric matrix A is a matrix for which A(i, j) = A(N + 1 – i, N + 1 – j) for all i, j. 
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0 0 0 0 1/ 4 0 3 / 4 0 0

0 0 0 0 5 / 8 0 3 / 8 0 0

,0 0 1/ 8 0 3 / 4 0 1/ 8 0 0

0 0 3 / 8 0 5 / 8 0 0 0 0

0 0 3 / 4 0 1/ 4 0 0 0 0

0 0 0 0 0 3 / 4 0 1/ 4 0

0 0 0 3 /16 0 3 / 4 0 1/16 0

.0 0 0 1/ 2 0 1/ 2 0 0 0

0 1/16 0 3 / 4 0 3 /16 0 0 0

0 1/ 4 0 3 / 4 0 0 0 0 0

e

o

T

T

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  (228) 

The above conditions hold regardless of how the successive requantizer is 

initialized. 

As explained above, the entries in Ae and Ao are constrained to be of the form k / 

2b, where k ∈ {0, 1, …, 2b} and b is the number of bits used to represent each rd[n]. This 

implies that there is a finite number of matrices Ae and Ao which satisfy conditions C1 

and C2 for each Nu and ht. As justified in the Appendix, the low-frequency quantization 

noise can be reduced by choosing the Ae and Ao matrices that minimize 

      
2 1

| |

1

lim ( ) lim 1,
uNH

m k

H k
m H i

i i iA u u A


 
 

   , (229) 

where 

   / 2e oA A A  , (230) 

subject to the constraint that A be primitive, i.e. that there exists a positive integer n such 

that the entries of An are all greater than zero. Because A is stochastic, a necessary and 

sufficient condition for A to be primitive is that all entries of 4 1uN
A

  are greater than zero 

[17]. In this paper, a computer program was written which cycles through all Ae and Ao 
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matrices that satisfy conditions C1 and C2 for Nu = 2 and ht = 3 and picks those which 

minimize (229), where the limits in (229) are approximated with a suitable number of 

terms (i.e. a number high enough that increasing it has no visible effect on the simulated 

power spectrum of t[n]). To keep hardware implementation requirements modest, rd[n] 

was restricted to values that can be represented with 10 bits, so the entries in Ae and Ao 

are restricted to be of the form k / 1024, where k  {0, …, 1024}. Note, however, that 

larger values of Nu and ht might require rd[n] to be represented with more than 10 bits. 

The resulting state transition matrices are 

 

0 0 333 / 512 0 179 / 512

0 7 /128 0 121/128 0

,179 /1024 0 333 / 512 0 179 /1024

0 121/128 0 7 /128 0

179 / 512 0 333 / 512 0 0

0 7 /1024 0 1017 /1024 0

1/ 512 0 333 / 512 0 89 / 256

0 1/ 2 0 1/ 2 0

89 / 256 0 333 / 512 0 1/ 512

0 1017 /1024 0 7 /1024 0

e

o

A

A

 
 
 
 
 
 
 
 








.




 
 
 
 
 



 (231) 

An example combinatorial logic block truth table of a second-order sd[n] sequence 

generator that implements these state transition matrices is shown in Fig. 19. 

Fig. 20 shows the simulated power spectrum of t[n] from a 20-bit input second-

order successive requantizer that implements the state transition matrices in (231). Given 

that ud[n] is the double running sum of sd[n] and is bounded by Nu = 2, sd[n] is bounded 

by Ns = 8. Therefore, as explained in the previous section, for inputs restricted as in (216)

, this successive requantizer’s output ranges from –8 to 7. For comparison, the figure also 
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shows the simulated power spectrum of the running sum of the quantization noise of a 

dithered second-order ΔΣ modulator, tDS[n]. At low frequencies, the simulated power 

spectrum of t[n] is only approximately 1.5 dB above that of tDS[n]. At high frequencies 

the power spectrum of t[n] is higher than that of tDS[n], but as explained shortly this 

difference negligibly affects phase noise in typical fractional-N PLL designs. The range 

covered by t[n] is (–4, 4), which is higher than that covered by tDS[n]. However, tDS[n] is 

only immune to spurious tones up to order 1, whereas t[n] is immune to spurious tones 

up to order 3. Additionally, as can be seen in the figure, tDS[n] contains an integrated 

white noise component due to the ΔΣ modulator’s dither, whereas t[n] does not.  

To evaluate the feasibility of using this successive requantizer in a PLL, an event-

driven PLL simulator was written in C to compare the power spectrum of the PLL phase 

error when using the second-order successive requantizer against when using a dithered 

second-order ΔΣ modulator as the PLL’s digital quantizer. The simulator models the PLL 

shown in Fig. 21 which consists of a phase-frequency detector (PFD), a charge pump 

(CP) with nominal branch currents of 1 mA, a third-order loop filter with component 

values of C1 = 67 pF, R1 = 8.67 kΩ, C2 = 2.02 nF, R2 = 8.67 kΩ, and C3 = 67 pF, a voltage-

controlled oscillator (VCO) with a gain of 5 MHz/V, two digital quantizers–a second-

order ΔΣ modulator and the second-order successive requantizer described above–with 

an input, α, of –2–11, and a multi-modulus frequency divider with a modulus of 137 plus 

the output of one of the digital quantizers [4]. The PLL has a reference frequency fref of 

26 MHz, an output frequency fout of 3.56 GHz, a bandwidth of 45 kHz, and a phase margin 

of 55. The circuit noise sources modeled in the simulation are 1/f 2 noise from the VCO 
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(–125 dBc/Hz at 1 MHz) and white noise from the reference oscillator (–150 dBc/Hz). 

The only non-ideality modeled is a 1% mismatch between the charge pump branch 

currents, which introduces nonlinear distortion. 

Fig. 22 shows the simulated power spectrum of the phase error generated using 

each digital quantizer. As the figure shows, compared to the ΔΣ modulator, the successive 

requantizer results in significantly lower-power fractional spurious tones in the PLL’s 

phase error: it reduces the largest fractional spurious tone power by 17 dB. The figure 

also shows that the successive requantizer introduces slightly higher in-band phase noise 

than the ΔΣ modulator. This is because the low-frequency portion of the nonlinearly 

distorted quantization noise power of the successive requantizer is slightly higher than 

that of the ΔΣ modulator. The noise penalty in a real PLL, however, is usually not 

significant, as 1 / f noise dominates the phase noise power spectrum at low frequencies. 

Due to the relatively low bandwidth of the PLL and the third-order loop filter (both of 

which are typical design choices for analog fractional-N PLLs), the phase noise 

contributed by the digital quantizer is not dominant at high frequencies, so the higher 

high-frequency quantization noise from the successive requantizer does not significantly 

affect the PLL’s phase noise performance compared to the ΔΣ modulator. Therefore, in 

typical fractional-N PLLs, spurious tones can be reduced significantly by using a 

successive requantizer at the expense of a slight increase in phase noise power. 

A digital implementation of the second-order successive requantizer in 65nm 

CMOS technology with K = 16 quantization blocks has 1500 digital gates, occupies an 

area of 6000 μm2, and has an average power consumption of 100 μW. In contrast, a 16-
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bit input, second-order ΔΣ modulator implementation in the same technology has 120 

digital gates, occupies an area of 1000 μm2, and has an average power consumption of 20 

μW. Given that the digital quantizer’s area and average power consumption represent a 

small portion of the total area and average power consumption of typical fractional-N 

PLLs, the larger area and higher power consumption of the successive requantizer are not 

significant in practice.  

IV. SECOND-ORDER SUCCESSIVE REQUANTIZERS WITH REDUCED 

QUANTIZATION NOISE AT LOW-FREQUENCIES 

 

 The successive requantizer examples in the previous section highlight a design 

tradeoff between low-frequency quantization noise power and immunity to spurious 

tones: the successive requantizer that implements the state transition matrices in (231) 

has lower immunity to spurious tones (ht = 3) than that which implements the state 

transition matrices in (223) (ht = 5), but it has lower quantization noise power at low 

frequencies. This motivates finding state transition matrices for which ht = 1 to reduce 

the low-frequency quantization noise power further. As can be verified with the proof of 

Lemma 3 and Theorem 1 in [13] and from the parallels of first and second-order 

successive requantizers, if Ae and Ao are 33 centrosymmetric state transition matrices 

with five and four non-zero elements, respectively, then t[n] is free of spurious tones. 

Suppose that Ae and Ao satisfy the above condition and that their entries are of the form 

k / 1024, where k ∈ {0, 1, …, 1024}, as in the previous section. Then, the low-frequency 
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quantization noise can be reduced by choosing the Ae and Ao matrices that minimize (229)

16. A computer program was written which cycles through all Ae and Ao satisfying the 

above conditions and picks those which minimize (229), where the limits in (229) are 

approximated with a suitable number of terms as in the previous section. The resulting 

state transition matrices are 

 

1 1023
0 1 00

1024 1024
1 1

0 1 0 , 0
2 2

1023 1
0 1 00

1024 1024

e oA A

 
  
  
   
  
    

 

. (232) 

As can be verified from simulation, t2[n] has spurious tones, so ht = 1. 

Fig. 23 shows the simulated power spectrum of t[n] from a 20-bit input second-

order successive requantizer which implements the state transition matrices in (232) and 

of the running sum of the quantization noise of a dithered second-order ΔΣ modulator, 

tDS[n]. As seen in the figure, the power spectrum of t[n] is lower by approximately 2 dB 

than that of tDS[n] at low frequencies. However, the range of t[n] is (–2, 2), which is 

double to that of tDS[n]. Additionally, as in the previous section, tDS[n] contains an 

integrated white noise component due to the ΔΣ modulator’s dither, whereas t[n] does 

not. 

Fig. 24 shows the simulated power spectrum of the phase error of a PLL when 

using a second-order ΔΣ modulator and when using the second-order successive 

                                                           
16 The same low-frequency quantization noise reduction method from the previous section can be used 

because, as can be verified, all results derived in the Appendix hold if condition C1 is replaced by the above 

conditions for Nu = 1 Ae and Ao state transition matrices. 
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requantizer which implements the state transition matrices in (232). The PLL is identical 

to that described in Section III but with its reference and VCO noise sources turned off 

to show the quantization noise contribution to the PLL phase error at all frequencies. It 

also has perfectly-matched charge pump branch currents, as opposed to the modeled PLL 

in Section III. This allows comparison of the digital quantizers’ contribution to the PLL 

phase noise in the ideal case in which nonlinearly distorted versions of the quantization 

noise do not corrupt the low-frequency portion of the PLL phase noise, as in the PLL 

phase noise PSD shown in Fig. 22b. As seen in Fig. 24 and as predicted by Fig. 23, the 

PLL phase noise at frequencies below 5 MHz is lower when the successive requantizer is 

used. 

V. THIRD-ORDER SUCCESSIVE REQUANTIZERS WITH REDUCED 

QUANTIZATION NOISE AT LOW FREQUENCIES 

 

The sd[n] sequence generator in the successive requantizer can be modified to 

produce higher-order highpass shaped quantization noise by applying more difference 

operations to the combinatorial logic block output and by adding logic to ensure xd[n] and 

sd[n] have equal parity for all n. For example, a third-order successive requantizer can be 

implemented with the sd[n] sequence generator from Fig. 25. The combinatorial logic 

block can be described by state transition matrices Ae and Ao as before, but since its output 

is now vd[n]–defined as the triple running sum of sd[n]–instead of ud[n], where vd[n] ∈ 

{Nv, Nv – 1, …, –Nv} for some positive integer Nv, Ae and Ao are now defined by 
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where 

  ( 1) ...
T

v v vN N Nv    , (234) 

in analogy to (220) and (221). Reasoning similar to that from (208) to (212) can be used 

to verify that, for xd[n] and sd[n] to have equal parity, the combinatorial logic block must 

generate vd[n] such that vd[n] – vd[n – 1] and od[n] have equal parity, where od[n] is 

generated as in Fig. 25. 

Fig. 26 shows the simulated power spectrum of the t[n] of a third-order successive 

requantizer that implements the state transition matrices in (232) and of the running sum 

of the quantization noise of a dithered third-order ΔΣ modulator, tDS[n]. The power 

spectrum of t[n] is lower than that of tDS[n] by approximately 1 to 2 dB at low frequencies, 

but the range of t[n] is (–4, 4), which is double that of tDS[n]. Fig. 27a shows the simulated 

power spectrum of the phase error of a PLL when using the third-order ΔΣ modulator and 

when using the third-order successive requantizer. The PLL modeled is that shown in Fig. 

21, where the charge pump (CP) has branch currents of 500 μA, the loop filter has 

component values of C1 = 3.7 pF, R1 = 26 kΩ, C2 = 112 pF, R2 = 26 kΩ, and C3 = 3.7 pF, 

the voltage-controlled oscillator (VCO) has a gain of 5 MHz/V, the input to the digital 

quantizers, α, is –2–11, the reference frequency fref is 26 MHz, the output frequency fout is 

3.56 GHz, and the PLL bandwidth is 85 kHz. As seen in the figure, the successive 

requantizer contributes more low-frequency phase noise than the ΔΣ modulator. This is 

due to the inherent nonlinear behavior of the PLL and shows that, at low frequencies, the 
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power of nonlinearly distorted versions of the quantization noise running sum of the 

successive requantizer is higher than that of the ΔΣ modulator. At frequencies from 400 

kHz to 4 MHz the phase noise is lower by 0.5 to 1.5 dB when the successive requantizer 

is used, whereas at higher frequencies the ΔΣ modulator results in lower phase noise. The 

worse low-frequency behavior of the successive requantizer when used in a PLL is not 

an issue in practice, as low-frequency phase noise is typically dominated by reference, 

charge pump, and VCO noise. Fig. 27b shows the same phase noise simulation but with 

1/f 2 noise from the VCO (–127 dBc/Hz at 1 MHz) and white noise from the reference 

oscillator (–150 dBc/Hz). As seen in the figure, when these circuit noise sources are 

included, the phase noise performance when using either digital quantizer is similar at 

frequencies below 400 kHz. Therefore, in this PLL using a successive requantizer 

improves PLL spot noise from 400 kHz to 4 MHz at the detriment of PLL spot noise at 

higher frequencies.   

VI. CONCLUSION 

 

Second and third-order successive requantizers that can replace the commonly-

used ΔΣ modulator in fractional-N PLLs to improve PLL phase error performance have 

been presented. Specifically, a second-order successive requantizer has been presented 

which can drastically improve spurious tone performance when used in typical fractional-

N PLLs by producing quantization noise that is free of spurious tones even when 

subjected to the PLL’s nonlinear distortion. A phase noise simulation of one such PLL 
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shows a 17 dB power reduction in the largest fractional spurious tone when the digital 

quantizer is implemented as the second-order successive requantizer instead of as a 

second-order ΔΣ modulator while maintaining similar phase noise performance. 

Additionally, second and third-order successive requantizers have been presented which 

produce lower-power low-frequency quantization noise compared to their ΔΣ modulator 

counterparts. These successive requantizers are not optimized for nonlinearity-induced 

spurious tone reduction, but are rather intended for PLLs requiring low phase noise at 

low or mid frequencies. 

APPENDIX 

 

This Appendix contains the derivation of the expression in (229) used to reduce 

the low-frequency power spectrum content of t[n]. The derivation is based on three 

assumptions: that condition C1 from Section III holds, that each od[n] takes on the values 

0 and 1 with equal probability, and that A is primitive. The first assumption is a sufficient 

condition for t[n] to be immune to spurious tones up to at least order one, as explained in 

Section III. The second assumption is based on the unpredictability of od[n] for most 

quantization blocks. An exact expression for the pmf of od[n] conditioned on the x0[n] 

and the rd[n] sequences is hard to find. However, as proven in Section III of [7], each 

od[n] is a deterministic function of {x0[m], m = 0, 1, …, n} and {rk[m], k = 0, 1, …, d – 1, 

m = 0, 1, …, n}, which motivates modeling it as being uniformly distributed. Simulations 

support the validity of this model for most values of d. The third assumption has been 
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empirically found to hold for most matrices Ae and Ao satisfying condition C1, so it does 

not significantly limit the utility of (229). An additional assumption in the derivation is 

that each sequence x[n] in the successive requantizer is such that x[n] = 0 for all n ≤ 0. 

This assumption is not necessary to obtain (229) but is reasonable and simplifies the 

derivation. 

The power spectrum of t[n] can be estimated with the expected value of the L-

length periodogram of t[n], 

  
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1
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j n

t L

n

I t n e
L








   (235) 

[7], [18]. It follows from (205) and (206) that this expected value can be written as 

     
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n d
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 

   
    

   
  .  (236) 

Therefore,   ,t LE I   can be expanded as a finite sum of terms of the form 

  , , , , [ ] [ ]a b n m L a bc E u n u m , (237) 

where, without loss of generality, a ≥ b, a, b ∈ {0, 1, …, K – 1}, n, m ∈ {0, 1, …, L – 1}, 

and ca,b,n,m,L is a constant. Using the law of total expectation, the expectation in (237) can 

be written as 

     [ ] [ ] [ ] [ ] | [ ]a b b a bE u n u m E u m E u n u m . (238) 

The inner expectation in (238) can be conditioned on additional variables as long as the 

outer expectation in (238) is computed over all possible values of those variables. Thus, 

(238) can be rewritten as 
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


  (239) 

In Section III of [7], it is proven that in a first-order sd[n] sequence generator td[n] 

conditioned on td[0], od[1], od[2], …, od[n] is a deterministic function of rd[0], rd[1], …, 

rd[n] for each n > 0. It follows from the parallels of first and second-order sd[n] sequence 

generators explained in Section III of this paper that in a second-order sd[n] sequence 

generator ud[n] conditioned on ud[0], od[1], od[2], …, od[n] is a deterministic function of 

rd[0], rd[1], …, rd[n]. It follows from this, from the derivation in [7] proving that od[n] is 

a deterministic function of x0[n] and {rk[m], k = 0, 1, …, d – 1, m = 0, 1, …, n}, and from 

the independence of the rd[n] sequences that, for a ≠ b, (239) can be written as 

 
  



[ ] [ ] [ ] [ ] | [0],

[ ]; 1,2,..., .

a b b a a

a

E u n u m E u m E u n u

o k k n




  (240) 

Lemma 3 and equation (9) in [13] imply that in a first-order sd[n] sequence 

generator 

   [ ] | [0] 0, [ ]; 1,2,..., 0a a aE t n t o k k n     (241) 

for each a ∈ {0, 1, …, K – 1}. Therefore, in a second-order sd[n] sequences generator 

   [ ] | [0] 0, [ ]; 1,2,..., 0a a aE u n u o k k n     (242) 

for each a ∈ {0, 1, …, K – 1}. Since ua[0] = 0, it follows that the right side of (240) is 

zero17. Therefore, 

                                                           
17 If ua[0] ≠ 0 it can be shown that the right side of (240) approaches zero as n , which allows obtaining 

(229) but requires a longer derivation. 
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  [ ] [ ] 0 when a bE u n u m a b  , (243) 

so (236) can be rewritten as 
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This shows that   ,t LE I  can be reduced by reducing the expected value of the L-

length periodogram of td[n], 
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

   , (245) 

for each d ∈ {0, 1, …, K – 1}. 

Equation (245) can be rewritten as 
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Let  ,du LI   be the L-length periodogram of ud[n]. For any ω such that  , 0
du LI   , 

(246) can be rewritten as 

       2

, , 1 ,
d d

j

t L u LI I e B L     , (247) 

where  
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Using the proof of Theorem 1 in [7], Lemma 3 and Theorem 1 in [13] prove that 

in a first-order sd[n] sequence generator where condition C1 holds,  ,dt LI   is bounded 
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in probability for all L ≥ 1 and 0 < |ω| ≤ π. Moreover, the proof of Lemma 3 in [13] shows 

that the constant
1t

C  in equation (29) of the proof of Theorem 1 in [7] equals 0, which 

implies that J2,2 in equation (30) of [7] equals 0 when p = 1. It follows from this and from 

the rest of the proof of Theorem 1 in [7] that in a first-order sd[n] sequence generator 

 ,dt LI   is uniformly bounded in probability for all L ≥ 1 and 0 ≤ |ω| ≤ π. This implies that 

in the second-order sd[n] sequence generator  ,du LI   is uniformly bounded in probability 

for all L ≥ 1 and 0 ≤ |ω| ≤ π. 

The above implies that 

 

1

0

1
lim [ ] 0

L
j n

d
L

n

u n e
L









   (249) 

for all 0 ≤ ω ≤ π almost surely. This and the fact that ud[n] is bounded for all n imply that 

  lim , 0
L

B L


   (250) 

almost surely, so it follows from (247) that for large enough values of L and for each ω ≠ 

0 for which   , 0
du LE I   ,   ,dt LE I   can be reduced by reducing   ,du LE I  . 

Additionally, the continuity of the L-length periodogram and the fact that  ,du LI   is 

uniformly bounded for all L ≥ 1 and all 0 ≤ |ω| ≤ π implies that the low-frequency power 

spectrum content of ud[n] can be reduced by reducing   , 0
du LE I .  

It can be shown that 
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where 



104 

 

 

 

 

1 | |

0,

1
[ ] [ | |], 1,

[ ]

0, otherwise
d

L m

d d

nu L

u n u n m m L
L mR m

 




  

 




  (252) 

and 

 

| |
, | | 1,
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0, otherwise.
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L m
m L

c m L
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 
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  (253) 

By assumption, od[n] takes on the values 0 and 1 with equal probability, and as proven in 

[7], od[n] is independent of rd[n], so the pmf of ud[n], as described by Ae and Ao in (220)

, depends only on ud[n – 1] and not on n. This implies ud[n] is stationary. Therefore, it 

follows from (252) that 

  , [ ] [ ]
d du L uE R m R m , (254) 

where 

  [ ] [ ] [ ]
du d dR m E u n u n m    (255) 

is the autocorrelation of ud[n]. It follows from the proof of Theorem 1 in [13] and the 

parallels between the first and second-order sd[n] sequence generators that [ ]
duR m  

decreases exponentially with |m|. This, with (251), (253), and (254), implies that 
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 (256) 

As proven in [7], the sequence whose pmf is described by Ae and Ao is a Markov 

process, and Ae and Ao are its state transition matrices conditioned on the value of od[n] 
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at each n. In the second-order successive requantizer, this Markov process is ud[n], as 

shown in (220). By assumption, od[n] takes on the values 0 and 1 with equal probability, 

so the state transition matrix of ud[n] is given by A as defined in (230). This implies that 

 ( 1 , 1 ) Pr( [ ] | [ 1] )u u d dN i N u u n u u u iA          (257) 

for all i, u  {–Nu, …, Nu}. Because A is primitive, 

 lim k

k
A


 (258) 

exists and 

     lim 1 , 1 Pr [ ]k

u u d
k

N i N u u n uA


       (259) 

for all i, u  {–Nu, …, Nu} [19] (the left side of (259) should be interpreted as the (Nu + 

1 – i)th  row, (Nu + 1 – u)th column entry of the matrix inside the first parentheses). 

Additionally, using identical reasoning to that in [13] to derive equation (94) in that paper, 

it follows from (221) and (257) that 

     | | 1 [ ]| [ ]m

u d dN u E u n m u n uA u       (260) 

for all u  {–Nu, …, Nu}.  

Using (255) and the law of total expectation, [ ]
duR m  can be evaluated as 
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 (261) 

With (221), (259), and (260), (261) can be rewritten as 
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 (262) 

With (256), this implies that 
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which is the expression in (229). 
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Figure 14: High-level diagram of a successive requantizer. 
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Figure 15: Block diagram of a first-order sd[n] sequence generator. 
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Figure 16: Block diagram of a second-order sd[n] sequence generator. 
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Figure 17: Example truth table for the combinatorial logic block described by the state 

transition matrices in (223), with rd[n] ∈ {–8, –7, …, 7}. 
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Figure 18: Simulated power spectra of the running sum of the quantization noise of a 

second-order successive requantizer that implements the state transition matrices in (223) 

and a second-order ΔΣ modulator before and after the application of fourth and fifth-order 

nonlinear distortion. 
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Figure 19: Example truth table for the combinatorial logic block described by the state 

transition matrices in (231), with rd[n] ∈ {–512, –511, …, 511}. 
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Figure 20: Simulated power spectra of the running sum of the quantization noise of a 

second-order successive requantizer that implements the state transition matrices in (231) 

and of a second-order ΔΣ modulator. 
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Figure 21: Block diagram of the PLL used in phase error simulations. 
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Figure 22: Simulated power spectra of the phase error of a 3.56 GHz output frequency, 

45 kHz bandwidth PLL when its digital quantizer is implemented as (a) a second-order 
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ΔΣ modulator and (b) a second-order successive requantizer that implements the state 

transition matrices in (231). 
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Figure 23: Simulated power spectra of the running sum of the quantization noise of a 

second-order successive requantizer that implements the state transition matrices in (232) 

and a second-order ΔΣ modulator. 
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Figure 24: Simulated power spectra of the phase error of a 3.56 GHz output frequency, 

45 kHz bandwidth PLL when its digital quantizer is implemented as a second-order ΔΣ 

modulator and a second-order successive requantizer that implements the state transition 

matrices in (232). 
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Figure 25: Block diagram of a third-order sd[n] sequence generator. 
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Figure 26: Simulated power spectra of the running sum of the quantization noise of a 

third-order successive requantizer that implements the state transition matrices in (232) 

and a third-order ΔΣ modulator. 
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Figure 27: Simulated power spectra of the phase error of a 3.56 GHz output frequency, 

85 kHz bandwidth PLL when its digital quantizer is implemented as a third-order ΔΣ 

modulator and a third-order successive requantizer that implements the state transition 

matrices in (232) when (a) there are no circuit noise sources modeled and when (b) 

reference and VCO noise are modeled.  
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CHAPTER 4 

A 3.35 GHZ FRACTIONAL-N PLL USING A NEW CLASS OF DIGITAL 

QUANTIZERS AND A LINEARITY-ENHANCEMENT TIMING SCHEME FOR 

SPURIOUS TONE MITIGATION 

 

Abstract—This paper presents a 3.35 GHz fractional-N PLL optimized for fractional 

spurious tone mitigation. The PLL features a new class of second and third-order digital 

quantizers which replace the commonly-used second and third-order delta-sigma 

modulators to lower fractional spurious tones or lower PLL phase noise. It uses a new 

timing scheme, enabled by a modified frequency divider and a new phase and frequency 

detector, by which the PLL’s charge pump response is greatly linearized without resorting 

to high power consumption circuit linearization techniques. The PLL has a 48 kHz 

bandwidth, uses a 26 MHz reference, dissipates 19.52 mW from 1.0 / 1.2 V supplies, and 

has an active area of 0.34 mm2. Its worst-case in-band spurious tone and reference tone 

are –72 dBc and –79 dBc, respectively, and its phase noise is –87.5, –99, and –126 dBc / 

Hz at offsets of 10 kHz, 100 kHz, and 1 MHz, respectively. 
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I. INTRODUCTION 

 

Fractional-N phase-locked loops (PLLs) are widely used in communication 

systems to down-convert and up-convert received and transmitted signals [1-2]. The goal 

of such PLLs is to generate a periodic output. In practice, however, non-idealities result 

in a deviation of the output from its ideal phase by a signal called phase error. The phase 

error can be decomposed into a stochastic component called phase noise and a periodic 

component which consists of spurious tones. The maximum power of both components 

is severely limited in relevant frequency bands by modern communication standards. 

Fractional-N PLLs use coarse digital quantizers to control their output frequency 

[3-5]. Typically, the quantizer is implemented with a delta-sigma (ΔΣ) modulator, which 

generates highpass shaped, spurious tone-free quantization noise. The quantization noise 

ideally contributes a term proportional to a lowpass filtered version of its running sum to 

the PLL phase error. However, due to non-idealities in the PLL architecture and circuits, 

both the quantization noise and the quantization noise running sum are subjected to 

nonlinear distortion, a process which inevitably introduces spurious tones in the PLL 

phase error [6-17]. 

One technique to mitigate these spurious tones is to linearize key PLL circuits like 

the charge pump, but conventional designs usually achieve this at the expense of 

increased power consumption. Another technique is to replace the ΔΣ modulator with a 

digital quantizer that is better behaved in terms of nonlinearity-induced spurious tones [8, 

9, 14, 17]. 
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In [9], a new type of digital quantizer called the successive requantizer was 

implemented in a PLL for this purpose. In PLLs, the nonlinearities to which the 

quantization noise and its running sum are subjected are usually well-modeled by 

truncated memoryless power series [8, 9]. Therefore, the successive requantizer was 

designed to generate quantization noise s[n] with the property that sp[n] for p = 1, 2, 3, 4, 

and 5 are free of spurious tones and such that the quantization noise running sum t[n] has 

the property that tp[n] for p = 1, 2, and 3 are free of spurious tones. The PLL achieved 

record-setting spurious tone performance. However, the successive requantizer 

quantization noise was only first-order highpass shaped, so a phase noise cancelling 

technique was implemented to avoid an otherwise-significant quantization noise 

contribution to the PLL phase noise at low frequencies. 

This work presents a 3.35 GHz PLL using a new generation of successive 

requantizers which produce second and third-order highpass shaped quantization noise to 

avoid this issue [17]. The successive requantizers are used as second and third-order ΔΣ 

modulator replacements to improve either PLL spurious tone performance or lower PLL 

phase noise. In particular, a second-order successive requantizer is implemented which 

achieves state-of-the-art fractional spurious tone performance at the expense of a slight 

PLL phase noise increase compared to a second-order ΔΣ modulator, and second and 

third-order successive requantizers are implemented which achieve good spurious tone 

performance and lower PLL phase noise compared to their ΔΣ modulator counterparts. 

The work also presents a new PLL timing scheme, enabled by a modified 

frequency divider and a new phase and frequency detector, to improve PLL linearity and 



122 

 

 
 

reduce spurious tones further. The scheme allows linearizing the PLL charge pump 

response without resorting to high power consumption circuit linearization techniques. 

II. HIGH-LEVEL ARCHITECTURE AND FUNCTIONALITY 

 

 Spurious Tone Generation in Fractional-N PLLs 

The goal of a fractional-N PLL is to produce a periodic output with frequency fPLL 

= fref(N + α), where fref is the frequency of a reference oscillator, N is an integer, and |α| < 

1. A high-level diagram of a typical fractional-N PLL is shown in Fig. 28. It contains a 

phase and frequency detector (PFD), a charge pump, a lowpass loop filter, a voltage-

controlled oscillator (VCO), a frequency divider, and a coarse digital quantizer which 

introduces DC-free quantization noise. The divider outputs a two-level signal with rising 

edges separated (N + y[n]) VCO periods on the nth reference period, where y[n] is an 

integer-valued sequence generated by the digital quantizer. During the nth reference 

period, the PFD and charge pump output a current pulse with a width and polarity equal 

to the magnitude and sign, respectively, of the nth rising edge time of the divider minus 

that of the reference. The lowpass loop filter receives the charge pump current pulses and 

drives the VCO, whose output instantaneous frequency differs from its center frequency 

by an amount proportional to the loop filter’s output voltage deviation from its center 

value. The PLL’s feedback loop acts so as to zero the average charge pump output current, 

which sets the PLL average output frequency to fref time the average of (N + y[n]). The 

sequence y[n] is generated to equal α on average and can be written as 
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 [ ] [ ]y n s n  ,  (264) 

where s[n] is the quantization noise. 

The PLL output can be written as 

 ( ) (2 ( ) ( ))out refv t g f N t t     ,  (265) 

where g(t) is a 2π-periodic function and θ(t) is the phase error of the PLL resulting from 

noise, including quantization noise [18]. As explained in the introduction, the phase error 

consists of phase noise and spurious tones. Typically, the most significant types of 

spurious tones are reference spurious tones, i.e. tones located at multiples of fref, and 

fractional spurious tones, i.e. tones located at multiples of αfref
19. Depending on the value 

of α, fractional spurious tones may be located within the PLL’s loop bandwidth, where 

they are not attenuated by the PLL’s lowpass filtering. 

Two mechanisms have been identified for the generation of fractional spurious 

tones [9]. The first mechanism is the parasitic coupling between VCO and reference lines. 

For example, intermodulation of the nth harmonic of the reference with the VCO 

produces a component with a frequency of (N + α)fref – Nfref = αfref. The coupling is usually 

most significant in the PFD and charge pump, as these circuits process signals aligned 

with both the VCO and the reference edges. The second mechanism is the nonlinear 

distortion of the quantization noise s[n] and its running sum 

 
0

[ ] [ ]
n

k

t n s k


 .  (266) 

                                                           
19 In the PLL output spectrum, reference and fractional spurious tones are located at offsets of multiples of 

fref and αfref, respectively. 
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As explained in the introduction, the nonlinearities in a PLL are usually well-modeled by 

truncated memoryless power series. This implies that the PLL phase error contains 

versions not only of t[n] but of sp[n] and tp[n] for integers p > 1. Typically, the digital 

quantizer is implemented with a second or third-order ΔΣ modulator, i.e. a ΔΣ modulator 

with second or third-order highpass shaped quantization noise, respectively. Adding 

dither to the ΔΣ modulator ensures s[n] and t[n] are free of spurious tones. However, it 

does not ensure sp[n] or tp[n] are free of spurious tones for integers p > 1 [8, 9]. This 

sensitivity makes ΔΣ modulators poorly-behaved with respect to nonlinearity-induced 

spurious tones. 

 The PLL’s nonlinearities can be attributed to both architectural and circuit non-

idealities. An example of the former is the variation in the turn-on and turn-off times of 

the charge pump branch currents from reference period to reference period, as seen in the 

timing diagram of the PLL from Fig. 28. An example of the latter is the nonlinear response 

of the charge pump, which is typically the most dominant nonlinearity contributor in the 

PLL.  

Nonlinear distortion of s[n] can be mostly avoided by resynchronizing the divider 

output edges with those of the VCO [1]. Therefore, this work focuses on techniques to 

mitigate spurious tones due to nonlinear distortion of t[n]. The first technique is to use a 

second or third-order successive requantizer instead of a ΔΣ modulator. The successive 

requantizers can be optimized for low nonlinearity-induced spurious tones or low PLL 

phase noise. The second technique is to use a new PLL timing scheme to linearize the 

charge pump response. This is enabled by a modified frequency divider and a new PFD, 
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and results in significant spurious tones mitigation without the need for high power 

consumption circuit linearization techniques. The techniques are described in detail in the 

following two sub-sections. 

 Second and Third-Order Successive Requantizers 

The PLL’s digital quantizer can be switched between a second-order ΔΣ 

modulator, a third-order ΔΣ modulator, a low-spurs, second-order successive requantizer, 

a low-noise, second-order successive requantizer, and a low-noise, third-order successive 

requantizer. A high-level diagram of the successive requantizer, common to the three 

successive requantizers used, is shown in Fig. 29 [8]. Its sequences are all integer-valued 

and represented in two’s complement format. It processes a 20-bit constant input 

sequence x0[n] = 216α through 16 serially-connected quantization blocks and outputs a 4-

bit output sequence y[n]. The dth quantization block, for each d = 0, 1, …, 15, divides its 

input, xd[n], by two and quantizes the result by one bit such that its output sequence has 

the form 

 
1

[ ] [ ]
[ ]

2
d d

d

x n s n
x n


 , (267) 

where sd[n] / 2 can be viewed as quantization noise. The sd[n] sequence generator 

generates sd[n] to have the same parity as xd[n] for all n (otherwise xd+1[n] would not be 

integer-valued) and with a small enough magnitude that xd+1[n] can be represented with 

one less bit than xd[n]. 

 It can be shown that the quantization noise of the successive requantizer and its 

running sum can be written as 
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and 
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respectively, where 

 
0

[ ] [ ]
n

d d

k

t n s n


   (270) 

for each d [8]. 

A second-order sd[n] sequence generator, i.e. one for which sd[n] is second-order 

highpass shaped, is shown in Fig. 30 [17]. It contains a pseudo-random number generator 

that outputs a sequence of 10-bit independent, identically and uniformly distributed 

pseudo-random variables rd[n], two difference blocks, and a combinatorial logic block 

that generates a bounded sequence ud[n] as a function of the lowest significant bit (LSB) 

of xd[n], td[n – 1], ud[n – 1], and rd[n]. The first difference block takes ud[n] and outputs 

td[n], so 

 [ ] [ ] [ 1]d d dt n u n u n   .  (271) 

The second difference block takes td[n] and outputs sd[n], so sd[n] = td[n] – td[n – 1]. 

Therefore, sd[n] is the result of differencing ud[n] twice. 

It can be shown that if there exists a positive integer ht such that td
p[n] is free of 

spurious tones for p = 1, 2, …, ht then tp[n] is free of spurious tones for p = 1, 2, …, ht 

[14, 17]. Additionally, (269) implies that the PSD of t[n] is determined by the PSD of the 

td[n] sequences. Therefore, t[n] inherits the noise and the nonlinearity-induced spurious 
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tone behavior of the td[n] sequences. This, with (271), imply that the combinatorial logic 

block, which outputs ud[n], determines the statistical properties of t[n]. 

The low-spurs and low-noise, second-order successive requantizers differ by their 

combinatorial logic block. That of the low-spurs version is described by the truth table in 

Fig. 31 and is designed to make t[n], t2[n], and t3[n] free of spurious tones. This is done 

by ensuring that the autocorrelation functions of td[n], td
2[n], and td

3[n] each converge to 

a constant asymptotically as their time spread increases [8, 14, 17]. The downside of this 

quantizer is its higher t[n] PSD content compared to that of a second-order ΔΣ modulator, 

which results in slightly higher PLL phase noise. Additionally, the range of the 

quantization noise running sum of this quantizer is (– 8, 7), whereas that of a second-

order ΔΣ modulator is (–4, 4). The increased range imposes larger charge pump output 

swing requirements. The combinatorial logic block of the low-noise, second order 

successive requantizer is described by the truth table in Fig. 32 with zd[n] = ud[n] and is 

such that t[n] is free of spurious tones. It does not ensure t2[n] and t3[n] are free of spurious 

tones. Rather, it is designed so that the PSD of t[n] is lower than that of a second-order 

ΔΣ modulator at low and mid frequencies, which results in lower PLL phase noise at 

those frequencies. This is done by ensuring there is a high probability that ud[n] has a 

different sign than ud[n – 1] for all n, which has the effect of displacing quantization noise 

power from low to high frequencies. As a result, the PSD of t[n] of this quantizer is higher 

than that of a second-order ΔΣ modulator at high frequencies. In typical PLLs, high 

frequency quantization noise is heavily attenuated by the loop filter, so the quantization 
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noise contribution of this quantizer to the PLL phase noise is usually lower than that of a 

second-order ΔΣ modulator. 

Fig. 33 shows the PSD of the quantization noise running sum of the low-spurs and 

low-noise, second-order successive requantizers and of a second-order ΔΣ modulator. 

The plot shows that at low and mid frequencies, the low-noise, second-order successive 

requantizer contributes the least amount of noise, followed by the second-order ΔΣ 

modulator. Fig. 34 shows the PSD of a nonlinearly-distorted version of the quantization 

noise running sum t[n] given by 

 
3 2[ ] 0.15 [ ] 0.32 [ ] 0.99 [ ] 0.23m n t n t n t n      (272) 

for the three second-order digital quantizers. The nonlinearity in (272) is representative 

of the strong nonlinear behavior a typical PLL might impose on t[n] [8]. As seen in the 

figure, distorting the quantization noise running sum of the second-order ΔΣ modulator 

results in spurious tones. The same is true for the low-noise, second order successive 

requantizer, but the spurious tones generated are lower, although seemingly higher in 

quantity. As expected, the distorted quantization noise running sum of the low-spurs, 

second-order successive requantizers is free of spurious tones. 

 A third-order sd[n] sequence generator, i.e. one for which sd[n] is third-order 

highpass shaped, is shown in Fig. 35 [17]. It contains a pseudo-random number generator 

that outputs a sequence of 10-bit independent, identically and uniformly distributed 

pseudo-random variables rd[n] like in the second-order case, three difference blocks, and 

a combinatorial logic block that generates a bounded sequence vd[n] as a function of the 

lowest significant bit (LSB) of xd[n], ud[n – 2], vd[n – 1], and rd[n], where ud[n] = vd[n] – 
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vd[n – 1] for all n. Reasoning similar to that used for the second-order sd[n] sequence 

generator shows that the statistical properties of t[n] are determined by the output 

sequence of the combinatorial logic block. 

 The truth table of the combinatorial logic block of the low-noise, third-order 

successive requantizer is the same as that of the low-noise, second-order successive 

requantizer shown in Fig. 32 with zd[n] = vd[n]. Like its second-order counterpart, the 

low-noise, third-order successive requantizer is such that t[n] is free of spurious tones, 

but does not ensure t2[n] and t3[n] are free of spurious tones. Rather, it is designed to 

make the PSD of t[n] lower at low and mid frequencies than a third-order ΔΣ modulator 

at the expense of higher high frequency content. 

 Fig. 36 shows the PSD of the quantization noise running sum of the low-noise, 

third-order successive requantizer and of the third-order ΔΣ modulator. Fig. 37 shows the 

PSD of the nonlinearly-distorted version of the quantization noise running sum given by 

(272) for both third-order digital quantizers. As seen in the figures, the low-noise, third-

order successive requantizer achieves lower quantization noise running sum at low and 

mid frequencies than the third-order ΔΣ modulator unless it is subjected to strong 

nonlinearities. 

 Proposed PLL with Linearity-Enhancement Timing Scheme 

The PFD response can be linearized by forcing the PLL to lock at a phase offset, 

so that the reference and divider rising edge times are separated by a constant time on 

average every reference period. In [9], this was done by adding an offset pulse generator 

(OPG), which is an additional charge pump branch with a nominal current equal to that 
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of the upper charge pump branch but which is turned on on the reference rising edge and 

stays on for a fixed amount of time TOC. With the OPG, the PLL’s feedback loop adjusts 

the divider rising edges so that they arrive on average TOC after the reference rising edges. 

As a result, the lower charge pump branch and the OPG are turned on at the same time 

but turned off at different times every reference period. This is problematic for linearity. 

Ideally, as the divider’s rising edge time, which controls the turn-off time of the lower 

charge pump branch, is linearly varied with respect to the reference’s rising edge time, 

the total amount of charge supplied by the charge pump during the reference period varies 

linearly. In practice, turning off one of the charge pump branch currents results in a 

transient that couples into the other branch’s bias nodes via parasitic capacitances and 

modulates its current. Consider the charge Q(t) supplied by the OPG and the lower charge 

pump branch during a reference period, as depicted in Fig. 38. The plots of Fig. 38a) show 

the current contributed by the OPG, Iu(t), and by the lower charge pump branch, Id(t), in 

the case where the falling edge times of the switch control signal of the OPG, OFFSET, 

and of the lower charge pump branch, DOWN, are sufficiently separated. As seen in the 

plots, before t1 the current sources contribute currents i1 and i2, so Q(t) increases with 

slope Ic(t) = i1 + i2. At t1, the OPG is turned off, and the resulting transient modulates Id(t) 

until time tr, when Id(t) re-settles to i2. At t2, the lower charge pump branch is turned off, 

and between times tr and t2, Q(t) increases with slope Ic(t) = I2, whereas between t1 and tr, 

Ic(t) varies between i1 + i2 and i2. If t2 were decreased by a small amount of time Δt, the 

total charge supplied during the reference period would decrease by Δt·Ic(t2) = Δt·i2. 

However, as illustrated in the plots of Fig. 38b), if Δt is sufficiently large, t2 occurs before 
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Id(t) has time to re-settle to i2, so the total charge supplied decreases by less than Δt·i2. 

Adding capacitance to the branches’ bias nodes can decrease the magnitude of the 

transient coupling, but it also tends to slow down charge pump settling time, which hurts 

linearity.  

A second problem with the above technique is that the OPG adds extra noise and 

hurts charge pump linearity by decreasing the charge pump output impedance, even 

though its only function in the PLL is to separate the reference and divider rising edges.  

One solution to the first problem is to make the magnitude of the OPG current 

lower than that of the lower charge pump branch [19]. However, this solution still suffers 

from extra noise and charge pump output impedance degradation.  

This work proposes adjusting the timing of the PLL to linearize the PFD and 

charge pump responses and lower the charge pump noise contribution to the PLL phase 

noise instead of using an OPG. The implemented PLL and its timing diagram are shown 

in Figs. 39 and 40. The timing is enabled by a new PFD and a modified frequency divider. 

A sampled loop filter is used to avoid large reference spurs [9]. As shown in the figures, 

the divider generates two signals for the PFD, vdiv0 and vdiv1, with rising edges separated 

by 34 VCO periods. The PFD DOWN and UP signals control the lower and upper charge 

pump branch currents, respectively, but unlike conventional PLLs, DOWN is high from 

the rising edge of vdiv0 to the rising edge of vref, and UP is high from the rising edge of vref 

to the rising edge of vdiv1 if the rising edge of vref is located between the rising edges of 

vdiv0 and vdiv1 and low otherwise. If the upper and lower charge pump branch currents are 

equal, the PLL feedback loop acts so as to place the rising edges of vref in the mid-point 
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between the rising edges of vdiv0 and vdiv1 (i.e. 17 VCO periods after the rising edge of 

vdiv0) on average. This zeros the average charge injected by the charge pump and linearizes 

the PFD response. Any deviation Δt of the rising edge time of vref from this mid-point 

results in a nominal supplied charge of Δt(iup + idown), where iup and idown are the nominal 

upper and lower charge pump branch currents, respectively. Therefore, unlike 

conventional PLLs, both the upper and lower charge pump branch currents contribute to 

the charge pump gain, so the effective charge pump current equals icp = iup + idown. Since 

the lower charge pump branch always turns off at the same time the upper charge pump 

branch turns on, the resulting transients always modulate the charge pump currents 

equally on every reference period, thereby avoiding the nonlinearity discussed 

previously. Also, since the charge pump’s effective output current is iup + idown, each of 

the charge pump currents can be lower than what they would be in a conventional PLL 

with the same charge pump gain (e.g. half of what they would be if iup = idown). This results 

in lower thermal and 1 / f noise contributions, although this effect is partially cancelled 

by the total charge pump on-time being longer than in conventional designs. Finally, the 

charge pump output impedance is greatly improved, both by the currents being smaller 

than usual and by the charge pump branches not being on at the same time.  

To achieve good linearity, the charge pump currents need to have sufficient time 

settle. The rising edge time of the reference varies from its average mid-point mostly by 

the digital quantizer’s quantization noise running sum t[n] times the VCO period during 

the nth reference period, so the minimum settling times of the lower and upper charge 

pump branch currents are approximately (17 + min{t[n]})TVCO and (17 – max{t[n]})TVCO, 
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respectively, where TVCO is the VCO period. For a second-order ΔΣ modulator these 

values are both 15TVCO, while for the low-spurs, second-order successive requantizer they 

are both 13TVCO.  

The downside of the proposed timing is that the charge pump output needs to 

handle a larger voltage swing, as illustrated in Fig. 40. The increased output swing forces 

the charge pump output transistors and the capacitor C11 into more nonlinear regions of 

operation. Nonetheless, extensive simulations and the measurement results presented in 

Section IV demonstrate that the charge pump linearity can be improved significantly with 

the proposed timing scheme. 

III. IMPLEMENTATION DETAILS 

 

 Timing 

The PLL timing is that shown in Fig. 40. The divider generates two outputs for 

the PFD: vdiv0 and vdiv1, the digital clock clkdig, and the sampled loop filter switch control 

signal vsw. 

The divider, shown in Fig. 41, runs on 1.0 V, is built entirely with GP standard 

cells, and is based on the 2/3 cell multi-modulus divider presented in [20]. It uses six 2/3 

cells but includes circuitry to automatically disconnect the last three, two or one cells 

depending on its modulus. This increases its modulus range from {64, 65, …, 127} (the 

range of a standard six 2/3 cell design) to {8, 9, …, 127}. 
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The divider is designed to cycle through eight different moduli: 8, 8, 8, N0, 12, N1, 

12, and N + y[n] – 90, where N0 and N1 are integers such that N0 + N1 = 42, so that the 

sum of the moduli equals N + y[n]. The values of N + y[n] can range from 98 to 217. For 

a reference frequency fref of 26 MHz, this implies that the divider can support PLL 

frequencies from 2.548 GHz to 5.642 GHz. The signal mod1 is used to clock the four 

divider outputs before being resynchronized to a VCO edge, as shown in the timing 

diagram of the figure. The value of N1 can be programmed via the SPI and represents a 

tradeoff between the charge pump’s PLL phase noise contribution and its linearity: 

increasing N1 increases the time between the rising edges of vdiv0 and vdiv1, time during 

which the charge pump is on when the PLL is locked. This gives the charge pump branch 

currents more time to settle at the expense of adding more noise every reference period. 

All of the IC’s measurements were done with the maximum possible value of N1, 34, to 

optimize for charge pump linearity. The rising edge of clkdig occurs at the same time as 

that of vsw, time at which the charge pump is off when the PLL is locked. This avoids 

digital clocking noise from corrupting the charge pump branch currents via substrate-

coupling. 

 PFD 

The PFD runs on 1.2 V and is built with LP transistors. As seen in Fig. 42, it 

outputs the DOWN signal, which is high from the rising edge of vdiv0 to that of vref, and 

the UP signal, which is high from the rising edge of vref to that of vdiv1 if the rising edge 

time of vref is located within the time interval from the rising edge time of vdiv0 to that of 

vdiv1. The latter is to avoid the PLL from locking when the rising edge of vref is outside of 
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the mentioned time interval, as illustrated in the figure. If the PLL were to lock this way, 

the charge pump would be on for the entire reference period instead of being on only 

when the sampled loop filter switch is open. Instead, if the rising edge of vref is located 

outside of the desired time interval, the UP signal stays low and the PLL’s feedback loop 

acts to lower the VCO’s frequency until the rising edge of vref is placed within the desired 

time interval. In such a situation, the DOWN signal can cause the charge pump output to 

be at its minimum voltage for several reference periods before the UP signal starts 

adjusting the charge pump output. 

 Charge pump and sampled loop filter 

The charge pump, shown in Fig. 43, is based on wide-swing cascode currents 

mirrors, and is biased with an off-chip resistor. It runs on 1.2 V and is built with LP 

transistors. Its upper and lower branch currents can be independently adjusted in 125 μA 

steps from 125 μA to 725 μA, so the effective charge pump current icp ranges from 250 

μA to 1500 μA . For the IC measurements, the UP and DOWN currents were each set to 

500 μA. Mismatches between the UP and DOWN currents are not a significant concern, 

as the loop filter is sampled and only receives the total charge pump supplied charge 

during each reference cycle when the PLL is locked. The design was optimized for low 

noise to improve PLL phase noise and fast current settling times to improve linearity and, 

therefore, fractional spurious tone performance. 

The sampled loop filter is that shown in Fig. 39. The loop filter switch is the same 

as that in [9] and was designed for optimal linearity and charge injection minimization 

with LP transistors. The two loop filter resistors R1 and R2 consist of series combinations 
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of unsilicided N+ poly resistors which can be switched on and off via the SPI to adjust 

their total resistance values. The on-chip loop filter capacitors C11, C12, and C3 consist of 

parallel combinations of N-well N+ poly capacitors and stacked metal capacitors using 

metal levels two through five which can be switched on and off via the SPI to adjust their 

total capacitance values. The stacked metal capacitors have less capacitance per volume 

than the poly capacitors, but they are more linear. For the IC measurements, the loop filter 

resistors R1 and R2 were each set to 8.88 kΩ and the on-chip loop filter capacitors C11, 

C12, and C3 were set to 34 pF, 34 pF, and 68 pF, respectively. The 2020 nF capacitor C2 

is implemented with two ceramic X7R 1 nF capacitors and one ceramic NP0 20 pF 

capacitor. The capacitors’ bottom plates are connected to the charge pump’s on-chip 

ground to avoid PLL phase noise from off-chip/on-chip ground node variations. 

 VCO 

The VCO is a modified version of the LC-tank DCO core presented in [21]. The 

main difference is that the VCO uses two differentially-connected accumulator-mode N-

well MOS varactors instead of the slow and fast FCE banks from [21]. The VCO runs on 

1.0 V, has an SPI-controlled output center frequency which ranges from 3.0 GHz to 3.5 

GHz, and has a gain kVCO which varies from 4 MHz / V to 6 MHz / V. The relatively low 

value of kVCO prevents the loop filter resistors from contributing significant PLL phase 

noise and ensures that the PLL’s linearity is limited by the charge pump and C11, as 

opposed to by the VCO. 
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 Digital and SPI 

The digital contains the five digital quantizers. The pseudo-random number 

generators for the successive requantizers and the ΔΣ modulators are implemented with 

one 201-register modified linear feedback shift register (LFSR) that outputs 160 

independent, identically and uniformly distributed random bits every clock period [22]. 

When using a successive requantizer, each of the sixteen sd[n] sequence generators uses 

10 bits of the LFSR output to form a uniformly distributed random variable which ranges 

from –512 to 511. 

The digital and SPI both use GP transistors and were synthesized and placed-and-

routed with the Synopsis Design Compiler and IC Compiler tools. They were synthesized 

and placed-and-routed separately and each have their own power supply to avoid digital 

quantizer clocking noise coupling into sensitive PLL nodes via the SPI output lines. 

 Power distribution 

The die has six separate power domains: reference, analog feedforward (PFD, 

charge pump, sampled loop filter), VCO, divider, digital, and SPI. The IC has one global 

ground provided by a low-impedance metal mesh that covers the active layout wherever 

possible. The use of a single ground simplifies block-to-block communication as all 

signals are passed differentially with a ground shield, minimizing inter-supply current 

[21]. 
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Each supply is heavily filtered with passive RC networks occupying any unused 

layout area. The analog feedforward supply was further sub-divided into three additional 

RC-filtered domains: PFD, charge pump, and sampled loop filter. 

IV. MEASUREMENT RESULTS 

 

The IC was fabricated in ST 65 nm single-poly, seven-copper CMOS process, and 

makes use of the dual-oxide (LP and GP transistors both available) as well as high-

resistivity poly process options. Its die in Fig. 44 shows the VCO, divider (DIV), digital 

(DIG), SPI, loop filter, PFD, charge pump (CP), and reference circuit (XO). Its total area 

is 1.0 x 1.3 mm2, and its active area, which includes all decoupling capacitors, is 0.34 

mm2. The IC’s area and power breakdowns are given in Table I. 

The IC is packaged in a QFN36 package with a ground paddle. Nine copies of the 

IC were produced. However, a mistake in the SPI design allowed only two of the nine 

copies of the IC to be tested. The measurement results from the two ICs were consistent, 

but only the results from one of them are presented, because the other IC had an issue that 

resulted in its PLL output power being very low.  

The test board uses an Abracon ABM8G 26 MHz crystal for the reference 

oscillator and a TDK HHM1583B1 wideband RF balun to match the differential output 

buffer to the measurement equipment. Power to all supply domains except for the VCO’s 

was provided by Analog Devices ADP171 voltage regulators with parallel 10 μF X7R 

ceramic capacitors. The VCO supply was provided by an Agilent E5052B signal source 
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analyzer’s internal power supply, because it was found that the ADP171 regulators do not 

sufficiently attenuate low-frequency noise. The test board was connected to a 

motherboard that supplied power and USB communication to a PC. 

The phase noise measurements were taken with the Agilent E5052B signal source 

analyzer, and the spurious tone measurements were taken with an Agilent E4448A 

spectrum analyzer. 

The PLL’s phase noise for a 3.35 GHz output with a 16.68 kHz fractional 

frequency offset when using the low-spurs, second-order successive requantizer is shown 

in Fig. 45. It is suspected that an output-power-limiting impedance mismatch limits the 

phase noise floor. By running multiple measurements with different PLL configuration 

parameters, the phase noise contributions of all the individual blocks were extrapolated 

to produce the plot shown in Fig. 45. By design, the VCO phase noise dominates the PLL 

phase noise at all but low frequencies, where the charge pump 1 / f noise is dominant. 

Fig. 46 compares the measured PLL phase noise when using the five digital 

quantizers. The figure shows that, for the chosen PLL bandwidth of 48 kHz, the PLL 

phase noise when using the different digital quantizers differs noticeably only at offset 

frequencies between 10 kHz and 100 kHz. The low-noise, third-order successive 

requantizer and third-order ΔΣ modulator contribute the least amount of phase noise, 

followed by the low-noise, second-order successive requantizer, then the second-order 

ΔΣ modulator, and finally the low-spurs, second-order successive requantizer. 

Fig. 47 shows the PLL output spectrum when using the low-spurs, second-order 

successive requantizer and when using the second-order ΔΣ modulator, for a fractional 
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offset of 16.68 kHz. The spectrum demonstrates the nonlinearity-induced spurious tone 

mitigation properties of the successive requantizer. This measurement was repeated 

several times for all fractional frequency offsets and the five digital quantizers to produce 

the plots in Fig. 48. Due to the SPI design mistake mentioned above, it was only possible 

to set the fractional frequency offset to most, but not all, of the desired values, so the plots 

contain some measurement gaps. The figure shows that the low-spurs, second-order 

successive requantizer and low-noise, third-order successive requantizer result in the 

lowest fractional spurious tones, followed by the third-order ΔΣ modulator, then the low-

noise, second-order successive requantizer, and finally the second-order ΔΣ modulator. 

As seen from Figs. 33, 34, 46, and 48, the low-noise, second-order successive requantizer 

results in both a lower quantization noise PLL phase noise contribution at low and mid 

frequencies and lower fractional spurious tones than the second-order ΔΣ modulator, 

making it an ideal replacement for the second-order ΔΣ modulator in PLLs with 

sufficiently low bandwidths. As seen in Figs. 36 and 37, the low-noise, third-order 

successive requantizer can result in a lower or higher quantization noise PLL phase noise 

contribution depending on the strength of the PLL nonlinearities, and as seen in Figs. 46 

and 48, it results in the same quantization noise PLL phase noise contribution and lower 

fractional spurious tones than the third-order ΔΣ modulator. The low-spurs, second-order 

successive requantizer results in very low fractional spurious tones-below –72 dBc-

although its quantization noise PLL phase noise contribution is slightly higher than that 

of the second-order delta-sigma modulator. 
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The reference spurious tone, shown in Fig. 49, is –79 dBc. Due to the asymmetry 

of the negative and positive offset spurious tones, it is suspected that the origin of the –

79 dBc tone is direct coupling. The open-loop VCO phase noise is shown in Fig. 50.  

The PLL’s measured performance is summarized in Table 2 along with that of the 

best comparable low fractional spurious tones PLLs published to date.  
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Figure 28: High-level diagram of a typical fractional-N PLL. 
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Figure 29: High-level diagram of the successive requantizer. 
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Figure 30: Block diagram of the second-order sd[n] sequence generator. 
 

 

Figure 31: Truth table for the combinatorial logic block of the low-spurs, second-order 

successive requantizer, where rd[n] ∈ {–512, –511, …, 511}. 
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Figure 32: Truth table for the combinatorial logic block of the low-noise, second-order 

and low-noise, third-order successive requantizers, where rd[n] ∈ {–512, –511, …, 511}. 
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Figure 33: Comparison of the quantization noise running sum PSD of the low-spurs, 

second-order successive requantizer, the low-noise, second-order successive requantizer, 

and a second-order ΔΣ modulator. 
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Figure 34: Comparison of a distorted version of the quantization noise running sum PSD 

of the low-spurs, second-order successive requantizer, the low-noise, second-order 

successive requantizer, and a second-order ΔΣ modulator. 
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Figure 35: Block diagram of the third-order sd[n] sequence generator.  
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Figure 36: Comparison of the quantization noise running sum PSD of the low-noise, 

third-order successive requantizer and a third-order ΔΣ modulator. 
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Figure 37: Comparison of a distorted version of the quantization noise running sum PSD 

of the low-noise, third-order successive requantizer and a third-order ΔΣ modulator. 
 

Iu(t)

OFFSET

DOWN

Iu(t)

Id(t)

Q(t)

t0 t1 tr t2

C

Q(t)

t0 t1 t2

OFFSET

DOWN

OFFSET

DOWN

ΔQ < Δt·i2

i2

i1

a) b)

Ic(t) = i2

Ic(t) = i1 + i2

i2 < Ic(t) < i1 + i2

Ic(t) = i1 + i2

i2 < Ic(t) < i1 + i2

Δt

i1

Id(t)

i2

Q(t)

Iu(t)

Id(t)

i2

i1

Ic(t)

 

Figure 38: Charge pump nonlinearity example when using an offset pulse generator. 
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Figure 39: Block diagram of the implemented fractional-N PLL. 
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Figure 40: Timing diagram of the implemented fractional-N PLL. 
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Figure 41: Implemented frequency divider. 
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Figure 42: Block and timing diagrams of the PFD. 
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Figure 43: Implemented charge pump. 
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Figure 44: Die photograph. 
 

 

 

 

 

 

 



152 

 

 
 

-180

-160

-140

-120

-100

-80

-60

-40

-20

103 104 105 106 107 108

Total measured phase noise

Total simulated 

phase noise

VCO

Low-spurs, 2nd-order 

successive requantizer

Charge pump

Reference

 

Figure 45: Measured PLL phase noise for a 3.35 GHz output and 16.68 kHz fractional 

frequency when using the low-spurs, second-order successive requantizer, and estimated 

phase noise contributions. 
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Figure 46: Comparison of the measured PLL phase noise for a 3.35 GHz output and a 

16.68 kHz fractional frequency between the five digital quantizers. 
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Figure 47: Measured PLL output spectrum showing the worst fractional spurious tone at 

16.68 kHz when using a) the low-spurs, second-order successive requantizer and b) a 

second-order ΔΣ modulator. 
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Figure 48: The largest measured fractional spurious tone as a function of the PLL 

fractional frequency for the five digital quantizers. 
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Figure 49: Measured PLL output spectrum showing the reference spur. 
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Figure 50: Measured open-loop VCO phase noise. 
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TABLES 

 

 

Table 1: Area and power breakdown of the IC. 
    Area (mm2)   Power (mW) 

VCO and External Buffer          0.21   VCO: 9.64, Buffer: 4.39 

Crystal /Reference Circuitry          0.004   0.31 

Digital          0.029   1.25 

PFD, Charge Pump, Loop Filter          0.046   3.25 

Divider          0.007   0.61 

SPI          0.017   0.07 

Decoupling capacitance          0.028   - 

TOTAL          0.341   19.52 

 

 

 

 

 

 

 

 

 

 

  



157 

 

 
 

 

Table 2: Performance summary and comparison table. 
 [9] [19] [23] [24] [25] [26] [27] [28] This 

work 
Technology 

(nm) 

180 40 180 40 65 55 65 180 65 

Supply (V) 1.2 1.3 1.8 1.0 / 

2.0 

1.0 1.2 1.0 1.8 1.0 / 

1.2 

Power  

Consumptio

n (mW) 

66.42 17.5 28 9.1 20.9 36 11.5 46.98 19.52 

Area (mm2) 4.84 

(pack

age 

and 

die) 

0.29 3.4 

(PAD

s 

includ

ed) 

0.046 

active 

area 

0.77 

active 

area 

0.68 

core 

area 

0.23 3.24 

core 

area 

0.341 

Reference  

Frequency 

(MHz) 

12 26 35 26 30 40 49.15 38 26 

PLL 

Frequency 

(GHz) 

2.4 3.88 2.1 2.002 3.57 5.8 2.68 6.12 3.35 

Bandwidth 

(kHz) 

975 250 700 1500 500 500 700 1000 48 

In-band 

Phase Noise 

(dBc/Hz) 

–98 

@ 

100 

kHz 

–105 

@ 

100 

kHz 

–104 

in-

band 

floor 

–91 

@ 5 

kHz 

–103 

@ 

100 

kHz 

–105 

@ 

100 

kHz 

–

110.6 

@ 

100 

kHz 

–112 

@ 

300 

kHz 

–87.5 

@10 

kHz 

Out-of-band 

Phase Noise 

(dBc/Hz) 

–121 

@ 3 

MHz 

–123 

@ 1 

MHz 

–129 

@ 2 

MHz 

–130 

@ 26 

MHz 

–122 

@ 3 

MHz 

–133 

@ 10 

MHz 

–1318 

@ 1 

MHz 

–130 

@ 3 

MHz 

–

126.2  

@ 1 

MHz 

In-band  

Fractional 

Spur (dBc)(*) 

–64 –65 –60 –70 –

73.66(

*) 

–70 –63.1 –61 –72 

Reference 

Spur (dBc) 

–70 –100 Not 

stated 

–87 –117 –94 –60 –78 –79 

 

 

(*) Only one fractional spurious tone is reported. 
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