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Adaptive Cancellation of Inter-Symbol Interference
in High-Speed Continuous-Time DACs

Subin Kim, Graduate Student Member, IEEE, and Ian Galton , Fellow, IEEE

Abstract— Inter-symbol interference (ISI) often limits the
performance of high-speed continuous-time digital-to-analog
converters (DACs) such as Nyquist-rate current-steering DACs.
The most effective previously-published means of mitigating ISI is
return-to-zero (RZ) pulse shaping. Unfortunately, such RZ DACs
are significantly more sensitive to clock jitter than their non-
return-to-zero (NRZ) counterparts, particularly at high clock
rates, and they typically consume more than twice the power
of comparable NRZ DACs. This paper proposes, demonstrates
via simulation, and rigorously analyzes a calibration technique
which circumvents the need for RZ pulse shaping by adaptively
measuring and cancelling ISI over the DAC’s first Nyquist
band. It can be operated in both foreground and background
calibration modes, and is compatible and can share circuitry with
a recently-published calibration technique that similarly cancels
error from component mismatches and clock skew.

Index Terms— Current-steering DAC, dynamic element match-
ing, calibration, mismatch noise cancellation, inter-symbol
interference cancellation.

I. INTRODUCTION

ACONTINUOUS-TIME digital-to-analog converter
(DAC) converts a sequence of digital input values

represented as digital codewords into a continuous-time
analog output waveform. Over each of the DAC’s clock
periods, the continuous-time output waveform can be viewed
as an analog pulse with a duration less than or equal to
the DAC’s clock period. Ideally, the amplitude of each
pulse is proportional to the value of the corresponding input
codeword, but otherwise the pulses all have the same shape.

Unfortunately, nonideal circuit behavior inevitably causes
deviations in the pulse amplitudes from their ideal values
and deviations in the shapes of the pulses from one clock
period to another. The error in the DAC’s output waveform
resulting from pulse amplitude deviations is called static error
whereas that resulting from pulse shape deviations is called
dynamic error.

Inter-symbol interference (ISI) is often a major source
of dynamic error in continuous-time DACs. It is the result
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of parasitic capacitances which cause the amplitude and
shape of each output pulse to depend on prior input
codeword values as well as the current input codeword
value.

Previously published ISI mitigation techniques fall into
three categories: ISI spectral shaping or scrambling techniques,
calibration techniques, and return-to-zero (RZ) pulse shaping
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. The
ISI spectral shaping or scrambling techniques published to
date either improve the DAC’s spurious-free dynamic range
(SFDR) at the expense of significantly reduced signal-to-
noise-ratio (SNR) [12], or are only applicable to oversampling
DACs [8], [9], [10], [11]. The ISI calibration techniques
published to date that have been proposed for Nyquist-rate
current-steering DACs are restricted to foreground operation,
and either require manual calibration using off-chip laboratory
spectrum analyzers [2], [3], or only partially reduce ISI
errors [5], [6], or mitigate nonlinear distortion at the expense
of high residual noise [11]. By far, RZ pulse shaping, wherein
the DAC’s constituent circuit blocks are reset to signal-
independent states by the end of each clock period, is the most
effective previously-published means of mitigating ISI [11].
However, RZ DACs, i.e., DACs that incorporate RZ pulse
shaping, are significantly more sensitive to clock jitter than
their non-return-to-zero (NRZ) counterparts, particularly at
high clock rates, and they typically consume more than twice
the power of comparable NRZ DACs [11], [12], [13]. Dual
RZ pulse shaping can be used to address the increased
sensitivity to clock jitter, but doing so further doubles the
power consumption [13].

This paper proposes an ISI cancellation (ISIC) technique
that addresses these issues by adaptively measuring and
accurately canceling error from ISI over the DAC’s first
Nyquist band, thereby circumventing the need for RZ
pulse shaping. It is an extension of a mismatch noise
cancellation (MNC) technique that was recently proposed,
analyzed, and shown experimentally to suppress both static
and dynamic error over the DAC’s first Nyquist band from
component mismatches and clock skew, but does not mitigate
ISI [14], [15], [16]. The ISIC technique can be implemented
by itself or together with the MNC technique, and, like
the MNC technique, it can be operated in both foreground
and background calibration modes. If implemented together,
the ISIC and MNC techniques can operate simultaneously
and share the same analog circuitry without interfering with
each other.
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The paper presents a rigorous theoretical analysis of the
ISIC technique and demonstrates the technique’s performance
in conjunction with the MNC technique via simulation results.
As the ISIC technique shares some similarities with the MNC
technique, the analysis is framed as an extension of the
theoretical results presented in [14] so as not to rederive
previously published results.

II. BACKGROUND INFORMATION

A. General DAC Equations

An NRZ DAC converts a discrete-time sequence of digital
codewords into a continuous-time output waveform, y(t). The
input codeword sequence can be interpreted as a sequence
of numerical input values, x[n], the nth of which denotes
the ideal value of y(t) over nth clock period. For the
case of a symmetric-about-zero M+1-level NRZ DAC, x[n]
is restricted to the set of values {−M1/2, −M1/2+1,
−M1/2+21, . . . , M1/2} where 1 is the DAC’s minimum
step-size. In the absence of non-ideal circuit behavior, the
DAC’s output waveform can be written as y(t) = x[nt ],
where nt = ⌊ fs t⌋, i.e., nt is defined as the greatest integer
less than or equal to fs t at each time t . Hence, x[n] is
a sequence of values whereas x[nt ] is a continuous-time
waveform.

A dynamic element matching (DEM) DAC consists of an
all-digital DEM encoder and L 1-bit DACs. The 1-bit DAC
outputs, yi (t), are summed to form the overall DAC output,
y(t), i.e.,

y(t) =

L∑
i=1

yi (t). (1)

The output of the i th 1-bit DAC has the form

yi (t) = xi [nt ] Ki1+ ei (t), (2)

where

xi [nt ] = ci [nt ] −
1
2
, (3)

ci [n] is the 1-bit DAC input sequence, Ki is a constant called
the 1-bit DAC’s weight, and ei (t) represents any deviation
from ideal NRZ 1-bit DAC operation. For each n, ci [n] is
either 0 or 1, so xi [n] is either –1/2 or 1/2. By design, each
Ki is an integer, K1 = 1, and Ki ≥ Ki−1 for i = 2, 3, . . . ,
L .

As shown in [17], each DEM encoder output bit sequence
can be written as

ci [n] =
1
1

(
mi x[n] + λi [n]

)
+

1
2

(4)

for i = 1, 2, . . . , L , where each mi is a constant and each
λi [n] is a sequence that respectively satisfy

L∑
i=1

Ki mi = 1 and
L∑

i=1

Ki λi [n] = 0. (5)

Fig. 1. Details of the 14-bit main DEM DAC.

B. A Specific 14-Bit DEM DAC

To simplify the presentation, the paper presents the ISIC
technique applied to the specific 14-bit DEM DAC shown in
Fig. 1 [17]. The DEM DAC contains L = 36 1-bit DACs with
weights

K2 j−1 = K2 j = 2 j−1 for j ∈ {1, 2, . . . , 10} , and
K j = 1024 for j ∈ {21, . . . , 36} . (6)

As shown in [17], the DAC’s input sequence, x[n], can take
on values in the range {−81921, −81911, . . . , 81921}, and
the i th DEM encoder output bit sequence can be written as (4)
with

mi =

{
0, if i = 1, 2, . . . 20,
2−14, if i = 21, . . . 36.

(7)

The DEM encoder consists of a tree of 35 switching blocks,
each of which is denoted as Sk,r for k = 1, . . . , 14 and r =

1, . . . , 18. Switching blocks Sk,1 for k = 5, . . . , 14 are called
segmenting switching blocks, and the other switching blocks
are called non-segmenting switching blocks. The input to the
Sk,r switching block is denoted as ck,r [n], and the input to the
S14,1 switching block is c14,1[n] = c[n], where

c[n] =
x[n]

1
+ 9215. (8)

Each switching block calculates its two output sequences as
a function of its input sequence and one of 35 pseudo-random
1-bit sequences, bk,r [n], for k = 1, 2, . . . , 14 and r = 1,
. . . , 18, which are designed to well-approximate white random
sequences that are independent from each other and x[n], and
each take on values of 0 and 1 with equal probability. The top
and bottom outputs of the segmenting switching blocks, Sk,1,
are

1
2

(
ck,1[n] − 1 − sk,1[n]

)
, and 1 + sk,1[n], (9)
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respectively, where

sk,1[n] =


0, if ck,1[n] = odd,
1, if ck,1[n] = even, bk,1[n] = 1,
−1 if ck,1[n] = even, bk,1[n] = 0.

(10)

Similarly, the top and bottom outputs of the non-segmenting
switching blocks Sk,r are

1
2

(
ck,r [n] − sk,r [n]

)
, and

1
2

(
ck,r [n] + sk,r [n]

)
, (11)

respectively, where

sk,r [n] =


0, if ck,r [n] = even,
1, if ck,r [n] = odd, bk,r [n] = 1,
−1 if ck,r [n] = odd, bk,r [n] = 0.

(12)

The sk,r [n] sequences are called switching sequences.

C. Inter-Symbol Interference

As explained in [11] and demonstrated experimentally
in [12], ei (t) in (2) is well-modelled as

ei (t) =


e11i (t), if ci [nt − 1] = 1, ci [nt ] = 1,
e01i (t), if ci [nt − 1] = 0, ci [nt ] = 1,
e00i (t), if ci [nt − 1] = 0, ci [nt ] = 0,
e10i (t), if ci [nt − 1] = 1, ci [nt ] = 0,

(13)

where e11i (t), e01i (t), e00i (t), and e10i (t), are periodic
waveforms with period Ts = 1/ fs that represent the error
over each clock period corresponding to the four different
possible current and previous 1-bit DAC input bit values.
During any given Ts clock period, the 1-bit DAC error, ei (t),
is equal to exactly one of the e11i (t), e01i (t), e00i (t), and
e10i (t) waveforms. The dependence of ei (t) on both the current
and prior 1-bit DAC input bit values results in ISI.

As proven in [11], the DAC output can be written as

y(t) = α(t)x [nt ] + β(t)+ eD AC (t), (14)

where α(t) and β(t) are Ts-periodic waveforms that only
depend on the ei (t) waveforms, and eD AC (t) is an x[n]-
dependent waveform resulting from component and timing
mismatches and ISI. The α(t)x[nt ] term is the desired signal
component of the DAC’s output waveform; its continuous-time
Fourier transform is the product of the discrete-time Fourier
transform of x[n] and the continuous-time Fourier transform
of one period of α(t), so α(t)x[nt ] is a linear, continuous-time
representation of x[n] [11]. Given that β(t) is Ts-periodic and
independent of x[n], it does not represent nonlinear distortion,
so it is not problematic in typical applications. In contrast,
eD AC (t) depends on x[n] and is not periodic in general, so it
is problematic in typical applications [11], [12].

As also proven in [11], the eD AC (t) term in (14) can be
written as

eD AC (t) = eM M (t)+ eI S I−linear (t)+ eI S I−nonlinear (t)

+ eI S I−noise(t), (15)

where eM M (t) is error that arises from component and timing
mismatches, but not ISI, and the three other terms are different

types of error that arise from ISI. The details of the four error
components in (15) are presented below.

Applying the results in [17] for the DEM DAC of Fig. 1 to
the general eM M (t) expression derived in [11] results in

eM M (t) =

35∑
i=1

di (t)si [nt ], (16)

where each di (t) is a Ts-periodic waveform that depends only
on the e11i (t), e01i (t), e00i (t), and e10i (t) waveforms, and each
si [n] is one of the switching sequences given by (10) and (12)
but renamed to have a single subscript index for convenience,
e.g., s1[n] = s14,1[n], s2[n] = s13,1[n], etc. [14].1 Hence,
it follows from the statistical properties of the switching
sequences that eM M (t) is a noise-like waveform that is zero-
mean and uncorrelated with the DAC input. The eI S I−linear (t)
expression is

eI S I−linear (t) =

(
1
1

36∑
i=21

miγi (t)

)
︸ ︷︷ ︸

≜γ (t)

x [nt − 1] . (17)

where

γi (t) =
1
2

[e11i (t)− e00i (t)− e01i (t)+ e10i (t)] . (18)

As γ (t) is a linear combination of the γi (t) waveforms, it too is
Ts-periodic. It follows that eI S I−linear (t) has the same general
form as the DEM DAC’s desired signal except for a one-period
delay and a factor of γ (t) instead of α(t). Thus, although it
is an error component, it represents linear error.

The eI S I−nonlinear (t) expression is

eI S I−nonlinear (t) =

(
1
12

36∑
i=21

m2
i ηi (t)

)
︸ ︷︷ ︸

≜η(t)

x [nt ] x [nt − 1] ,

(19)

where

ηi (t) = e11i (t)+ e00i (t)− e01i (t)− e10i (t). (20)

As η(t) is a linear combination of the ηi (t) waveforms, it too
is Ts-periodic. It follows that eI S I−nonlinear (t) is equivalent
to the result of applying an LTI filter to an ideal continuous-
time version of x[n]x[n − 1]. Consequently, eI S I−nonlinear (t)
is pure second-order distortion that is not mitigated by DEM.
It is present regardless of whether DEM is used.

The eI S I−noise(t) expression is

eI S I−noise(t) =
1
12

36∑
i=1

λi [nt ]λi [nt − 1]ηi (t)

+
1
12

36∑
i=21

mi
(
x[nt ]λi [nt − 1]

+x[nt − 1]λi [nt ]
)
ηi (t)

+
1
1

36∑
i=1

λi [nt − 1]γi (t). (21)

1Provided the set{si [n]: i = 1, 2, . . . , 35} contains all 35 of the switching
sequences defined by (10) and (12), the order of assignment does not matter.
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Each term in (21) is proportional to either λi [nt ], λi [nt−1],
or λi [nt ]λi [nt−1], and, as shown in [17],

E
{
λi [n]

}
= 0

E
{
λi [n]λi [m]

}
= 0 for m ̸= n

}
regardless of x[n], (22)

where E{u} denotes the expected value of u, so eI S I−noise(t)
is a noise-like waveform that is zero-mean and uncorrelated
with x[n], similar to eM M (t). Consequently, the eI S I−noise(t)
term increases the noise power of the DEM DAC output
relative to cases in which ISI is avoided, but it does not
introduce harmonic distortion.

III. SUBSAMPLING ISIC TECHNIQUE

This section presents a subsampling version of the proposed
ISIC technique. It is applied to a DEM DAC of the type shown
in Fig. 1 along with the subsampling version of the MNC
technique presented in [14].2

A. The ISIC Problem Statement

The objective of the ISIC technique is to adaptively measure
and cancel eI S I−nonlinear (t) and the first two summations in
the expression for eI S I−noise(t) given by (21) over the DAC’s
first Nyquist band. It is not necessary to cancel last summation
in (21) as it is already cancelled by the MNC technique [15].

As (7) indicates, mi = 0 for i = 1, 2, . . . , 20, so the
summation on the right side of (19) and the middle summation
on the right side of (21) can both be extended to include the
i = 1, 2, . . . , 20 terms without changing the values of the
equations. Hence, it follows from combining (3), (4), (19),
and (21) that the portion of eI S I−nonlinear (t) + eI S I−noise(t)
which the ISIC technique is intended to cancel over the DAC’s
first Nyquist band can be written as

eI S I (t) =
1
4

36∑
i=1

pi [nt ]ηi (t), (23)

where

pi [n] = 4xi [n]xi [n − 1]. (24)

Given that xi [n] is restricted to values of −1/2 and 1/2, pi [n]
is restricted to values of −1 and 1 by definition.

In contrast, the MNC technique adaptively measures and
cancels each term in (16) over the DAC’s first Nyquist
band. Equations (16) and (23) are similar: both ηi (t) and
di (t) are unknown, Ts-periodic waveforms, and both pi [n]
and si [n] are known digital sequences whose nonzero values
are restricted to 1 and −1. At first glance, this suggests
that the ISIC technique could be implemented in the same
fashion as the MNC technique. Unfortunately, doing so would
not work because the MNC technique relies on the si [n]
sequences being uncorrelated with each other and the main
DAC’s input sequence, but the pi [n] sequences are neither
uncorrelated with each other nor uncorrelated with the main
DAC’s input sequence. As described below, this dictates
significant differences between the implementations of the two
techniques, despite some similarities.

2An oversampling version of the ISIC technique that is compatible with
the oversampling version of the MNC technique presented in [15] can easily
be derived from the results presented in this paper.

Fig. 2. High-level view of the MNC and ISIC techniques applied to the
14-bit main DEM DAC.

Fig. 3. Details of each si [n] residue estimator.

B. Combined ISIC and MNC Technique Implementation

Fig. 2 shows a high-level view of the ISIC technique applied
to a 14-bit main DAC of the type shown in Fig. 1 along with
the MNC technique presented in [14]. The low-accuracy ADC,
fractional decimation filter, mismatch error estimator, and 9-
bit correction DAC are all as presented in [14], so they are
only briefly described below for context.

The main DAC, correction DAC, and digital error estimator
are all clocked at a rate of fs whereas the ADC is clocked
at a rate of Rfs /(R + 1), where R is a positive integer. For
example, the simulation results presented in this paper use fs
= 3 GHz and R = 5, so the ADC sample rate is 2.5 GHz.3

The purpose of each si [n] residue estimator in the mismatch
error estimator is to measure and cancel the i th term in (16)
over the DAC’s first Nyquist band [14]. As shown in Fig. 3,
each si [n] residue estimator implements an N -tap adaptive
filter comprised of a coefficient calculator, a bank of coefficient
subsampling flip-flops, and an FIR filter. As mentioned
above, each si [n] sequence is one of the switching sequences
generated within the DEM encoder. The coefficient calculator

3As both the MNC and ISIC techniques measure and cancel transient errors,
it is necessary for the digital error estimator to access finely-spaced samples
of the main DAC’s output waveform. One way to achieve this goal is to have
the ADC oversample the main DAC’s output waveform as in [16], but for
fs = 3 GHz this would require an impractically high-speed ADC. Instead,
as explained in [14] in the context of the MNC technique, subsampling
the main DAC’s output at a rate Rfs /(R + 1) achieves performance that is
commensurate with what would have been achieved had the main DAC’s
output been sampled at a rate of Rfs .
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correlates its input with time shifted versions of the switching
sequence to generate the adaptive FIR filter impulse response
coefficients. The tradeoffs associated with the choice of
integers N , P , and Q and the accumulator gain, K , are
described in [14].

As shown in [14], to the extent that the discrete-time Fourier
transform of the fractional decimation filter’s g[m] coefficients
accurately satisfies

∣∣∣G (
e jω

)∣∣∣ =

{
1, if |ω| < π

/
R,

0, if π
/

R < |ω| < π,
(25)

and the ADC effectively suppresses signal content at
frequencies above Rfs /2, the accuracy with which the MNC
technique is capable of canceling eM M (t) over the DAC’s first
Nyquist band is limited only by the length, N , of the adaptive
filters in the mismatch error estimator. Furthermore, for the
reasons explained in [14], [15], and [16], the MNC technique
is largely insensitive to ADC noise and nonlinearity, which
is why the MNC-enabled DAC IC presented in [16] achieves
a peak first Nyquist-band signal-to-noise-and-distortion ratio
(SNDR) of 77 dB despite the use of an uncalibrated 5-bit ring
VCO based ADC with an SNDR of less than 26 dB. For the
reasons presented in the next section, the ISIC technique also
has these properties.

The system is not insensitive to nonlinearity and noise
introduced by the correction DAC. However, the dynamic
range of eD AC (t) is much smaller than that of the main DAC’s
input sequence, x[n], so the correction DAC’s resolution
and step-size are generally much smaller than those of the
main DAC. Consequently error from the correction DAC’s
component mismatches, clock skew, and ISI is much smaller
than that from the main DAC to the point that it can typically
be neglected [14], [15], [16].

The i th 1-bit DAC ISI estimator is shown in Fig. 4a. Its
objective is to cancel the i th term of (23) over the DAC’s
first Nyquist band. Its FIR filter operates on a P-sample
advanced version of (24), i.e., pi [n + P], and has an impulse
response corresponding to the subsampled outputs of the
coefficient calculator. Instead of correlating against the pi [n]
sequences, which would be analogous to what is done by the
MNC technique but would not work for the reason explained
above, the coefficient calculator correlates against time-shifted
versions of a sequence qi [n] that depends on subsets of the
DEM encoder’s switching sequences. Specifically,

q2 j−u[n] = v j [n] − (−1)uw j [n] (26)

for each i = 2 j – u, where j ∈ {1, 2, . . . , 18}, u ∈ {0, 1},

v j [n] =

{
s′

j [n], if u j [n] ≤ 0,
0, otherwise,

(27)

w j [n] =

{
s′′

j [n], if s′

j [n] = 0, u j [n] ≥ 0,
0, otherwise,

(28)

s′

j [n] = s1, j [n]s1, j [n − 1], (29)

Fig. 4. Details of a) the i th 1-bit DAC ISI estimator and b) the logic that
generates the qi [n] sequences for i = 2 j − 1 and i = 2 j .

s′′

j [n] =



s15− j,1[n]s1, j [n − 1]

+s1, j [n]s15− j,1[n − 1],

if j = 1, 2, . . . 10,
(−1) j−1 (s1, j [n] s

2,
⌊

j−9
2

⌋[n − 1]

+s
2,
⌊

j−9
2

⌋[n] s1, j [n − 1]
)
,

if j = 11, 12, . . . 18,

(30)

and

u j [n] =

n−1∑
m=0

∣∣v j [m]
∣∣− ∣∣w j [m]

∣∣. (31)

As proven in the next section, qi [n] is restricted to values of
−1, 0, and 1 and has the necessary statistical properties for
the ISIC technique to work alongside the MNC technique with
comparable tradeoffs and robustness properties to those of the
MNC technique. Fig. 4b shows digital logic that can be used
to generate qi [n] for each pair of values i = 2 j − 1 and i =

2 j .
During foreground calibration mode, the combined MNC

and ISIC techniques are run simultaneously with the main
DAC’s input set to x[n] = xFG + r [n], where xFG is a
constant and r [n] toggles pseudo-randomly between 0 and 1.
The constant, xFG , is chosen to ensure that all of the DEM
encoder’s switching sequences have a relatively high density
of nonzero values (the higher the density of nonzero values,
the higher the adaptive filter convergence rate). Many choices
of xFG achieve this objective. For example, the foreground
simulations presented in this paper use xFG = 23891.
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Once the adaptive filter coefficients have converged, the
system exits foreground calibration mode and enters mission
mode, wherein the main DAC’s input sequence can be any
sequence with values in the set {−81921, −81911, . . . ,
81921}. If background calibration is not implemented, the
MNC and ISIC FIR filters remain enabled but the coefficient
calculators are frozen at their converged values. If background
calibration is implemented, the FIR filters and coefficient
calculators remain enabled during mission mode.

The purpose of background calibration, if implemented,
is to track and correct for temperature-dependent circuit
parameter changes during mission mode that affect eM M (t)
and eI S I (t). The analyses of the MNC and ISIC techniques
presented in the next section and [14] assume that the statistics
of the DEM encoder’s switching sequences, which depend
somewhat on x[n], are time-invariant. This is ensured during
foreground calibration mode by the choice of x[n], but is not
ensured during mission mode when x[n] is arbitrary. A way
to circumvent this issue, if necessary, is to slightly modify
the MNC and ISIC coefficient calculators during mission
mode to sometimes not clock the subsampling flip-flops and
accumulators as described in [14].

The benefit of foreground calibration is that it can be
configured for faster adaptive filter coefficient convergence
than background calibration. During foreground calibration,
the time-varying component of x[n] has an amplitude equal
to the minimum step-size of the main DAC. Consequently,
the convergence bandwidths of the feedback loops in both
the MNC and ISIC techniques, which are set by the choice
of the accumulator gain, K , can be relatively high without
significantly degrading coefficient convergence accuracy.

In contrast, x[n] is arbitrary during mission mode, so if
background calibration is implemented, K must be reduced
relative to its foreground calibration value to prevent large
and rapid temporal variations in x[n] from degrading the
coefficient accuracy. However, as background calibration
is only necessary to track temperature-dependent circuit
parameter changes, its reduction in convergence rate relative
to foreground calibration is unlikely to be an issue in practice
except in unusual applications where large temperature
changes are expected to occur over time periods on the order of
a few seconds. Furthermore, simulations suggest that eM M (t)
and eI S I (t) are only weakly dependent on temperature for
the CMOS DAC circuits designed by the authors, and the
measured IC performance presented in [16] was found not
to degrade over observation periods of many hours in the
absence of background calibration. These observations suggest
that background calibration is likely not necessary in many
applications.

C. Simulation Results
The MNC and ISIC techniques require tens to hundreds

of millions of clock cycles to converge, and the DACs and
ADC have a large number of analog nodes, so impractically
long simulation times—on the order of months—would be
required to simulate the full system with transistor-level analog
circuitry. Instead, realistic behavioral simulations of the full
system have been performed to demonstrate that the MNC

TABLE I
DESIGN PARAMETERS

TABLE II
NONIDEAL CIRCUIT BEHAVIOR DETAILS

and ISIC techniques perform as predicted by theory, and
separate transistor-level simulations of the main DAC have
been performed to demonstrate that the primary assumption on
which the MNC and ISIC techniques are based is consistent
with practical circuit implementations.

Behavioral Simulations
The behavioral simulations model the system of Fig. 2

with NRZ current-steering main and correction DACs, and
a low-resolution VCO-based ADC. Table I summarizes the
simulated system’s design parameters and Table II summarizes
the simulated system’s nonideal circuit behavior.

Both the 14-bit main DAC and the 9-bit correction DAC
incorporate current-steering NRZ 1-bit DACs. The main DAC
is the DEM DAC described in Section II-B. The correction
DAC consists of 9 power-of-two-weighted 1-bit DACs without
DEM. Dithered quantization is used to ensure that the inputs to
the two DACs are 14-bit and 9-bit sequences, respectively [18].

The VCO-based ADC consists of a voltage-to-current
converter followed by a 15-element pseudo-differential
current-starved ring oscillator as in [16], so it behaves like a
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first-order delta-sigma modulator with a 30-level quantizer. Its
30-level digital output sequence is represented as an integer-
valued two’s complement code.

As explained and demonstrated in [16], such ring oscillator
VCO based ADCs are particularly attractive in this application
because they are extremely efficient in terms of area and
power consumption when used without calibration, and
the application’s insensitivity to nonlinearity makes ADC
calibration unnecessary. The first-order quantization noise
shaping performed by the ADC is incidental in that it neither
significantly helps nor hurts the system’s overall performance
because the ADC subsamples its input signal. Consequently,
a Nyquist-rate ADC such as a flash or SAR ADC could have
been used instead. Any delay introduced by the ADC would
simply affect the choices of Q and P as explained in [14].

The fractional decimation filter is implemented as a
polyphase structure such that all its operations occur at a rate
of fs = 3 GHz or lower [19]. Its 41 g[n] coefficients were
generated via the Parks-McClellan algorithm and quantized to
10-bit precision in Matlab such that the discrete-time Fourier
Transform of g[n] approximates (25) with a passband ripple of
1.74 dB, a stopband attenuation of −40 dB, and a frequency
transition bandwidth of (0.0312)π centered at π /5.

The selection of design parameters N , K , P , and Q and
their tradeoffs are explained in [14], [15], and [16]. The infor-
mation in these prior publications was originally intended to
apply only to the MNC technique, but as shown in Section IV,
the ISIC technique inherits many properties of the MNC
technique, among which are the selection process and tradeoffs
associated with the N , K , P , and Q design parameters, so the
information applies to the ISIC technique too.

The behavioral simulations could have been performed via
a commercially-available simulation platform, such as Matlab
or a SystemVerilog simulator, but, to maximize simulation
speed, the behavioral simulations presented below were instead
performed by a custom, C-language, event-driven simulator.
The simulator has three types of events: the rising edges
of the 3 GHz clock, the rising edges of the 2.5 GHz clock,
and the sample times of the output waveform. The latter is
set to 3 THz so the resulting output spectra well-model those
of continuous-time waveforms. Jitter, modeled as white noise,
is applied to the two clock signals, so the clock edges are not
aligned to any specific time grid. Consequently, it is necessary
for the simulator to have a parametric model of the main
and correction DAC outputs. This is achieved by modeling
the rising and falling transitions of each 1-bit DAC as scaled
step responses of first-order continuous-time filters. The time
constants of these transitions are randomly mismatched to
introduce ISI.

The simulated nonideal circuit behavior details (Table II)
are consistent with practical transistor-level circuits developed
by the authors. The only exception is that the 3 GHz main
clock’s RMS jitter is set to 20 fs. This level of clock jitter is
lower than would be needed in practice, but was nevertheless
chosen for the simulation to prevent output error caused
by clock jitter from masking the cancellation performance
of the MNC and ISIC techniques. All high-speed, high-
resolution continuous-time DACs are sensitive to clock jitter,

Fig. 5. Output power spectra from behavioral simulations of the system with
and without MNC and ISIC enabled.

so a higher main clock jitter would have increased the DAC’s
output noise floor to the point that it would have masked
more of the cancellation performance of the MNC and ISIC
techniques. Interestingly, simulations suggest that the MNC
and ISIC techniques are not sensitive to jitter on the 2.5 GHz
subsampling clock. Consequently, its RMS jitter was set to
300 fs, which is not a challenging specification.

For this implementation, the two’s-complement word widths
of the ADC output, the fractional decimation filter output,
the MNC coefficient calculator accumulators, and the ISIC
coefficient calculator accumulators are 5, 14, 25, and 26 bits,
respectively. Although these values are not prohibitively large
in the context of the proposed system by the standards
of modern CMOS technology, they can be reduced if
necessary via dithered quantization. Specifically, dithered
quantization can be applied to significantly reduce the word-
width of the fractional decimation filter output, which would
correspondingly reduce the subsequent word widths. The
quantization error would be white and uncorrelated with
all other variables in the system, and the component of
the fractional decimation filter output sequence that each
coefficient calculator in the digital error estimator correlates
against occupies a very small portion of the fractional
decimation filter’s output dynamic range, so the additional
quantization noise would only slightly increase the mean
square error (MSE) of the MNC and ISIC coefficients.
If necessary, this MSE increase can be avoided by slightly
decreasing the gain, K , of the ISIC and MNC accumulators
at the expense of a small increase in convergence time.

Fig. 5 shows the simulated output spectra of the system with
a full-scale sinusoidal input for four cases: ISIC and MNC both
enabled, ISIC disabled and MNC enabled, ISIC enabled and
MNC disabled, and ISIC and MNC both disabled. In each case
the sinusoidal minimum error method was used to separate
the desired signal component from the error component [20].
All the resulting power spectra are superimposed for ease of
comparison. Relative to the case of no calibration, the ISIC
and MNC techniques together result in an average performance
improvement of over 23 dB, whereas the MNC technique alone
results in an average performance improvement of only 8 dB,
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Fig. 6. ISIC and MNC adaptive filter coefficient evolution during foreground
calibration.

and the ISIC technique alone offers an average performance
improvement of less than a dB.

The nonzero frequency transition bandwidth of the
fractional decimation filter’s g[n] coefficients’ discrete-
time Fourier transform degrades the MNC and ISIC error
cancellation accuracy between 1.3 GHz and 1.5 GHz. This
degradation could have been reduced at the expense of
additional fractional decimation filter complexity, i.e., by using
more g[n] coefficients in the fractional decimation filter
to reduce the frequency transition bandwidth. Alternatively,
a slightly higher main clock-rate could have been used to
achieve good cancellation up to 1.5 GHz, which would likely
be a better tradeoff than increasing the fractional decimation
filter’s complexity. Over the 0 to 1.3 GHz frequency band, the
simulation results shown in Fig. 5 correspond to SNDR’s of
80.5 dB, 66.7 dB, 58.6 dB and 58.0 dB for the cases of ISIC
and MNC both enabled, ISIC disabled and MNC enabled, ISIC
enabled and MNC disabled, and ISIC and MNC both disabled,
respectively. The power spectrum corresponding to ISIC and
MNC both disabled has been plotted on top of the other power
spectra in Fig. 5 to make visible the small amount of additional
error caused by the ISIC and MNC techniques above the first
Nyquist band.

Fig. 6 shows the corresponding simulated convergence
trajectories of the MNC and ISIC adaptive filter coefficients
during foreground calibration over 800 million 3 GHz clock
periods. The simulated convergence behavior is consistent with
the theoretical results presented in [14]. Those results apply
directly to the MNC technique, and, as a result of the analysis
presented in Section IV, they also apply to the ISIC technique.

Transistor-Level Simulations
The primary assumption on which the MNC and ISIC

techniques are based is that the 1-bit DAC output waveforms

can be written as (2) with error that is well-modeled
as (13), where e11i (t), e01i (t), e00i (t), and e10i (t), are Ts-
periodic waveforms. To the extent that this assumption is
valid, the e11i (t), e01i (t), e00i (t), and e10i (t) waveforms,
if known, can be used to calculate an accurate estimate of
eD AC (t). Specifically, for the DEM DAC of Fig. 1 and any
input sequence, x[n], the e11i (t), e01i (t), e00i (t), and e10i (t)
waveforms can be used with the DEM encoder output bit
sequences to calculate the ei (t) waveforms via (13), which
can be used with (1), (2) and (3) to calculate the DEM DAC’s
output waveform, y(t). Then, eD AC (t) can be calculated
via (14) as

eD AC (t) = y(t)− α(t)x [nt ] − β(t), (32)

where, as shown in [11], α(t) and β(t) are given by

α(t) = 1 +
1

21

N∑
i=1

mi [e11i (t)− e00i (t)+ e01i (t)− e10i (t)]

(33)

and

β(t) =
1
4

N∑
i=1

[e11i (t)+ e00i (t)+ e01i (t)+ e10i (t)]. (34)

The theoretical analysis presented in the next section proves,
and the behavioral simulations presented above demonstrate,
that the MNC and ISIC techniques work provided the above-
mentioned assumption holds, but they do not speak to
whether practical circuits satisfy the assumption. However, the
techniques implemented in the integrated circuits presented
in [12] and [16] rely on the assumption and achieve state-
of-the-art performance, which suggests that the assumption is
valid in practical circuits.

The following transistor-level simulation results further
support this assertion. The DEM DAC of Fig. 2 with the
parameters listed in Table I and realistically-mismatched
transistor-level 1-bit DACs was simulated in the Global
Foundries 22 nm FDSOI process to extract the e11i (t),
e01i (t), e00i (t), and e10i (t) waveforms. Then the DEM DAC
was simulated again with a sinusoidal input sequence and
the eD AC (t) waveform, calculated as described above, was
subtracted from the DEM DAC’s simulated output waveform.

Fig. 7 shows the DEM DAC’s simulated output power
spectrum before and after subtraction of eD AC (t). The
corresponding first Nyquist band SNDR values are 56 dB and
78 dB before and after subtraction of eD AC (t), respectively,
which suggests that the assumption is valid for the simulated
circuit. As eD AC (t) was calculated and directly subtracted
from the DEM DAC’s output waveform, the error cancellation
occurred over all Nyquist bands. In contrast, the MNC and
ISIC techniques generate a discrete-time estimate of eD AC (t),
so the corresponding error cancellation is restricted to a single
Nyquist band. As shown in [11], the ISI from a DEM DAC
can be written as the sum of a linear component, a nonlinear
component, and a noise-like component. The linear component
in this case causes a roll-off of the replicas of the signal in
higher Nyquist bands, so when the ISI is subtracted from the
output of the DEM DAC, a side-effect is that it reduces this
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Fig. 7. Output power spectra from a transistor-level simulation of the 14-bit
DEM DAC before and after subtraction of eD AC (t).

Fig. 8. Circuit details of each 1-bit DAC: a) high-level view, b)
current-steering cell details.

roll-off as can be seen in Fig. 7. Therefore, the phenomenon
is neither unexpected nor problematic.

The simulated 1-bit DAC circuit schematic is shown in
Fig. 8. It consists of a switch driver and current-steering
cell, all of which was implemented without any behavioral
components. Although not shown in Fig. 8, transistor-level
bias voltage generation circuitry and passive components to
model the bond wired supply voltages assuming a QFN
package were also implemented. The flip-flops are powered
by a 0.8 V digital supply, whereas the latches are powered by
a separate 0.8 V analog supply. The bias voltage generation
circuitry for the current-steering cell is powered by a 1.2 V
supply.

As is common-practice in high-performance current-steering
DAC implementations, the switch driver was designed such
that its switching activity is signal-independent to minimize
nonlinearity. This is achieved via a dummy path driven by
ci,d [n] and its complement, where ci,d [n] has a level transition
during any given clock interval if and only if the input
sequence to the main path, ci [n], does not have a level
transition during the clock interval. The latch circuits are
as presented in [21] to ensure that the current switching
transistors, M3 and M4, are never simultaneously turned off.

To maximize the 1-bit DAC’s output impedance, the current
steering cell’s bias voltages are such that the switching
transistors, M3 and M4, are either off or in saturation at
any given time, and all the other transistors are always
in saturation. Transistors M9 through M12 implement small

Fig. 9. Modified version of the system of Fig. 2 to facilitate the theoretical
analysis presented in Section IV.

current sources to prevent cascode transistors M5 and M6
from ever fully turning off so as to reduce code-dependent
output impedance variations [21]. The transistor sizing strategy
for each current-steering cell and the scaling strategy for the
differently weighted 1-bit DACs are as described in [12].

For each i = 1, 2, . . . , 36, the e11i (t), e01i (t), e00i (t), and
e10i (t) waveforms were extracted by simulating the bank of 1-
bit DACs, package models, bias circuitry, and output load with
the inputs to all but the i th 1-bit DAC held constant, and the
i th 1-bit DAC input set to the two-period sequences 11, 01,
00, and 10, respectively. Then, simulations were performed
with the same circuitry along with the DEM encoder. The
DEM encoder input sequence and output bits along with the
extracted e11i (t), e01i (t), e00i (t), and e10i (t) waveforms were
used to calculate eD AC (t) as described above.

IV. SUBSAMPLING ISIC TECHNIQUE ANALYSIS

First consider the modified version of the system shown in
Fig. 9, where ψ(t) = e′

I S I (t),

e′

I S I (t) =
1
4

36∑
i=1

p′

i [nt ]ηi (t), (35)

p′

i [n] =

{
pi [n], if qi [n] = 0,
0, otherwise,

(36)

and

ui [n] =

{
qi [n], if 1 ≤ i ≤ 36,
si−36[n], if 37 ≤ i ≤ 71.

(37)

The system differs from that shown in Fig. 2 only in that
pi [n + P − m] has been replaced by qi [n + P − m] for each
i ∈ {1, 2, . . . , 36} and m ∈ {0, 1, . . . , N − 1} in the 1-bit
DAC ISI estimators, and e′

I S I (t) has been explicitly subtracted
from the DAC outputs. As explained in Section III-A, the
main DEM DAC’s output, y(t), contains the additive term,
eI S I (t), given by (23), and (36), (37) and Fig. 9 imply that
the correction DAC output, yc(t), is not a function of any of
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the p′

i [n] sequences. Consequently, the explicit subtraction of
e′

I S I (t) in the system of Fig. 9 causes the system’s output, v(t),
not to depend on any of the p′

i [n] sequences and this implies
that it is only necessary for the ISIC technique portion of the
system to cancel eI S I (t) – e′

I S I (t). Directly subtracting e′

I S I (t)
is not a viable option in practice as it is not known a priori,
but the analysis of the system of Fig. 9 is only an intermediate
step toward the analysis of the system of Fig. 2, which is the
ultimate objective of this section.

The following two theorems and two corollaries provide
results that allow the results presented in [14] to be applied to
the system shown in Fig. 9. The proofs of the theorems and
corollaries are presented in the appendix.

Theorem 1: For the DEM DAC presented above,

E {pi [m]qi ′ [n]} =

{
1, if i = i ′,m = n, qi ′ [n] ̸= 0,
0, otherwise,

(38)

for each i , i′ ∈ {1, 2, . . . , 36} and any integers m and n.
Corollary 1: For the DEM DAC presented above, qi [n] =

pi [n] if qi [n] ̸= 0.
Corollary 2: For the DEM DAC presented above,

E{pi [m]si ′ [n]} = 0 for each i ∈ {1, 2, . . . , 36}, i′ ∈ {1,
2, . . . , 35} and any integers m and n, where si ′ [n] denotes
sk,r [n] for any integers k and r .

Theorem 2: For the DEM DAC presented above and each
pair of integers, m and n, the nonzero values of sk,r [m] and
qi [n] for all i , k, and r are zero-mean independent random
variables restricted to values of 1 and −1.

The analysis presented in [14] was originally intended to
apply just to the MNC technique as it relies on specific
properties of the si [n] sequences. However, Theorems 1 and 2
and Corollary 1 together with (37) imply that the ui [n]
sequences in the system of Fig. 9 also have these properties.
Consequently, the results of [14] with the ui [n] sequences in
place of the si [n] sequences hold for the system of Fig. 9 even
though it implements both the ISIC and MNC techniques.
Specifically, the results ensure that for a sufficiently small
accumulator gain, K , the expected values of the adaptive filter
coefficients, denoted as āi,m[n] for i = 1, 2, . . . , 71 and m
= 0, 1, . . . , N − 1, converge to the unique set of values
that optimally cancel the first Nyquist band portions of both
eM M (t) and eI S I (t) – e′

I S I (t) as n goes to infinity. The
results also show that the convergence error is bounded by an
exponentially decreasing function of n with a time constant
that is proportional to 1/K .

It follows from (23), (35), (36), and Corollary 1 that

eI S I (t)− e′

I S I (t) =
1
4

36∑
i=1

qi (t)ηi (t). (39)

Therefore, the results derived above together with (39) imply
that the expectation of the impulse response of the adaptive
filter implemented by the i th error estimator in the system of
Fig. 9 for each i ∈ {1, 2, . . . , 36} converges to the values

hi [m] =

{
lim

n→∞

{
āi,m[n]

}
, if 0 ≤ m ≤ N − 1,

0, otherwise,
(40)

that best cancel the i th term in (39). The continuous-time
Fourier transform of the i th term of (39) can be written as

1
4

Qi

(
e jωTs

)
Ep-i( jω), (41)

where Qi (e jω) is the discrete-time Fourier transform of qi [n]
and Ep-i( jω) is the continuous-time Fourier transform of

ηi-p(t) =

{
ηi (t), if 0 ≤ t ≤ Ts,

0, otherwise,
(42)

with ηi (t) given by (20). In analogy with (14), the desired
signal component of the correction DAC has the form
αc(t)xc[nt ], where αc(t) is a Ts-periodic function. The
continuous-time Fourier transform of αc(t)xc[nt ] is

Xc

(
e jωTs

)
Ap-c( jω), (43)

where Ap-c( jω) is the continuous-time Fourier transform of
the right side of (42) with ηi (t) replaced by αc(t). The input
to the adaptive filter in the i th error estimator in Fig. 9 for
each i ∈ {1, 2, . . . , 36} is qi [n + P], so for the system of
Fig. 9 to cancel the first Nyquist-band portion of (39) if follows
that the adaptive filter in the i th error estimator for i = 1,
2, . . . , 36 must converge to have a frequency response that
well-approximates

Hi

(
e jωTs

)
=

1
4

e− jωPTs
Ep-i( jω)
Ap-c( jω)

for |ω| ≤ π fs . (44)

As the desired signal component of the correction DAC has
the form αc(t)xc[nt ], the signal processing operations shown
in Fig. 9 imply that setting

ψ(t) = αc(t)
36∑

i=1

N−1∑
m=0

p′

i [nt + P − m]ai,m[nt ], (45)

results in the same v(t) that would have occurred had the
ui [n + P − m] sequences in the FIR filters been replaced by
pi [n + P − m] for i = 1, 2, . . . , 36. Hence, the system of
Fig. 9 with ψ(t) given by (45) is equivalent to the system of
Fig. 2.

As shown above, the results of [14] apply to the system
of Fig. 9 with ψ(t) = e′

I S I (t), and in this case, v(t), and,
consequently, the input to the coefficient calculators, t[n],
do not depend on any of the p′

i [n] sequences. Changing the
system by setting ψ(t) to (45) has the effect of adding

e′

I S I (t)− ψ(t) =
1
4

36∑
i=1

p′

i [nt ]ηi (t)

− αc(t)
36∑

i=1

N−1∑
m=0

p′

i [nt + P − m]ai,m[nt ],

(46)

to v(t), which causes v(t), and consequently, t[n], to depend
on the p′

i [n] sequences. In particular, it causes t[n] to contain
an extra additive component that is linear combination of time
shifted versions of the p′

i [n] sequences.
The input to mth accumulator in the i th coefficient

calculator is t[n]ui [n+ P − Q−m] for each i ∈ {1, 2, . . . , 71}
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and m ∈ {0, 1, . . . , N − 1}. Theorem 1, Corollary 2, and (37)
together imply that the expected value of p′

k[n′]ui [n + P −

Q −m] is zero regardless of k and n′. Therefore, the expected
value of t[n]ui [n + P − Q − m] does not depend on the extra
terms that are introduced into t[n] as a result of changing
ψ(t) to (45) instead of ψ(t) = e′

I S I (t). As the results of [14]
characterize the expected values of the accumulator outputs,
and changing ψ(t) to (45) does not change these expected
values, the results of [14] must apply to the system of Fig. 9
with ψ(t) given by (45). As this system is equivalent to the
system of Fig. 2, the results must also apply to the system of
Fig. 2.

This implies that the system of Fig. 2 cancels the first
Nyquist-band portion of eM M (t), but the presence of the
additive component in v(t) given by (46) implies that it only
cancels the first Nyquist band portion of eI S I (t) − (e′

I S I (t)
− ψ(t)). Nevertheless, as shown next, this is not a problem
because the first Nyquist-band portion of e′

I S I (t) − ψ(t) is
negligible once the adaptive filter coefficients have converged.

Once the adaptive filters have converged to the point
that their frequency responses well-approximate (44),
the continuous-time Fourier transform of (46) is well-
approximated as

36∑
i=1

P ′

i

(
e jωTs

)
×

(
1
4

Ep-i ( jω)− e jωPTs Ap-c ( jω) Hi

(
e jωTs

))
. (47)

Substituting (44) into (47) shows that (47) is zero for all |ω| ≤

π fs . Hence, the first Nyquist-band portion of e′

I S I (t) − ψ(t)
well-approximates zero once the adaptive filter coefficients
have converged.

V. APPENDIX

This appendix contains proofs of the theorems and
corollaries presented in Section IV.

Proof of Theorem 1: Equations (3) and (4) imply that

xi [n] =
1
1

(
mi x[n] + λi [n]

)
. (48)

As proven in [17],

λ2 j−u[n] =
1

2

[
s15− j,1[n] + (−1)u+1s1, j [n]

]
, (49)

for j ∈ {1, 2, . . . , 10} and u ∈ {0, 1}, and

λ21+u′ [n] = −
1

2

9∑
j=0

s14− j,1[n]2 j−13

−
1

2

[
(2w − 1)s4,1[n]2−3

+ (2v − 1)s3,w+1[n]2−2

+ (2y − 1)s2,2w+v+1[n]2−1

+ (2z − 1)s1,11+4w+2v+y[n]
]
, (50)

for each u′
= 8w + 4v + 2y + z and w, v, y, z ∈{0, 1}.

It can be verified by enumeration that (50) is equivalent to

λi [n] = 1

14∑
k=1

2−k (−1)mk,i sk,rk,i [n] (51)

for each i ∈ {21, 22, . . . , 36}, where

mk,i =

⌊
i + 16347

2k−1

⌋
and rk,i =

⌊
i − 21

2k

⌋
+

{
11, if k = 1,
1, otherwise.

(52)

The definitions of v j [n], w j [n], and q2 j−u[n] imply∣∣v j [n]
∣∣ ∈ {0, 1} ,

∣∣w j [n]
∣∣ ∈ {0, 1} , and

∣∣q2 j−u[n]
∣∣ ∈ {0, 1} ,

(53)

for each n, j , and u by the following reasoning. The switching
sequences have magnitudes restricted to 0 and 1 by definition,
so (27) and (29) imply that |v j [n]| ∈ {0, 1}. Definition (28)
implies that w j [n] ̸= 0 can only occur when s′

j [n] = 0,
which (29) implies occurs if s1, j [n] = 0 or s1, j [n − 1] = 0.
Therefore (28) and (30) imply that |w j [n]| ∈ {0, 1}. As only
one of v j [n] and w j [n] can be nonzero for any given values
of j and n, it follows from (26) that |q2 j−u[n]| ∈ {0, 1}.

For each j ∈ {1, 2, . . . , 10} and u ∈ {0, 1}, (7), (48),
and (49) imply that

x2 j−u[n] =
1
2

[
s15− j,1[n] + (−1)u+1s1, j [n]

]
, (54)

with which (24), (29), and (30) imply

p2 j−u[n] = s15− j,1[n]s15− j,1[n − 1] + s′

j [n] + (−1)u+1s′′

j [n].

(55)

Equations (9) and (10) imply that when the input to the S15− j,1
switching block is odd, s15− j,1[n], for each j = 1, 2, . . . , 10,
is equal to zero, so the bottom output of the S15− j,1 switching
block, c1, j [n] is equal to one. In this case, (12) implies that
s1, j [n] has a magnitude of one and a randomly-chosen sign.
When the input to the S15− j,1 switching block is even, (10)
implies that s15− j,1[n] has a magnitude of one and a randomly-
chosen sign, which, with (9) and (12), further implies that
s1, j [n] is equal to zero. Consequently, one of the terms on the
right side of (54) is zero and the other term has a magnitude
of one for each value of n, which further implies that only
one of the terms on the right side of (55) is nonzero for any
given values of n, j , and u. This with (27) and (28) implies
that for each j ∈ {1, 2, . . . , 10} and u ∈ {0, 1}

p2 j−u[n] =

{
v j [n], if v j [n] ̸= 0,
(−1)u+1w j [n], if w j [n] ̸= 0,

(56)

By definition, the nonzero values of the sk,r [n] sequences
are independent, zero-mean random variables restricted to
values of 1 and −1, and (24), (48), (49), and (51), imply that
pi [n] is independent of the nonzero values of s1, j [n] except
when i = 2 j and i = 2 j − 1. These observations with (53)
and (56) imply that

E
{

pi [m]v j [n]
∣∣v j [n] ̸= 0

}
=


1, if i = 2 j and m = n,
1, if i = 2 j − 1 and m = n,
0, otherwise,

(57)
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and

E
{

pi [m]w j [n]
∣∣w j [n] ̸= 0

}
=


−1, if i = 2 j and m = n,
1, if i = 2 j − 1 and m = n,
0, otherwise,

(58)

for i = 1, 2, . . . , 36 and j = 1, 2, . . . , 10, where E{A|B}
denotes the expectation of A given B.

For each i = 21, 22, . . . , 36, (48) and (7) imply that

xi [n] =
1
1

(
2−14x[n] + λi [n]

)
(59)

with λi [n] given by (51). The DEM DAC input sequence, x[n],
is restricted to the range {−81921, −81911, . . . , 81921}
and, as proven in [17], the DEM encoder’s operation ensures
that xi [n] is restricted to values of −1/2 and 1/2, so (59)
implies that

xi [n] =

{
1
/

2, if λi [n] > 0,
−1
/

2, if λi [n] < 0.
(60)

Given that each sk,r [n] is restricted to values of −1, 0, and
1 by definition, the magnitude of the kth term in (51) is either
zero or 12−k for k = 1, 2, . . . , 14. This implies that the sign of
λi [n] for each value of n is equal to the sign of the smallest-k
term in (51) that is non-zero. For example, the sign of λ23[n]
when s1,12[n] ̸= 0 is the sign of s1,12[n].

It follows from (51), (60), and the restriction by definition
of the possible nonzero values of sk,r [n] to −1 and 1 that

x2 j−u[n]

=


(−1)u+1

2 s1, j [n], if s1, j [n] ̸= 0,
(−1) j−1

2 s
2,
⌊

j−9
2

⌋[n], if s1, j [n] = 0, s
2,
⌊

j−9
2

⌋[n] ̸= 0,

(61)

for j ∈ {11, 12, . . . , 18} and u ∈ {0, 1}. Given that w j [n] can
only be nonzero if s1, j [n] = 0 or s1, j [n − 1] = 0 as explained
above, it follows from (28) and (30) that w j [n] satisfies

w j [n] = (−1) j−1s1, j [n′
]s

2,
⌊

j−9
2

⌋[n′′
] if w j [n] ̸= 0 (62)

when j ∈ {11, 12, . . . , 18}, where n′
= n and n′′

= n –
1 or vice versa. Therefore, (24), (27), (29), and (61) imply
that (56) holds for each j ∈ {11, 12, . . . , 18} and u ∈ {0,
1}. As the nonzero values of sk,r [n] are independent, zero-
mean random variables for all k and r , and (24), (48), (49),
and (51) imply that pi [n] is independent of the nonzero values
of s1, j [n] except when i = 2 j and i = 2 j – 1, it follows
that (57) and (58) hold for i = 1, 2, . . . , 36 and j = 11, 12,
. . . , 18 in addition to j = 1, 2, . . . , 10.

By definition, v j [n] and w j [n] are functions of switching
sequences so they are random variables, and whenever one of
v j [n] and w j [n] is nonzero, the other is zero. Furthermore,
as proven above, v j [n] and w j [n] are each restricted to values
of −1, 0, and 1. It follows from (31) that u j [n] = 0 whenever
v j [m] and w j [m] have been nonzero the same number of times
over m = 0, 1, . . . , n − 1. Hence, definitions (27) and (28)
ensure that Pr{v j [n] ̸= 0} = Pr{w j [n] ̸= 0}, so (26) and (53)

further imply that Pr{q2 j−u[n] = v j [n] | q2 j−u[n] ̸= 0} =

Pr{q2 j−u[n] = −(−1)uw j [n] | q2 j−u[n] ̸= 0} = 1/2. This,
(57), and (58) imply that

E
{

pi [m]q2 j−u[n]
}

=

{
1, if i = 2 j − u,m = n, q2 j−u[n] ̸= 0,
0, otherwise,

(63)

for each i ∈ {1, 2, . . . , 36}, j ∈ {1, 2, . . . , 18}, and u ∈ {0,
1}, which is equivalent to (38). □

Proof of Corollary 1: Definitions (27) and (28) imply that
only one of v j [n] and w j [n] can be nonzero for any given
values of j and n. Therefore, (26) implies that q2 j−u[n] is
equal to the right side of (56) for each j ∈ {1, 2, . . . , 18},
and u ∈ {0, 1}. □

Proof of Corollary 2: As shown in the proof of Theorem 1,
(55) holds for each j ∈ {1, 2, . . . , 10} and u ∈ {0, 1}.
Equations (29) and (30) imply that each nonzero term in (55)
has the form si ′′ [n]si ′′′ [n − 1] or −si ′′ [n]si ′′′ [n − 1] for some
integers i ′′ and i ′′′. As also shown in the proof of Theorem 1,
xi [n], which has a magnitude of 1/2, has the sign of the
smallest-k term in (51) that is non-zero for i = 21, 22, . . . , 36.
Therefore, (24) implies that pi [n] has the form si ′′ [n]si ′′′ [n−1]
or −si ′′ [n]si ′′′ [n −1] for i = 21, 22, . . . , 36 and some integers
i ′′ and i ′′′. Corollary 2 follows from these observations because
the nonzero values of the switching sequences, si ′ [n], are
independent zero-mean random variables. □

Proof of Theorem 2: The nonzero values of sk,r [m] are zero-
mean random variables restricted to values of 1 and −1 by
definition. As shown in the proof of Theorem 1, the nonzero
values of qi [n] are also zero-mean random variables restricted
to values of 1 and −1. Therefore, it remains to show that the
elements of the set

A =
{
sk,r [m] ̸= 0, qi [n] ̸= 0 : k = 1, . . . 14,

r = 1, . . . 18, i = 1, . . . 36} (64)
are independent random variables for each m and n.

As each element of A is restricted to values of 1 and −1
and is zero mean, its probability mass function is equal to 1/2
for each of its two possible values. Therefore, to show that the
elements of A are independent, it is necessary to show that
the joint probability mass function of the elements of A can
be written as

pA (a1, a2, . . . , aM ) =
1

2M , (65)

where each ai ∈ {−1, 1} and M is the number of elements
in A.

If none of the elements of A are qi [n] for some i ∈ {1, 2,
. . . , 36}, then each element of A is sk,r [m] for some k and
r . In this case, the elements of A are independent random
variables by definition.

Otherwise, A must contain the element q2 j−u[n] for some
j ∈ {1, 2, . . . , 18} and u ∈ {0, 1}. Without loss of generality,
suppose that q2 j−u[n] is the first element of A, and let B be
the set of all the elements of A except q2 j−u[n], i.e., B = A
/ {q2 j−u[n]}. Then

pA (a1, a2, . . . , aM )

= pq|B (a1 |a2, . . . , aM ) pB (a2, . . . , aM ) , (66)
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where pq|B(a1| a2, . . . , aM ) is the probability mass function
of q2 j−u[n] given the values of the elements in B, and pB(a2,
. . . , aM ) is the joint probability mass function of the elements
of B. Equations (26)-(31) imply that each nonzero value of
q2 j−u[n] has the form sk′,r ′ [n]sk′′,r ′′ [n − 1] for specific values
of k′, r ′, k′′, and r ′′, and, by definition, the nonzero values of
sk,r [m] for all k, r , and m are independent random variables.
These observations are used in the following.

First suppose that j ∈ {1, 2, . . . , 10} and q2 j−1+u[n] /∈
B. Equations (26)-(31) imply that if m ̸= n then B does
not contain any elements that depend on sk′,r ′ [n] and if m
̸= n − 1 then B does not contain any elements that depend
on sk′′,r ′′ [n − 1]. If m ̸= n and m ̸= n – 1, it follows that
q2 j−u[n] is independent of the elements in B. If m = n,
then regardless of the values taken on by the elements in B,
it follows that sk′′,r ′′ [n − 1] has an equal chance of being 1 or
−1, so the same is true of sk′,r ′ [n]sk′′,r ′′ [n − 1], and, hence,
q2 j−u[n]. Similarly, if m = n − 1, then sk′,r ′ [n]sk′′,r ′′ [n − 1],
and, hence, q2 j−u[n] have an equal chance of being 1 or
−1 regardless of the values taken on by the elements in B.
Consequently,

pA (a1, a2, . . . , aM ) =
1
2

pB (a2, . . . , aM ) . (67)

Now suppose that j ∈ {1, 2, . . . , 10} and q2 j−1+u[n] ∈

B. As shown in the proof of Theorem 1, when q2 j−1+u[n] is
nonzero the probability that |v j [n]| = 1 and w j [n] = 0 is 1/2
and the probability that v j [n] = 0 and |w j [n]| = 1 is 1/2.
Given that q2 j−1+u[n] ∈ B, it is nonzero, so (26) implies that
q2 j−u[n] = q2 j−1+u[n] = v j [n] with a probability of 1/2 and
q2 j−u[n] = −q2 j−1+u[n] = w j [n] with a probability of 1/2
regardless of whether q2 j−1+u[n] is 1 or −1 and regardless of
the values of the other elements in B. Therefore, the argument
presented above which led to (67) shows that (67) also holds
when j ∈ {1, 2, . . . , 10} and q2 j−1+u[n] ∈ B.

Now suppose that j ∈ {11, 12, . . . , 18}. In this
case, (26)-(31) imply that q2 j ′−1[n], q2 j ′ [n], q2 j ′+1[n], and
q2 j ′+2[n] in general depend on s2,⌊( j ′−9)/2⌋[n′] for each odd
value of j ′ where n′

= n or n′
= n − 1, whereas none of

the other nonzero qi [n] depend on s2,⌊( j ′−9)/2⌋[n′]. For any
given value of n and any odd value of j ′, (26)-(31) imply that
q2 j ′−1[n] and q2 j ′ [n] only depend on s2,⌊( j ′−9)/2⌋[n′] when
w j ′ [n] is nonzero and s2,⌊( j ′−9)/2⌋[n′]s1, j ′ [n′′] is nonzero,
where n′

= n and n′′
= n−1 or vice versa. The DEM encoder

results presented in [22] imply that the input to the S2,⌊( j ′−9)/2⌋

switching block is restricted to values of 0, 1, 2, 3, and 4.
Therefore, when s2,⌊( j ′−9)/2⌋[n′] is nonzero, (11) and (12)
imply that the top and bottom outputs of the S2,⌊( j ′−9)/2⌋

switching block are respectively 1 and 0, or 0 and 1, or
2 and 1, or 1 and 2. However, (12) implies that s1, j ′ [n′′]
can only be nonzero if the top and bottom outputs of the
S2,⌊( j ′−9)/2⌋ switching block are even and odd, respectively.
In this case, (12) implies that s1, j ′+1[n′′] = 0. This shows that
for any n and any odd j ′, if q2 j ′−1[n] and q2 j ′ [n] depend on
s2,⌊( j ′−9)/2⌋[n′], then q2 j ′+1[n], and q2 j ′+2[n] do not depend
on s2,⌊( j ′−9)/2⌋[n′]. A nearly identical argument shows that if
for any n and any odd j ′, if q2 j ′+1[n], and q2 j ′+2[n] depend
on s2,⌊( j ′−9)/2⌋[n′], then q2 j ′−1[n] and q2 j ′ [n] do not depend

on s2,⌊( j ′−9)/2⌋[n′]. These results and the reasoning which led
to (67) for the cases where j ∈ {1, 2, . . . , 10} show that (67)
also holds when j ∈ {11, 12, . . . , 18}.

The above reasoning can be applied recursively with set
A(h), in place of set A, set B(h) in place of set B, M (h) in
place of M , A(1) defined as (64), and A(h) = B(h−1) for h >
1. Doing so for h = 1, 2, . . . , H , where H is the smallest
integer such that each element of B(H) is sk,r [n] for some k
and r , leads to

pA (a1, a2, . . . , aM ) =
1

2H pB(H) (aH , aH+1, . . . , aM ) .

(68)

By definition, the elements of B(H) are distinct, non-zero
sk,r [n] values, so they are all zero-mean independent random
variables that each take on values of 1 and −1 with equal
probability. Consequently,

pB(H) (aH , aH+1, . . . , aM ) =
1

2M−H (69)

which, with (68), yields (65).
□
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