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Abstract—The linearity of high-resolution current-steering digital-
to-analog converters (DACs) is often limited by inter-symbol in-
terference (ISI). While dynamic element matching (DEM) can be 
applied to convert a portion of the ISI to uncorrelated noise in-
stead of nonlinear distortion, DEM alone fails to prevent ISI from 
at least introducing strong second-order nonlinear distortion. This 
paper addresses this problem by proposing, analyzing, and exper-
imentally demonstrating a low-cost add-on technique, called ISI 
scrambling, that, in conjunction with DEM, causes a DAC’s ISI to 
be free of nonlinear distortion. The ISI scrambling technique is 
demonstrated in a 1-GS/s, 14-bit DEM DAC implemented in 90 nm 
CMOS technology. The DAC’s measured linearity is in line with 
the state of the art and its measured output power spectra closely 
match those predicted by the paper’s theoretical results. 
 
Index Terms— DAC, ISI, DEM, current-steering, non-return-to-
zero. 

I. INTRODUCTION 

NTER-SYMBOL interference (ISI) often limits the linearity 
of high-resolution current-steering digital-to-analog convert-

ers (DACs). It is caused by parasitic memory effects within the 
DAC’s constituent 1-bit DACs, which cause each 1-bit DAC 
output waveform to depend not only on the 1-bit DAC’s current 
input bit value but also on one or more of its prior input bit val-
ues. 

Dynamic element matching (DEM) is often applied to multi-
bit current-steering DACs to cause error from clock skew and 
component mismatches to be noise-like waveforms instead of 
nonlinear distortion [1-9]. It also causes some of the ISI to be a 
pseudo-random waveform, but even with DEM the ISI contains 
at least a strong second-order distortion component [10]. 

The most effective previously-published means of mitigating 
DAC ISI is to implement the constituent 1-bit DACs as return-
to-zero (RZ) 1-bit DACs. RZ 1-bit DACs are reset to a signal-
independent state at the end of each clock period. This mitigates 
ISI because it reduces the dependence of the 1-bit DACs on past 
input bit values. Unfortunately, the technique’s efficacy de-
grades with clock frequency because of the reduced time avail-
able to discharge signal-dependent 1-bit DAC circuit nodes dur-
ing the reset phase. RZ 1-bit DACs are also significantly more 
sensitive to clock jitter than their non-return-to-zero (NRZ) 
counterparts, particularly at high clock frequencies, and they 
typically consume more than twice the power of comparable 
NRZ 1-bit DACs.  

Other previously published ISI-mitigation techniques meas-
ure and then suppress ISI by trimming the delays in the 1-bit 
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DAC switch drivers [11], canceling part of the ISI in either the 
digital or analog domain [10, 12-14], or dynamically reordering 
the 1-bit DACs to minimize the ISI [15-16]. The downsides of 
these techniques are that they require analog-to-digital con-
verter (ADC) based ISI measurement circuitry, their accuracy 
is limited by that of the measurement circuitry, and they are 
foreground calibration techniques so they do not track changes 
in voltage or temperature. 

All-digital ISI-mitigation techniques have also been pub-
lished in which a modified DEM algorithm spectrally shapes 
the ISI [17-20]. These techniques are useful in oversampling 
continuous-time delta-sigma data converters. However, as 
proven in [10], it is not possible for any such technique to sup-
press nonlinear distortion across the full Nyquist band, so they 
are not well-suited to wideband applications that utilize the full 
Nyquist bandwidth of the DAC. 

This paper presents a simple, low-cost, add-on technique 
called ISI scrambling that works in conjunction with DEM to 
address these problems. By pseudo-randomly scrambling each 
1-bit DAC’s transient error, the technique converts the ISI error 
component that would otherwise have been nonlinear distortion 
into a noise-like waveform that is free of nonlinear distortion. 
The paper presents a rigorous mathematical analysis of the tech-
nique, presents a 90 nm CMOS, 1-GS/s, 14-bit DEM DAC en-
abled by the technique that achieves linearity in line with the 
present state of the art, and shows that the measured results 
closely match the performance predicted by the mathematical 
analysis. Furthermore, the paper presents the first published ex-
perimental demonstration of a key theoretical result presented 
in [10] in that when the technique is disabled, the ISI nonline-
arity manifests primarily as second-order distortion. 

II. ISI SCRAMBLING TECHNIQUE 

A conventional DEM DAC consists of a DEM encoder that 
drives multiple 1-bit DACs, the outputs of which are summed 
to form the DEM DAC’s output [21]. The output of the ith con-
ventional 1-bit DAC is  

  1
2' ( ) ' [ ] ' ( )i i t i iy t c n K e t    , (1) 

where c'i[n], which takes on values of 0 and 1, is the 1-bit 
DAC’s binary input sequence, Ki is the 1-bit DAC’s weight, ∆ 
is the overall DEM DAC’s minimum step-size, e'i(t) represents 
the 1-bit DAC’s error waveform, nt =   fst  is the largest integer 
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less than or equal to fst, and fs is the 1-bit DAC’s sample rate  
[10].† 

The ISI scrambling technique is a supplement to DEM that 
converts what would otherwise have been nonlinear ISI error 
into pseudo-random noise. It incorporates 1-bit DACs that are 
modified to periodically swap the transient errors that cause 
nonlinear distortion in conventional 1-bit DACs. Each modified 
1-bit DAC, called an ISI scrambling 1-bit DAC in the remainder 
of the paper, can be configured in real-time to be taken offline 
and to swap its transient errors. 

The idea is to control each of the ISI-scrambling 1-bit DACs 
such that it spends an equal amount of time with its transient 
errors swapped and not swapped on average, which causes the 
average rise and fall transient errors to be symmetric. This is 
illustrated in Fig. 1. Fig. 1(a) shows an example 1-bit DAC out-
put waveform, Fig. 1(b) shows the corresponding output wave-
form with its transient errors swapped, and Fig. 1(c) shows the 
average of the two cases. 

Each ISI scrambling 1-bit DAC is taken offline when it tran-
sitions from swapping to not swapping its transients, or vice 
versa. This reduces the disturbance to the overall DAC output 
caused by inverting the swap state. When an ISI scrambling 1-
bit DAC is offline, an auxiliary 1-bit DAC is used temporarily 
in its place. 

A block diagram of the implemented ISI scrambling DEM 
 
† The prime character is used in this paper to denote variables that pertain to 
conventional 1-bit DACs. 

DAC is shown in Fig. 2. It consists of the digital DEM encoder 
presented in [4], a digital ISI scrambling controller, 20 conven-
tional 1-bit DACs, and 17 ISI scrambling 1-bit DACs. The ISI 
scrambling 1-bit DACs are shaded in Fig. 2. The conventional 
1-bit DACs have weights 1, 1, 2, 2, 4, 4, … , 512, 512, and the 
ISI scrambling 1-bit DACs all have a weight of 1024. As proven 
in Section IV, only the 1024-weight 1-bit DACs contribute non-
linear ISI error to the overall DEM DAC output, so the other 1-
bit DACs need not be ISI scrambling 1-bit DACs. The top 1024-
weight ISI scrambling 1-bit DAC shown in Fig. 2 is the auxil-
iary 1-bit DAC. The remaining 1024-weight 1-bit DACs are 
called the primary ISI scrambling 1-bit DACs. 

The ISI scrambling controller coordinates taking the primary 
ISI scrambling 1-bit DACs offline and inverting their swap 
states. It generates the oi[nt] and wi[nt] binary sequences that 
control the online state and the swap state, respectively, of each 
ISI scrambling 1-bit DAC.‡ The ISI scrambling controller waits 
a random number of clock cycles between taking randomly-se-
lected individual primary ISI scrambling 1-bit DACs offline. 
The number of wait cycles is chosen from 1 to NDelay with equal 
probability where NDelay is a register setting that ranges from 16 
to 65536. The purposes of the random wait time are to prevent 
the ISI errors from being correlated with the input and to avoid 
introducing periodic disturbances to the overall DEM DAC out-
put that could result in spurs. When selected by the ISI scram-
bling controller, each primary ISI scrambling 1-bit DAC is 
taken offline for 8 clock cycles and its swap state is inverted 
after being offline for 4 clock cycles. The auxiliary 1-bit DAC 
is offline when it is not taking the place of one of the primary 
ISI scrambling 1-bit DACs. When the auxiliary 1-bit DAC is 
offline, the ISI scrambling controller randomly inverts or does 
not invert its swap state with the objective of ensuring that its 
rise and fall transient errors are symmetric on average. 

A behavioral block diagram of each ISI scrambling 1-bit 
DAC is shown in Fig. 3. It contains a conventional 1-bit DAC 
with additional components that implement the ISI-scrambling 
features. The components within the shaded box together be-
have as a 3-level DAC with ideal outputs –512∆, 0, and 512∆, 
where the output level of 0 corresponds to the offline state 
(oi[nt] = 0). The error, e3,i(t), represents the error of the 3-level 
DAC. It includes the error of the conventional 1-bit DAC as 
well as that of the oi[nt] multiplier. 

The ISI scrambling controller swaps the ISI errors of the con-
ventional 1-bit DAC by setting wi[nt] = 1, which causes two in-
versions in the signal path of ci[nt]. The first inversion is caused 

‡ A sequence indexed with nt is technically a continuous-time function, but is 
referred to as a sequence because it remains constant over each sample period. 
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Fig. 2 ISI scrambling DEM DAC block diagram. 
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Fig. 1 Example 1-bit DAC outputs with the transient errors: (a) not 
swapped, (b) swapped, and (c) averaged. 
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Fig. 3 ISI scrambling 1-bit DAC block diagram. 
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by the XOR gate and the second inversion is caused by the pi[nt] 
multiplier. In the ideal case where e3,i(t) = 0 and the multipliers 
are error-free, yi(t) is an exact analog representation of ci[nt] 
when the 1-bit DAC is online (oi[nt] = 1), because the input sig-
nal passes through the XOR gate and the multiplier unchanged 
if swapping is disabled (wi[nt] = 0), and the two inversions in 
the signal path cancel each other out if swapping is enabled 
(wi[nt] = 1). The error, e3,i(t), only passes through a single in-
version when the transients are swapped which allows its polar-
ity in yi(t) to be controlled by the ISI scrambling controller. 

III. CIRCUIT DETAILS 

In conventional DEM DACs with NRZ 1-bit DACs, the non-
linear portion of the ISI error primarily consists of second-order 
and third-order distortion [10, 22]. However, to the extent that 
the output of each 1-bit DAC is negligibly affected by the states 
of the other 1-bit DACs, the ISI error consists of just second-
order distortion [10]. The ISI scrambling technique mitigates 
second-order distortion, so the circuit architecture was chosen 
to separately mitigate third-order distortion by minimizing the 
extent to which the 1-bit DACs influence each other as de-
scribed below.  

Figure 4 shows the current-steering cell and switch driver 
that comprise each 1-bit DAC. Transistor M1 sets the signal-
bearing portion of the 1-bit DAC current, so its dimensions are 
large to facilitate good matching [23]. The dimensions of M2 
are comparatively small to reduce the current source’s parasitic 
output capacitance and thereby reduce ISI [24]. 

Transistors Mk a and Mk b for k = 3, 4, and 5 steer the 1-bit 
DAC’s signal-bearing current to one or the other of its two out-
put terminals or divert it away from both output terminals de-
pending on the states of ci[nt] and oi[nt] according to the timing 
diagram shown in Fig. 5. A quad switching technique is used 
wherein the transistors Mk a and Mk b for k = 3, 4, or 5 each con-
duct the 1-bit DAC’s signal-bearing current for half of each 
clock cycle [25-28]. This improves DAC linearity because, as 
implied by Fig. 5, exactly one switch turns on and exactly one 
switch turns off at each clock edge which causes the disturbance 
to the sources of Mk a and Mk b to be largely independent of the 
1-bit DAC input [26]. The gate voltages of Mk a and Mk b are 
such that each transistor is in saturation when it conducts cur-
rent, which increases the 1-bit DAC’s output impedance. 

Thick oxide transistors M6 through M9 implement the 1-bit 
DAC’s transient swapping feature. When the 1-bit DAC is 
online, i.e., when oi[nt] = 1, they swap or do not swap the con-
nections between their sources and the two 1-bit DAC outputs 
depending on wi[nt]. Toggling wi[nt] while the 1-bit DAC is 
online would result in different transient errors than toggling 
ci[nt] and contribute significant distortion to the DAC output. 
Hence, wi[nt] is only toggled when the 1-bit DAC is offline. 
Toggling wi[nt] when the 1-bit DAC is offline still causes un-
wanted charge to be injected into the DAC’s output terminals, 
but much of this charge is cancelled because rising and falling 
transitions of the gate voltages of M6 and M9 coincide with fall-
ing and rising transitions of the gate voltages of M7 and M8, re-
spectively. Furthermore, d and d̅ change state at random times 
so any error from charge injection is independent of the DAC’s 

input code and does not contribute harmonic distortion. 
The level-shifter in Fig. 4(b) that drives the gates of M6 

through M9 is powered by an on-chip LDO similar to that pre-
sented in [29], except that an external bypass capacitor is used 
instead of an internal Miller capacitor. The LDO output voltage 
is such that when d is high and d̅ is low, M6 and M9 are in satu-
ration and M7 and M8 are off, and when d is low and d̅ is high, 
M6 and M9 are off and M7 and M8 are in saturation. Keeping M6 
through M9 in saturation when conducting the 1-bit DAC’s sig-
nal-bearing current increases the 1-bit DAC’s output imped-
ance, thereby reducing the dependence of its transient error on 
the overall DEM DAC’s output [22, 30]. Hence, in addition to 
implementing the transient swapping feature, M6 through M9 
perform the function of the cascode stages commonly used in 
conventional current-steering 1-bit DACs [7, 12-13, 15-16, 22, 
27, 31]. As such, they improve overall DEM DAC linearity at 
the expense of a small reduction in headroom. The Itrickle current 
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Fig. 4 ISI scrambling 1-bit DAC implementation, (a) current-steering cell, 
(b) switch driver. 
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sources shown in Fig. 4(a) prevent M6 through M10 from turning 
off when not conducting the 1-bit DAC’s signal-bearing cur-
rent, thereby reducing nonlinear distortion that would otherwise 
be caused by code-dependent output capacitance variations 
[31]. 

Two versions of the IC were fabricated that differ only in that 
each 1-bit DAC in the second version includes an extra cascode 
stage. The second version was fabricated to evaluate the effect 
of further increasing the 1-bit DAC output impedances. The 
measured performance of the two versions was found to be in-
distinguishable, which supports the assumption made in the 
analysis in Section IV that the error caused by finite 1-bit DAC 
output impedance is negligible, at least relative to the linearity 
achieved by the IC as reported in Section V. Hence, this paper 
presents the details of only the first version of the chip. 

The main sources of transient errors that cause nonlinear ISI 
are the skews between the rising and falling edges of the gate 
voltages of M3a, M3b, M4a, and M4b, and mismatches among M3a, 
M3b, M4a, and M4b. The transient swapping feature implemented 
by M6 through M9 swaps these transient errors, but does not 
swap any additional transient error introduced by mismatches 
among M6 through M9. However, the impedance looking into 
the sources of M6 through M9 is relatively low, so mismatches 
among M6 through M9 do not cause significant transient errors. 
Monte Carlo simulations support this assertion. With mis-
matches applied only to M6 through M9, they predict a second 
harmonic of less than −97 dBc for a full-scale sinusoidal input 
sequence. In contrast, with mismatches applied to all transistors 
except M6 through M9, ISI scrambling disabled, and the same 
full-scale input sequence, they predict a second harmonic of 
−72 dBc. 

As explained in Section II each 1-bit DAC has a weight Ki = 
1, 2, 4, 8, ..., or 1024. The overall DEM DAC’s minimum-step 
size, ∆, is 2.4 μA, so the nominal signal-bearing current sourced 
by M1 and M2 in the Ki = 1 1-bit DAC is 1.2 μA. The current-
steering cells in the Ki = 2, 4, and 8 1-bit DACs were imple-
mented by increasing the widths of M1 and M2 by factors of 2, 
4, and 8, respectively, relative to those in the Ki = 1 1-bit DAC 
while keeping the dimensions of the other transistors un-
changed. The current-steering cells of weights Ki = 16, 32, ..., 
and 256, were implemented by replicating each transistor in the 
Ki = 8 current-steering cell 2, 4, 8, ..., and 32 times, respectively, 
with the replicated transistors connected in parallel. The 1-bit 
DACs of weight 512 and 1024 were implemented as parallel 
copies of the Ki = 256 1-bit DAC. 

In the current-steering cells of weight Ki = 1, 2, 4, and 8 in 
which M6 through M10 are each implemented with unit-weight 
transistors, the nominal value of Itrickle is 280 nA. In the current-
steering cells of weights Ki = 16, 32, ..., and 256, in which M6 
through M10 are each implemented by connecting 2–3Ki unit-
weight transistors in parallel, the nominal value of Itrickle is 3% 
of the signal-bearing current. 

Better matching could have been achieved by implementing 
each Ki-weight current-steering cell for Ki ≥ 2 by simply con-
necting Ki unit-weight current-steering cells in parallel. How-
ever, doing so would have significantly increased the required 
current-steering cell drive strength for Ki ≥ 2, which would have 

correspondingly increased the area and current consumption of 
the switch drivers. 

In the absence of other considerations, the best switch driver 
scaling strategy to match the 1-bit DAC transients is to have the 
weight of each switch driver be proportional to the weight of 
the current-steering cell it drives. The switch driver latches are 
as described in [31], and in TSMC 90 nm technology a mini-
mum-size latch has more drive strength than is required to drive 
a Ki = 1 current-steering cell. Consequently, if the latches were 
scaled in proportion to the current-steering cells they would 
consume far more area and power than necessary. Instead, all 
current-steering cells are driven by copies of a switch driver that 
is optimized to drive a Ki = 256 current-steering cell. Dummy 
transistors are used to load the switch drivers in each 1-bit DAC 
with a weight of Ki = 128 and lower, so the loads driven by all 
the switch drivers are approximately equal to the load of a Ki = 
256 current-steering cell. 

As proven in Section IV, ISI scrambling is not necessary in 
1-bit DACs 1-20. Hence, the ISI scrambling feature is disabled 
in these 1-bit DACs by setting oi[nt] and wi[nt] to 1 and 0, re-
spectively, for i = 1, 2, …, 20 and all t. Alternatively, the ISI-
scrambling circuitry could have been omitted from 1-bit DACs 
1-20, but this would have degraded matching. 

The clock input buffer is a two-stage differential to single-
ended amplifier. The first stage is a differential pair with diode-
connected load transistors, and the second stage is a differential 
pair with a current mirror load. The clock input buffer drives a 
clock tree that distributes the clock to the 1-bit DACs. The tar-
geted total jitter of the clock input buffer and clock tree is 100 
fs RMS, and was verified via simulation. The jitter target en-
sures that the jitter does not limit the noise performance of the 
DAC when DEM is enabled. 

The placed and routed (P/R) digital block, clock input buffer, 
bias circuitry, and set of switch drivers are each powered by 
their own power domain to reduce coupling through the sup-
plies. The power and ground are distributed via wide traces to 
reduce supply impedance, and extensive on-chip decoupling 
fills most of the unused area in the chip. 

IV. ANALYSIS 

This section along with the appendices presents a mathemat-
ical derivation that quantifies the behavior of the ISI scrambling 
technique. It also develops theoretical DAC output PSD expres-
sions that are compared against and closely match the corre-
sponding measured power spectra in Section V. The section and 
appendices may be skipped without loss of continuity by those 
who are not interested in the mathematical details. 

A. ISI Scrambling 1-Bit DAC Output Model 

In conventional current-steering DACs, particularly signifi-
cant types of errors include mismatches among the 1-bit DACs, 
transient errors, ISI, and clock feedthrough. For most current-
steering DACs, these errors are dominant and e'i(t) in (1) is 
well-modeled as 
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where e11i(t), e01i(t), e00i(t), and e10i(t), are Ts-periodic (Ts = 1/fs) 
waveforms that correspond to the errors made by the 1-bit DAC 
for the four possible combinations of the current and previous 
1-bit DAC input bit values [10]. During each clock cycle, e'i(t) 
is equal to one of the four Ts-periodic error waveforms. Formu-
lating e'i(t) in terms of these waveforms simplifies the subse-
quent analysis. It does not impose any restrictions on the 1-bit 
DAC input sequence, nor does it cause e'i(t) to be periodic.  

As shown in [10], an equivalent form of (1) is  

 
' ( ) ' [ ] ( ) ( ) ' [ 1] ( )

' [ ] ' [ 1] ( ),
i i t i i i i t i

i t i t i

y t x n t K t x n t

x n x n t

  


    

 
  (3) 

where  
 1

2' [ ] ' [ ]i t i tx n c n  , (4) 

and αi(t), βi(t), γi(t), and ηi(t) are linear combinations of e11i(t), 
e01i(t), e00i(t), and e10i(t) so they are Ts-periodic waveforms. The 
x'i[nt]x'i[nt  – 1]ηi(t) term in (3) is a second-order nonlinearly 
distorted version of the 1-bit DAC’s input sequence and is 
caused by ISI. When the rise and fall transients of the 1-bit DAC 
output waveform are asymmetric, such as illustrated in Fig. 
1(a), ηi(t) is nonzero which causes the 1-bit DAC to introduce 
second-order nonlinear ISI error. Without DEM, this would 
cause the overall DAC to introduce second-order and several 
higher-order nonlinear distortion terms, but, as shown in [10], 
DEM prevents all but second-order nonlinear distortion. 

It follows from Fig. 3 that pi
2[nt] = 1,  

  1 1
2 2[ ] 1 2 [ ],   and ' [ ] [ ] [ ] ,i t i t i t i t i tp n w n c n c n p n       (5) 

so (1) and Fig. 3 imply that  
 ( ) [ ] [ ] ( )i i t i t i iy t x n o n K e t   , (6) 

where  
 1

2[ ] [ ]i t i tx n c n  , (7) 

and ei(t) represents all error from non-ideal behavior. To the ex-
tent that the pi[nt] multiplier is ideal, Fig. 3 implies that  

 3,( ) [ ] ( )i i t ie t p n e t . (8) 

Given that e3,i(t) during the nth clock period depends on 
whether the ISI scrambling 1-bit DAC is offline or online dur-
ing the nth and (n−1)th clock periods, it is convenient for the 
following analysis to define sequences that are 1 or 0 depending 
on the four combinations of offline and online statuses during 
the two clock periods. Specifically, these sequences are defined 
as  

 , [ ] [ 1] [ ],i t i t i to n o n o n    (9) 

  , [ ] [ 1] 1 [ ] ,i t i t i to n o n o n      (10) 

  , [ ] 1 [ 1] [ ],i t i t i to n o n o n     (11) 

and 
  , [ ] 1 [ 1] (1 [ ]),i t i t i to n o n o n       (12) 

which have the property that one of o++,i[nt], o+×,i[nt], o×+,i[nt], 
and o××,i[nt] is 1 and the rest are 0 during each clock cycle.† 

 
† The subscript characters + and × denote “online” and “offline” respectively. 

In the error formulation of the conventional 1-bit DAC, a spe-
cific Ts-periodic error waveform is defined for each combina-
tion of the 1-bit DAC’s current and previous input bit values. 
This results in the 22 = 4 Ts-periodic error waveforms used in 
(2) to formulate e'i(t). Applying similar reasoning to the 3-level 
DAC in the shaded box in Fig. 3 results in 32 = 9 Ts-periodic 
error waveforms used to formulate  
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  (13) 

where e1×i(t), e0×i(t), e×1i(t), e×0i(t), and e××i(t) are 5 of the 9 Ts-
periodic error waveforms and the remaining 4 Ts-periodic error 
waveforms are contained in the definition of e'i(t), which is 
given by (2). 

Thus, ei(t) is given by (8) with e3,i(t) given by (13) provided 
the error introduced by the pi[nt] multiplier in Fig. 3 is negligi-
ble. Otherwise, it is necessary to define two error waveforms, 
e3,i

+(t) and e3,i
−(t), that have forms similar to the right side of 

(13) except that their constituent Ts-periodic error waveforms 
correspond to the cases of pi[nt] = 1 and pi[nt] = –1 respectively. 
Then, ei(t) = e3,i

+(t) when pi[nt] = 1 and ei(t) = −e3,i
−(t) when 

pi[nt] = −1. In this case ISI scrambling does not completely 
eliminate ISI-induced second-order nonlinear distortion be-
cause e3,i

+(t) ≠ e3,i
−(t). Yet as supported by the experimental re-

sults presented in Section V, the error introduced by the pi[nt] 
multiplier in Fig. 3 is indeed negligible. The reason is that the 
pi[nt] multiplier is implemented as a swapper cell as explained 
in Section III so it only introduces error when pi[nt] changes 
state and this only happens when the 1-bit DAC is offline.  

B. ISI Scrambling DEM DAC Output Model 

 Equations (6)-(13) were formulated to model ISI scrambling 
1-bit DACs, but with oi[nt] = 1 and wi[nt] = 0 for all t they can 
also be used to model conventional 1-bit DACs. This is because 
a conventional 1-bit DAC is equivalent to an ISI scrambling 1-
bit DAC that never goes offline and never has its transient errors 
swapped. Consequently, in the following analysis all the 1-bit 
DACs in Fig. 2 are modelled via (6)-(13) but with oi[nt] = 1 and 
pi[nt] = 1 for i = 1, 2, …, 20 and for all t. 

As proven in [4], the DEM encoder’s outputs, ci[nt], cause 
the xi[nt] sequences, which are given by (7) and take on values 
that are restricted to ½ and −½, to satisfy 
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i t
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x n
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
, (14) 

where 
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Given that the ISI scrambling technique causes the auxiliary 1-
bit DAC to sometimes take the place of one of the primary ISI 
scrambling 1-bit DACs, (15) implies 
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     (16) 

At the circuit level, the summation operation in Fig. 2 is im-
plemented by connecting the outputs of the current-steering 1-
bit DACs. Under the assumption that the impedance of each 1-
bit DAC is high enough that its output is negligibly affected by 
the states of the other 1-bit DACs, an assumption which is sup-
ported by the measured results presented in Section V, it fol-
lows that the output of the overall DAC is given by  

 
37

1

( ) ( )i
i

y t y t


  . (17) 

Substituting (6) with ei(t) = 0 and (14) into (17), and simpli-
fying the result using (16) results in  

 ( ) [ ]ty t x n , (18) 

which represents the overall DEM DAC output in the absence 
of non-ideal behavior. In contrast, as shown in Appendix A, the 
1-bit DAC errors cause the overall DAC output to degrade to  

 ( ) ( ) [ ] ( ) ( )t DACy t t x n t e t    , (19) 

where α(t) and β(t) are Ts-periodic waveforms and eDAC(t) rep-
resents the overall DAC’s remaining non-ideal performance. 

The first term on the right side of (19) is the desired signal 
component of the DAC output. As shown in [10], its continu-
ous-time Fourier transform (CTFT) is  

      ( ) [ ] sj T
CT t pt x n A j X e    ,  (20) 

where Ap(jω) is the CTFT of  
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s
p

t t T
t




 
 


  (21) 

and X(e 
jωTs) is the discrete-time Fourier transform (DTFT) of 

x[n]. Ideally, α(t) = 1 in which case the α(t)x[nt] term in (19) 
reduces to the right side of (18), and (20)-(21) imply that 
|Ap(jω)| = sin(πTs f  )/πf. This corresponds to the classic zero-
order-hold frequency response roll-off of an ideal DAC. In 
practice, 1-bit DAC errors cause α(t) to deviate from unity, but, 
as implied by (20) and (21), this just affects the frequency re-
sponse roll-off without introducing nonlinear distortion. More-
over, the effect on the frequency roll-off typically is not signif-
icant in current steering DACs [10].  

The β(t) term in (19) introduces fixed tones in the DAC out-
put at integer multiples of fs. Such tones occur in all types of 
DACs, e.g., as a result of clock feedthrough. They do not fall 
within any Nyquist band of the DAC output and do not depend 
on the DAC input, so they do not cause problems in typical 
DAC applications [10]. 

In contrast, the eDAC(t) term in (19) limits performance in typ-
ical applications. As proven in Appendix A it can be written as  

 ( ) ( ) ( ) ( )DAC MM ISI linear ISI noisee t e t e t e t    ,  (22) 

where eMM(t) is caused by mismatches among the 1-bit DACs 
and the remaining two terms are caused by ISI. 

The expression for eMM(t) is 
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
  , (23) 

where each εi(t) is a Ts-periodic waveform defined in Appendix  
A and DEM causes the λi[nt] sequences to be zero-mean, 
pseudo-random sequences that are uncorrelated with the DAC’s 

input sequence, x[nt], i.e.  
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where E{u} denotes the expected value of u [4]. Without DEM 
the λi[nt] sequences would be nonlinearly related to the DAC 
input, so eMM(t) would contain nonlinear distortion. With DEM 
eMM(t) is a zero-mean pseudo-random noise waveform because 
of the behavior of the λi[nt] sequences [10]. 
 The expression for eISI-linear(t) is  

 ( ) [ 1] ( )ISI linear te t x n t   , (25) 

where γ(t) is a Ts-periodic waveform defined in Appendix A. 
The 1-bit DAC errors cause γ(t), and hence eISI-linear(t), to deviate 
from 0, but the argument applied above to show that the 
α(t)x[nt] term in (19) does not introduce nonlinear distortion 
also applies to eISI-linear(t). While the 1-bit DAC errors cause α(t) 
to deviate slightly from its ideal value of α(t) = 1, they cause 
γ(t) to deviate slightly from its ideal value of γ(t) = 0, so in ad-
dition to not introducing nonlinear distortion, eISI-linear(t) typi-
cally has much lower power than α(t)x[nt]. 
 The expression for eISI-noise(t) is  

 ( ) ( ) ( )ISI noise DEM ISe t e t e t   , (26) 

where eDEM(t) and eIS(t) are error waveforms resulting from ISI 
that comprise noise instead of nonlinear distortion because of 
DEM and ISI scrambling, respectively. The expression for 
eDEM(t) is 


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where ε×+,i(t) and γ+×,i(t) are defined in Appendix A, and zi[nt] = 
o++,i[nt]pi[nt]ηi(t)/Δ. Every term on the right side of (27) con-
tains one or both of λi[nt] and λi[nt – 1], so, as in the case of 
eMM(t), DEM causes eDEM(t) to comprise zero-mean pseudo-ran-
dom noise instead of nonlinear distortion. 

The expression for eIS(t) is  
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  (28) 

where 

 
28 2

1
( ) [ ] [ ] [ 1] ( )

2i i t t t ie t q n x n x n t 


,  (29) 

 ,[ ] [ ] [ ]i t i t i tq n o n p n , (30) 

and the factors in (28) that are not defined above are defined in 
Appendix A. To show that eIS(t) does not introduce nonlinear 
distortion, it is sufficient to show that  
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  E ( ) ( [ ], [ 1], [ 2],...) 0IS t t te t f x n x n x n    (31) 

holds for every deterministic nonlinear function of the DEM 
DAC’s input sequence, f(x[nt], x[nt – 1], x[nt – 2], …). Given 
that x[nt] is deterministic, it follows from (31) that it is sufficient 
to show 
  E ( ) 0  regardless of [ ] for all IS te t x n t . (32) 

Every term on the right side of (28) contains either pi[nt], 
õ++,i[nt], õ+×,i[nt], or õ×+,i[nt], all of which, by definition, are zero-
mean random sequences that are independent of x[nt] for all t. 
In addition, pi[nt] is independent of the other stochastic se-
quences in (28), and so it follows from (28) that (32) holds. 

If ISI scrambling were not enabled, pi[nt] = 1 and o++,i[nt] = 1 
for all t, which would cause the ei(t) terms in (28) to contribute 
second-order nonlinear distortion. In contrast, the other terms 
in (28) as well as those in (23) and (27) either have zero means 
regardless of x[nt] or have no dependence on x[nt], so they do 
not contribute nonlinear distortion in either the absence or pres-
ence of ISI scrambling.  

As shown in [4], mi = 0 for i = 1, 2, …, 20, so (14) and (7) 
imply that the ci[nt] outputs of the DEM encoder for these val-
ues of i do not contain components proportional to x[nt]. This is 
why the summation in (28) starts from i = 21, and why the bot-
tom 20 1-bit DACs in Fig. 2 need not be ISI scrambling 1-bit 
DACs. 
 To show that eIS(t) does not introduce spurious tones, it is 
sufficient to show that  

 lim E ( ) ( ) 0 regardless of [ ] for all .IS IS te t e t x n t





   (33) 

By definition, x[nt] is deterministic, and, for sufficiently large τ 
and any i and j, oi[nt], oj[nt+τ], pi[nt], and pj[nt+τ] are independent, 
and pi[nt] and pj[nt+τ] are zero mean. As explained in Appendix 
A, õ,i[n] is the zero-mean portion of o,i[n] where  is a place-
holder for ++, +×, ×+, or ××. Therefore, (9)-(12) imply that õab,i[nt], 
õcd,j[nt+τ], pi[nt], and pj[nt+τ] are independent for sufficiently 
large τ and any i and j, where a, b, c, and d are any combination 
of + and ×. Expanding E{eIS(t)eIS(t+τ)} using  (28) and applying 
the above observations, verifies that (33) holds.  

C. Effect of ISI Scrambling for Sinusoidal Inputs 

As explained above, the ei(t) terms in (28) would contribute 
nonlinear distortion if it were not for ISI scrambling, so the 
properties of these terms are of particular interest. The power 
spectral density (PSD) of ei(t) is derived in Appendices B and 
C for a full-scale input signal, x[nt] = 8192∆sin(2πntf0/fs), where 
f0/fs satisfies 

 1 1
0 02 40     and    s sf f f f   , (34) 

to avoid the degenerate cases of either the fundamental or the 
second harmonic of the input signal aliasing to zero frequency 
in x[nt]. 
 The derivation involves two key components. Appendix B 
proves that the qi[nt] factor of ei(t) with nt replaced by n is a 
wide-sense stationary (WSS) discrete-time random process, 
and derives an expression for its autocorrelation, Rq,i[k]. Appen-
dix C applies this result to show that ei(t) is a cyclo-stationary 
continuous-time random process, and derives expressions for 
its time-average autocorrelation, R̅e,i(τ), and PSD, Se,i(jω). 
 Given that each ei(t) term in (28) is proportional to pj[nt] if 
and only if j = i, and, by definition, pi[n] is independent of pj[n] 
when i ≠ j, it follows that ei(t) and ej(t) are independent when i 
≠ j. Consequently, the PSD of the portion of eDAC(t) that would 
be nonlinear distortion if ISI scrambling were not applied is 

    
37

,
21

ISe e i
i

S j S j 


  . (35) 

 Theoretical curves calculated from (35) and its supporting 
equations in Appendices B and C are shown in Section V to 
closely match measurement results. The theoretical results 
prove and the measured results demonstrate that the ISI scram-
bling technique converts what would otherwise be ISI-induced 
second-order harmonic distortion spurs to noise “bumps” cen-
tered at the spur frequencies, e.g., at frequencies of 0 and 2f0 Hz 
in the DAC’s first Nyquist band. The peak amplitudes of the 
noise bump PSDs decrease as the average ISI scrambling 1-bit 
DAC transient swapping rate is increased. Hence, they decrease 
as NDelay is decreased. 

V. MEASUREMENT RESULTS 

The IC was implemented in a TSMC 90 nm process. A die 
photograph of it is shown in Fig. 6. The die measures 2.3 mm × 
2.45 mm and its active area is 1.48 mm2. The incremental cir-
cuit area required to implement ISI scrambling is 0.08 mm2 of 
which 0.03 mm2 corresponds to digital logic. The IC was tested 
in a QFN64 package and all grounds were down-bonded to the 
package’s ground paddle. In addition to the DAC core, the IC 
contains LVDS interface circuitry interspersed throughout the 
pad ring and a direct digital synthesizer (DDS) integrated in the 
P/R digital block. The DDS was used for all measurements pre-
sented in this section. 

The packaged IC was mounted to a test circuit board with an 
Ironwood elastomer socket. The clock signal applied to the test 
circuit board was generated by passing the single-ended output 
of a low-jitter laboratory signal generator through a passive 
bandpass filter to suppress noise and spurious tones. A balun 
and associated passive matching circuitry on the test circuit 
board converts the clock signal to differential form prior to the 
IC. A transformer and associated passive matching circuitry on 
the test circuit board converts the differential DAC output to a 
single-ended signal that was measured via a laboratory signal 
analyzer to obtain the results presented in this section. 

Fig. 7 shows representative DAC output power spectra for a 
481.4 MHz single-tone input sequence.  Compared to the case 
with both DEM and ISI scrambling disabled, the results indicate 
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Fig. 6 Die photograph. 
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that enabling just DEM improves the spurious-free dynamic 
range (SFDR) by only 4 dB whereas enabling both DEM and 
ISI scrambling improves the SFDR by 14 dB. With DEM ena-
bled and ISI scrambling disabled, the measured SFDR is limited 
by an aliased second harmonic caused by ISI as predicted by 
the corresponding theoretical result presented in [10]. As pre-
dicted by the theoretical results presented in this paper, the 
measured second harmonic is highly attenuated when both 
DEM and ISI scrambling are enabled. 

Similar results also hold for other input signals. Fig. 8 shows 
measured SFDR values versus signal frequency for single-tone 
and two-tone DAC input sequences. The data demonstrate that 
ISI scrambling significantly increases the measured SFDR val-
ues relative to the cases where ISI scrambling is disabled. 

Fig. 9 shows several measured and theoretically calculated 
power spectra corresponding to a 481.4 MHz single-tone DAC 
input sequence with DEM and ISI scrambling enabled. To 
demonstrate the correspondence between theory and measure-
ment, the power spectra are shown over a zoomed-in frequency 
band centered on the frequency at which the limiting aliased 
second harmonic occurs in the absence of ISI scrambling. A 
pair of power spectra, one measured and one calculated, are su-
perimposed for each of NDelay = 16, 256, 4096, and 65536. The 
calculated power spectra were obtained via the equations de-
rived in Section IV and the appendices with a noise floor added 
to match that of the measured power spectra, α(t) approximated 
as unity (its ideal value), and each ηi(t) approximated as a con-
stant taken to be that which yielded the best overall match be-
tween the calculated and measured power spectra. 

As predicted by the analysis in Section IV and demonstrated 
in Fig. 9, ISI scrambling converts what would otherwise be sec-
ond-order nonlinear distortion into a spectral noise “bump” and 
the height of the bump decreases with NDelay. Except for a −82 

dBc residual second-order spur in the measured results, the 
measured and corresponding calculated power spectra shown in 
Fig. 9, are in very close agreement. 

The authors believe that the residual second-order spur is the 
result of differential path mismatches from transistors M6 
through M9 in Fig. 4(a) through the test circuit board’s output 
network up to the transformer. Evidence in support of this belief 
is that the residual spur was not predicted by simulations in the 
absence of such mismatches, and it was found to vary somewhat 
across different copies of the IC and test circuit board. 

With DEM and ISI scrambling enabled, the DAC’s SFDR for 
input frequencies above 300 MHz is limited by higher third-
order distortion than was predicted by simulations prior to IC 
fabrication. The authors subsequently realized they had made a 
mistake in the simulation setup which caused the impedance of 
the ground bond wires to be underestimated. The measured 
third-order distortion was reproduced in simulation when the 
mistake was corrected. Nearly identical third order distortion 
was observed in simulation when ISI scrambling was disabled 
and M7 and M8 in Fig. 4(a) were removed, which shows that ISI 
scrambling is not the cause of the third-order distortion. If the 

(a) (b)
One-Tone SFDR vs. fin Two-Tone SFDR vs. fin

Fig. 8 Measured SFDR vs. frequency (a) one-tone input signals, and (b) 
two-tones input signals separated by 3.52 MHz. 
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Fig. 9 Measured and theoretical power spectra around aliased second 
harmonic for full-scale 481.4 MHz single-tone input signal. 
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Fig. 7 Measured output power spectra for a full-scale 481.4 MHz input signal. 
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Fig. 10 Measured second harmonic versus frequency for a full-scale sin-
gle-tone input signal. 
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problem caused by the DAC ground impedance were fixed, 
simulations suggest that the third-order distortion would be lim-
ited by the 1-bit DAC output impedance [22, 30-32]. 

Fig. 10 shows the effect of ISI scrambling on the second-har-
monic for full-scale single tone input sequences. With DEM en-
abled and ISI scrambling disabled, the ratio of the power of the 
desired signal component to the power of the second-harmonic 
decreases with input frequency. In contrast, with both DEM and 
ISI scrambling enabled, the ratio of the two components does 
not increase with frequency. 

These observations are predicted by the analysis presented in 
Section IV. The CTFT of the DAC’s desired signal component 
given by (20) is proportional to Ap(jω), which is the CTFT of 
the Ts-duration pulse, αp(t), equal to one period of α(t). The sec-
ond-order distortion caused by ISI is represented by the ei(t) 
terms in (28). By the same reasoning that led to (20), the CTFT 
of ei(t) is proportional to Hp,i(jω), which is the CTFT of a Ts-
duration pulse, ηp,i(t), equal to one period of ηi(t). While αp(t) is 
approximately constant for most of 0 ≤ t < Ts, ηp,i(t) is the result 
of 1-bit DAC transient errors so it is non-zero mainly over a 
short interval close to t = 0. Consequently, |Hp,i(jω)| decreases 
less over the first Nyquist band than |Ap(jω)| such that the sec-
ond-order distortion exhibits less frequency roll-off than the de-
sired signal component. In contrast, the residual second-order 
distortion term that remains when ISI-scrambling is enabled is 
not caused by ISI, so it does not appear in ei(t) and is not subject 
to this effect. 

Five randomly-selected copies of the IC were tested. For full-
scale single-tone input sequences with frequencies spanning the 
Nyquist band, the worst measured second harmonic of the five 
copies is –64 dBc with DEM enabled and ISI scrambling disa-
bled and –78 dBc with both DEM and ISI scrambling enabled. 
The power spectra and SFDR measurements presented in this 
section are from the IC copy with the worst second-order dis-
tortion when ISI scrambling is disabled. 

The full-scale single-tone noise performance of the IC is 
shown in Table I. Enabling DEM reduces the SNDR by about 

3 dB, which is expected; DEM increases the number of 1-bit 
DAC transitions and causes the 1-bit DAC rise and fall transi-
tion mismatches to increase the overall DEM DAC’s output 
noise. The same degradation in SNDR was observed in simula-
tion when DEM was enabled. In contrast, the RZ 1-bit DACs 
used in [4, 8] have the same number of output transitions re-
gardless of whether DEM is enabled, so enabling DEM does not 
degrade the SNDR for full-scale input signals in those cases. 
Enabling ISI scrambling in addition to DEM reduces the SNDR 
by up to 0.5 dB, which shows that the noise caused by DEM 
dominates the noise floor. As expected, the noise performance 
of the IC is worse than those of DACs that incorporate 1-bit 
DAC mismatch error calibration [7-8, 13, 15-16, 34]. However, 
the ISI scrambling technique’s low circuit area and power con-
sumption makes it inexpensive to combine with previously pub-
lished techniques that calibrate 1-bit DAC mismatch errors. 

Table II and Fig. 11 present key specifications of the IC along 
with those of several other published state-of-the-art DACs. 
The P/R digital block includes the DEM encoder, ISI scram-
bling controller and DDS, and consumes 105 mW from a 1.2 V 
supply. The analog circuitry consumes the remaining 133 mW 
from 1.2 V and 3.3 V supplies (the DAC output current is 
sourced from the 3.3 V supply). The data show that the IC ex-
hibits better SFDR performance than all but the DACs pre-
sented in [7], [8], and [13]. The DAC presented in [13] achieves 
high linearity, but it requires manual laboratory measurements 
to iteratively configure its foreground calibration technique 
which limits its applicability. The DAC presented in [8] uses 
RZ 1-bit DACs to avoid being limited by nonlinear ISI (meas-
urements show that its SFDR drops by 10 dB when its 1-bit 
DACs are operated in NRZ mode). Had the DAC presented in 
[8] been augmented with ISI scrambling, it is likely that it could 
have used NRZ 1-bit DACs and thereby avoided the downsides 
of RZ 1-bit DACs without sacrificing linearity. The DAC pre-
sented in [7] uses NRZ 1-bit DACs and no ISI-mitigation tech-
niques are mentioned in [7]. This suggests that excellent design 
and layout practices as well as the advanced 16 nm CMOS IC 
technology in which it is implemented are likely responsible for 
keeping its nonlinear ISI in check. Yet the analysis in Section 
IV shows that its NRZ 1-bit DACs must be introducing signifi-
cant nonlinear ISI, so it is reasonable to expect that it too could 
have benefited from ISI scrambling. 

TABLE I 
NSD/SNDR MEASURED OVER FIRST NYQUIST BAND 

  NSD (dBc/Hz) SNDR (dB) 

fin 
(MHz) 

DEM off 
IS off 

DEM on 
IS off 

DEM on 
IS on 

DEM off 
IS off 

DEM on 
IS off 

DEM on 
IS on 

51 –163.4 –147.1 –146.3 63.6 59.9 59.4 
180 –158.1 –145.8 –145.2 62.4 58.6 58.3 
481 –150.8 –144.8 –144.8 60.3 57.8 57.8 

 TABLE II  
KEY SPECIFICATIONS OF RECENT STATE-OF-THE-ART DACS 

  
Process 

(nm) 
Resolution 

(bits) 

Sample 
Rate 

(GHz) 

Full 
Scale 
(mA) 

Power 
(mW) 

 Technique 

This 
Work 

90 14 1000 20 238* DEM / IS 

[5] 40 16 1600 16/20 40 DEMDRZ 
[7] 16 16 6000 40 350 Static Cal
[8] 22 14 600 16 202 MNC
[9] 28 14 10000 16 162 OIC
[13] 65 16 9000 16 1080 DPD 
[15] 140 14 200 20 270 DMM 
[16] 65 16 3200 20 240 3DSC 
[30] 90 12 1250 16 128 DRRZ

*1.2 mW is due to ISI scrambling  
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Fig. 11 SFDR comparison of recent state-of-the-art DACs. 
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VI. APPENDIX A 

Substituting (7) into the right-most equation in (5) and sub-
stituting the result into (13) yields  

 

3, ,

, , ,

, , ,

,

( ) [ ] ' ( )

[ ] ( ) [ 1] [ 1] ( )

[ ] ( ) [ ] [ ] ( )

[ ] ( ),

i i t i

i t i i t i t i

i t i i t i t i

i t i

e t o n e t

o n t x n p n t

o n t x n p n t

o n e t

 

 



  

  

 



     

    



  (36) 

where  

   , 1 0 , 1 0

1 1
( ) ( ) ( ) ,   ( ) ( ) ( ) ,

2 2i i i i i it e t e t t e t e t            (37) 

  , 1 0 , 1 0

1
( ) ( ) ( ),  and ( ) ( ) ( ) .i i i i i it e t e t t e t e t         


  (38) 

As explained in Section II, pi[nt] only changes when the ISI 
scrambling 1-bit DAC has been offline for multiple clock cy-
cles. This implies that pi[nt] = pi[nt−1] whenever o××,i[n] = 0. In 
such cases, both pi[nt]pi[nt−1] = 1 and pi

2[nt] = 1, because pi[nt] 
takes on values of only 1 and −1. Consequently, (36) implies 

 

3, ,

, , ,

, , ,

,

[ ] ( ) [ ] [ ] ' ( )

[ ] [ ] ( ) [ 1] ( )

[ ] [ ] ( ) [ ] ( )

[ ] [ ] ( ).

i t i i t i t i

i t i t i i t i

i t i t i i t i

i t i t i

p n e t o n p n e t

o n p n t x n t

o n p n t x n t

o n p n e t

 

 



  

  

 



    

    



  (39) 

As explained in Section IV-A, o+×,i[nt] =  o×+,i[nt] = o××,i[nt] = 
0 when o++,i[nt] = 1. Thus, (6), (8), and (39) imply that the output 
of the ith ISI scrambling 1-bit DAC is  

 ( ) [ ] [ ] ' ( )i i t i i t iy t x n K p n e t   , (40) 

when o++,i[nt] = 1. Performing an analysis nearly identical to 
that applied in [10] to derive (3) from (1) and (2), and applying 
pi[nt]pi[nt−1] = 1 and pi

2[nt] = 1 results in  
 ,( ) [ ] ( ) ( )i i t i i iy t x n t K e t    , (41) 

when o++,i[nt] = 1, where  

 
, ( ) [ ] ( ) [ 1] ( )

[ ] [ ] [ 1] ( ).
i i t i i t i

i t i t i t i

e t p n t x n t

p n x n x n t

 


   

 
  (42) 

Given that one of o++,i[nt], o+×,i[nt], o×+,i[nt], and o××,i[nt] is 1 and 
the rest are 0 during each clock cycle and oi[nt] = 1 when o++,i[nt] 
= 1, it follows from (6), (8), (39), and (41) that 

 

, ,

, , ,

, , ,

,

( ) [ ] [ ]

[ ] [ ] ( ) ( )

[ ] [ ] ( ) [ 1] ( )

[ ] [ ] ( ) [ ] ( )

[ ] [ ] ( ),

i i t i t i

i t i t i i

i t i t i i t i

i t i t i i t i

i t i t i

y t x n o n K

o n x n t e t

o n p n t x n t

o n p n t x n t

o n p n e t



 

 

 

  

  

 

 

    
    
    



 (43) 

where  
 ( ) ( ( ) 1)i i it K t   . (44) 

 The random sequences o++,i[nt], o+×,i[nt], o×+,i[nt], and o××,i[nt] 
can each be written as  

 **, **, **,[ ] [ ]i i io n o n o  ,  (45) 

where  is a placeholder for ++, +×, ×+, or ××, õ,i[n] is the zero-
mean portion of o,i[n], and o̅,i is the mean of o,i[n].   
 The DEM encoder causes mi = 0 for 1 ≤ i ≤ 20 and mi = 2−14 
for 21 ≤ i ≤ 36 [4]. Therefore, substituting (43) with (45) and 
(14) into (17), simplifying the result with (16), and applying 
oi[nt] = 1 for all i = 1, 2, …, 20 results in (19), (22), (23), and 
(25)-(28), where  

  
37

14
, , ,

21

( ) 1 2 ( ) ( ) ,i i i i
i

t o t o t  
  



     (46) 

 
20

1

( ) ( ),i
i

t t 


    (47) 

and  

  
14 37

, , ,
21

2
( ) ( ) ( )i i i i

i

t o t o t  


  


 
  .  (48) 

VII. APPENDIX B 

The autocorrelation of qi[n] for i = 21, 22, …, 37 is derived 
in this appendix using a Markov chain to model the states of 
each ISI-scrambling 1-bit DAC. An analysis is first presented 
that applies to the primary 1-bit DACs, i.e., to qi[n] for i = 21, 
22, …, 36. Then an analysis is presented that applies to the aux-
iliary 1-bit DAC, i.e., to qi[n] for i = 37.  

Fig. 12 shows a Markov chain state diagram that applies to 
the ith ISI-scrambling 1-bit DAC for the example case of NDelay 
= 4, where i = 21, 22, …, 36. The example uses NDelay = 4 to 
simplify the figure and its explanation, but the results derived 
below apply to the general case.  

Each of the states in Fig. 12 with a single output state transi-
tion probability of 1 implements a one clock delay wait period. 
For example, States 10-17 implement the 8 clock delays during 
which the ith 1-bit DAC is offline and its transients are changed 
from not swapped to swapped.  

The hashmarks in Fig. 12 denote states in which the ith 1-bit 
DAC’s transients are swapped. For example, the 1-bit DAC’s 

0 50 100 150 200 250 300 350 400 450 500

Frequency (MHz)

70

75

80

85

90

95

S
F

D
R

 (d
B

)

[7]

SFDR vs. fin

[8]

[13]

This work[16]

[15]

[30] [5]

[9]

     
Fig. 11 SFDR comparison of recent state-of-the-art DACs. 
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q
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18

: oi[n] = 1, pi[n] = 1 : oi[n] = 0, pi[n] = 1

: oi[n] = 1, pi[n] = –1 : oi[n] = 0, pi[n] = –1  
 

Fig. 12 Markov state transition diagram corresponding to the primary ISI 
scrambling 1-bit DACs. 
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transients are swapped in the second half of States 10-17 as in-
dicated by the hashmarks on the symbols for States 14-17. 

As explained in Section II, whenever a primary ISI-
scrambling 1-bit DAC goes from its offline to online state, all 
of the primary ISI-scrambling 1-bit DACs remain online for X 
clock periods where X is a random variable that takes on integer 
values from 1 to NDelay, each with probability q = 1/NDelay. 
Hence, if the ith 1-bit DAC is in State 1 at time index n, then 
the probability that one of the primary ISI-scrambling 1-bit 
DACs will be taken offline at time index n+1 is q. As there are 
16 such 1-bit DACs, the probability that the ith 1-bit DAC will 
be taken offline at time index n+1 is q/16, and the probability 
that one of the other 1-bit DACs will be taken offline at time 
index n+1 is 15q/16. These two cases correspond States 10 and 
2, respectively, in Fig. 12. If none of the primary 1-bit DACs 
are taken offline for another 1, 2, or 3 clock cycles, then the ith 
1-bit DAC enters State 38, 37, or 36, respectively. Similar rea-
soning can be applied to each of the subsequent states to verify 
that the Markov chain correctly models the states of each pri-
mary ISI-scrambling 1-bit DAC per the explanation in Section 
II. 

The number of Markov chain states, NStates, depends on NDelay, 
which can be set via the SPI and can be as large as 65536. The 
example described above uses NDelay = 4 which resulted in  
NStates = 42. In general, NStates = 34+2NDelay because the consec-
utive clock periods during which none of the primary 1-bit 
DACs are offline are represented by 2NDelay+2 possible states. 
Specifically, these states are States 1, 18, C-D, and E-F, where  

 
35,   35 1,   

35 ,   35 2 1.

Delay

Delay Delay

C D N

E N F N

   

    
  (49) 

 It follows from (9), (30), and the Markov chain’s definition 
that  

 
1

1

1, if [ ] ,

[ ] 1, if [ ] ,

0, otherwise,

i

i i

s n S

q n s n S


  



  (50) 

where si[n] is the state of the Markov chain during the nth clock 
cycle, S1 = {2, 3, …, 9, C, C+1, …, D}, and S−1 = {19, 20, …, 
26, E, E+1, …, F}. Therefore, 

 

 

 

 

 

1 1

1 1

1 1

1 1

{ [ ] [ ]} Pr [ ] , [ ]

Pr [ ] , [ ]

Pr [ ] , [ ]

Pr [ ] , [ ] ,

i i i i
u S v S

i i
u S v S

i i
u S v S

i i
u S v S

E q n q n k s n u s n k v

s n u s n k v

s n u s n k v

s n u s n k v

 





 

 

 

 

    

   

   

   

 

 

 

 

  (51) 

where Pr(si[n] = u, si[n+k] = v) is the joint probability that the 
Markov chain states at time indices n and n+k are u and v, re-
spectively. 
 The values of Pr(si[n] = u, si[n+k] = v) can be derived via the 
Markov chain’s NStates × NStates state transition matrix, P = [pu, v], 
where pu, v is the element on the uth row and vth column of P 
and is the probability that the Markov chain will be in State v at 
any time index m given that it was in State u at time index m − 
1. Although P has a relatively large dimension, most of its ele-
ments are zero. Specifically, the Markov chain’s definition im-
plies that the only non-zero elements of P are: 

 

 34, 1 , 1

1, 2 18, 19 1,10 18,27

, 2 , 19 ,10 ,27

9, 26,

1, 18,

1 for all 1,9,18, 26,34, , , 

15 16,  16,

15 16,  1 16,

,   for 0 ,

,   for 1 .

m m

D F D F

C m E m Delay

C m E m Delay

p p m D E

p p q p p q

p p p p

p p q m N

p p q m N



 

 

  

   

   

   

   

  (52) 

 The Markov chain’s definition further implies that there is a 
non-zero probability of the system successively entering States 
1-9, C-D, 10-26, E-F, 27-34, 1, which is a loop that includes all 
NStates states. This implies that every state can be reached from 
every other state, so the Markov chain satisfies the definition of 
being irreducible. 

By the same reasoning, regardless of the system’s state at any 
given time index n, there is a non-zero probability that it will 
return to the same state at time index n+m, where m = NStates. 
The Markov chain’s definition also implies that there is a non-
zero probability of the system successively entering the states 
in the order listed above but skipping either State C or State E. 
This implies that regardless of the system’s state at any given 
time index n, there is a non-zero probability that it will return 
to the same state at time index n+m, where m = NStates−1. Given 
that the greatest common divisor of NStates and NStates−1 is 1 re-
gardless of the value to which NStates is set, this implies that the 
Markov chain satisfies the definition of being aperiodic. 
 As the Markov chain is irreducible, aperiodic, and has a finite 
number of states, it approaches a steady state in that the se-
quence of its states’ probability distributions as a function of 
time index n converges to a unique steady-state probability dis-
tribution as n → ∞ [33]. This implies that 

 1 2 1 2States StatesN N           P    (53) 

where πu is the steady-state probability of the system being in 
State u. This matrix equation along with the probability distri-
bution property that π1 + π2 +  + 

StatesN  = 1 can be solved to 

find the values of π1, π2,  
StatesN . 

As the objective of this appendix is to derive the steady-state 
autocorrelation of qi[n], the Markov chain is taken to have con-
verged to its steady state in the following analysis, i.e., 

  Pr [ ]    for all .i us n u n    (54) 

Therefore,  
   ,Pr [ ] ,  [ ] ( )i i u u vs n u s n k v p k      (55) 

where pu,v(k) is the probability that the Markov chain’s state at 
time index n+k is v given that it was in State u at time index n. 
Substituting this into (51) leads to an expression for 
E{qi[n]qi[n+k]} that is independent of n. This implies that 
E{qi[n]qi[n+k]} = E{qi[n]qi[n−k]}. Furthermore, the definition 
of qi[n] implies that E{qi[n]} = 0, so the mean of qi[n] is also 
independent of n. It follows that qi[n] is WSS. Substituting (55) 
into (51) and applying these observations implies that the auto-
correlation of qi[n] can be written as 

 

   

   

1 1 1

1 1 1

, , ,

, ,

[ ]

.

q i u u v u w
u S v S w S

r r s r t
r S s S t S

R k p k p k

p k p k







 

  

  

 
  

 
 

  
 

  

  
  (56) 

The properties of Markov chains imply that 



12 
 

 ,1 ,2 ,( ) ( ) ( ) ,
States

k
u u u N up k p k p k    b P   (57) 

where bu is a row vector of length NStates with a 1 in column u 
and zeros in all other columns [33]. Matrix equation (57) with 
the definition of P via (52) is used to calculate the values of 
pu,v(k) in (56). 
 The above analysis applies only to the primary ISI-
scrambling 1-bit DACs, but it can be modified to apply to the 
auxiliary ISI-scrambling 1-bit DAC as follows. The properties 
of the o37[n] and p37[n] stochastic sequences described in Sec-
tion II imply that the auxiliary ISI-scrambling 1-bit DAC’s 
states can be modeled via a Markov chain with an NStates × NStates 
state transition matrix, P = [pu, v], that is similar to that described 
above for the primary ISI-scrambling 1-bit DACs. The only 
non-zero elements of the state transition matrix are still given 
by (52) except with p1,2 = p18,19 = p1,10 = p18, 27 = q/2 and pD,2 = 
pF,19 = pD,10 = pF, 27 = 1/2 because of the 50% chance that the 
swap state of the auxiliary ISI-scrambling 1-bit DAC gets in-
verted each time it goes offline. 

By the same reasoning applied previously, P is irreducible 
and aperiodic, and q37[n] is given by (50) with i = 37, S1 = {3, 
4, …, 9, 28, 29, …, 34}, and S−1 = {11, 12, ..., 17, 20, 21, …, 
26}. Consequently, Rq,37[k] is given by (56) with probability 
distributions calculated via (53) and (57) using the version of P 
corresponding to the auxiliary ISI-scrambling 1-bit DAC. 

VIII. APPENDIX C 

Suppose x[nt] = 8192∆sin(ω0nt), where ω0 = 2πf0/fs, and f0/fs 
satisfies (34). As ei(t) has zero mean and x[nt] is deterministic, 
the autocorrelation of ei(t) can be written as  

    , , ( ) ( ) E [ ] [ ] ,e i i i i t i tR t g t g t q n q n       (58) 

with 

     2
0 0( ) 2 ( )sin sin 1i i t tg t t n n    . (59) 

The DAC’s input sequence is generated digitally, so f0/fs is a 
rational number. This implies that gi(t) is periodic with a period, 
Tg, where Tg is an integer multiple of Ts. As ηi(t) is periodic with 
a period of Ts by definition, this implies that gi(t)gi(t+τ) is peri-
odic in t with a period, Tg.  
 As proven in Appendix B, the discrete-time stochastic se-
quence, qi[n], is WSS, so the expectation term in (58) can be 
written as 

   ,E [ ] [ ] [ ]i t i t q i t tq n q n R n n    ,  (60) 

the right side of which is given by (56) with k replaced by nt+τ – 
nt. The quantity nt+τ can be written as nt+τ = nt + fst + nτ + fsτ 
where, for any real number x, x denotes the largest integer less 
than or equal to x, and x = x − x is the fractional part of x. 
For any real numbers x and y, x − y can be written as x − 
y , so   

 t t s sn n f t n f          . (61) 

The only term that contains t on right side of (61) is fst, which 
is Ts-periodic, so (60) must be Ts-periodic in t. Given gi(t)gi(t+τ) 
is periodic in t with a period, Tg, and Tg is an integer multiple of 
Ts, it follows from (58) and (60) that Re,i(t, τ) is periodic in t with 
a period of Tg. Consequently, ei(t) is a cyclostationary random 
process and its average PSD is the Fourier transform of the av-
erage of Re,i(t,τ) over one Tg period of t, i.e., the Fourier 

transform of 

 , ,0

1
( ) ( ) ( ) [ ]

gT

e i i i q i t t
g

R g t g t R n n dt
T      . (62) 

Substituting (59) into (62) and applying sinusoid product-to-
sum identities shows that the integrand of (62) can be written as 

 
     

 
 

2
0

0 0

0 0 0

0 0 0

( ) 2cos ( )

cos 2 cos 2 1

2cos( )cos 2

2cos( )cos 2 ,

t t t t

t

t

f t

n n n n

n

n



 





 

  

  

 




    

 

  

 (63) 

where 
  7

,( ) 2 ( ) ( )q i t t i if t R n n t t    
   . (64) 

Both cos(2ω0nt−ω0) and cos(2ω0nt+τ+ω0) are constant with re-
spect to t over successive intervals of Ts. Furthermore, they av-
erage to zero over intervals of Tg in t because the restrictions on 
ω0 imposed by (34) prevent them from aliasing to zero fre-
quency. By the same reasoning, cos(2ω0(nt+τ+nt−1)) averages to 
zero over intervals of Tg in t, and it is constant with respect to t 
over two fixed sub-intervals of every successive Ts time inter-
val. Given that fτ(t) is Ts-periodic in t, the above observations 
imply that the last three terms on the right side of (63) average 
to zero in (62), so they do not contribute to R̅e,i(τ). 
 As explained above, (61) and, hence, cos(2ω0(nt+τ−nt)) are Ts-
periodic in t. Given that fτ(t) is Ts-periodic in t and cos2(ω0) is 
constant, it follows that all the terms in (63) which contribute to 
R̅e,i(τ) are Ts-periodic in t, so (62) can be written as 

  2
, 0 00

1
( ) ( ) 2cos ( ) cos 2

sT

e i t t
s

R f t n n dt
T          . (65) 

Equation (61) implies that  

 
, if 1 ,

1, otherwise,
s s

t t

n f t f
n n

n








  
  


  (66) 

so (65) with (64) can be rewritten as  

 

 

 

1

, 0

1

( ) [ ] ( ) ( )

[ 1] ( ) ( ) ,

s s

s

s s

T f

e i i i i

T

i i iT f

R w n t t dt

w n t t dt





 

   

  





 

  




  (67) 

where  

  
7

, 2
0 0

2 [ ]
[ ] 2cos ( ) cos 2q i

i
s

R n
w n n

T


  


    . (68) 

As ηi(t) is Ts-periodic, the ηi(t+τ) integrand factors in the first 
and second integrals on the right side of (67) can be replaced by 
ηi(t+τ−nτTs) and ηi(t+τ−(nτ+1)Ts), respectively, without chang-
ing R̅e,i(τ). By definition, fsτ = fsτ − nτ, so these replacements 
can be written as ηi(t+Tsfsτ) and ηi(t−Ts(1−fsτ)), respectively. 
Hence, with these replacements, both integrals have integrands 
of the form ηi(t)ηi(u) and the limits of integration are such that 
t and u are limited to and, together, span the range [0, Ts]. There-
fore, (67) can be rewritten as 

 
 

  
, *,

*,

( ) [ ]

[ 1] 1 ,

e i i p i s

i p i s

R w n n T

w n n T

 

 

  

 

 

   
  (69) 

where 
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  *, , ,( ) ( )p i p i p iu t t u dt  



    (70) 

and 

 ,

( ) if 0 ,
( )

0 otherwise.
i s

p i

t t T
t




 
 


 (71) 

 By definition, ηp*,i(τ) is nonzero only when −Ts < τ < Ts, so 
(69) can be rewritten as  

  , *,( ) [ ]e i i p i s
n

R w n nT  




  . (72) 

Taking the CTFT of (72) yields 

 
   

   
, *,

*,

[ ]

,

s

s

j nT
e i p i i

n

j T
p i i

S j H j w n e

H j W e





 













  (73) 

where Hp*,i(jω) is the CTFT of np*,i(t) and Wi(ejωTs) is the DTFT 
of wi[n]. Taking the DTFT of (68) with nt replaced by n yields 

 
     

     0 0

8
2

0 ,

2 2
, ,

2
4coss s

s s

j T j T
i q i

s

j T j T
q i q i

W e S e
T

S e S e

 

   




 

 

  

  (74) 

where Sq,i(ejωTs) is the DTFT of Rq,i[k] which is given by (56). 
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