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Abstract— This paper describes all-digital enhancements
for digital fractional-N phase-locked loops (PLLs) based on
delta-sigma (��) frequency-to-digital converters (FDCs). The
enhancements include an improved dual-mode ring oscillator
(DMRO)-based �� FDC architecture and a digital background
calibration technique that compensates for the �� FDC’s for-
ward path gain error. The improved �� FDC has significantly
relaxed timing constraints and a 3× smaller phase-frequency
detector output pulse-width span relative to the prior art, which
make it simpler to implement and amenable to higher-frequency
reference signals. The calibration technique compensates for
non-ideal DMRO frequencies in the digital domain. It eliminates
the need to tune the DMRO instantaneous frequencies as a
function of the PLL output frequency, thereby simplifying the
DMRO implementation, and it also improves the phase noise
performance of PLLs with high loop bandwidths.

Index Terms— Delta-sigma (��) modulation, digital back-
ground calibration, frequency-to-digital converter (FDC), fre-
quency synthesizer, digital phase-locked loop (PLL).

I. INTRODUCTION

D IGITAL fractional-N phase-locked loops (PLLs) based
on second-order delta-sigma (��) frequency-to-digital

converters (FDCs) offer advantages of both analog and digital
PLLs [1]–[12]. They have the same quantization error behavior
as analog PLLs based on second-order �� modulators, but
they do not require large-area analog loop filters.

This paper presents all-digital enhancements for �� FDCs
that reduce implementation complexity and improve perfor-
mance. The enhancements include a modified dual-mode ring
oscillator (DMRO)-based �� FDC architecture and a digital
background calibration technique that compensates for ��
FDC forward path gain error caused by non-ideal DMRO
frequencies.

The modified �� FDC architecture has relaxed tim-
ing constraints and a 3× smaller phase-frequency detec-
tor (PFD) output pulse-width span compared to prior-art
�� FDCs [8]–[12]. These benefits make the new �� FDC
simpler to implement [13]. They also make it amenable to
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Fig. 1. High-level block diagram of a second-order �� FDC-based digital
fractional-N PLL with quantization noise cancellation (QNC).

higher-frequency reference signals for any given PLL output
frequency, which is useful because increasing the reference
frequency reduces the contributions of the reference signal
phase noise, �� FDC quantization error, and DMRO phase
noise to the PLL’s output phase noise [11].

The DMRO in a DMRO-based �� FDC is designed to
oscillate at one of two frequencies at any given time. These
frequencies, denoted as fhigh and flow in this paper, ideally
have a specific relationship to the PLL output frequency,
fPLL. In prior art DMRO-based �� FDCs, fhigh and flow are
adjusted each time fPLL is changed to approximate this ideal
relationship, which adds complexity to the DMRO design. Fur-
thermore, while the PLL’s performance is relatively insensitive
to deviations of fhigh and flow from their ideal values for low-
to-moderate PLL bandwidths, this is not the case for high PLL
bandwidths.

The proposed digital background calibration technique
addresses these issues. Rather than dynamically adjusting fhigh
and flow by controlling the DMRO’s analog circuitry as a
function of fPLL, it dynamically adjusts digital circuitry to
compensate for error that would otherwise be caused by non-
ideal values of fhigh and flow. Moreover, it does so with much
finer resolution than prior art �� FDCs are able to adjust the
DMRO to tune fhigh and flow. These benefits greatly simplify
the DMRO, which can now be designed to have fixed values
of fhigh and flow, and significantly reduce phase noise for high
PLL bandwidths.

The remainder of the paper consists of four main sections.
Section II provides an overview of prior-art fractional-N PLLs
that incorporate �� FDCs based on DMROs. Sections III and
IV present the proposed �� FDC enhancements described
above, and Section V presents simulation results that demon-
strate their performance.

II. �� FDC DIGITAL FRACTIONAL-N PLL OVERVIEW

A. �� FDC-Based PLL

A high-level block diagram of a second-order ��
FDC-based fractional-N PLL is shown in Fig. 1. It consists of
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Fig. 2. (a) Simplified block diagram of the DMRO-based �� FDC described
in [11], and (b) simplified block diagram of the proposed �� FDC.

a �� FDC, a digital loop controller (DLC) with quantization
noise cancellation (QNC), and a digitally-controlled oscillator
(DCO) [8]–[12]. The signal vref(t) is the output of a reference
oscillator with frequency fref and vPLL(t) is the PLL output
waveform. Ideally, vPLL(t) is periodic with frequency fPLL =
(N + α) fref , where N is a positive integer and α has a
fractional value that can range from –1/2 to 1/2.

The�� FDC generates two fref -rate digital sequences, y[n]
and –êq[n]. Specifically,

y[n]=−α − ePLL[n]+eq[n]−2eq[n−1]+eq[n − 2]︸ ︷︷ ︸
2nd-order shaped version of eq [n]

, (1)

where eq [n] is the quantization error introduced by the ��
FDC and ePLL[n] is a measure of the average frequency
error of vPLL(t) over the nth reference period. The êq [n]
sequence is an estimate of eq[n]. It is used to partially cancel
the contribution of eq [n] at the input of the digital loop
filter (DLF) within the DLC [12], [14], [15]. By cancelling
the quantization error prior to the loop filter, QNC allows
the PLL’s bandwidth to be increased without significantly
degrading the PLL’s phase noise.

B. Original �� FDC Architecture

A simplified block diagram of the �� FDC presented
in [11], hereafter referred to as the original �� FDC, is shown
in Fig. 2(a). It consists of a PFD with top output u(t),
a multi-modulus divider with output vdiv(t), a DMRO, a digital
ring phase calculator (RPC), and a 2 – z−1 digital feedback
block with output v[n] that controls the divider. Although not
shown in Fig. 2 for simplicity, the RPC’s accumulator clips
to keep its output in the range −2 ≤ r [n] < 3. As explained
in [10], this reduces the PLL’s worst-case locking time, but has
no effect on the PLL’s locked behavior. The PFD and divider
are identical to those in analog PLLs.

Each reference period, the signal encoded in the width of
the u(t) pulse is accumulated by the DMRO. Then, the outputs
of the DMRO, which represent a quantized version of its
phase, are sampled and processed by the RPC to generate y[n]
and –êq[n].

Fig. 3. Signal processing equivalents of the �� FDCs shown in Fig. 2(a)
and Fig. 2(b) when they are locked.

The DMRO is implemented as a ring of NR nominally
identical delay cells. Ideally, its instantaneous frequency is
fhigh when u(t) is high and flow when u(t) is low, where

A

(
fhigh − flow

)
fPLL

= 1, (2)

and A is a design parameter [11].1

Each reference period, the quantized DMRO phase, pR[n],
is computed from the DMRO output lines. As indicated
in Fig. 2(a), pR[n] is passed through a 1 – z−1 block, and
a positive constant, M , is subtracted from the result prior to
the multiplication by A and accumulation. These operations
yield r [n], which is a fixed-point measure of –α− ePLL[n] in
units of cycles per reference period. The three most significant
bits (MSBs) of r [n] correspond to the integer part of r [n],
whereas the remaining least significant bits (LSBs) correspond
to the fractional part of r [n] [11].

The operation of the divider is such that adjacent rising
edges of vdiv(t) are separated by N −v[n] PLL output periods.
Ideally, v[n] would be set to 2r [n]−r [n −1], but dividers can
only count integer numbers of PLL output periods and r [n]
contains both integer and fractional parts. Therefore, it is
necessary to instead use just the integer part of r [n], i.e., y[n],
so that v[n] = 2y[n] − y[n − 1] is integer-valued. Given that
y[n] is a quantized version of r [n], the fractional part of r [n],
i.e., −êq [n], is the negative of the corresponding quantization
error. The DLC uses −êq[n] to perform QNC.

As proven in [11], the behavior of the system shown
in Fig. 2(a) is identical to that of the second-order �� mod-
ulator shown in Fig. 3(a). The phase quantization operation
performed by the DMRO is denoted by Qr and modeled as
a fine quantizer of step-size �r = (2NR)

−1. Its quantization
error, eqr [n], corresponds to the residual quantization error that
is left after QNC. The quantization operation that occurs at the
output of the RPC is denoted as Qc and modeled as a coarse
quantizer with step-size �c = 1. If 2NR /A is integer-valued,

1In [11], 2−J , where J is an integer, is used instead of A−1, but the
structures shown in Fig. 2 do not restrict A to be a power of 2.
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then the blocks contained in the dashed contour in Fig. 3(a)
are equivalent to an accumulator followed by a quantizer, Q,
with unity step-size and associated error given by

eq [n] = Aeqr [n] + êq [n]. (3)

In this case, y[n] is given by (1) and the system’s self-dithering
property causes eq [n] to have a power spectral density (PSD)
equivalent to that of a zero-mean white noise sequence with
variance 1/12 [16], [17].

C. Original �� FDC Issues

The original �� FDC suffers from two issues. One issue
is tight timing constraints on both the digital part of the ��
FDC and the divider. The other issue is high sensitivity to
non-ideal DMRO frequencies for high PLL bandwidths.

Once the �� FDC locks, the rising edges of vdiv(t)
succeed and precede rising and falling edges of vref(t), respec-
tively [10], [11]. Therefore, as implied by Fig. 2(a), after
the nth rising edge of vdiv(t), the �� FDC must compute
y[n] and use it along with y[n−1] to form v[n], which the
divider then uses to determine the (n+1)th rising edge of
vdiv(t). This limits the time available for the �� FDC to
process the u(t) pulse and compute y[n] to approximately
one reference period, and requires a divider that is capable
of loading the divider modulus in the middle or toward the
end of the divider count [10]. These features tend to increase
the power consumption, circuit area, and complexity of the
divider.

As explained in [11], �� FDC-based PLLs are not highly
sensitive to non-ideal values of fhigh and flow, i.e., values of
fhigh and flow that do not exactly satisfy (2), in much the
same way that a second-order �� modulator is not sensitive
to deviations in the gain of its second accumulator [16].
Nevertheless, the need to adjust the DMRO in the original
�� FDC each time fPLL changes so that fhigh and flow at
least approximately satisfy (2) complicates the DMRO design.
Moreover, as shown in Section IV, the accuracy with which (2)
must be satisfied increases significantly with PLL bandwidth
to the point that process, voltage, and temperature variations
cause fhigh and flow to deviate from their ideal values enough
to significantly degrade the PLL’s phase noise.

III. IMPROVED �� FDC

A. Proposed �� FDC Architecture

The proposed �� FDC is shown in Fig. 2(b).2 It is similar
to that shown in Fig. 2(a) except for the feedback digital block
and the details of the RPC. Instead of feeding back 2y[n] –
y[n – 1] through the divider, 2y[n – 1] is fed back directly to
the input of the accumulator within the RPC, and only y[n – 1]
is fed back through the divider.

An argument similar to that presented in [11] shows that
the resulting system’s behavior is identical to that of the

2The sequences v[n], pR[n] and dR[n] and the signals u(t) and vdiv(t)
in Fig. 2(b) are not identical to those in Fig. 2(a), but they play the same
roles in both �� FDCs, which is why they share the same names.

second-order�� modulator shown in Fig. 3(b), whose behav-
ior is identical to that of the system shown in Fig. 3(a) provided
2NR /A is integer-valued.

A feature of the original �� FDC is that once it locks,
the DMRO locks to an average frequency of Mfref , which
minimizes the potential for fractional spurs if M is integer-
valued [10]. Specifically, given that r [n] is bounded when
the �� FDC is locked, the input to the accumulator within
the RPC, and, hence, the M-adder output, must be zero-
mean, which can only happen if the DMRO phase advances,
on average, M cycles per reference period.

In the proposed �� FDC, the average of the M-adder
output is forced to zero by subtracting 2α from the accumula-
tor’s input, so that the average DMRO frequency is given by
Mfref . Reasoning similar to that presented above and (1) imply
that without the 2α subtraction the local feedback around the
accumulator would cause the output of the M-adder to have
an average of –2A−1α. In this case, the DMRO would lock
to (M– 2A−1α) fref , which would increase the potential for
fractional spurs.

The 2α subtraction slightly increases the PLL’s digital
complexity relative to a comparable PLL based on the original
�� FDC. For instance, in the PLL implementation described
in Section V, the cycle counter and phase decoder’s output,
pR[n], has 10 fractional bits, α has 20 fractional bits, and
A = 1, so the 2α subtraction nearly doubles the number of
fractional bits required to represent the RPC accumulator’s
input. Nonetheless, the number of fractional bits in the DLF
input is determined by α regardless of which �� FDC is used,
so the proposed �� FDC’s 2α subtraction only affects the
RPC’s accumulator. Hence, it represents only a minor increase
in the PLLs overall digital complexity. Moreover, this increase
in complexity is offset by the proposed �� FDC’s features
described below.

It follows from Fig. 3(b) that for the proposed �� FDC the
discrete-time transfer function from the input to the second
accumulator output has a pole at DC, which suggests that the
system is unstable. Although the 2α term injected within the
RPC causes the DC component at the output of the second
accumulator to be zero, noise present at this node can cause
the magnitude of the accumulator output to grow without
bound. However, the second accumulation shown in Fig. 3(b)
is performed by the DMRO, so this is not an issue in practice
because the DMRO behaves as an accumulator with infinite
output range [10]. Specifically, provided the cycle counter
within the RPC does not roll-over more than once per refer-
ence period, which can be ensured by design, then the 1 – z−1

block within the RPC can unwrap the sampled DMRO phase
and retrieve the information encoded in it, thereby allowing
the magnitude of the second accumulator’s output in Fig. 3(b)
to be arbitrarily large.

While the DC pole issue is not a problem in the modified
�� FDC as explained above, it would present practical issues
if corresponding modifications were applied to the charge
pump (CP)-based �� FDC described in [8], [9], and [12].
In CP-based �� FDCs, the CP performs integration in place
of the DMRO, yet charge pumps do not offer the convenient
roll-over feature inherent to DMROs.
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B. Proposed �� FDC Features

1) Relaxed Timing Constraints: Fig. 4 shows example tim-
ing diagrams for the original and proposed �� FDCs, where
the time sequences tn and τn , for n = 0, 1, 2, . . ., are the times
of the nth rising edges of vref (t) and vdiv(t), respectively, and
the nth divider modulus is the number of PLL output periods
between τn−1 and τn . In this example, the DMRO phase is
sampled at times γn = tn + Tref /2, where Tref = 1/ fref is the
reference period, and the nth divider modulus can be loaded
at time tn at the latest.

In the original�� FDC, the nth divider modulus is given by
N−(2y[n−1]−y[n−2]), but as illustrated in Fig. 4(a), y[n−1]
cannot be computed before the DMRO phase is sampled at
γn−1 > τn−1. It follows that the nth divider modulus can only
be loaded once y[n−1] is ready around the middle or near
the end of the count, which increases the divider’s complexity.
For example, the divider in [10] required significant additional
logic to meet this requirement compared to the original version
of the divider presented in [18]. Furthermore, as the divider
modulus must be updated before tn , the amount of time
available for the �� FDC to compute y[n−1] is limited to
Tref /2.

As illustrated in Fig. 4(b), the proposed �� FDC has much
more relaxed timing constraints. In this case, the nth divider
modulus is given by N − y[n −2]. By the time of the (n−1)th
rising edge of vdiv(t), the �� FDC has already had a duration
of more than Tref /2 to compute y[n – 2], so the next count
can start with a known divider modulus. Alternatively, the
computation of y[n – 2] can take up to Tref , and the divider
modulus can be updated near the beginning of the current
count. In either case, compared to the original �� FDC,
the proposed �� FDC allows for simpler divider topologies
to be used and imposes looser digital timing constraints on
the �� FDC.

2) Reduced PFD Output Span: As shown in [11], for the
original �� FDC, ePLL[n] in (1) is given by

ePLL[n] = ψPLL[n] − (N + α)ψref[n]
− A (ψDMRO[n] − ψDMRO[n − 1]) , (4)

the eq[n] sequence is bounded by

−1 < eq [n] ≤ 0, (5)

and the width of u(t) is given by

τn − tn
= Tu + (−y[n − 1] − ψPLL[n] + (N + α)ψref[n]

− AψDMRO[n − 1] − eq [n − 1] + eq [n − 2] − α
)

TPLL,

(6)

where ψPLL[n], ψref [n] and ψDMRO[n] are the phase noise
changes per reference period of vPLL(t), vref(t) and the
DMRO, respectively, and

Tu = M − Tref flow

fhigh − flow
(7)

is the average width of the u(t) pulse.

Fig. 4. Example timing diagram of (a) the original �� FDC and (b) the
proposed �� FDC.

Suppose bPLL and bDMRO are the maximum magnitudes of
ePLL[n] and ψDMRO[n], respectively, so

|ePLL[n]| < bPLL and |ψDMRO[n]| < bDMRO (8)

for all n. Then, it follows from (1), (4)-(6) and (8) that the
maximum span of u(t), �Tu , which is defined as

�Tu = 2 max
n

|τn − tn − Tu | , (9)

satisfies

�Tu < 2 (3 + 2bPLL + AbDMRO) TPLL. (10)

An analysis similar to that presented in [11] for the proposed
�� FDC yields (4), (5), and the following expression for the
width of the u(t) pulse during the nth reference period:
τn − tn

= Tu + (y[n − 1] − ψPLL[n] + (N + α)ψref[n]
− AψDMRO[n − 1] − eq [n − 1] + eq [n − 2] + α

)
TPLL,

(11)

where Tu is also given by (7). Hence, (1), (4), (5), (8), (9)
and (11) imply that, for the proposed �� FDC, �Tu satisfies

�Tu < 2 (1 + 2bPLL + AbDMRO) TPLL. (12)

In practice, bPLL, bDMRO � 1, so (10) and (12) imply that
�Tu for the proposed �� FDC is approximately a third of
that of the original �� FDC.

A smaller �Tu allows for a larger minimum difference
between the phases of vref(t) and vdiv(t), so it is beneficial
as it mitigates spurs generated as a consequence of variations
in the PFD supply voltage when vref(t) and vdiv(t) are close in
phase [19]. Additionally, reducing �Tu mitigates spurs from
non-ideal DMRO behavior by increasing the time available for
the DMRO’s frequency transients to die out each reference
period [10].
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Fig. 5. (a) Behavioral model of the proposed �� FDC with (13), where
Qr and Qc are replaced by the additive error sources eqr [n] and êq [n],
respectively, and (b) linearized model of the �� FDC-based PLL shown
in Fig. 1 with the proposed �� FDC and (13).

3) Higher-Frequency Reference Signal: The relaxed timing
constraints and smaller �Tu of the proposed �� FDC allows
for the use of higher-frequency reference signals, which lowers
the contribution to the PLL’s phase noise from all noise sources
within the �� FDC. As in conventional fractional-N PLLs,
the contribution of the reference signal to the PLL output
phase noise PSD, SPLL( f ), is proportional to (N+α)2 [8],
[11]. Equations (1), (4) and Fig. 1 imply that the ��
FDC quantization error and the DMRO phase noise appear
first-order shaped at the DLF input, so their contribution to
SPLL( f ) is proportional to sin2(πTref f ). Additionally, the PSD
of the quantization error is proportional to Tref [11]. Therefore,
increasing fref by a factor of x for a given fPLL with all
other things being the same reduces the contributions to
the PLL’s phase noise from the reference signal, �� FDC
quantization error, and DMRO by 20log(x), 30log(x) and
20log(x), respectively.

IV. DIGITAL GAIN CALIBRATION TECHNIQUE

A. Effects of �� FDC Forward Path Gain Error

As explained in Section III, the behavior of the system
shown in Fig. 2(b) is identical to that of a second-order ��
modulator provided (2) holds and 2NR /A is integer-valued.
However, in practice

A
fhigh − flow

fPLL
= δ−1, (13)

where the deviation of the factor δ from its ideal value of 1
is the �� FDC’s forward path gain error. This error degrades
the system’s self-dithering property [16], [17], and, as shown
below, it reduces the extent to which QNC cancels the error
introduced by the �� FDC’s coarse quantization operation.

The analysis presented in [11] can be modified with (13)
instead of (2) for the proposed �� FDC, which yields the
behavioral model of the �� FDC shown in Fig. 5(a). The
model is similar to that shown in Fig. 3(b), except that ePLL[n]
is given by (4) with δA instead of A, and the gain of the second

Fig. 6. Digital gain calibration technique shown in the context of the proposed
DMRO-based �� FDC architecture.

accumulator is (δA)−1 instead of A−1. An analysis similar to
that in [11] can also be performed to obtain a linearized model
of the �� FDC PLL shown in Fig. 1 with the proposed ��
FDC and (13) instead of (2). The resulting model is shown
in Fig. 5(b), where θref(t), θDMRO(t), θDCO(t) and θPLL(t) are
the phase error waveforms of the reference signal, DMRO,
DCO and PLL output, respectively,3 L(z) is the DLF’s transfer
function, KDCO is the DCO gain (i.e., the amount in Hz
by which the DCO frequency changes when the DCO input
changes by unity) and

H (z) = 1 −
(

1 − δ−1
)

z−2. (14)

It follows from Fig. 5(b) that the discrete-time transfer
functions from eqr [n] and êq [n] to the input of the DLF, p[n],
are given by

A

(
1 − z−1

)
H (z)

1

1+T (z)
and

(
1−δ−1

)
z−2

(
1−z−1

)
H (z)

1

1+T (z)
,

(15)

respectively, where

T (z) = δ−1 KDCOTref
z−2 L(z)(

1 − z−1
)

H (z)
(16)

is the discrete-time loop gain of the PLL. The right-most
expression in (15) implies that if δ = 1, then p[n] does not
depend on êq [n], but if δ �= 1, then êq [n] leaks into the
DLF input. As the power of êq [n] is much larger than that
of eqr [n] in practice, this can be problematic, particularly for
high PLL bandwidths. For instance, in the DMRO-based PLL
presented in [10], A = 1 and NR = 13, so �r = 1/26 and
the power of êq [n] is approximately 28 dB larger than that
of eqr [n] (recall that �c = 1). In this case, (15) with A = 1
implies that a �� FDC forward path gain error correspond-
ing to δ−1 = 1 ± 0.08 would introduce an additional error
component that depends on êq [n] with approximately double
the power of the component that depends on eqr [n]. This
would significantly increase the PLL output phase noise PSD
at offset frequencies where the �� FDC quantization error
contribution dominates those of the other noise sources.

3Reasoning similar to that presented in [8] can be applied to the linearized
model shown in Fig. 5(b) to obtain expressions for the PLL output’s phase
noise components that depend on θref (t), θDMRO(t), θDCO(t), eqr [n] and
êq [n].
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Fig. 7. Rearranged version of the behavioral model shown in Fig. 5(a) modified to accommodate the proposed gain calibration technique.

B. Proposed Digital Gain Calibration Technique

The proposed digital gain calibration technique is a modifi-
cation of the �� FDC’s RPC, the details of which are shown
in Fig. 6, where sgn(x) = 1 if x ≥ 0 and –1 otherwise.
To minimize clutter, Fig. 6 only shows a portion of the
RPC. The modifications that implement the gain calibration
technique are contained entirely within the dashed contour
shown in the figure, and except for these modifications the
�� FDC is identical to that shown in Fig. 2(b).

The gain calibration technique consists of a signed
least-mean square (LMS)-like loop with gain K and output gn,
which digitally compensates for forward path gain error caused
by δ �= 1. It is based on the following two results that can
be derived from an analysis similar to that presented in [11].
The first result is that dR[n] in Fig. 2(b) can be multiplied
by a constant factor gn to compensate for non-ideal DMRO
frequencies. In the presence of this factor, the transfer function
from êq [n] to p[n] is given by

(
1 − gnδ

−1
)

z−2

(
1 − z−1

)
Hg(z)

1

1 + Tg(z)
, (17)

where Hg(z) is given by (14) with δ−1 replaced by gnδ
−1 and

Tg(z) is given by (16) with Hg(z) and gnδ
−1 instead of H (z)

and δ−1, respectively. It follows from (17) that gn = δ makes
the contribution to p[n] from êq [n] equal to zero. The second
result is that gn(dR[n]− dR[n − 1]) equals −v[n − 1]−α plus
zero-mean error when gn is equal to its ideal value of δ, i.e.,
δ(dR[n] − dR[n − 1]) = −v[n − 1] − α plus zero-mean error.

These observations suggest that, provided it is stable,
the gain calibration feedback loop ramps gn up or down until
it reaches the point where the input to the accumulator with
gain K is zero-mean noise. Fig. 6 implies that this happens
when gn(dR[n]−dR[n−1])+v[n−1]+α is uncorrelated with
v[n −1]+α. Therefore, to the extent that the error component
in δ(dR[n]− dR[n − 1]) is uncorrelated with v[n − 1]+α, the
system converges to the ideal value of gn = δ.

In addition to preventing êq[n] from leaking into the PLL
loop, the proposed calibration technique also allows for the
use of DMRO topologies with coarse frequency tuning or
no tuning at all. This not only simplifies the design and
implementation of the DMRO, but also simplifies the system
as it renders feedback loops that tune fhigh and flow as a
function of fPLL unnecessary.

The proposed calibration technique somewhat increases the
digital complexity of the �� FDC, but typically does not
add significantly to the PLL’s overall power or area con-
sumption. For example, in the PLL implementation described
in Section V, both dR[n] and gn have 10 fractional bits,
so 20 fractional bits are required to represent gndR[n]. Given
that α also has 20 fractional bits, the gain calibration technique
negligibly increases the number of fractional bits required
to represent the RPC accumulator’s input. Therefore, as the
calibration technique’s digital LMS loop is relatively simple,
the fref -rate digital multiplier prior to the RPC’s accumu-
lator represents most of the calibration technique’s added
complexity.

C. Convergence Analysis

Fig. 7 shows the block diagram of Fig. 5(a) modified to
include the gain calibration technique, where εn is the error
in gn at sample time n, which is defined as

εn = δ−1gn − 1. (18)

For any fixed value of gn and neglecting eqr [n], Fig. 7
implies that a[n] is equal to (1+ εn)e[n], because the two
1 – z−1 blocks cancel the two accumulators in the path between
e[n] and a[n]. The gain calibration loop adds v[n − 1] + α,
which is an estimate of −e[n], to a[n], and multiplies the
result by the sign of v[n −1] + α to obtain a measure of εn ,
b[n], which is approximately equal to −εn|e[n]|.

More precisely, Fig. 7 and (18) imply that e[n] is given by

e[n] = −v[n − 1] − α − ePLL[n], (19)

and that a[n] can be written as

a[n] = (1 + εn) e[n] + (εn − εn−1)

n−1∑
i=0

e[i ] + ae[n], (20)

where ae[n] is the contribution of eqr [n] to a[n]. Substituting
(19) into (20), adding v[n – 1] + α to the result, and then mul-
tiplying the resulting expression by sgn(v[n−1] + α) yields

b[n] = −εn |v[n − 1] + α| + be[n], (21)

where be[n] is error that arises from the error in the estimate
of e[n], the contribution of eqr [n], and gn not being constant.

Fig. 7 together with (18) and (21) further imply that

εn+1 =
(

1 − δ−1 K |v[n − 1] + α|
)
εn + δ−1 K be[n], (22)
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Fig. 8. (a) Simplified block diagram of CP-based �� FDC, and (b) digital
gain calibration technique shown in the context of the CP-based �� FDC
architecture.

from which it follows that

εn+1 =
(

1 − δ−1 K |v[n − 1] + α|
)
εn + δ−1 K be[n], (23)

where εn and be[n] are the expected values of εn and be[n],
respectively, conditioned to the sequence v[n – 1].

When δ �= 1, the self-dithering property of the �� FDC is
not perfect, so eqr [n] can be correlated with sgn(v[n−1] +α).
Furthermore, it follows from Fig. 1 that

p[n] = −eq [n] + eq [n − 1] +
n∑

i=0

y[i ] + α (24)

so Fig. 5(b) and v[n−1] = y[n−2] imply that the term
ψPLL[n] = θPLL(τn) – θPLL(τn−1) in ePLL[n], which depends
on a low-pass filtered version of p[n], can also be correlated
with sgn(v[n−1] + α). As be[n] depends on both eqr [n] and
ePLL[n], it follows from these observations that be[n] in (23)
is not zero, so be[n] biases the LMS loop and causes gn to
converge to a value that is slightly different than δ. However,
numerous simulations run by the authors suggest that the
magnitude of this bias is sufficiently small that be[n] can be
neglected in the remainder of the analysis. Hence, (23) reduces
to

εn+1 =
(

1 − δ−1 K |v[n − 1] + α|
)
εn . (25)

The recursive application of (25) to itself yields

εn+1 =
n∏

i=0

(
1 − δ−1 K |v[i − 1] + α|

)
ε0, (26)

which implies that, on average, εn+1 tends to zero provided
K is chosen such that

lim
n→∞

n∏
i=0

(
1 − δ−1 K |v[i − 1] + α|

)
= 0. (27)

TABLE I

PARAMETERS USED FOR THE SIMULATIONS

As |v[n – 1] + α| is bounded and is regularly non-zero, (27) is
easy to satisfy in practice.

D. Gain Calibration Technique for CP-Based �� FDCs

The digital gain calibration technique shown in Fig. 6 can
be modified to apply to the CP-based �� FDC shown in
Fig. 8(a) [8], [9], [12]. The modified version of the digital gain
calibration technique is shown in Fig. 8(b). Its implementation
details are almost identical to those in Fig. 6, except for
an extra 1 – z−1 block. In the CP-based �� FDC, the CP
and subsequent analog-to-digital converter (ADC) play the
same role as the DMRO in the DMRO-based �� FDC. The
DMRO-based �� FDC already has a 1 – z −1 block following
the DMRO, which is needed as part of the circuitry that
makes it possible to read out the DMRO’s phase error [10],
but this block is not necessary in the CP-based �� FDC.
The additional 1 – z −1 block in Fig. 8(b) compensates for the
absence of a 1 – z −1 block at the output of the ADC in the
CP-based �� FDC architecture.

V. SIMULATION RESULTS

This section presents results from bit-exact, event-driven,
behavioral C code simulations of the fractional-N PLL of
Fig. 1 with the proposed �� FDC and digital gain cali-
bration technique. All digital operations were simulated with
fixed-point arithmetic. The PLL’s DLF consists of a loop gain
multiplier with gain KM , two single-pole IIR stages with
poles at λ0 and λ1, and a proportional-integral stage with
proportional path gain K P and integral path gain KI . Its
transfer function is given by

L(z) = KM

(
K P + KI

1 − z−1

) 1∏
i=0

λi

1 − (1 − λi ) z−1 . (28)

The parameters used for the simulations are listed in Table I.
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Fig. 9. Simulated PLL phase noise PSD with and without gain calibration enabled for four combinations of PLL bandwidth (BW) and δ−1. The black and
colored dashed curves correspond to the theoretical phase noise PSD for gn = δ and the combined contribution to the PLL phase noise from eqr [n] and
êq [n], respectively.

Fig. 10. Sequence εn as a function of n for several values of K , where εn
calculated via (29) is plotted as a dashed curve for each case.

Fig. 9 shows the simulated PLL phase noise PSD with and
without gain calibration enabled for four different combina-
tions of PLL bandwidth and �� FDC forward path gain. For
each case it also shows the theoretical PLL phase noise PSD
with gn = δ as a black dashed curve, and the theoretical
combined contribution to the PLL phase noise from eqr [n]
and êq [n] as colored dashed curves.4 As demonstrated in the
figure, the higher the PLL bandwidth, the more sensitive the
PLL’s phase noise is to the �� FDC quantization error, which
becomes more dominant when less filtering is applied to p[n].
Consequently, deviations of δ−1 from its ideal value of 1 cause

4The curves corresponding eqr [n] and êq [n] were generated under the
assumption that both sequences are white. However, the sequences are not
necessarily white if δ �= 1, which is why the simulated curves in Fig. 9 deviate
somewhat from their respective theoretical predictions, particularly in the
δ−1 = 0.8 case.

a significant degradation of the PLL phase noise PSD for high
PLL bandwidth settings.

Given that NR = 31, the power of êq [n] is approximately
36 dB larger than that of eqr [n]. Therefore, in the absence
of gain correction, it follows from (15) with A = 1 that the
power of the additional quantization error component seen by
the PLL loop is approximately 22 dB and 16 dB higher than
that of the eqr [n] component for δ−1 = 0.8 and δ−1 = 1.1,
respectively. This is supported by the simulation results shown
in Fig. 9(a) and Fig. 9(c), where the spot phase noise degra-
dation at a 3 MHz offset frequency is approximately 20 dB
and 15 dB, respectively.

Fig. 10 shows εn versus time for several values of K with
a PLL bandwidth of 1 MHz and δ = 0.8.5 Equation (26) with
ε0 in place of ε0, i.e.,

n∏
i=0

(
1 − δ−1 K |v[i − 1] + α|

)
ε0, (29)

is also plotted (as a dashed curve) for each value of K to
provide a comparison baseline and show that the evolution of
gn follows the trend predicted by the analysis in Section IV-C.
The simulated PLL phase noise PSD after gn converged was
nearly identical to that shown in Fig. 9(a) with gain calibration
enabled. In the K = 2−2 case, however, the total integrated
jitter increased slightly to 688 fsrms because of the relatively
large variance of εn . As shown in the figure’s inset, εn crosses
the −0.01 mark for the first time in about 50 reference periods
(1.9 μs) and 400 reference periods (15.4 μs) for K = 2−2 and
K = 2−6, respectively, and the absolute value of the mean
error after convergence is lower than 0.043% of δ in all cases.

As in most LMS-like algorithms, the choice of K represents
a tradeoff between convergence speed and the error variance
of gn [20], [21]. Although it might be possible to derive a

5The resolution of the gain calibration technique’s accumulator was limited
to 1 integer bit and 36 fractional bits, but its output, gn , was truncated to have
only 10 fractional bits to reduce hardware complexity.
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Fig. 11. Normalized histogram of u(t) pulse width minus Tu cal-
culated via (7) for the original FDC [(a) and (c)] and the proposed
FDC [(b) and (d)], where α = 0.001008987426758 for (a) and (b) and
α = 0.401008987426758 for (c) and (d).

closed-form expression that quantifies this tradeoff for the
proposed calibration technique, the authors currently choose
the value of K based on simulation results.

Fig. 11 shows normalized histograms of τn − tn − Tu , where
Tu was calculated using (7), for both the original�� FDC and
the proposed �� FDC. The u(t) pulse widths were measured
for over one million reference periods after the gain calibration
had converged with K = 2−9. The 1 MHz-bandwidth set of
parameters with δ = 0.8 was used for the simulations in
Fig. 11(a) and Fig. 11(b), whereas the same parameters except
for α, which was set to 0.401008987426758, were used for the
simulations in Fig. 11(c) and Fig. 11(d).

Although (10) and (12) do not show an explicit dependence
of the u(t) pulse-width span on α in either �� FDC version,
it follows from (1) and Fig. 2 that different �� FDC output
levels are exercised for different values of α. Accordingly,
different values of α cause eq [n] to take different values with
higher probability than others, which affects the histogram
shapes shown in Fig. 11 but not the maximum u(t) pulse-
width.

As explained in Section III-B, the span of the u(t)
pulse-width in the proposed �� FDC is approximately three
times smaller than that of the u(t) pulse-width in the original
�� FDC, which is supported by the simulation results shown
in Fig. 11. As shown in Fig. 11(a), the span of u(t) in the

original �� FDC goes from –3TPLL to 3TPLL, although it
reaches the extremes values only rarely. As demonstrated by
the results in Fig. 11(c), the span is about 5TPLL for a larger
value of α, and the extreme values in this case (i.e., around
–2.4TPLL and 2.6TPLL) are reached with higher probability
compared to Fig. 11(a). Conversely, as shown in Fig. 11(b) and
Fig. 11(d), the proposed architecture’s u(t) pulse-width span
does not vary significantly with α, and as suggested by (12),
it is approximately limited to 2TPLL.

VI. CONCLUSION

This paper presents all-digital enhancements of digital
fractional-N PLLs based on �� FDCs. The enhancements
comprise an improved DMRO-based �� FDC architecture
and a digital background gain calibration technique. The
former reduces the span of the PFD output pulse-width and
significantly relaxes the timing constraints imposed on the ��
FDC’s digital portion and divider, which makes the system
amenable to simpler divider topologies and higher-frequency
reference signals. The latter compensates for non-ideal DMRO
frequencies in the digital domain, thereby facilitating the use of
simple DMRO topologies with fixed values of fhigh and flow,
and improving the phase noise performance of high-bandwidth
PLLs.
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