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Subsampling Mismatch Noise Cancellation for
High-Speed Continuous-Time DACs

Derui Kong and Ian Galton

Abstract— Clock skew and component mismatches in
continuous-time DACs introduce two types of error: static error
and dynamic error. Both types of error typically limit the
performance of practical, high-resolution, and continuous-time
DACs, but most prior calibration techniques primarily reduce
only static error. An exception is a recently published mismatch
noise cancellation (MNC) technique that adaptively measures
and cancels both types of error over the DAC’s first Nyquist
band. However, a disadvantage of the technique is that it requires
an oversampling ADC that operates at several times the DAC’s
Nyquist rate to prevent convergence error that would otherwise
be caused by aliasing. This paper presents a sub-sampling version
of the MNC technique that avoids this limitation at the expense
of a lower calibration convergence rate. As proven in the paper,
the subsampling MNC technique allows aliasing to occur, but in
such a way that convergence error is avoided.

Index Terms— Dynamic element matching, mismatch noise
cancellation, subsampling, calibration.

I. INTRODUCTION

ACONTINUOUS-TIME DAC generates an analog output
pulse for each digital input code. Ideally, the output pulse

during each clock interval is scaled by the DAC’s input code
value during that clock interval, and except for this scale-factor
it has the same shape as all the other pulses. Unfortunately,
non-ideal circuit behavior causes input-dependent deviations
of both the scale-factor and shape of each output pulse. Error
in a DAC’s output waveform from pulse scale-factor deviations
is called static error and that from pulse shape deviations is
called dynamic error.

The most significant types of static and dynamic error in
practical high-resolution continuous-time DACs are caused
by 1) inadvertent but inevitable clock skew and compo-
nent mismatches, 2) inter-symbol interference (ISI), and
3) signal-dependent output impedance [1]–[14]. For DACs
implemented in present-day CMOS technology that target
signal-to-noise-and-distortion ratios (SNDRs) of greater than
about 65 dB, error from clock skew and component mis-
matches is the most significant limitation. Unlike the other
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types of error, analog circuit design and layout techniques
to reduce error from clock skew and component mismatches
below this level are not known.

Yet continuous-time DACs with SNDRs of greater than
65 dB are increasingly necessary in high-performance appli-
cations such as 4G and 5G cellular base station transmit-
ters. In such cases, calibration techniques are necessary to
suppress error from clock skew and component mismatches.
Unfortunately, most prior digital calibration techniques pri-
marily reduce only static error, which leaves dynamic error
as a major limitation in high-performance continuous-time
DACs [1]–[14].

The difficulty in suppressing dynamic error arises from
a property inherent to continuous-time DACs. Each DAC
output pulse has a bandwidth that far exceeds the DAC’s
sample-rate, because its duration is time-limited to one clock
period. Therefore, a technique that cancels dynamic error must
either have a bandwidth that is wider than the DAC’s signal
bandwidth, or must perform frequency selective cancellation
over a single Nyquist band.

Recently, a mismatch noise cancellation (MNC) technique
was developed that addresses this difficulty [15], [16]. It incor-
porates a feedback loop that measures and cancels both static
and dynamic error caused by clock skew and component
mismatches over the DAC’s first Nyquist band. While the
MNC technique solves the dynamic error problem, it requires
an oversampling ADC that operates at many times the DAC’s
Nyquist rate. This ultimately limits the maximum achievable
signal bandwidth for a given power consumption.

This paper presents a subsampling version of the MNC tech-
nique that avoids the oversampling requirement. The original
version of the MNC technique requires oversampling to avoid
aliasing that would otherwise cause convergence error in the
technique’s error cancellation feedback loop. The modified
version does not prevent aliasing, but is designed such that
the aliasing does not cause convergence error. By avoid-
ing oversampling, the modified MNC technique removes the
potential signal bandwidth limitation of the original version
at the expense of a modest reduction in the feedback loop’s
convergence rate. The paper presents a rigorous mathematical
analysis of the proposed technique, and demonstrates the
results via computer simulations.

II. BACKGROUND INFORMATION: OVERSAMPLING MNC

Fig. 1 shows a high-level diagram of the IC presented
in [16]. It consists of a 14-bit main DAC enclosed in an
oversampling MNC feedback loop that adaptively measures
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Fig. 1. a) High-level structure of the IC presented in [16], b) high-level
structure of the digital error estimator, and c) details of each sk [n] residue
estimator.

and cancels static and dynamic error caused by clock skew
and component mismatches within the main DAC over the
first Nyquist band. The MNC feedback loop consists of an
oversampling ADC, a lowpass decimation filter, a digital error
estimator and a correction DAC.

The main DAC incorporates dynamic element match-
ing (DEM) of the type presented in [17]. Its static and dynamic
error resulting from clock skew and component mismatches,
collectively referred to as mismatch noise in the remainder of
this paper, has the form

eD AC(t) =
35∑

k=1

dk(t)sk [nt ] (1)

where nt is the largest integer less than or equal to fs t with
fs = 600 MHz, each dk(t) is a 600 MHz periodic waveform
that depends on clock skew and component mismatches within
the main DAC, and each sk [n] sequence is generated by digital
logic within the main DAC’s DEM encoder [18]. Specifically,
the sk[n] sequences are pseudo-random 600 MHz sample-
rate sequences that take on values of −1, 0 and 1 and are
uncorrelated with each other and with the main DAC’s input
sequence, x[n]. Consequently, eD AC (t) is wideband noise that
is uncorrelated with x[n] and free of harmonic distortion.

Without DEM, eD AC(t) would still be given by (1), but the
sk[n] sequences would be deterministic, nonlinear functions
of x[n], so eD AC(t) would be entirely nonlinear distortion.
Hence, DEM eliminates nonlinear distortion that would other-
wise be caused by clock skew and component mismatches.
However, it does so by converting the nonlinearity into
noise, which severely degrades the DAC’s signal-to-noise ratio
(SNR). The purpose of the MNC feedback loop is to cancel
this noise so as to keep the benefit of DEM without the SNR
penalty.

The sampling theorem implies that for any eD AC (t) there
must exist a correction DAC input sequence, xc[n], that would
cause the correction DAC output waveform, yc(t), to cancel
eD AC(t) over the first Nyquist band up to the accuracy of the
correction DAC. As the dynamic range of eD AC(t) is much

smaller than that of the main DAC, the resolution and step-size
of the correction DAC, and, therefore, the error it introduces,
are considerably smaller than those of the main DAC. Con-
sequently, a 9-bit correction DAC with a step-size equal to a
quarter that of the main DAC and no DEM or calibration was
found to be sufficient in [16] to achieve more than 24 dB of
error cancellation.

To make yc(t) well-approximate eD AC (t) over the first
Nyquist band, the MNC feedback loop must measure eD AC(t)
over the first Nyquist band. This requires a digitized version
of the main DAC’s output waveform that has been filtered
to include only the first Nyquist band. The oversampling
ADC and decimation filter in Fig. 1 perform this operation,
so r [n] contains a residual portion of eD AC(t) restricted to
the first Nyquist band that is left over from imperfect MNC
cancellation. Given that eD AC(t) is correlated with the sk[n]
sequences as indicated by (1) and the decimation filter’s
impulse response is many 600 MHz samples long, it follows
that the residual portion of eD AC(t) in r [n] must be correlated
with multiple time-shifted versions of the sk[n] sequences.

The MNC feedback loop measures the residual portion
of eD AC (t) by correlating r [n] with time-shifted versions of
the 35 sk[n] sequences, and uses the measurement results
to generate the correction DAC input sequence. Each of
the 35 sk[n] residue estimators in the digital error estimator
consists of a coefficient calculator block and an FIR filter
with input sk [n + P] as shown in Fig. 1c.1 The coefficient
calculator correlates r [n] with N = 9 time-shifted versions of
sk[n]. Each correlation is performed by multiplying r [n] by a
time-shifted version of sk [n] (which is −1, 0, or 1 during
each 600 MHz clock period), and the result is scaled by
K = 8 · 10−6 and accumulated. The accumulator outputs,
αk,0[n], αk,0[n], . . . , αk,8[n], form the impulse response of
the FIR filter, so each sk[n] residue estimator operates as
an adaptive FIR filter. The 35 adaptive filters converge as
necessary for yc(t) to well-approximate eD AC(t) over the first
Nyquist band as proven in [15].

The MNC technique can operate either as a fore-
ground or background calibration technique. While eD AC(t) is
a broadband x[n]-dependent waveform, the dk(t) waveforms
and the digital error estimator’s target FIR filter coefficients
depend primarily on component mismatches, clock skew,
and other parameters that do not change significantly over
time. Hence, the IC in [16] runs the MNC feedback loop
during foreground calibration, and subsequently freezes the
FIR filter coefficients and disables the ADC during normal
DAC operation.

III. SUBSAMPLING MNC

As explained in [15], the accuracy required of the over-
sampling MNC technique’s ADC is modest, e.g., in the IC
presented in [16] the ADC’s SNDR is less than 30 dB
while the post-calibration signal-band SNDR of the DAC
is over 77 dB. Yet the oversampling requirement poses a
practical problem for DAC samples-rates above a few GHz.
For instance, modifying the IC presented in [16] to have a

1In the IC presented in [16] P , Q, and N are set to 3, 21, and 9, respectively.
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DAC sample-rate of 6 GHz, would require an ADC with a
sample-rate of about 30 GHz. While low-SNDR ADCs at
such high sample-rates are not impossible, a modified MNC
technique that allows for an ADC sample-rate closer to that
of the DAC would be preferable in terms of reducing power
consumption, all other things being the same.

A. MNC Convergence Accuracy in the Presence of Aliasing

If the oversampling ADC and decimation filter
in Fig. 1 were replaced by a Nyquist-rate ADC sampled at the
same rate as the main DAC, the ADC output would contain all
of the content of the main DAC’s Nyquist bands aliased down
onto its signal band. As each of the main DAC’s Nyquist
bands contains components correlated to the sk[n] sequences,
the digital error estimator would adaptively cancel the sum
of the error from all the aliased bands simultaneously, but it
would fail to cancel error in any one of the Nyquist bands
individually. This problem could be solved by inserting an
anti-aliasing filter prior to the ADC, but this is not a practical
option given the wide bandwidth and narrow transition band
required of the filter.

Although it is necessary to avoid aliasing in the oversam-
pling version of the MNC technique to measure the necessary
MNC FIR filter coefficients, the following line of reasoning
implies that it is at least mathematically possible to measure
the necessary MNC FIR filter coefficients in the presence of
aliasing. The output of the correction DAC in Fig. 1a has
the form yc(t) = αc(t)xc[nt ] where αc(t) is a 600 MHz
periodic waveform [18]. As shown in [15], the MNC feedback
loop causes the impulse response of the kth FIR filter in
Fig. 1c to converge such that the filter’s transfer function well-
approximates

Hk

(
e jωTs

)
= e− jωPTs

Dp−k( jω)

A p−c( jω)
for |ω| ≤ π fs (2)

where fs = 600 MHz, Ts = 1/ fs , and Dp−k( jω) and
A p−c( jω) are the continuous-time Fourier transforms of one
period of the Ts-periodic waveforms dk(t) and αc(t), respec-
tively.

It follows from (2) that the FIR filter coefficients could be
calculated directly from one period of αc(t) and one period of
each dk(t) for k = 1, 2, . . . , 35, and they could be calculated
approximately from sampled versions of these 35 one-period
waveforms. Moreover, the samples could be measured directly
from the main DAC and correction DAC outputs. For example,
to measure five samples of αc(t) over one fs -rate clock period
the input to the correction DAC could be set to a non-zero
constant value, and the five samples could be measured at
its output over one clock period. Although more complicated,
each of the dk(t) waveforms could be isolated by appropriately
manipulating the DEM encoder and then similarly sampled.

This procedure would still require oversampling, but it can
be further modified to avoid oversampling by recognizing
that the measurements described above could be spread over
five clock periods rather than over a single clock period.
As depicted in Fig. 2, the fs -rate periodicity of the αc(t)
and dk(t) waveforms ensures that an ADC sampled at a rate

Fig. 2. a) Oversampling dk (t), and b) subsampling dk(t).

Fig. 3. a) High-level structure of the subsampling MNC technique,
b) high-level structure of the digital error estimator, and c) details of each
sk [n] residue estimator.

of 5 fs /6 would collect the same information over a duration
of 6Ts as an ADC sampled at a rate of 5 fs would collect over
a duration of Ts , where Ts = 1/ fs . Hence, oversampling can
be avoided at the expense of a longer data collection duration.

The argument above is the outline of a proof-by-
construction that subsampling MNC is mathematically
possible. However, the constructed procedure would only work
as a foreground calibration technique, whereas the oversam-
pling MNC technique works as either a foreground or back-
ground calibration technique, and it would be computationally
expensive.

B. The Subsampling MNC Technique

A more practical way of exploiting the effect described
above is the proposed subsampling MNC (SMNC) technique
shown in Fig. 3. It differs from the oversampling MNC
technique in three ways: an R fs/(R + 1)-rate subsampling
ADC is used in place of the R fs -rate oversampling ADC,
where R is an integer greater than 1 (Fig. 1 is drawn for the
specific case of R = 5), a fractional decimation filter is used
in place of the lowpass decimation filter, and a bank of latches
updated at times n = 0, (R + 1), 2(R + 1), . . . separate each
coefficient calculator and FIR filter. The fractional decimation
filter is equivalent to the cascade of an R +1-fold up-sampler,
a digital filter with impulse response g[m], and an R-fold
down-sampler, but it can be implemented as the polyphase
structure shown in Fig. 4 such that all its components are
clocked at a rate of fs [19]. Therefore, the highest clock-rate
in the system is fs .

The ADC sample-rate is slightly lower than fs whereas
the DAC output spectra are non-zero over several fs/2-wide
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Fig. 4. Polyphase structure for fractional decimation filter.

Nyquist bands. Therefore, the ADC output, w[q], contains
significant aliasing. However, as explained shortly, the sub-
sampling effect depicted in Fig. 2 (for the specific case of
R = 5 ) prevents the aliasing from causing MNC convergence
error. In particular, as proven in the remainder of the paper
the subsampling MNC technique converges to the same set
of FIR filter coefficients as the original oversampling MNC
technique, but with a lower convergence rate.

To show that the SMNC technique converges to the same
FIR filter coefficients as the oversampling MNC technique,
it is helpful to first redraw Fig. 3a in an equivalent form that
is easier to compare to Fig. 1a. Theorem 1 presented below
provides this equivalent form.

Theorem 1: The system shown in Fig. 5 with

g(l)[m] =
{

g[m], if (l − m) mod (R + 1) = 0,

0, otherwise,
(3)

and

t[n] = r (l)[n] where l = (−n) mod (R + 1), (4)

(i.e., t[n] is the output of the R +1 to 1 multiplexer) generates
the same t[n], xc[n], yc(t), y(t), and v(t) as that shown
in Fig. 3a if both systems start with the same initial conditions
and have the same input sequence, x[n].

Proof: It follows from the definition of an up-sampler
that the output of the (R + 1)-fold up-sampler in Fig. 3a can
be written as d[m]p[m] where d[m] is the output of an R fs

sample-rate ADC in Fig. 5 and

p[m] =
{

1, if m mod (R + 1) = 0,

0, otherwise.
(5)

This and the signal processing shown in Fig. 3a imply that

t[n] =
Rn∑

m=−∞
d[m]p[m]g[Rn − m] (6)

in Fig. 4. The signal processing shown in Fig. 5 and (4) imply
that

t[n] =
Rn∑

m=−∞
d[m]g((−n) mod (R+1))[Rn − m] (7)

in Fig. 5. Therefore, it is enough to show that the right sides
of (6) and (7) are equal, which is equivalent to showing that

g((−n) mod (R+1))[Rn − m] = p[m]g[Rn − m]. (8)

Fig. 5. Modified version of Fig. 3a with equivalent behavior.

Given that [(−n) mod (R+1)]−m] mod (R+1) = −n−m
mod (R + 1), (3) implies

g((−n) mod (R+1))[m]

=
{

g[m], if (−n − m) mod (R + 1) = 0,

0, otherwise.
(9)

Given that [−n − (Rn − m)] mod (R + 1) = m mod (R + 1),
replacing m with Rn−m in (9) results in

g((−n) mod (R+1))[Rn − m]

=
{

g[Rn − m], if m mod (R + 1) = 0,

0, otherwise.
(10)

Substituting (5) into the right side of (8) results in the right
side of (10), which shows that (8) holds.

The SMNC equivalent system of Fig. 5 is a useful analysis
tool because it can be related to the original oversampling
MNC technique as follows. Equation (3) implies that

R∑

l=0

g(l)[m] = g[m] (11)

and Fig. 5 implies that

r (l)[n] =
Rn∑

m=−∞
d[m]g(l)[Rn − m], (12)

so
R∑

l=0

r (l)[m] =
Rn∑

m=−∞
d[m]g[Rn − m]. (13)

The right side of (13) is equal to r [n] in the oversampling
MNC technique shown in Fig. 1 (generalized with 600 MHz
replaced by fs and 3 GHz replaced by R fs). Therefore,
the output of the oversampling MNC technique’s decimation
filter can be written as

r [n] =
R∑

l=0

r (l)[m], (14)

with r (l)[n] given by (12).
It follows that t[n] in Fig. 3a (which is identical to that

in Fig. 5 as implied by Theorem 1) is different from r [n]
in Fig. 1, even when the v(t) waveforms in the two systems
are equal. In particular, for equal v(t) waveforms in the two
systems, t[n] in Fig. 3a for each n is equal to one of the
r (l)[n] sequences whereas r [n] in Fig. 1a is equal to the sum
of the r (l)[n] sequences. This difference between t[n] and
r [n] is the result of aliasing caused by the SMNC technique’s
subsampling. As explained in Section III-A, the oversampling
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ADC is required in Fig. 1a to prevent aliasing that would cause
convergence error. However, as proven in the next section,
the SMNC technique converges correctly despite the aliasing
caused by subsampling.

A qualitative explanation of this paradox is as follows.
During foreground calibration, x[n] is chosen such that the
statistics of the sk [n] sequences do not change over time.
The latches following each coefficient calculator in Fig. 3c
ensure that R + 1 samples of t[n] are correlated against the
shifted versions of the sk[n] sequences before the FIR filter
coefficients are updated, and it follows from (3) that each of
the g(l)[n] impulse responses have only one non-zero value for
each set of R + 1 samples. These observations imply that the
average change of each coefficient calculator’s accumulator
during each set of R + 1 samples is the same as it would be
if t[n] were replaced by r [n] as given by (14) and the corre-
sponding coefficient calculator were updated on just the first of
every R +1 samples. Thus, instead of performing correlations
on all R + 1 of the r (l)[n] sequences simultaneously at each
sample time, n, as done by the oversampling MNC technique,
the SMNC technique equivalently performs correlations on all
R + 1 of the r (l)[n] sequences sequentially over successive
sets of R + 1 sample times.

C. Extension to Background Operation

With the sk[n] residue estimators implemented as shown
in Fig. 3c, it is necessary for the statistics of the sk [n]
sequences to be time-invariant as described above. This is easy
to achieve during foreground calibration by ensuring that the
statistics of x[n] do not change over time. During background
calibration, though, x[n] is arbitrary, so it cannot be assumed
that its statistics are time-invariant.

This problem can be solved by modifying the sk [n] residue
estimators during background calibration as follows. The main
DAC’s DEM encoder ensures that the probability distribution
of each sk[n] conditioned on sk[n] �= 0 is constant and
independent of x[n] [17]. Therefore, the problem can be
solved by applying two changes to Fig. 3c during background
calibration. The first change is to only update the bank of
latches once every accumulator has been clocked R + 1
times since the last time the bank of latches was clocked.
The second change is to only clock the mth accumulator
when sk[n + P − Q − m] �= 0 and n mod (R + 1) is
distinct from n′ mod (R + 1) for every prior time index n′
of sk[n′ + P − Q − m] �= 0 since the last time the bank
of latches was updated. These modifications ensure that each
accumulator in the kth coefficient calculator is updated with
r (l)[n] information once for each value of l = 0, 1, . . . , R
prior to each time the bank of latches is clocked and that the
probability distribution of each sk[n] when the accumulators
are updated is time-invariant.

IV. CONVERGENCE ANALYSIS

Each r (l)[n] sequence in Fig. 5 can be written as

r (l)[n] = r (l)
ideal [n] + r (l)

e [n] + r (l)
c [n] (15)

where r (l)
ideal [n] is what r (l)[n] would have been without the

main DAC’s mismatch noise and without the SMNC feedback

loop, r (l)
e [n] represents error that would have been caused by

the main DAC’s mismatch noise without the SMNC feedback
loop, and r (l)

c [n] represents the effect of the SMNC feedback
loop. The correction DAC’s error can be neglected, because
it is much smaller than that of the main DAC as explained
in Section II. Consequently, the relationship between xc[n]
and r (l)

c [n] well-approximates that of a linear time-invariant
(LTI) discrete-time system with impulse response −h(l)

c [n] (the
negative sign simplifies the subsequent analysis). The system
is causal and at least one clock delay is introduced by the
ADC, so h(l)

c [n] = 0 for all n < 1. Therefore,

r (l)
c [n] =

∞∑

i=1

xc[n − i ]
(
−h(l)

c [i ]
)
, (16)

where, as can be seen from Fig. 3,

xc[n] =
M∑

k=1

N−1∑

m=0

ak,m [n]sk [n + P − m]. (17)

The kth portion of the main DAC’s mismatch noise,
dk(t)sk [nt ] in (1), has the same form as the output of a
DAC with input sequence sk[n] and Ts-periodic pulse shaping
waveform, dk(t). Thus, the relationship between sk[n] and
its contribution to r (l)

e [n] must also be that of a causal LTI
discrete-time system with at least one clock delay. Denot-
ing the LTI system’s impulse response as b(l)

k [n], it follows
from (1) that

r (l)
e [n] =

M∑

k=1

∞∑

i=1

sk[n − i ]b(l)
k [i ]. (18)

It follows from (4) that

t[n − l] = r (l)[n − l] if n mod (R + 1) = 0. (19)

As indicated in Fig. 3c, each FIR filter coefficient, αk,m [n],
only changes at times n = 0, R + 1, 2(R + 1), . . . , i.e., when
n mod (R +1) = 0. Therefore, Fig. 3c and (19) imply that for
each of these values of n and for each m = 0, 1, . . . , N − 1,

ak,m [n] = ak,m [n − 1] + K
R∑

l=0

sk

[n − l + P − Q − m] r (l)[n − l]. (20)

For all other values of n, αk,m [n] = αk,m [n − 1]. Substituting
(16)-(18) into (15), and substituting the result into (20), implies
that

ak,m [n] = ak,m [n − 1]

+
R∑

l=0

{
K · s2

k [n − l + P − Q − m]

⎛

⎝b(l)
k [Q − P + m] −

N−1∑

q=0

ak,q

[n − l − Q − m + q] h(l)
c [Q + m − q]

)

+ K e(l)
k,m [n − l]

}
(21)
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for each n that satisfies n mod (R + 1) = 0 and
m = 0, 1, . . . , N − 1, where

e(l)
k,m [n]

= sk [n + P − Q − m]⎧
⎪⎪⎨

⎪⎪⎩

∞∑

i=1

M∑

j=1
j �=k

(
s j [n − i] b(l)

j [i ] −
N−1∑

q=0

a j,q [n − i] s j

[n+ P−i −q] h(l)
c [i ]

)
⎛

⎜⎜⎝
∞∑

i=1
i �=Q−P+m

sk [n − i ] b(l)
k [i ]

−
∞∑

i=1
i �=Q+m−q

N−1∑

q=0

ak,q [n − i ] sk [n+ P−i −q] h(l)
c [i ]

⎞

⎟⎟⎠

+ r (l)
ideal [n]

⎫
⎪⎪⎬

⎪⎪⎭
. (22)

Equations (21), for m = 0, 1, . . . , N − 1 and each n that
satisfies n mod (R + 1) = 0, can be written in matrix
form as

ak [n] = ak [n − 1] + K
N−1∑

m=0

R∑

l=0

s2
k [n − l + P − Q − m]

×
⎛

⎝b(l)
k,m−

N−1∑

q=0

H(l)
m,qak [n − l − Q − m + q]

⎞

⎠

+K ek [n] (23)

where

ak[n] = [
ak,0[n], ak,1[n], · · · , ak,N−1[n]

]T
, (24)

H(l)
m,q is an N × N matrix given by

H(l)
m,q =

[
h j,k =

{
h(l)

c [Q + j − k], if j = m, k = q,

0, otherwise,

]
,

(25)

b(l)
k,m is an N × 1 vector given by

b(l)
k,m =

[
b j =

{
b(l)

k [Q − P + j] , if j = m,

0, otherwise,

]
, (26)

and ek[n] is an N × 1 vector given by

ek[n] =
R∑

l=0

[
e(l)

k,0[n − l], e(l)
k,1[n − l], . . . , e(l)

k,N−1[n − l]
]T

.

(27)

The ak[n] vector represents the kth adaptive FIR filter’s
coefficients at time n. The loop gain, K , is small by design
to ensure that the coefficients converge to values with low
variances, so (23) implies that ak[n] depends only very weakly

on any one of the time-shifted sk[n] sequences. Further-
more, all of the time-shifted sk[n] sequences are statisti-
cally independent. Consequently, ak[n] is well-approximated
as being statistically independent of each time-shifted
sk[n] sequence. This type of independence assumption is
widely used in the analysis of adaptive filters wherein
slowly updated adaptive filter coefficients are assumed to be
approximately independent from the data processed by the
system [20]–[22].

Expanding the right side of (22) results in a sum of several
products. Of these, sk[n+ P − Q−m]s j [n+ P −i −q]α j,q[n−
i ]h(l)

c [i ] and sk[n+P −Q−m]sk[n+P−i −q]αk,q [n−i ]h(l)
c [i ]

are the only products whose means are not exactly zero.
However, their means are nearly zero by the independence
assumption because sk[n + P − Q − m]s j [n + P − i − q] and
sk[n + P − Q − m]sk[n + P − i − q] are zero mean. This
implies that the mean of ek[n] is well-approximated as zero,
i.e.,

ēk[n] = 0. (28)

Given that sk[n] is restricted to values of −1, 0, and 1, and
its statistics are time-invariant, the mean of s2

k [n] is a constant,
ck , between 0 and 1, i.e.,

s2
k [n] = ck for all n where 0 < ck ≤ 1. (29)

Taking the expectation of (23), and applying (28), (29), and
the independence assumption yields

āk [n]

= āk [n − 1] + ck K

×
N−1∑

m=0

R∑

l=0

(
b(l)

k,m−
N−1∑

q=0

H(l)
m,q āk [n − l − Q − m + q]

)

(30)

where āk[n] is the mean ak[n] for each n that satisfies n mod
(R + 1) = 0. This can be rewritten as

āk [n] = āk [n − 1] − ck K
N−1∑

m=0

R∑

l=0

N−1∑

q=0

H(l)
m,q āk

[n − l − Q − m + q] + ck K bk, (31)

where

bk =
N−1∑

m=0

R∑

l=0

b(l)
k,m . (32)

A simplification can be made by defining H(J )
c to be the

sum of all H(l)
m,q over l = 0, 1, . . . , R, m = 0, 1, . . . , N − 1,

and q = 0, 1, . . . , N − 1, restricted to values of m, l, and q
that satisfy l + Q + m − q = J , such that

N−1∑

m=0

R∑

l=0

N−1∑

q=0

H(l)
m,q =

R+Q+N−1∑

J=1

H(J )
c . (33)

The lower limit of J is 1 because (25) implies that H(l)
m,q = 0

for m − q ≤ −Q given that h(l)
c [n] = 0 for all n ≤ 0.

Applying (33) to rearrange the triple sum in (31) and applying
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ak[n] = ak[n−1] for values of n that satisfy n mod (R+1) �= 0
gives

āk[n] = āk[n − 1]

−

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ck K
R+Q+N−1∑

J=1

H(J )
c āk[n − J ] + ck K bk,

if n mod (R + 1) = 0,

0, otherwise,

(34)

for each integer, n.
Equation (34) is an N-dimensional matrix difference equa-

tion that converges if and only if ak[n] → a′
k as n → ∞,

where a′
k is a constant vector. Taking the limit of (34) as

n → ∞ implies that if the system converges then

a′
k = a′

k − ck K Hca′
k + ck K bk (35)

where

Hc =
R+Q+N−1∑

J=1

H(J )
c . (36)

It follows from (35) that if the system converges, then

a′
k = H−1

c bk . (37)

Equations (25), (33) and (36) imply that

Hc = [
h j,k = hc[Q + j − k]] , where hc[n] =

R∑

l=0

h(l)
c [n].

(38)

Given that −h(l)
c [n] is the impulse response of the transfer

function between xc[n] and r (l)
c [n], it follows from (14)

and Theorem 1 in Section III that hc[n] is the impulse
response of the transfer function between xc[n] and r [n]
in the oversampling version of the MNC technique shown
in Fig. 1. As proven in [15], the FIR filter coefficients in the
oversampling MNC technique converge to values that satisfy
(37) with Hc = [h j,k = hc[Q+ j−k]]. Therefore, provided the
FIR filter coefficients in the subsampling version of the MNC
technique converge, they must converge to the same values as
those of the oversampling version of the MNC technique.

It remains to show that the subsampling MNC technique’s
coefficients converge, i.e., that ak[n] always converges to a′

k
as n → ∞ for each k. This is done by showing that zk[n]
converges to 0 as n → ∞, where

zk[n] = āk[n] − a′
k, (39)

and, as implied by (34) and (35),

zk[n] = zk[n − 1] −

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ck K
R+Q+N−1∑

J=1

H(J )
c zk[n − J ]

if n mod (R + 1) = 0

0, otherwise.

(40)

The analysis makes use of vector and matrix norms. For any
N-dimensional vector v = [v j ] and N × N matrix H = [h j,k],
the vector norm of v and the matrix norm of Hare defined as

‖v‖ = max
1≤m≤N

|vm | and ‖H‖1 = max
1≤m≤N

N∑

n=1

∣∣hm,n
∣∣. (41)

Theorem 2 presented below, and proven in the Appendix,
shows that zk[n] converges to 0 as n → ∞ for each k if hc[n],
Q, and K satisfy certain conditions. It does so by showing
that ‖zk[n]‖ → 0 as n → ∞. To simplify the notation, the
system’s initial conditions are taken to be zero, i.e., ak[n] = 0
for all n < 0, so (39) implies that zk[n] = −a′

k for all n < 0.
Theorem 2: Suppose 0 ≤ r < 1, 0 < g < 1, 0 < 2

K hc[Q] < 1, and zk[n] = −a′
k for all n < 0, where

r = 1

hc[Q]
Q+(N−1)∑

m=Q−(N−1)
m �=Q

|hc[m]| (42)

g =
R+Q+N−1∑

J1=1

R+Q+N−1∑

J2=1∥∥∥H(J1)
c H(J2)

c

∥∥∥
1

(
1 − (1 − 2K hc[Q])J1−1)

2h2
c [Q] (1 − r) (1 − 2K hc[Q])J1+J2−2 . (43)

Then

‖zk[n]‖ ≤ ∥∥a′
k

∥∥ (1 − ck K (1 − r) (1 − g) hc [Q])�n/(R+1)	+1

(44)

for all n ≥ 0, where �n/(R + 1)	 is the largest integer
less or equal to n/(R + 1).

Inequality (44) implies that ||zk[n]|| converges to 0 follow-
ing an exponential-like trajectory for each k. This and (39)
imply ak[n] → a′

k for each k. Therefore, the conditions in
the hypothesis of the theorem are sufficient to guarantee the
convergence of SMNC.

The theorem’s hypothesis places certain requirements on the
values of hc[n], Q, and K . The 0 ≤ r < 1 requirement and the
definition of r in (42) imply that the hc[Q] must be positive
and larger than the sum of multiple adjacent samples of the
impulse response. As explained in [15], 0 ≤ r < 1 is also a
necessary condition for the convergence of the oversampling
version of the MNC technique and can be easily satisfied
in practice. The requirement that 0 ≤ g < 1 and 0 < 2
K hc[Q] < 1 sets an upper bound on K .

Theorem 2 also provides insight into the convergence rate.
It indicates that increasing K increases the convergence rate.
It also implies that reducing the probability of sk[n] = 0 over
time, which increases the value of ck in (29), leads to faster
convergence.

Theorem 2 predicts how the expected value of each fil-
ter coefficient evolves over time, but it does not provide
insight into the variance of the noise component of each
filter coefficient. Intuitive reasoning similar to that in [15] and
extensive simulations indicate that the noise variance can be
made arbitrarily small by reducing K . Therefore, K represents
a tradeoff between convergence accuracy and convergence
speed.

V. SIMULATION RESULTS

Three sets of computer simulation results are presented in
this section. The first set demonstrates that oversampling is
indeed required for the original version of the MNC tech-
nique presented in [15] to work properly. The second set
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demonstrates the effectiveness and of the SMNC technique.
The third set demonstrates the transient convergence behavior
of the SMNC technique and compares it to that predicted by
Theorem 2 presented in the previous section.

All simulations implement the same main DAC and cor-
rection DAC architectures, the same DAC clock-rate of fs =
3 GHz, and the same MNC design parameters P , Q, N and
K of 3, 21, 9 and 8 · 10−6, respectively. As in [16], the main
DAC consists of the DEM encoder presented in [17] followed
by 36 1-bit DACs. The DEM encoder converts the 14-bit main
DAC input sequence, x[n], into 36 1-bit sequences, each of
which drives a 1-bit DAC with weight Ki . For i = 1, 2, . . . , 20
the values of Ki are 1, 1, 2, 2, 4, 4, . . . , 512, 512, respectively,
and for i = 21, 22, . . . , 36, each Ki has a value of 1024. Each
1-bit DAC implements a 25% return-to-zero (RZ) phase to
avoid ISI. Also as in [16], the correction DAC is implemented
without DEM or calibration and its minimum step-size is �/4,
where � is the main DAC’s minimum step-size.

The same set of mismatch noise parameters was used for
each simulation. Dynamic mismatch noise was simulated by
inserting a random Gaussian delay with a standard deviation
of 0.6 ps on each 1-bit DAC clock time. Static mismatch error
was simulated by introducing 1-bit DAC step-size errors. The
step-size error for each of the 1024-weight 1-bit DACs was
chose as a Gaussian random variable with a standard deviation
of 0.15% of the 1-bit DAC’s step size, 1024�. That of each of
the other 1-bit DACs, including those in the correction DAC,
were chosen similarly, except that the standard deviation was
divided by the square root of the 1-bit DAC’s step-size divided
by 1024�.

Each simulation includes a 5-bit VCO-based ADC of the
type implemented in the IC presented in [16]. Aside from its
noise and distortion, the VCO-based ADC is equivalent to a
sinc lowpass filter followed by a first-order �� modulator
ADC with 5-bit quantization [23]. No ADC calibration was
applied, so the ADC’s nonlinearity is high: with a full-scale
sinusoidal input waveform, the second and third harmonic
distortion terms are −26 dBc and −47 dBc, respectively.

Fig. 6 shows simulated output spectra from the system with
the original version of the MNC technique and a −1 dBFS
sinusoidal input signal, with and without oversampling the
ADC. Fig. 6a shows the output spectrum with MNC disabled
and Fig. 6b shows the output spectrum with MNC enabled
for an oversampling ratio of R = 5. This oversampling ratio
in conjunction with the sinc lowpass filtering inherent to the
VCO-based ADC is sufficiently high for the aliasing error to
be negligible over the DAC’s 0 to 0.42 fs signal band.2 In this
case, MNC improves the SNDR by 18 dB over the DAC’s sig-
nal band. Fig. 6c shows the output spectrum for MNC enabled
but without oversampling, i.e., with the ADC sampled at fs .
Some SNDR improvement still occurs in this case relative to
the case with MNC disabled, because aliasing does not prevent
MNC from canceling a low-frequency portion of the mismatch
noise. However, the aliasing prevents cancellation of higher-

2The decimation filter’s non-ideal transition bandwidth causes aliasing at
frequencies between 0.42 fs and 0.5 fs , which limits MNC accuracy over this
band. As explained in [16], this exclusion band can be reduced by increasing
the digital filter’s complexity.

Fig. 6. Representative simulated output spectra with a) MNC off, b) MNC
on, and c) MNC on but without oversampling.

Fig. 7. Representative simulated output spectra without/with SMNC.

frequency mismatch noise and, therefore, prevents significant
SNDR improvement.

Fig. 7 shows the simulated output spectrum from the system
with the SMNC technique and a −1 dBFS sinusoidal input sig-
nal for an ADC sample-rate of 5 fs /6, i.e., R = 5. Compared to
the case without MNC shown in Fig. 6a, the SMNC technique
improves the SNDR by 18 dB. This result supports the paper’s
assertion that the SMNC technique provides roughly the same
SNDR improvement as the original MNC technique despite
aliasing from not oversampling.

In the simulations described above, the adaptive FIR fil-
ter coefficients were obtained during foreground calibration
mode and then frozen for use during normal DAC mode.
During foreground calibration, x[n] was chosen to toggle
pseudo-randomly between −2389.5� and −2388.5�. In prin-
ciple, any x[n] sequence with time-invariant statistics as
required by the foreground mode version of the SMNC tech-
nique would work, but this choice of x[n] is attractive because
of its small dynamic range, which simplifies the ADC, and
it results in sk[n] sequences with a low percentage of zero
values, which is beneficial for rapid convergence.

The SMNC technique’s foreground calibration convergence
time for the simulation results shown in Fig. 7 was about
3 ms. This is approximately R = 5 times longer than that of
the original MNC technique, as expected. Much as in the case
of the original MNC technique as explained in [15], the con-
vergence time of the SMNC technique can be decreased by
increasing K , but this comes at the expense of increased noise
variance of each adaptive FIR filter’s coefficients. A practical
way to reduce the convergence time without a noise penalty
is to use a relatively large value of K during an initial
portion of foreground calibration mode so the conversion rate
is relatively high while the adaptive FIR filter coefficients
get close to their final values, and then reduce K during the
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Fig. 8. Transient convergence behavior of the SMNC technique’s adaptive
filter coefficients for representative value of k.

final portion of foreground calibration mode to reduce the
coefficient variances.

Fig. 8 shows the transient convergence behavior of the
SMNC technique’s adaptive FIR filter coefficients for a rep-
resentative value of k and a constant value of K , i.e., K =
8 · 10−6. The solid curves represent the differences between
the instantaneous values of the coefficients, αk,m [n], and their
ideal values for m = 0, 1, . . . , N−1 and a representative value
of k. The definition of zk[n] in (39) implies that the mean
of each curve must be bounded by −||zk[n]|| and ||zk[n]||.
These upper and lower bounds, as predicted in Theorem 1,
are plotted as dashed curves in the figure. The simulation
results show that although the noise in the system causes the
filter coefficients to fluctuate around their mean values, they
are still mostly within the predicted upper and lower mean
bounds.

APPENDIX

The proof uses the following well-known matrix theory
results [24]. For any N × 1 vectors v and w, and any N × N
matrix H, the vector and matrix norms defined in (41) are such
that

‖Hv‖ ≤ ‖H‖1 ‖v‖ (45)

and

‖v‖ − ‖w‖ ≤ ‖v + w‖ ≤ ‖v‖ + ‖w‖ . (46)

A. Proof of Theorem 2

If a′
k = 0, then (40) and the initial condition of zk[n] = −a′

k
for all n < 0 imply that zk[n] = 0 for all n ≥ 0 and (44) holds.
The rest of the proof considers the case of a′

k �= 0.
The proof applies mathematical induction. The inductive

step, which is proven shortly, is: for any integer n ≥ 0, if

‖zk[i ]‖
‖zk[i − 1]‖ ≥ 1 − 2ck K hc [Q] , (47)

for all i < n, then the theorem’s hypothesis ensures that (47)
also holds for i = n and

‖zk[n]‖
‖zk[n − 1]‖ ≤

⎧
⎪⎨

⎪⎩

1 − ck K (1 − r) (1 − g) hc [Q] ,

if n mod (R + 1) = 0,

1, otherwise.

(48)

The induction base step requires that (47) hold for all i < 0.
The proof of the base step follows from the initial condition
of zk[n] = −a′

k for all n < 0 and (41). Hence, if the inductive
step is true, it follows from induction that (47) and (48) must
hold for all n ≥ 0. In addition, applying (48) for n ≥ 0 with
the initial condition of zk[−1] = −a′

k leads to (44).
It remains to show that the inductive step is true. This is

shown in the remainder of the proof.
If n mod (R + 1) �= 0, it follows from (40) that zk[n] =

zk[n − 1], thus (47) holds for i = n and (48) holds. The rest
of analysis considers the case when n mod (R + 1) = 0. In
this case, (40) reduces to

zk[n] = zk[n − 1] − ck K
R+Q+N−1∑

J=1

H(J )
c zk[n − J ]. (49)

It follows from (36) that (49) can be rewritten as

zk[n] = zk[n − 1] − ck K Hczk[n − 1]

− ck K
R+Q+N−1∑

J=1

H(J )
c (zk[n − J ] − zk[n − 1]) (50)

and further rewritten as

zk[n] = (I − ck K Hc) zk[n − 1] − ck K

×
R+Q+N−1∑

J=1

J−1∑

m=1

H(J )
c (zk[n − m − 1] − zk[n − m])

(51)

where I is an N × N identity matrix. Taking the vector norm
on both sides of (51) and applying (46) yields

‖zk[n]‖ ≤ ‖(I − ck K Hc) zk[n − 1]‖ +
R+Q+N−1∑

J=1

×
J−1∑

m=1

∥∥∥ck K H(J )
c (zk[n − m − 1] − zk[n − m])

∥∥∥

(52)

and

‖zk[n]‖
≥ ‖(I − ck K Hc) zk[n − 1]‖

−
R+Q+N−1∑

J=1

J−1∑

m=1

∥∥∥ck K H(J )
c (zk[n − m − 1]−zk[n − m])

∥∥∥.

(53)

The definition of r in (42) and the condition 0 ≤ r < 1 in
Theorem 2 imply that hc[Q] is positive. Therefore, it follows
from the definition of Hc in (38) and the definition of the
matrix norm in (41) that

‖hc [Q] I − Hc‖ ≤ hc [Q] r. (54)

For any real N-dimensional column vector v, the vector norm
of (I − cKHc)v can be written as

‖(I − ck K Hc) v‖ = ‖(1 − ck K hc [Q]) v

+ ck K (hc [Q] I − Hc) v‖ . (55)
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Applying (45) and (46) yields

‖(I − ck K Hc) v‖ ≤ (1 − ck K hc [Q]) ‖v‖
+ ck K ‖hc [Q] I − Hc‖1 ‖v‖ (56)

and

‖(I − ck K Hc) v‖ ≥ (1 − ck K hc [Q]) ‖v‖
−ck K ‖hc [Q] I − Hc‖1 ‖v‖ . (57)

Applying (54) to (56) and (57) yields

‖(I − ck K Hc) v‖ ≤ (1 − ck K (1 − r) hc [Q]) ‖v‖ (58)

and

‖(I − ck K Hc) v‖ ≥ (1 − ck K (1 + r) hc [Q]) ‖v‖ . (59)

Replacing vby zk[n − 1] in (58) and (59), and substituting the
results into (52) and (53) gives

‖zk[n]‖
≤ (1 − ck K (1 − r) hc [Q]) ‖zk[n − 1]‖

+
R+Q+N−1∑

J=1

J−1∑

m=1

∥∥∥ck K H(J )
c (zk[n−m−1]−zk[n − m])

∥∥∥

(60)

and

‖zk[n]‖
≥ (1 − ck K (1 + r) hc [Q]) ‖zk[n − 1]‖

−
R+Q+N−1∑

J=1

J−1∑

m=1

∥∥∥ck K H(J )
c (zk[n − m − 1]−zk[n − m])

∥∥∥.

(61)

Equation (40) with the initial condition zk[n] = −a′
k for n < 0

implies that each zk[n − m − 1] − zk[n − m] in (60) and (61)
is either

ck K
R+Q+N−1∑

J=1

H(J )
c zk[n − m − J ] or 0. (62)

This observation applied to (60) and (61) results in

‖zk[n]‖
≤ (1 − ck K (1 − r) hc [Q]) ‖zk[n − 1]‖

+
R+Q+N−1∑

J1=1

J1−1∑

m=1

∥∥∥∥∥∥
c2

k K 2
R+Q+N−1∑

J2=1

H(J1)
c H(J2)

c zk[n−m− J2]
∥∥∥∥∥∥

(63)

and

‖zk[n]‖
≥ (1 − ck K (1 + r) hc [Q]) ‖zk[n − 1]‖

−
R+Q+N−1∑

J1=1

J1−1∑

m=1

∥∥∥∥∥∥
c2

k K 2
R+Q+N−1∑

J2=1

H(J1)
c H(J2)

c zk[n−m− J2]
∥∥∥∥∥∥
.

(64)

Applying (45) with H replaced by c2
k K 2H(J1)

c H(J2)
c , substitut-

ing the result into (63) and (64), then applying (46) yields

‖zk[n]‖ ≤ (1 − ck K (1 − r) hc [Q]) ‖zk[n − 1]‖ + c2
k K 2

×
R+Q+N−1∑

J1=1

R+Q+N−1∑

J2=1

∥∥∥H(J1)
c H(J2)

c

∥∥∥
1

×
J1−1∑

m=1

‖zk[n − m − J2]‖ (65)

and

‖zk[n]‖ ≥ (1 − ck K (1 + r) hc [Q]) ‖zk[n − 1]‖ − c2
k K 2

×
R+Q+N−1∑

J1=1

R+Q+N−1∑

J2=1

∥∥∥H(J1)
c H(J2)

c

∥∥∥
1

×
J1−1∑

m=1

‖zk[n − m − J2]‖. (66)

It follows from (47), 0 < ck ≤ 1 in (29), and Theorem 2’s
hypothesis of 0 < 2 K hc[Q] < 1 that

‖zk[n − i ]‖ ≤ ‖zk[n − 1]‖ (1 − 2ck K hc [Q])−i+1 (67)

holds for i = 2, 3, 4, . . . . Therefore,

J1−1∑

m=1

‖zk[n − m − J2]‖

≤ ‖zk[n − 1]‖
J1−1∑

m=1

(1 − 2ck K hc [Q])−m−J2+1. (68)

The sum in the right side of (68) can be expanded via the
geometric series formula as

J1−1∑

m=1

(1 − 2ck K hc [Q])−m−J2+1

= 1 − (1 − 2ck K hc [Q])J1−1

2ck K hc [Q] (1 − 2ck K hc [Q])J1+J2−2 . (69)

It follows from (29) that

J1−1∑

m=1

(1 − 2ck K hc [Q])−m−J2+1

≤ 1 − (1 − 2K hc [Q])J1−1

2ck K hc [Q] (1 − 2K hc [Q])J1+J2−2 . (70)

Substituting (70) into (68) and substituting the result into (65)
and (66) yields

‖zk[n]‖
‖zk[n − 1]‖

≤ 1 − ck K (1 − r) hc [Q] +
R+Q+N−1∑

J1=1

R+Q+N−1∑

J2=1

ck K
∥∥∥H(J1)

c H(J2)
c

∥∥∥
1

(
1 − (1 − 2K hc [Q])J1−1)

2hc [Q] (1 − 2K hc [Q])J1+J2−2 (71)
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and

‖zk[n]‖
‖zk[n − 1]‖

≥ 1 − ck K (1 + r) hc [Q] −
R+Q+N−1∑

J1=1

R+Q+N−1∑

J2=1

ck K
∥∥∥H(J1)

c H(J2)
c

∥∥∥
1

(
1 − (1 − 2K hc [Q])J1−1)

2hc [Q] (1 − 2K hc [Q])J1+J2−2 . (72)

Substituting (43) into (71) yields (48) for n mod (R+1) = 0,
and substituting (43) into (72) yields

‖zk[n]‖
‖zk[n − 1]‖ ≥ 1−ck K (1 + r) hc [Q] − ck K g (1 − r) hc [Q]

= 1 − ck K (2 − (1 − r) (1 − g)) hc [Q] . (73)

This implies that (47) holds for i = n for any values of r and
g that satisfy 0 ≤ r < 1 and 0 < g < 1.
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