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ABSTRACT OF THE DISSERTATION 

 

Adaptive Cancellation of Static and Dynamic Mismatch Error in Continuous-Time DACs 

 

 

by 

Derui Kong 

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) 

University of California San Diego, 2019 

Professor Ian A. Galton, Chair 

 

 Inadvertent but inevitable mismatches among nominally identical unit element 1-bit 

DACs within a multi-bit Nyquist-rate DAC cause both static and dynamic error in the 

DAC’s continuous-time output waveform. Prior calibration techniques are able to suppress 

static mismatch error, but they have had limited success in suppressing dynamic mismatch 

error. 

 This first chapter of the dissertation presents a mismatch noise cancellation (MNC) 

technique that adaptively measures and cancels both static and dynamic mismatch error over 

the DAC’s first Nyquist band. The proposed digital calibration technique is capable of either 

foreground or background operation and is relatively insensitive to non-ideal circuit 

behavior. The chapter presents a rigorous mean convergence analysis of the technique and 



 

xvi 

 

demonstrates the results of the paper with both behavioral and transistor-level circuit 

simulations.  

 The second chapter of the dissertation presents an integrated circuit DAC which 

implements the MNC technique of chapter one together with other circuit-level 

improvement techniques. With MNC enabled, this DAC demonstrates state-of-the-art 

performance. 

 This third chapter of the dissertation presents an improved version of MNC that 

addresses a practical concern. The original MNC technique requires an oversampling ADC 

clocked at a much higher clock rate than that of the DAC to measure the DAC’s mismatch 

error, while the new technique presented in this chapter overcomes this limitation.  

 This fourth chapter of the dissertation presents a comprehensive mean-square 

convergence analysis of MNC proposed in chapter one, it proved that the noise impact on 

each coefficient in MNC, characterized by a steady-state mean square error metric, is 

bounded and can be arbitrarily reduced under certain practical conditions. It also established 

an analytical lower bound of DAC signal-to-noise-ratio (SNR) contributed by noise present 

in the system during calibration. The results of this paper provide guidance into the design of  

MNC. 
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CHAPTER 1 

ADAPTIVE CANCELLATION OF STATIC AND DYNAMIC 

MISMATCH ERROR IN CONTINUOUS-TIME DACS  

 

 Abstract—Inadvertent but inevitable mismatches among nominally identical unit 

element 1-bit DACs within a multi-bit Nyquist-rate DAC cause both static and dynamic 

error in the DAC’s continuous-time output waveform. Prior calibration techniques are able 

to suppress static mismatch error, but have had limited success in suppressing dynamic 

mismatch error. This paper presents a digital calibration technique that adaptively measures 

and cancels both static and dynamic mismatch error over the DAC’s first Nyquist band. The 

technique is capable of either foreground or background operation, and is relatively 

insensitive to non-ideal circuit behavior. The paper presents a rigorous mathematical 

analysis of the technique, and demonstrates the results of the paper with both behavioral and 

transistor-level circuit simulations. 

I. INTRODUCTION 

 

 High-resolution Nyquist-rate DACs with continuous-time output signals are required 

in critical applications such as wireless transmitters. Each such DAC interpolates a discrete-

time input sequence to create a continuous-time output signal, so it can be viewed as a 

device that generates an analog output pulse for each input code. Ideally, the output pulse 
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during the nth clock interval is scaled by the nth input code value, and except for this scale 

factor all the pulses have the same shape. 

 Such DACs generally consist of several nominally identical unit element 1-bit DACs 

in parallel. Unfortunately, inadvertent but inevitable fabrication mismatches among the unit 

element 1-bit DACs often limit performance. The mismatches cause non-ideal deviations of 

both the scale factor and shape of each overall DAC output pulse. Error in the overall DAC’s 

output waveform from mismatch-induced pulse scale factor deviations is called static 

mismatch error and that from mismatch-induced pulse shape deviations is called dynamic 

mismatch error. Both types of error can significantly limit performance in practice. 

 Of course, there are many other types of non-ideal circuit behavior that contribute 

error in addition to static mismatch error and dynamic mismatch error. For example, if any 

of the unit element 1-bit DAC output waveforms depend on prior DAC input values in 

addition to the current DAC input value, a type of dynamic error called inter-symbol 

interference (ISI) is introduced. Nevertheless, these other types of error can be mitigated to a 

large extent by known circuit and system-level techniques. The same is true of static 

mismatch error. In contrast, prior techniques have been less successful in mitigating dynamic 

mismatch error.  

 Dynamic element matching (DEM) and digital calibration have been applied to 

address this problem in prior work, but with mixed results. DEM has been shown to prevent 

both static and dynamic mismatch error from causing nonlinear distortion, but it does so at 

the expense of degrading signal-to-noise ratio (SNR) [1-4]. Digital calibration techniques 

have been demonstrated that reduce static mismatch error, but prior calibration techniques 

do not significantly reduce dynamic mismatch error [5-11].  
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 The difficulty arises from a fundamental property of continuous-time output DACs. 

Each DAC output pulse has a bandwidth that far exceeds the DAC’s signal bandwidth, 

because the pulse’s duration is limited to one clock interval. Hence, any technique to cancel 

dynamic mismatch error must either have a bandwidth that is much wider than the DAC’s 

signal bandwidth, or must somehow perform frequency selective cancellation over a 

particular band of interest such as the first Nyquist band. The situation is different in systems 

that only use sampled versions of DAC output signals, such as switched-capacitor delta-

sigma ADCs and pipelined ADCs, and well-known techniques have been developed to 

cancel or otherwise suppress the effects of component mismatches in such cases [12-14]. 

Unfortunately, these techniques are not applicable to DACs with continuous-time output 

signals that are not resampled such as in wireless transmitters.  

 This paper proposes a mismatch noise cancellation (MNC) technique that addresses 

this problem. The MNC technique consists of a feedback path around a main DEM DAC. 

The feedback path adaptively measures and cancels both static and dynamic mismatch error 

within the DEM DAC’s first Nyquist band. The feedback path consists of an ADC, digital 

signal processing logic, and a correction DAC. As demonstrated in the paper, the 

performance requirements of the ADC and correction DAC are modest compared to the 

overall system performance. 

 The feedback path forms an estimate of the Nyquist-band portion of the main DEM 

DAC’s static and dynamic mismatch error by driving the correction DAC with the sum of 

the outputs of multiple digital filters driven by different pseudo-random digital sequences. 

The pseudo-random sequences are generated explicitly within the main DAC’s DEM logic 

so they are known a priori, but the filter coefficients depend on the component mismatches, 

so they must be estimated by the MNC technique. The feedback path correlates a digitized 
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version of the overall system’s analog output waveform by time-shifted versions of each 

pseudo-random sequence and uses the results to adaptively estimate the filter coefficients. 

Thus, the feedback path implements several feedback loops that operate in parallel. 

 The MNC technique functions regardless of the DAC’s input sequence, so it can be 

used in both foreground and background calibration modes. The convergence rate can be 

maximized in foreground mode, though, so foreground mode can be used to minimize the 

initial convergence time and background mode can be used to adaptively track out 

temperature variation effects.  

 The paper describes the proposed MNC technique in detail, presents a rigorous 

mathematical convergence-rate analysis, and presents simulation results. Section II presents 

DEM DAC background information. Section III describes the MNC technique and its 

analysis in detail. Section IV presents behavioral and transistor-level simulation results that 

support the theoretical findings of the paper. 

II. BACKGROUND INFORMATION 

 

A. Ideal Behavior of a Practical DAC 

 As illustrated in Fig. 1, a DAC converts a discrete-time digital sequence, x[n], with a 

sample-rate of fs, into a continuous-time analog waveform, y(t). The ideal output of a 

practical DAC is 

  ( ) ( )     where    ,t t sy t t x n n f t= =       (1) 
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and α(t) is a periodic pulse shaping waveform with period 1/fs.1 It can be verified that the 

continuous-time Fourier transform of y(t) is 

 ( ) ( ) ( )sj T

pY j X e A j
 =  (2)    

where X(ejω) is the discrete-time Fourier transform of x[n], Ap(jω) is the continuous-time 

Fourier transform of  

 
( ) if 0 ,

( )
0, otherwise,

s

p

t t T
t




 
= 


 (3) 

 

and Ts = 1/fs is the sample period of the DAC [15]. 

 Example spectra are shown in Fig. 2. The periodicity of the discrete-time Fourier 

transform gives rise to multiple Nyquist bands, three of which are shown in the figure.2 A 

practical DAC is designed to faithfully represent its input sequence over a single Nyquist 

band, most commonly the first Nyquist band. Strictly speaking, this would require that 

Ap(jω) have a magnitude of unity and a constant group delay over the desired Nyquist band, 

which is not easy to achieve with practical circuits. However, a digital filter can be inserted 

between x[n] and the DAC’s input to compensate for deviations of Ap(jω) from unity 

magnitude and constant group delay over the desired Nyquist band. Therefore, moderate 

deviations of Ap(jω) from unity magnitude and constant group delay over the desired Nyquist 

band are not problematic in practice.  

                                                 
1 By definition, nt is the largest integer less than or equal to fst at time t, so it is a continuous-

time waveform. Hence, x[nt] is a continuous-time waveform even though x[n] is a discrete-

time sequence. 
2 The kth Nyquist band for k = 1, 2, …, is defined as the set of frequencies that satisfy 

π(k−1)fs<|ω|<πkfs. 
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B. Dynamic Element Matching 

 Fig. 3 shows the general form of a DEM DAC for an input sequence which takes on 

values in the range {–½LΔ, Δ−½LΔ, 2Δ−½LΔ, …, LΔ−½LΔ}, where L is the number of 

input levels minus one and Δ is the DAC’s minimum input step-size [3]. The DEM DAC 

consists of an all-digital DEM encoder followed by I 1-bit DACs, the outputs of which are 

summed to form y(t). The output of the ith 1-bit DAC has the form 

 ( )1
2

( ) [ ] ( )i i t i iy t c n K e t= −  +   (4) 

where the 1-bit DAC’s fs-rate input bit sequence, ci[n], takes on values of 1 and 0, Ki is a 

constant called the 1-bit DAC’s weight, and ei(t) represents all deviations from pure two-

level behavior including effects such as intentional pulse-shaping and unintentional error 

from non-ideal analog circuit behavior.  

 By design, each Ki is an integer, K1 = 1, and Ki−1 ≤ Ki ≤ K1 + K2 + ∙∙∙ + Ki−1 + 1 for 

i = 2, 3, …, I [16]. In practice, 1-bit DAC weights of Ki > 1 are implemented by combining 

multiple unit element 1-bit DACs in parallel. Thus, the ith 1-bit DAC consists of Ki unit 

element 1-bit DACs in parallel. 

 The DEM encoder maps each input sample, x[n], to I output bits, ci[n], for i = 1, 2, 

…, I, under the constraint  

 
1

1
[ ] [ ]

2

I

i i

i

x n K c n
=

 
= −  

 
 .  (5) 

This constraint is sufficient to ensure that the DEM DAC satisfies (1) with α(t) = 1 if ei(t) = 

0 for every 1-bit DAC and that the number of input levels, L, is K1 + K2 + ∙∙∙ + KI [16]. 

 In practice, ei(t) in (4) is often well-modeled as 
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   
   
   
   

11

01

00

10

( ), if 1 1, 1,

( ), if 1 0, 1,
( )

( ), if 1 0, 0,

( ), if 1 1, 0,

i i t i t

i i t i t

i

i i t i t

i i t i t

e t c n c n

e t c n c n
e t

e t c n c n

e t c n c n

 − = =


− = =
= 

− = =
 − = =

  (6) 

where e00i(t), e01i(t), e10i(t), and e11i(t), are Ts-periodic waveforms corresponding to the four 

different possibilities of the current and previous 1-bit DAC input bit values [15]. During 

any given Ts clock period, ei(t) is equal to exactly one of the e00i(t), e01i(t), e10i(t), and e11i(t) 

waveforms, so ei(t) is non-periodic and signal-dependent in general.  

 In DEM DACs, the 1-bit DAC weights by design are such that for most values of 

x[n] there are multiple distinct sets of DEM encoder output bit values that satisfy (5). During 

each Ts clock period, the DEM encoder sets its output bits to one of these sets chosen as a 

function of a pseudo-random variable and, when spectral shaping of the DEM DAC error is 

required, also as a function of past input samples. This causes 

 ( ) ( ) [ ] ( ) ( )t DACy t t x n t e t = + +   (7) 

where α(t) and β(t) are Ts-periodic functions of e00i(t), e01i(t), e10i(t), and e11i(t) that are 

independent of the type of DEM used, and eDAC(t) is an error waveform, called DAC noise, 

that depends on the type of DEM used, x[n], and e00i(t), e01i(t), e10i(t), and e11i(t) [15]. The 

first term on the right side of (7) corresponds to the ideal DAC behavior given by (1). The 

β(t) term is Ts-periodic so it consists only of tones at multiples of fs. As these tones do not 

fall within any Nyquist band of the DAC output and do not depend on the DAC input, they 

do not cause significant problems in most DAC applications. Hence, eDAC(t) is the only 

significant undesirable component of the DAC output. 

 It can be shown that (6) implies that eDAC(t) contains two types of error in general, 

one that depends only on the current DEM DAC input sample, and one that depends on both 

the prior and current DEM DAC input samples [15]. The first type of error is caused by 
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mismatches among the nominally identical unit element 1-bit DACs, so it is the sum of all 

static mismatch error and dynamic mismatch error, and is called mismatch noise. The second 

type of error results from non-ideal memory effects within each unit element 1-bit DAC that 

cause ei(t) to depend not only on ci[nt] but also on ci[nt−1]. Hence, this latter type of error is 

ISI error. 

 DEM causes the mismatch noise to be a pseudo-random noise waveform that is free 

of nonlinear distortion, and in some cases spectrally shaped so as to minimize the noise 

within a desired frequency band. DEM causes much of the ISI error to be a pseudo-random 

waveform too, but even with DEM the ISI error contains a second-order distortion 

component. If DEM were not used (i.e., if the encoder were to choose only one of the 

possible sets of output bits for each given input value), (7) would still hold, but eDAC(t) 

would be a deterministic high-order nonlinear function of x[n]. 

III. MISMATCH NOISE CANCELLATION TECHNIQUE 

 

A. Problem Statement 

 DEM DACs achieve high linearity by effectively converting much of what would 

otherwise be nonlinear distortion into pseudo-random noise. While often preferable to 

nonlinear distortion, the noise is nevertheless a problem in wideband analog signal 

generation applications.  

 In the absence of ISI, if all of the unit element 1-bit DACs were perfectly matched 

and clocked at exactly the same time, then eDAC(t) would be zero. In this case, the e00i(t), 

e01i(t), e10i(t), and e11i(t) waveforms would differ from 1-bit DAC to 1-bit DAC only by the 
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ideal 1-bit DAC scale factors, Ki. However, mismatches among the unit element 1-bit DACs 

including relative skew among their clock signals inevitably result from random errors 

introduced during fabrication as well as from systematic circuit design and layout 

constraints. Some of these errors change the scale factors of the e00i(t), e01i(t), e10i(t), and 

e11i(t) waveforms thereby giving rise to static mismatch error in the DAC’s output 

waveform. Others change the relative shapes of the e00i(t), e01i(t), e10i(t), and e11i(t) 

waveforms across the 1-bit DACs thereby giving rise to dynamic mismatch error in the 

DAC’s output waveform. As examples, in current steering 1-bit DACs, threshold voltage 

mismatches among the current source transistors contribute static mismatch error whereas 

capacitance mismatches and clock skew contribute dynamic mismatch error. 

 The objective of the proposed MNC technique is to adaptively measure and cancel 

the entire mismatch noise component of eDAC(t) over the first Nyquist band, which includes 

both static and dynamic mismatch error. The MNC technique cancels only a portion of the 

ISI error component of eDAC(t), so it should be applied to DEM DACs in which ISI error is 

not the dominant type of error. This requires that the rise and fall transients of each unit 

element 1-bit DAC are sufficiently well matched or else that return-to-zero (RZ) 1-bit DACs 

are used. RZ 1-bit DACs reset their outputs to a fixed value (usually zero) at the end of each 

Ts clock period. This causes e00i(t) = e10i(t) and e11i(t) = e01i(t) in (6), so ISI is avoided 

because ei(t) does not depend on past values of ci[n]. 

B. Proposed Solution 

 The MNC technique is explained below in the context of a design example that 

targets an effective number of bits (ENOB) of 13.5 over a 200 MHz first Nyquist band. The 
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purpose of presenting the MNC technique in the context of the design example is to simplify 

the explanation, but the technique is not restricted to the specific design example details. 

 Fig. 4 shows a high-level block diagram of the design example system. It consists of 

a main DAC and a feedback path. The feedback path consists of a VCO-based oversampling 

ADC of the type described in [17] with an oversampling ratio of R = 5, a digital lowpass 

decimation filter, a bank of digital residue error estimators, and a correction DAC. The 

details of each block and the overall system’s theory of operation are described in the 

remainder of this section and in Section IV, respectively. 

 The main DAC is a 14-bit DEM DAC with a DEM encoder of the type described in 

[3], 36 current-steering RZ 1-bit DACs, and a clock rate of fs = 400 MHz. As shown in [16], 

it converts the input sequence, x[n], into an analog waveform, y(t), given by (7) with  

  
35

1

( ) ( )DAC k k t

k

e t d t s n
=

=    (8) 

where each dk(t) is a Ts-periodic linear combination of the 36 sets of e00i(t), e01i(t), e10i(t), and 

e11i(t) waveforms, and the sk[n] sequences for k = 1, 2, …, 35 are white random sequences 

that are uncorrelated with x[n], uncorrelated with each other, zero-mean, and restricted to 

values of −1, 0, and 1. The DEM encoder randomly chooses the sign of sk[n] independently 

for all k and n, so all non-zero values of sk[n] are zero-mean, independent random variables. 

As the dk(t) waveforms are functions of component mismatches, they are not known a priori. 

In contrast, the sk[n] sequences are generated explicitly within the DEM encoder, so they are 

known to the system a priori. 

 Like the main DAC, the correction DAC is based on current-steering 1-bit DACs, 

and both DACs have differential outputs. The differencing operation in Fig. 4 is 
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implemented at the circuit level by simply connecting the negative and positive outputs of 

the correction DAC to the positive and negative outputs, respectively, of the main DAC. 

 Although not shown explicitly in Fig. 4, the output of the bank of error residue 

estimators is re-quantized to have the same minimum step-size as the correction DAC. This 

step-size must be small enough that both the quantization error and any additional error 

introduced by the correction DAC have negligible effects on the performance of the overall 

system. It was found that a step-size equal to a quarter of that of the main DAC is more than 

sufficient to meet this objective. The maximum swing of the main DAC’s output, y(t), is 

much greater than that of eDAC(t) in practice, so the maximum swing of the correction DAC 

need only be a fraction of that of the main DAC. This makes it practical for the correction 

DAC’s resolution to be modest despite its reduced minimum step-size relative to that of the 

main DAC. Accordingly, in this design example the correction DAC has a resolution of 9-

bits and does not incorporate DEM.  

 The VCO-based ADC and lowpass decimation filter are designed such that the fs 

sample-rate output of the decimation filter is equivalent to a digitized version of just the first 

Nyquist band of the overall output, v(t). Although the design example system has a 200 MHz 

Nyquist band and an ADC oversampling ratio of R = 5, simulation results suggest that fairly 

high ADC noise and nonlinear distortion can be tolerated. In particular, they indicate that the 

noise and nonlinear distortion introduced by the VCO-based ADC prototype in [17] would 

negligibly affect the performance of the feedback loop even without the digital linearization 

described in [17]. They also indicate that the high input impedance of the ADC would 

negligibly load the outputs of the DACs.  

 The sk[n] residue estimators in Fig. 4 for k = 1, 2, …, 35 are digital blocks that 

together generate the correction DAC’s input sequence. Each sk[n] residue estimator is 
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responsible for adaptively generating an output sequence that contributes a component in the 

correction DAC’s output equal to the portion of the kth term in (8) over the first Nyquist 

band. 

 The details of the sk[n] residue estimator for each k are shown in Fig. 5, wherein N, 

P, Q, and K have values of 9, 3, 15, and 6∙10−5, respectively, for the example system. As 

described in more detail shortly, N represents a tradeoff between cancellation accuracy and 

digital complexity, P and Q are chosen according to the delay and impulse response spread, 

respectively, of the MNC feedback path, and K represents a tradeoff between MNC 

convergence speed and accuracy. 

 The sk[n] residue estimator consists of N fs-rate channels, the inputs of which are the 

decimation filter output sequence, r[n], and the outputs of which are summed to form the 

sk[n] residue estimator’s output. The mth channel multiplies the decimation filter output by a 

time-shifted version of the sk[n] sequence, accumulates the result to generate a sequence 

ak,m[n], and multiplies ak,m[n] by another time-shifted version of the sk[n] sequence. As 

described above, the sk[n] sequences are restricted to values of −1, 0, and 1 which greatly 

simplifies the multipliers, and they are known to the system because they are calculated 

explicitly within the main DAC’s DEM encoder. P-sample advanced versions of the sk[n] 

sequences are required, but this is not an issue provided x[n] is known P samples in advance. 

 It can be seen from Fig. 5 that the output of the sk[n] residue estimator can be written 

as 

 
1

0

[ ] [ ]
N

k k

m

h m s n P m
−

=

+ − . (9) 

where hk[m] = ak,m[n] for m = 0, 1, …, N−1. It follows that the output of the sk[n] residue 

estimator is equivalent to the output of an N-tap FIR filter with input sk[n+P] and impulse 
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response hk[m]. The filter is not time-invariant because the impulse response evolves over 

time, n. As proven in Section IV, the feedback system causes the impulse response to 

adaptively converge such that the correction DAC’s output contains a component equal to 

the portion of the kth term in (8) over the first Nyquist band. Therefore, the bank of sk[n] 

residue estimators in Fig. 4 can be viewed as the bank of adaptive FIR filters shown in Fig. 

6, where Hk(z) denotes the z-transform of hk[m]. 

C. Mismatch Noise Cancellation Principle 

 Even though the correction DAC does not incorporate DEM, its output has the same 

form as (7), i.e., 

 -( ) ( ) [ ] ( ) ( )c c c t c DAC cy t t x n t e t = + +   (10) 

where the subscript c is used to distinguish the various terms from their main DAC 

counterparts, except eDAC-c(t) is harmonic distortion rather than noise [18]. Analysis as well 

as transistor-level simulations with realistic mismatches indicate that the correction DAC’s 

minimum step-size is sufficiently small relative to that of the main DAC that eDAC-c(t) is 

negligible relative to eDAC(t). Hence, eDAC-c(t) is neglected in the analysis below. The βc(t) 

term is also neglected, because it does not have any components within the first Nyquist 

band, so it does not interfere with the cancelation process. 

 Therefore, by the same reasoning that led to (2), the continuous-time Fourier 

transform of the correction DAC output over the first Nyquist band is well-approximated as 

 ( ) ( ) ( )-
sj T

c c p cY j X e A j
 =   (11) 

where Xc(ejω) is the discrete-time Fourier transform of xc[n] and Ap-c( jω) is the continuous-

time Fourier transform of the right side of (3) with α(t) replaced by αc(t). Also by the same 

reasoning that led to (2), the continuous-time Fourier transform of (8) is 
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 ( ) ( ) ( )
35

-

1

sj T

DAC k p k

k

E j S e D j
 

=

=    (12) 

where Sk(ejω) is the discrete-time Fourier transform of sk[n] and Dp-k(jω) is the continuous-

time Fourier transform of the right side of (3) with α(t) replaced by dk(t). To cancel eDAC(t) 

over the first Nyquist band it is necessary for (11) and (12) to equal each other for all |ω| < 

πfs. It follows from (11), (12), and Fig. 6 that this is achieved if  

 
-

-

( )
( )   for | |

( )

p kj j P

k s

p c

D j
H e e f

A j

 


 


−=    (13) 

 The inverse discrete-time Fourier transform of the right side of (13) is the ideal Hk(z) 

filter impulse response and it is both infinite-length and two-sided, yet the actual Hk(z) filters 

only have impulse responses that are nonzero for n = 0, 1, …, N−1. Consequently, it is not 

possible to satisfy (13) perfectly. However, (13) represents a stable system, so the ideal 

impulse response converges to 0 as n → ±∞. It follows from (13) that P is just a delay term, 

so increasing P simply shifts the ideal impulse response to the right. Consequently, P can be 

chosen large enough that the terms of the ideal impulse response are negligible for n < 0. 

Similarly, N can be chosen large enough that the terms of the ideal impulse response are 

negligible for n ≥ N. So choosing N and P ensures that the error incurred by using length-N 

Hk(z) filters to approximate (13) is negligible. As demonstrated in Section IV, N = 9 and P = 

3 are sufficient to achieve more than 2.5 bits of both static mismatch error and dynamic 

mismatch error cancellation in the design example system. 

 It remains to show that the feedback causes ak,m[n] for m = 0, 1, …, N−1 and k =  1, 

2, …, 35 to converge to values that cause (13) to be well approximated. A rigorous analysis 

that proves this result is presented next. 
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D. Convergence Analysis 

 The decimation filter’s output can be written as r[n]=rideal[n]+re[n]+rc[n], where 

rideal[n] is the decimation filter output sequence that would have occurred in the absence of 

both eDAC(t) and the correction DAC feedback loop, re[n] is the additional error caused by 

eDAC(t) that would have occurred in the absence of the correction DAC feedback loop, and 

rc[n] is the additional component introduced by the correction DAC feedback loop. 

Therefore, the objective of the correction DAC feedback loop is to adjust the ak,m[n] values 

such that rc[n] = −re[n] for all n. 

 Each term in the summation on the right side of (8) has the form of  with dk(t) 

playing the role of α(t) and sk[nt] playing the role of x[nt]. Consequently, each term can be 

viewed as being contributed by a separate ideal DAC with input sequence sk[n] and pulse 

shaping function dk(t). It follows that the relationship between sk[n] and its contribution to 

re[n] must be that of a causal linear time-invariant (LTI) discrete time system. Denoting the 

impulse response of this LTI system by bk[n], it follows that 

 
35 35

1 1 0

[ ] [ ] [ ] [ ] [ ]e k k k k

k k i

r n b n s n b i s n i


= = =

=  = −  . (14) 

To the extent that nonlinearity and aliasing from the ADC can be neglected, similar 

reasoning implies that the relationship between xc[n] and rc[n] must also be that of a causal 

discrete-time LTI system. Hence,  

 ( )[ ] [ ] [ ]c c cr n x n h n=  −   (15) 

where −hc[n] is the LTI system’s impulse response (the −1 factor in this definition of hc[n] 

simplifies notation in the subsequent analysis). Furthermore, hc[n] = 0 for all n < 0 for 

causality and also for n = 0 to prevent the feedback loop from being delay-free. 
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 These observations and the signal processing operations shown in Fig. 4 and Fig. 5 

imply that the input to and the output of the mth accumulator in the sk[n] residue estimator 

can be written as  

 

       

 

,

35 1 1

,

1 0

[ ] [ ] ,

k m k ideal e

n N

c l j l

l i j

u n s n m P Q r n r n

h n i a i s i P j
− −

= =− =


= − + − +




− − + − 


  

 (16) 

and 

 , , ,[ ] [ 1] [ ]k m k m k ma n a n Ku n= − + , (17) 

respectively. It follows that uk,m[n] = 0 at each value of n for which sk[n–m+P−Q] = 0, so 

ak,m[n] only changes at values of n for which sk[n–m+P−Q] ≠ 0. Given that the only non-zero 

values of sk[n] are 1 and −1, this implies that ak,m[n] only changes at values of n for which 

sk
2[n–m+P−Q] = 1. 

 Given that the convergence rate of each ak,m[n] sequence depends on the particular 

pattern of zeros and ones taken on by sk
2[n] for all n, the expected values of uk,m[n] and 

ak,m[n] conditioned on this pattern of zeros and ones are of interest. In the following, these 

conditional expectations are denoted as  ͞uk,m[n] and ͞ak,m[n], respectively. As described 

above, all non-zero values of sk[n] are independent zero-mean random variables that take on 

values of 1 and −1. Furthermore, (16) and (17) imply that al,j[n] does not depend on sk[n’] 

for any n’ ≥ n + P. These properties with (14) and (16) imply that  

 

     2

,

35 1 1

, ,

1 0

[ ] [ ]

k m k k

n N

c l i j

l i n m Q j

u n s n m P Q b m P Q

h n i E n
− −

= = − − =


= − + − − +




− − 


  

 (18) 

where El,i,j[n] is the mean of al,j[i]sl[i+P−j]sk[n–m+P−Q] conditioned on the pattern of zeros 

and ones taken on by sk
2[n] for all n. 
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 By definition, El,i,j[n] = ͞ak,j[n−m−Q+j]sk
2[n−m+P−Q] when l = k and i − j = n − m − 

Q. Given that K is very small (e.g., K = 6∙10−5 in the design example) it follows from (17) 

that al,j[i] is only very weakly correlated with sk[n–m+P−Q] for all other values of l, i, and j 

in the triple sum of (18). Hence, any of these terms that are non-zero are very close to zero 

because all non-zero values of sk[n–m+P−Q] are independent, zero-mean random variables. 

Consequently, (18) can be well approximated as 

 

     

   

2

,

1

,

0

k m k k

N

c k j

j

u n s n m P Q b m P Q

h Q m j a n m Q j
−

=


= − + − − +




− + − − − + 




  (19) 

 The expectation operator is linear, so (17) implies  

 , , ,[ ] [ 1] [ ]k m k m k ma n a n Ku n= − + .  (20) 

The set of difference equations given by (20) with ͞uk,m[n] given by (19) for m = 0, 1, …, N−1 

specifies the evolution of the expectation of the coefficients of the kth FIR filter in Fig. 6. 

However, these difference equations present two analysis complications because of the sk
2 

term in (19). One complication is that the difference equations, while linear, are not time-

invariant because the sk
2 terms are zero for some values of n. The other complication is that 

the sk
2 terms across the different equations are not zero for the same values of n.  

 The latter complication can be solved by replacing n with n+m in each of the 

difference equations, because, as can be verified from (19), the sk
2 terms in the expressions 

for ͞uk,m[n+m] are identical for all m = 0, 1, …, N−1. The N equations obtained by 

substituting (19) into (20) for every m = 0, 1, …, N−1 and replacing every occurrence of n by 

n+m can be written in matrix form as 
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  

[ ] [ 1]

if 0,

[ ] , otherwise,

k k

k

k k

n n

s n P Q

K n Q K

= −

 + − =
−

− − c

a a

0

H a b

  (21) 

where 

 

,0

,1

, 1

[ ] [ ]

[ 1] [ 1]
[ ] ,     ,

[ 1] [ 1]

k k

k k

k k

k N k

a n b Q P

a n b Q P
n

a n N b Q P N−

−   
   + − +   = =
   
   

+ − − + −  

a b   (22) 

and 

 

[ ] [ 1] [ 1]

[ 1] [ ] [ 2]

[ 1] [ 2] [ ]

c c c

c c c

c c c

h Q h Q h Q N

h Q h Q h Q N

h Q N h Q N h Q

− − + 
 

+ − +
 =
 
 

+ − + − 

c
H . (23) 

This is an N-dimensional, Qth-order, time-varying matrix difference equation. It converges if 

and only if ak[n]→ak' as n→∞ where ak' is the constant steady-state solution of (21). 

Furthermore, if the system converges it follows from taking the limit of (21) as n→∞ that 

 'k k=
c

H a b . (24) 

Defining zk[n] = ak[n]− ak', (21) and (24) imply that 

 
 [ 1], if 0,

[ ]
[ 1] [ ], otherwise,

k k

k

k k

n s n P Q
n

n K n Q

 − + − =
= 

− − − c

z
z

z H z
  (25) 

and the system converges if and only if zk[n] → 0 as n→∞.  

  If sk[n] were never zero, then (25) would be a time-invariant as well as linear matrix 

difference equation. In this case (25) could be rewritten as a QN-dimensional, first-order 

matrix equation and shown to converge provided the eigenvalues of its system matrix all 

have magnitude less than one. Unfortunately, sk[n] = 0 for some values of n as described 

above, which complicates the analysis. A new analysis is presented in the remainder of the 
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section that addresses this problem. The analysis shows that the system parameters can be 

chosen such that zk[n] → 0 as n→∞ and provides a measure of the convergence rate. 

 The analysis makes use of the following standard matrix theory definitions and 

results [19]. For any N-dimensional vector v = [vj] and NN matrix A = [aj,k], the max norm 

of v and the maximum absolute row sum norm of A are defined as 

 
,11 1

1

max    and    max
N

m m n
m N m N

n

v a
   

=

= = v A , (26) 

respectively, and these definitions imply that 

 
1

Av A v . (27) 

For any two vectors v and w of equal dimension 

 −  +  +v w v w v w . (28) 

 The following system-related definitions are used by the theorems presented below:  

 
 
1

[ ]c

m Qc

r h m
h Q 

=  , (29) 

and 

 
 ( )

 ( )  ( )

12

1

2 22

1 1 2

2 1 1 2

Q

c

Q

c c

h Q K
g

h Q r h Q K

−

−

 − −
 =

− −

c
H

. (30) 

 The following theorem shows that zk[n] → 0 as n→∞ for the case where the system 

is started at time n = 0 with all registers initialized to zero. It does so by showing that ||zk[n]|| 

→ 0 as n→∞. From the definition of zk[n], this initial condition implies that zk[n] = −ak', for 

all n < 0 

Theorem 1: If 0 ≤ r < 1, 0 < g < 1, and zk[n] = −ak' for all −Q ≤ n < 0, then 

 ( )( )  ( )[ ] ' 1 1 1
m

k m k cJ K r g h Q − − −z a  (31) 

for all m ≥ 1, where Jm is the mth largest non-negative integer n for which sk[n+P−Q] ≠ 0. 

□ 
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 As implied by (25), zk[n] = zk[n−1] when n ≠ Jm for any m = 1, 2, …, so the theorem 

implies that zk[n] → 0 at least exponentially with the number of times that sk[n+P−Q] ≠ 0 

over n provided the theorem’s hypothesis is satisfied.  

 As explained below, the conditions placed on hc[n] and K by the theorem’s 

hypothesis are easy to meet in a practical design, and the dependence of the convergence on 

how frequently sk[n+P−Q] is non-zero does not present a problem in practice. 

 The theorem also gives insight into the choice of Q. The requirement that 0 ≤ r < 1 

implies that hc[Q] must be positive and that it must be the maximum value of the impulse 

response. 

Proof of Theorem 1:  

 If ak' = 0 then (25) implies that zk[n] = 0 for all n ≥ 0, so Theorem 1 holds for this 

case. The remainder of the proof considers the case of ak' ≠ 0. 

 The proof uses mathematical induction. The inductive step, which is proven shortly, 

is: for any m = 1, 2, 3, …, if 

  
[ ]

1 2
[ 1]

k

c

k

i
h Q K

i
 −

−

z

z
, (32) 

for all −Q+1 ≤ i < Jm,3 then the conditions of the theorem’s hypothesis are sufficient to 

ensure that (32) holds for i = Jm and  

 ( )( )  
[ ]

1 1 1
[ 1]

k m

c

k m

J
K r g h Q

J
 − − −

−

z

z
. (33) 

The induction base step, i.e., that (32) holds for −Q+1 ≤ i < J1, follows directly from (25), 

the max norm definition in (26), and the condition that zk[n] = −ak' for all −Q ≤ n < 0. 

Therefore, given that zk[n] = zk[n−1] when n ≥ 0 and n ≠ Jm for any m = 1, 2, …, provided 

                                                 
3 By limiting the amount that ||zk[i]|| can decrease over each iteration, (32) prevents the 

possibility of convergence with ringing, which is necessary for (31) to hold. 
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the inductive step is true, it follows from induction that (32) and (33) hold for all integers m 

≥ 1. Furthermore, recursively applying (33) when n = Jm and zk[n] = zk[n−1] when n ≠ Jm 

with zk[J1−1] = −ak' yields (31).  

 Hence, it remains to show that the inductive step is true. This is done in the 

remainder of the proof. 

 For any m = 1, 2, 3, …, let n = Jm (to simplify the notation). Then (25) reduces to 

 [ ] [ 1] [ ]k k kn n K n Q= − − −
c

z z H z   (34) 

which can be rewritten as 

 
( )

[ ] [ 1] [ 1]

[ ] [ 1]

k k k

k k

n n K n

K n Q n

= − − −

− − − −

c

c

z z H z

H z z
  (35) 

and further rewritten as 

 

( )

( )
1

1

[ ] [ 1]

[ 1] [ ] .

k k

Q

k k

m

n K n

K n m n m
−

=

= − −

− − − − −

c

c

z I H z

H z z
  (36) 

where I is the NN identity matrix. Taking the L1 norm of (36) and applying (28) multiple 

times yields 

 

( )

( )
1

1

[ ] [ 1]

[ 1] [ ]

k k

Q

k k

m

n K n

K n m n m
−

=

 − −

+ − − − −

c

c

z I H z

H z z
  (37) 

and 

 

( )

( )
1

1

[ ] [ 1]

[ 1] [ ] .

k k

Q

k k

m

n K n

K n m n m
−

=

 − −

− − − − −

c

c

z I H z

H z z
  (38) 

 Let v be any real N-dimensional column vector. Then 

    ( )  ( )  ( )1 c cK h Q K K h Q− = − + −
c c

I H v v I H v . (39) 

Applying (27) with A = hc[Q]I – Hc and (28) to (39) gives  
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    ( )  ( )  
1

1 c cK h Q K K h Q−  − + −
c c

I H v v I H v   (40) 

and  

    ( )  ( )  
1

1 c cK h Q K K h Q−  − − −
c c

I H v v I H v .  (41) 

The requirement that 0 ≤ r < 1 and (29) imply that hc[Q] is positive. This, (23), (26), and 

(29) imply that ||hc[Q]I – Hc||1 ≤ hc[Q]r, so (40) and (41) imply 

 ( )   ( )( )1 1cK h Q K r−  − −
c

I H v v  (42) 

and 

 ( )   ( )( )1 1cK h Q K r−  − +
c

I H v v . (43) 

Substituting v = zk[n−1] into (42) and (43), and the results into (37) and (38) yields 

 

  ( )( )

( )
1

1

[ ] 1 1 [ 1]

[ 1] [ ]

k c k

Q

k k

m

n h Q K r n

K n m n m
−

=

 − − −

+ − − − − c

z z

H z z
  (44) 

and 

 

  ( )( )

( )
1

1

[ ] 1 1 [ 1]

[ 1] [ ]

k c k

Q

k k

m

n h Q K r n

K n m n m
−

=

 − + −

− − − − − c

z z

H z z
  (45) 

Equation (25) for n ≥ 0 and the condition zk[n] = −ak' for −Q ≤ n < 0 imply that each 

zk[n−m−1] − zk[n−m] in (44) and (45) is either KHczk[n−m−Q] or 0. Consequently, 

 

  ( )( )
 min 1,

2 2

1

[ ] 1 1 [ 1]

[ ]

k c k

Q n

k

m

n h Q K r n

K n m Q
−

=

 − − −

+ − − c

z z

H z
  (46) 

and 

 

  ( )( )
 min 1,

2 2

1

[ ] 1 1 [ 1]

[ ] .

k c k

Q n

k

m

n h Q K r n

K n m Q
−

=

 − + −

− − − c

z z

H z
  (47) 

Applying (27) with A = K2Hc
2 to (46) and (47) yields 
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  ( )( )
 min 1,

2 2

1
1

[ ] 1 1 [ 1]

[ ]

k c k

Q n

k

m

n h Q K r n

K n m Q
−

=

 − − −

+ − −c

z z

H z
  (48) 

and 

 

  ( )( )
 min 1,

2 2

1
1

[ ] 1 1 [ 1]

[ ] .

k c k

Q n

k

m

n h Q K r n

K n m Q
−

=

 − + −

− − −c

z z

H z
  (49) 

 Recursively applying (32) to itself for i = 2, 3, 4, …n+Q, yields  

  ( )
1

[ ] [ 1] 1 2
i

k k cn i n h Q K
− +

−  − −z z . (50) 

Hence,  

 

 

 ( )
min 1, 1

1

1 1

[ ] [ 1] 1 2
Q n Q

m Q

k k c

m m

n m Q n h Q K
− −

− − +

= =

− −  − − z z . (51) 

The right side of (51) can be expanded via the geometric series formula as 

 
 ( )

   ( )

1

2 2

1 1 2

2 1 2

Q

c

Q

c c

h Q K

h Q K h Q K

−

−

− −

−
 . (52) 

Substituting (52) into (51) and the result into (48) and (49) yields 

 

  ( )

 ( )

   ( )

1

2

2 21

[ ]
1 1

[ 1]

1 1 2

2 1 2

k

c

k

Q

c

Q

c c

n
h Q K r

n

h Q K
K

h Q h Q K

−

−

 − −
−

− −
+

−
c

z

z

H

  (53) 

and 

 

  ( )

 ( )

   ( )

1

2

2 21

[ ]
1 1

[ 1]

1 1 2

2 1 2

k

c

k

Q

c

Q

c c

n
h Q K r

n

h Q K
K

h Q h Q K

−

−

 − +
−

− −
−

−
c

z

z

H

  (54) 

Given that n = Jm, substituting (30) into (53) results in (33) and substituting (30) into (54) 

results in 
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   ( )   ( )
[ ]

1 1 1
[ 1]

k m

c c

k m

J
h Q K r h Q K r g

J
 − + − −

−

z

z
.  (55) 

This finishes the proof because (55) implies that (32) with i = n is satisfied provided g < 1.  

□ 

 Theorem 2 extends the result of Theorem 1 to cover all possible initial conditions. It 

shows that while the specific form of zk[n] depends on the system’s initial conditions, the 

convergence of ||zk[n]|| is still exponential for any K and hc[n] that satisfy the hypothesis of 

Theorem 1 regardless of the initial conditions. 

Theorem 2: Provided 0 ≤ r < 1 and 0 < g < 1, zk[n] can be written as 

 
,

1

[ ] [ ]
Q

k k j

j

n n
=

= z z , (56) 

where for every Jm ≥ Q − j, 

 ( )( )  ( ), ,[ ] 1 1 1 [ 1]k j m c k j mJ K r g h Q J − − − −z z , (57) 

and for all non-negative n ≠ Jm 

 , ,[ ] [ 1]k j k jn n= −z z . (58) 

□ 

Proof: 

 Let zk,j[−1], zk,j[−2], …, zk,j[−Q] for j = 1, 2, …, Q, be 

 
,

[ ] [ 1], if  , 0,

[ ] , if  ,

[ ], if  , 0,

k k

k j

k

j j j Q j n

n j Q Q n j

Q j Q Q n

− − − −  −  


=  −   −
 − = −  

z z

z 0

z

  (59) 

It can be verified by substituting (59) into (56) that (59) is a solution of (56) for −Q ≤ n < 0. 

It follows from (25) that zk[n] for all n ≥ 0 is uniquely determined by (25) and the values of 

zk[n] for −Q ≤ n < 0. Consequently, zk[n] for all n ≥ 0 is uniquely determined by (25), (56), 

and (59). 
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 Equation (25) is a linear matrix difference equation, so, as can be seen by substituting 

(56) into (25), zk,j[n] for n ≥ 0 can be defined as  

 
 ,

,

, ,

[ 1], if 0,
[ ]

[ 1] [ ], otherwise.

k j k

k j

k j k j

n s n P Q
n

n K n Q

 − + − =
= 

− − − c

z
z

z H z
 (60) 

This with (59) completely specifies zk,j[n] for n ≥ −Q. 

 It follows from (60) and the definition of Jm that (58) holds for all non-negative n ≠ 

Jm, so it remains to show that (57) holds for all Jm ≥ Q – j. This is done below by induction. 

 For all n ≥ 0, (60) implies that zk,j[n] = 0 if zk,j[−1], zk,j[−2], …, zk,j[−Q] are all zero. 

In this case, (57) holds for all Jm ≥ Q − j, and (58) holds for all non-negative n ≠ Jm. All other 

cases are considered in the remainder of the proof. 

 As can be seen from (59), the first j values of zk,j[−1], zk,j[−2], …, zk,j[−Q] are non-

zero and equal, and the remaining Q−j values are 0. This and (60) imply that all Q values of 

zk,j[n+Q−j] for n = −Q, −Q+1, …, −2, −1 are non-zero and equal. Therefore, by exactly the 

same reasoning used for the induction base step in the proof of Theorem 1,  

  
,

,

[ ]
1 2 ,

[ 1]

k j

c

k j

i
h Q K

i
 −

−

z

z
  (61) 

for all − j+1 ≤ i < Jp. where p is the smallest integer for which Jp ≥ Q – j. This is the 

induction base step.  

 By exactly the same reasoning used in the proof of Theorem 1, the following 

inductive step holds for each zk,j[n]: for any m = p, p+1, p+2, p+3, …, if (61) holds for all 

−j+1 ≤ i < Jm then the conditions of the theorem’s hypothesis are sufficient to ensure that 

(61) holds for i = Jm and (57) holds. 

 It follows from induction that (57) holds for all Jm ≥ Q – j.  

□ 
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 Theorems 1 and 2 provide conditions for which the convergence of ||zk[n]|| is 

bounded from above by a decaying exponential sequence. The following corollary shows 

that these same conditions ensure that the convergence of ||zk[n]|| is also bounded from below 

by a decaying exponential sequence. 

Corollary: Provided 0 ≤ r < 1 and 0 < g < 1,  

 ( )( )( )  ( ), ,[ ] 1 2 1 1 [ 1]k j m c k j mJ K r g h Q J − − − − −z z , (62) 

for every Jm ≥ Q – j. 

Proof: The proof follows directly from that of Theorem 2. 

E. Noise Versus Convergence Rate Tradeoff 

 As described in Section III-C, the MNC technique causes the impulse responses of 

the adaptive filters shown in Fig. 6, i.e., hk[m] = ak,m[n] for m = 0, 1, …, N−1 and k = 1, 2, 

…, 35, to converge toward their ideal values as n → ∞. As shown in Section III-D, the 

ak,m[n] coefficients are well-modelled as random variables with means that converge to their 

ideal values as n → ∞. Thus, once the convergence transient has died out, each ak,m[n] is 

equal to its ideal value plus zero-mean noise. 

 As with most adaptive filter analyses, the analysis of Section III-D does not provide 

insight into the variance of the noise component in each ak,m[n] sequence. It does not even 

rule out the possibility that the variance could diverge as n → ∞, which, of course, would be 

catastrophic for the MNC technique. Fortunately, intuitive reasoning and extensive 

simulations run by the authors, some of which are presented in Section IV, indicate that the 

variance of the noise can be made arbitrarily small by reducing the feedback loop gain, K. 

Specifically, it is reasonable to expect from (17) that reducing K reduces the sample-to-

sample variability, and therefore the variance, of the noise component of ak,m[n]. Simulation 
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results presented in the next section bear this out. This and the results of Section III-D imply 

the usual tradeoff between convergence rate and accuracy in adaptive systems. Reducing K 

reduces the convergence error variance, but it also reduces the convergence rate. 

 At first glance it might also appear that there is a tradeoff between the convergence 

rate and how frequently non-zero values of each sk[n] sequence occur. As described in [16], 

the values of n for which sk[n] = 0 are partly dependent on the DEM DAC’s input sequence, 

so it follows from the results of Section III-D that the convergence rate of ak,m[n] has a 

dependency on the DEM DAC’s input sequence. For example, if the input sequence were 

such that sk[n] = 0 for all n, then ak,m[n] would remain constant. On the other hand, it can be 

seen from (8) that the error term in eDAC[n] corresponding to sk[n] would be zero for this 

case, so the lack of convergence would not be a problem. More generally, the less frequently 

non-zero values of each sk[n] sequence occur, the slower the convergence rate with n but the 

lower the noise introduced by the corresponding term in eDAC[n]. These two effects tend to 

cancel each other out in practice. 

 It can be seen from Figures 4 and 5 that a change in the ADC gain is mathematically 

equivalent to a change in K. Therefore, any variations in the ADC gain simply change the 

tradeoff between the convergence error variance and the convergence rate. This suggests that 

the system is not highly sensitive to ADC gain variations such as might be caused by 

temperature variations during background calibration. Indeed, simulation results performed 

by the authors during which the ADC gain was varied by up to 50% during background 

calibration showed negligible effect on MNC accuracy. 
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F. Clock Jitter and Feedback Path Noise and Nonlinearity 

 It follows from the analysis in Section III-D that the multiplication of the decimation 

filter output, r[n], by sk[n+P−Q−m] in Fig. 5 causes ͞uk,m[n] to be the signal of interest and 

uk,m[n] − ͞uk,m[n] to be noise from the perspective of estimating ak,m[n]. It can be verified by 

subtracting (19) from (16) that the signal to noise ratio associated with each ak,m[n] 

estimation is low even in the absence of any noise from the ADC. This is because r[n] = 

rideal[n] + re[n] + rc[n], where rideal[n] and all but small portions of re[n] and rc[n] contribute 

only noise terms to uk,m[n]− ͞uk,m[n] given that they are uncorrelated with sk[n+P−Q−m]. For 

example, error introduced anywhere in the system by clock jitter is generally uncorrelated 

with sk[n+P−Q−m], so it is simply another noise term in uk,m[n] − ͞uk,m[n], and it only needs 

to be on the order of 6 dB lower than the variance of the other terms in uk,m[n] − ͞uk,m[n] to 

have a negligible effect on the error variance of ak,m[n]. 

 The same is true of ADC noise provided it is uncorrelated with sk[n+P−Q−m]. 

Consequently, an ADC with a low SNR can be tolerated as demonstrated in the next section. 

In the design example a VCO-based ADC is used because the noise it introduces is 

essentially uncorrelated with its input signal, which ensures that it is uncorrelated with 

sk[n+P−Q−m]. Most other types of ΔΣ ADCs have this property too, so they could be used in 

place of the VCO-based ADC, although in most such cases a high-impedance input buffer 

would be necessary to prevent the ADC’s input network from disturbing the main DAC’s 

output waveform. 

 It is also demonstrated in the next section that an ADC with relatively high 

nonlinearity can be tolerated by the MNC technique. The reasons for this nonlinearity 

tolerance are explained in the remainder of this section.  
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 As described in Section III, the additive terms in the ADC’s input signal which are 

proportional to sk[n] for k = 1, 2, …, 35 are the terms that the MNC technique measures. In 

this sense they can be viewed as the desired terms from the perspective of the MNC 

technique’s measurement process. Each desired term consists of two additive parts: one that 

comes from eDAC[n] so it has the form sk[n]dk(t), and the other that comes from the 

correction DAC. The first part is very small relative to the ADC’s input range because dk(t) 

arises from component mismatches. The second part is similarly small by design because it 

is intended to cancel the first part over the first Nyquist band.  

 It follows that nonlinear distortion from the ADC causes the decimation filter output 

to contain numerous additive terms that are each proportional to the products of multiple 

values of (si[j])p for different integer values of i, j, and p. From the perspective of estimating 

ak,m[n], most of these terms contribute noise to uk,m[n]− ͞uk,m[n] because they get multiplied 

by sk[n+P−Q−m]. Only the terms from nonlinear distortion that are proportional to 

(sk[n+P−Q−m])p where p is 1, 3, 5, 7, …, and not also proportional to si[j] for any i ≠ k or j ≠ 

n+P−Q−m contribute an error bias to the estimate of ak,m[n]. Not only are there relatively 

few such terms, but the terms are much smaller than the corresponding desired terms even 

when the ADC is fairly nonlinear. Each such error term is proportional to one of the ADC’s 

second-or-higher-order Taylor coefficients, which is much less than unity, as well as one of 

the desired terms raised to the pth power. For p = 3, 5, 7, …, the terms are particularly small 

because the desired terms are small to begin with. 

 Furthermore, the estimate of eDAC[n] need not be highly accurate to significantly 

improve the system’s overall SNR. For example, suppose that eDAC[n] degrades the main 

DEM DAC’s peak SNR in the absence of the MNC technique by more than 6 dB. Then, 

even if the MNC technique were applied for a case where the error terms described above 
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are so severe that they cause the estimate of eDAC[n] to deviate from the actual eDAC[n] by 

50%, the MNC technique would still improve the overall SNR by as much as 6 dB.  

IV. SIMULATION RESULTS 

 

 The system shown in Fig. 4 and described above was simulated in the Cadence 

Virtuoso environment with the STMicroelectronics FDSOI 28 nm CMOS process design kit. 

Relevant additional design details and two sets of simulation results are presented in this 

Section. The first set of simulation results demonstrates the performance of the MNC 

technique after convergence. The second set demonstrates the convergence behavior of the 

MNC technique. 

 Both the main and correction DACs incorporate RZ 1-bit DACs similar to the type 

described in [20] with an RZ duration of 25% of the clock period. All operate from a 1.8 V 

supply and their combined differential outputs are loaded with a 15 Ω resistor and 14 pF 

capacitor to ground on each side. The main DAC has a differential minimum step-size of Δ 

= 2.44 μA. It has 36 1-bit DACs, 16 of which have a weight of 1024, and 20 of which have 

respective weights of 1, 1, 2, 2, 4, 4, 8, 8, …, 512, 512. The correction DAC has a 

differential minimum step-size of Δc = Δ/4 = 0.61 μA. It has 14 1-bit DACs, 7 of which have 

a weight of 64, 3 of which have a weight of 16, and 4 of which have respective weights of 1, 

2, 4, 8. 

 The static mismatch of each of the smallest 1-bit DACs in the main DAC was chosen 

as a Gaussian random variable with a standard deviation of 3.2% of the 1-bit DAC’s step-

size, Δ. That of each larger 1-bit DAC in the main DAC was chosen the same way except 

with a standard deviation of 3.2% divided by the square root of the 1-bit DAC’s weight, e.g., 
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the standard deviation of the largest 1-bit DACs is 0.1% of their 1024Δ step-size. The static 

mismatches in the correction DAC were chosen in the same fashion except starting from 

minimum-size 1-bit DACs with a standard deviation of 6.4% of their step-size, Δc. 

 The dynamic mismatches of the 1-bit DACs were implemented in two ways. A 

random Gaussian time skew with a standard deviation of 1.8 ps was applied to each 1 bit 

DAC switch driver. Additionally, for the 1-bit DAC of lower weights, the sizes of their 

current steering switches were not scaled in proportion due to minimal width limitation of 

technology, which introduces systematic dynamic mismatches. 

 The VCO-based ADC is similar to that presented in [17] except without the digital 

calibration circuitry. As in [17], each VCO consists of an open-loop voltage-to-current (V/I) 

converter followed by a current-controlled ring oscillator (ICRO). The V/I converter is a 

source degenerated differential pair, and the ICRO is a pseudo-differential ring of current-

starved inverters. Accordingly, the VCO, and, thus, the VCO-based ADC, are highly 

nonlinear. For example, simulations indicate that for a full-scale sinusoidal input signal the 

ADC’s 2nd, 3rd, and 4th harmonics are −26 dBc, −47 dBc, and −64 dBc, respectively. As 

demonstrated below, and for the reasons described in Section III-F, this nonlinearity does not 

limit the simulated system’s performance. 

 The decimation filter is implemented as a 33-tap polyphase FIR filter for low 

hardware complexity [21]. As described in Section III, hc[n] is defined as the impulse 

response from the input of the correction DAC to the output of the decimation filter. The 

values of hc[n] were extracted from circuit simulation of the correction DAC, ADC, and 

decimation filter operating together, and the gain of the decimation filter was normalized 

such that hc[Q] = 1. The extracted values were found to depend only weakly on the behavior 

of the correction DAC and ADC so they do not change significantly over process and 
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temperature variations. Substituting the extracted values of hc[n] into (23), (29), and (30) 

results in g = 0.0018 and r = 0.25, which easily satisfy the hypotheses of the theorems in 

Section III-D. 

 In the first set of simulations (shown in Figures 7, 8, and 9) all the 1-bit DAC current 

sources and switches and the ADC’s V/I converters were simulated at the transistor level. 

The remaining analog circuitry, e.g., the 1-bit DAC switch drivers and the ADC’s ICROs, as 

well as all the digital logic was simulated at the behavioral level using Verilog-AMS to 

reduce simulation time. The transistor-level portions of the simulations enhance realism, but 

significantly increase simulation time, so the simulations were run with the MNC technique 

implemented in foreground mode to minimize convergence time and, therefore, simulation 

time. 

 The DEM DAC was driven by a digital sequence that toggles back and fourth 

between −2389.5Δ and −2388.5Δ at the clock rate. This input sequence was chosen because 

it is both simple and ensures that each sk[n] sequence is non-zero at least 30% of the time. 

Two minor enhancements were applied to reduce convergence time. The first enhancement 

is the use of a few extra 1-bit DACs to cancel most of the signal component of the main 

DACs output prior to the ADC. This allowed the loop gain, K, to be increased without a 

significant noise penalty. The extra 1-bit DACs were simulated at the transistor-level with 

mismatches chosen as described above. The second enhancement is to use a 4 larger value 

of K for the first 100 μs of convergence time than used for the remaining convergence time. 

With these enhancements the total convergence time was 250 μs, which corresponds to 

approximately three weeks of simulation time. 

 Representative simulated output spectra are shown in Fig. 7 for a −1 dB full-scale 

sinusoidal input without and with the MNC technique enabled.  In each case the 14-bit input 
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signal was generated by adding a dither sequence that is white and uniformly distributed 

between −Δ/2 and Δ/2 to a floating point sinusoidal signal and quantizing the result to 14 

bits. Output spectra of the main DAC for the ideal case of no unit element mismatches are 

also shown in Fig. 7 to provide a comparison baseline. The decimation filter’s relatively 

short length resulted in aliasing that limits MNC performance in the top 16% of the first 

Nyquist band.4 This was considered a reasonable design tradeoff, so the signal band is taken 

to range from zero to 0.42 fs = 168 MHz. 

The simulation results indicate that the MNC technique increased the signal-to-noise-

and-distortion ratio (SNDR) from 66.4 dB (10.8 bits) to 81.9 dB (13.4 bits). Separate 

simulations suggest that the static mismatch error and dynamic mismatch error for this case 

contribute roughly equal SNR degradation over the first Nyquist band. 

 Additional simulated output spectra are shown in Figures 8 and 9 for different input 

signal amplitudes without and with the MNC technique enabled. In each case the results 

show the expected SNDR improvement when the MNC technique is enabled. Other 

simulations that have been run by the authors for many different input signals and random 

number seeds yield comparable results. 

 The second set of simulations model the system with the same parameters and non-

ideal behavior described above except that K was set to its final value from the start, and all 

components were simulated at the behavioral level to avoid excessive simulation time. The 

left plot in Fig. 10 shows the convergence of the elements of [ak,0[n], ak,1[n+1], …, ak,N-

1[n+N-1]]T− ak', for a representative value of k and the artificial case of no ADC quantization 

noise. It also shows the upper and lower bounds of the means of these trajectories predicted 

                                                 
4 This percentage can be arbitrarily reduced at the costs of greater hardware complexity and 

power consumption by increasing the decimation filter length. 
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by Theorem 1, i.e., ±||zk[n]||. As expected, all coefficients converge to their ideal values 

within the bounds predicted by Theorem 1. The right plot in Fig. 10 shows the 

corresponding results with ADC quantization noise included. The results suggest that the 

means of the trajectories are still within the predicted bounds even though the noise causes 

the instantaneous values to exceed the bounds from time to time. These results as well as 

those from all of many other such simulations run by the authors are in agreement with the 

theoretical results of Section III-D. 
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Figure 1 : Desired DAC behavior. 
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Figure 2 : Example DAC spectra. 
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Figure 3: General form of a DEM DAC. 
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Figure 4: Proposed MNC technique applied to a main DEM DAC. 
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Figure 5: Details of each sk[n] residue estimator. 
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Figure 6: Equivalent behavior of the sk[n] residue estimator bank. 
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Figure 7: Representative simulated output Spectra without/with MNC for a −1 dB full 

scale signal. The SNDR bandwidth is 0 to 0.42fs. 
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Figure 8: Representative simulated output Spectra without/with MNC with -4dBFS input 

tone. 
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Figure 9: Representative simulated output Spectra without/with MNC with -7dBFS input 

tone. 
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CHAPTER 2 

A 600 MS/S DAC WITH OVER 87DB SFDR AND 77DB PEAK 

SNDR ENABLED BY ADAPTIVE CANCELLATION OF 

STATIC AND DYNAMIC MISMATCH ERROR 

 

 Abstract— This paper presents a Nyquist-rate current-steering DAC that achieves a 

peak SFDR better than 87 dB and a peak SNDR better than 77 dB over a 265 MHz signal 

band. It is enabled by a fully integrated digital calibration technique that measures and 

cancels both static and dynamic mismatch error over the first Nyquist band, and various 

circuit-level techniques that mitigate the effects of jitter and ISI. 

I. INTRODUCTION 

 

 Nyquist-rate DACs with continuous-time output waveforms are widely used in 

moderate-to-high-bandwidth applications such as wireless base stations. Such DACs 

generate a continuous-time analog output pulse once every clock period. Ideally, the 

amplitude of each pulse is scaled by the value of the DAC’s input sequence during its clock 

period, but otherwise the pulses have identical shapes. 

 Unfortunately, non-ideal circuit behavior causes input-dependent deviations of both 

the amplitude and shape of each output pulse, which introduce nonlinear error in the DAC’s 

output waveform. The portion of the error from pulse amplitude deviations is called static 
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error, and that from pulse shape deviations is called dynamic error. Both types of error 

significantly limit DAC performance in practice. In many Nyquist-rate DACs, clock skew 

and mismatches among nominally identical DAC components are the dominant causes of 

these errors. Clock skew causes dynamic error and component mismatches cause both static 

and dynamic error. 

 Several previously published DACs incorporate methods to mitigate error from clock 

skew and component mismatches. These methods include randomization techniques such as 

dynamic element matching (DEM) and digital random return-to-zero (DRRZ), dynamic 

mismatch mapping (DMM), and various mixed-signal calibration techniques [1-15]. 

Randomization techniques cause static error and, in some cases, dynamic error to be 

wideband noise instead of harmonic distortion. Hence, they improve DAC linearity, but at 

the expense of significantly reduced signal-to-noise ratio (SNR). DMM is a foreground 

calibration technique that reorders the usage pattern of nominally identical components to 

reduce integral nonlinearity (INL). While beneficial, it does not improve differential 

nonlinearity (DNL) and it tends to be limited by compromises made between improving 

static and dynamic error. Previously published on-chip mixed-signal calibration techniques 

have been demonstrated that suppress static error, but not dynamic error. 

 A mixed-signal calibration technique called mismatch noise cancellation (MNC) was 

recently proposed in [16] that adaptively measures and cancels both static and dynamic error 

from clock skew and component mismatches over the DAC’s signal band. This paper 

presents the first DAC IC implemented with MNC. With MNC enabled, the DAC’s 

measured spurious-free dynamic range (SFDR) is better than 87 dB and its peak signal-to-

noise-and-distortion ratio (SNDR) is better than 77 dB over a 265 MHz signal band. With 

MNC disabled, the SFDR and SNDR drop by more than 24 dB and 20 dB, respectively. 
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Additional measured results further demonstrate that MNC cancels dynamic error as well as 

static error, as predicted by theory. As [16] presents a theoretical analysis of the MNC 

technique, this paper focusses on its practical implementation details and presents several 

circuit-level techniques incorporated in the DAC to reduce jitter and inter-symbol 

interference (ISI). 

II. SIGNAL PROCESSING OVERVIEW 

 

 As shown in Fig. 11, the prototype IC consists of a 600 MHz 14-bit main DAC, and 

an MNC feedback path that measures and cancels the main DAC’s signal band error from 

clock skew and component mismatches. The feedback path consists of a 3 GHz VCO-based 

ADC, a lowpass decimation filter, a digital error estimator block, and a 600 MHz 9-bit 

correction DAC. 

 The sampling theorem implies that no matter what error is introduced by the main 

DAC, there must exist a correction DAC input sequence, xc[n], that would result in a 

correction DAC output waveform, yc(t), which would cancel the error over the first Nyquist 

band up to the accuracy of the correction DAC. The correction DAC’s minimum step-size 

must be small enough that error from the quantization of xc[n] is well below the post-

cancellation target noise and distortion floor of the main DAC, and the correction DAC’s 

output range must be large enough to cancel the main DAC’s error components. As 

explained in Section III-B, the correction DAC’s resolution of 9-bits and step-size equal to a 

quarter of that of the main DAC are sufficient for this purpose. 

 The main DAC’s static and dynamic output error from clock skew and component 

mismatches has the form 
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where each dk(t) is a 600 MHz periodic waveform that depends on the main DAC’s clock 

skew and component mismatches but not on the DAC’s input sequence, and the sk[n] 

sequences are generated explicitly within the DEM encoder so they are known to the system 

a priori [6,17]. The sk[n] sequences each take on values of −1, 0, and 1, and when DEM is 

enabled they are zero-mean, white pseudo-random sequences that are uncorrelated with the 

main DAC’s input sequence and each other. 

 The objective of the MNC feedback loop is to make yc(t) well-approximate eDAC(t) 

over the signal band. To do this, the MNC feedback loop must measure eDAC(t) over the first 

Nyquist band, which requires a digitized version of the main DAC’s output waveform that 

has been filtered to include only the first Nyquist band. The oversampling VCO-based ADC 

and decimation filter in Fig. 11 perform this operation, so r[n] contains a component equal 

to the portion of eDAC(t) restricted to the first Nyquist band that is left over from imperfect 

MNC cancellation. 

 Ideally, once the MNC feedback loop converges, r[n] becomes free of eDAC(t), in 

which case it is uncorrelated with all of the sk[n] sequences. Otherwise, r[n] contains a 

residual component of eDAC(t) restricted to the first Nyquist band, so it is correlated with at 

least some of the sk[n] sequences. Furthermore, the Nyquist-band filtering has an impulse 

response that is many 600 MHz samples long, so prior to full MNC convergence r[n] is 

correlated with multiple time-shifted versions of the sk[n] sequences. 

 The MNC technique exploits these properties of r[n]. As shown in Fig. 12, the digital 

error estimator block in the MNC feedback loop consists of 35 sk[n] residue estimators, each 

of which correlates r[n] with 9 shifted versions of one of the sk[n] sequences. Given that 
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each sk[n] sequence is restricted to values of −1, 0, and 1, each correlation is performed by 

multiplying r[n] by a −1, 0, or 1 during the nth 600 MHz clock cycle. The result is 

multiplied by a small loop gain constant, K = 6·10−7, and accumulated. As proven in [16], 

the feedback loop causes the accumulator outputs to increase or decrease as necessary for 

yc(t) to well-approximate eDAC(t) over the first Nyquist band. 

 Even though eDAC(t) is a broadband waveform which depends on the main DAC’s 

input sequence, x[n], the dk(t) waveforms in (63) are periodic and independent of x[n] [17]. 

They depend only on component mismatches and clock skew within the main DAC, so they 

do not change significantly over time. The MNC feedback loop causes the 315 accumulator 

outputs in the digital error estimator to converge to coefficients which depend only on the 

dk(t) waveforms. Thus, like the dk(t) waveforms these coefficients depend only on the main 

DAC’s component mismatches and clock skew. 

 In principle, the MNC technique can perform foreground or background calibration 

with only minor differences, but in the prototype IC it was limited to foreground calibration 

to simplify the project. During foreground calibration, the MNC feedback loop measures 315 

coefficients described above. During normal DAC operation, the coefficients that were 

measured during foreground calibration continue to be used to generate yc(t), and thereby 

continue to cancel the error components. 

III. CIRCUIT IMPLEMENTATION DETAILS   

 

 The IC was implemented in the GlobalFoundries 22 nm FDSOI process. In addition 

to the blocks shown in Fig. 11 and Fig. 12, the IC contains a direct digital synthesizer 

(DDS), a serial peripheral interface (SPI), full ESD protection circuitry, and miscellaneous 
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control and test circuitry. As shown in Fig. 13, an off-chip 1:1 balun converts the IC’s 

differential output signal to a non-differential signal which is used during testing to drive the 

50 Ω input of a laboratory signal analyzer. 

A. Main DAC  

 The 14-bit main DAC consists of the DEM encoder and the subsequent 36 current-

steering 1-bit DACs shown in Fig. 13. The DEM encoder [5] converts the 14-bit x[n] 

sequence into 36 1-bit sequences, each of which drives a 1-bit DAC with weight Ki. For i = 

1, 2, …, 20 the values of Ki are 1, 1, 2, 2, 4, 4, …, 512, 512, respectively, and for i = 21, 22, 

…, 36, each Ki has a value of 1024. The main DAC’s minimum current step averaged over a 

600 MHz clock interval, Δ, is 1.56 µA. 

 Non-return-to-zero (NRZ) 1-bit DACs are a common design choice for current-

steering DACs. In the context of the main DAC, an ideal ith NRZ 1-bit DAC would steer 

KiΔ amperes of current to either its top output or its bottom output during the nth clock 

period depending on whether its input bit during that clock period is high or low, 

respectively. Unfortunately, inevitable asymmetries within any practical NRZ 1-bit DAC in 

conjunction with parasitic capacitances cause the 1-bit DAC’s output waveform to depend 

nonlinearly on its input bit during at least one prior clock period in addition to that of the 

current clock period. The resulting ISI causes even DACs that incorporate DEM to introduce 

harmonic distortion [17]. 

 Simulations suggest that ISI from NRZ 1-bit DACs would reduce the achievable 

Nyquist band SFDR below the project’s target of better than 85 dB.5 To circumvent this 

problem, the IC incorporates return-to-zero (RZ) 1-bit DACs, each of which is reset to a 
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data-independent state every clock period to make its output waveform independent of its 

input sequence during prior clock periods. In principle, this eliminates ISI provided all 

analog and digital circuit blocks that make up the 1-bit DACs and that control them are fully 

reset each period. However, conventional RZ 1-bit DACs are more sensitive to clock jitter 

than their NRZ counterparts. As explained in the remainder of this subsection, various new 

circuit techniques are implemented in the IC to mitigate this issue while ensuring that ISI 

does not limit performance. 

 Fig. 14 shows the high-level structure and timing of each 1-bit DAC and its interface 

to the automatically placed and routed (P/R) digital block. Each 1-bit DAC is implemented 

as a parallel combination of two current-steering RZ 1-bit sub-DACs to mitigate the effect of 

clock jitter as explained shortly. The sub-DACs each operate on the same input bit sequence, 

and their outputs are connected so their output currents add. Each is reset for 20% of the 

clock period and generates output current for 80% of the clock period.6 The only difference 

between the two sub-DACs is that they are reset at different times: sub-DAC 1 is reset 

during the first 20% of each clock period and sub-DAC 2 is reset during the second 20% of 

each clock period as shown in Fig. 14. Error from mismatches and clock skew between the 

sub-DACs are cancelled by the MNC technique so they are not a significant issue in this 

design. 

 The average output current magnitude from the ith 1-bit DAC is Ii = KiΔ, so each of 

the two RZ sub-DACs has an output current magnitude of 0.625Ii during its 80% data phase. 

A single RZ 1-bit DAC with an 80% data phase output current magnitude of 1.25Ii or a 

                                                                                                                                                      
5 IC measurements further support this conclusion: when the 1-bit DACs are configured to 

run in NRZ mode (via a debug feature of the IC) the measured SFDR drops by 10 dB.  
6  The commonly used alternative of interlacing 50% RZ sub-DACs was not used here 

because of its high current consumption [18]. 
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single NRZ 1-bit DAC with an output current magnitude of Ii are each comparable 

alternative 1-bit DACs in that they too have average output current magnitudes of Ii. Of 

these comparable alternatives, the single RZ 1-bit DAC is significantly more sensitive to 

clock jitter than the single NRZ 1-bit DAC, because the former has two output current 

transitions each clock period whereas the latter has at most one output current transition each 

clock period and no transition if the input bit remains unchanged. 

 The timing of the 1-bit DAC in Fig. 14 is such that each rising edge of output current 

from sub-DAC 1 aligns with a falling edge of output current from sub-DAC 2. The sub-

DACs share most of their timing circuitry, so their jitter is highly correlated. Hence, most of 

the error from clock jitter at the aligned edges cancels when the present and prior 1-bit DAC 

input bits are equal, and add in amplitude otherwise. It follows that the error from jitter 

introduced by the pairs of aligned edges has the same form as the total error from jitter of the 

comparable single NRZ 1-bit DAC, but with |20log(0.625)| = 4 dB less power. Each of the 

non-aligned edges has half the transition magnitude of each edge from the single comparable 

RZ 1-bit DAC, so the combined error from clock jitter introduced by the two non-aligned 

sub-DAC edges has the same form as that of the single comparable RZ 1-bit DAC, but with 

6 dB less power. Hence, the error from jitter of the 1-bit DAC of Fig. 14 contains a 

component similar to that from an NRZ 1-bit DAC and a component similar to that from an 

RZ 1-bit DAC. As the former can be much smaller than the latter for broadband input 

sequences, it follows that the total error from jitter is up to 6 dB lower than that of the 

comparable single RZ 1-bit DAC. 

 As shown in Fig. 15, each sub-DAC’s current-steering cell consists of two cascode 

current sources, each of which is steered to one of the two sub-DAC outputs by a differential 

pair controlled by the switch driver. During the data phase, the differential pairs steer both 
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currents to the I+ output if the input bit, ci[n], is high and to the I− output if ci[n] is low. 

During the RZ phase, they steer the currents to opposite outputs so the differential output 

current is zero. In contrast to a conventional RZ 1-bit DAC, which steers a single cascode 

current source to one of the two outputs during the data phase and to a dummy load during 

the RZ phase, the common mode output current does not change during the RZ phase so 

unwanted large output slewing transients are avoided. Simulations indicate that the largest-

weight 1-bit DACs have a minimum output impedance of 30 kΩ across the DAC’s signal 

band, which is sufficient to prevent input code dependent impedance variations from 

limiting performance. 

 In addition to controlling the current-steering cell as described above, the switch 

driver converts from the input sequence’s 0.8 V power supply domain to the current-steering 

cell’s 1.8 V power supply domain, and its design ensures data-independent switching 

current. As shown in Fig. 16, the switch driver circuit consists of separate signal paths for 

the complementary input bit sequences ci[n] and ͞ci[n], each of which consists of first and 

second latch stages that operate from 0.8 V and 1.8 V power supplies, respectively. The 

latches in both stages are briefly reset each DAC clock period, so the two-path design 

ensures that the same numbers of positive-going and negative-going logic transitions occur 

each DAC clock period regardless of ci[n]. This ensures that the current drawn by the switch 

driver is data-independent, thereby preventing data-dependent supply modulation which 

would be a source of ISI and nonlinear distortion. 

 The interface circuitry shown in Fig. 14 generates retimed complementary versions 

of the DEM encoder’s ith output bit and includes an additional ISI-mitigation technique. It 

resets the complementary outputs to zero just prior to updating them with their next data 
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values so as to mitigate ISI that would otherwise result from data-dependent coupling from 

the digital to analog supply domains. 

B. Correction DAC 

 The quantization step-size of the correction DAC, ΔC, is a quarter that of the main 

DAC, i.e., 0.39 µA, because behavioral simulations during the design phase suggested that 

error from quantizing the correction DAC’s input sequence to this step-size is well below the 

post-cancellation target noise and distortion floor of the main DAC. Circuit simulations 

further suggested: 1) that 9-bits of resolution is sufficient, because the main DAC’s error 

spans only small fraction of its total output range, and 2) that these step-size and resolution 

values are sufficiently small, even without DEM, calibration, or the sub-DAC interleaving 

technique, that the correction DAC’s error is well below the post-cancellation target noise 

and distortion floor. 

 Thus, the correction DAC consists of the non-DEM encoder and the subsequent 14 

current-steering 1-bit DACs shown in Fig. 13. The non-DEM encoder converts the 

correction DAC’s 9-bit digital input sequence into 14 1-bit sequences, each of which drives 

a 1-bit DAC with weight Li. For i = 1, 2, 3, and 4, the values of Li are 1, 2, 4, and 8, 

respectively, for i = 5, 6, and 7, each Li has a value of 16, and for i = 8, 9, …, 14, each Li has 

a value of 64. The 1-bit DACs are identical to those of the main DAC, except without the 

bottom sub-DAC shown in Fig. 14. 

C. VCO-based ADC 

 It was explained heuristically in [16], but not proven, that the MNC technique is 

highly insensitive to ADC nonlinearity and noise. An objective of this project is to provide 

experimental support of this claim. The implemented ADC does not include calibration or 
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special linearization techniques, so it is quite nonlinear: circuit simulations indicate that its 

2nd, 3rd, and 4th output harmonics are −26 dBc, −47 dBc, and −64 dBc, respectively, for a 

full-scale sinusoidal input. Furthermore, it has only first-order quantization noise shaping 

and an oversampling ratio of only 5, so its noise floor is high. Nevertheless, the experimental 

results presented in Section IV suggest that the ADC’s error negligibly affects the MNC 

coefficients.   

 The ADC requirements are even further relaxed during foreground calibration, 

because in this case the ADC’s input range need only be a fraction of the main DAC’s full-

scale output range. Specifically, the main DAC’s input during foreground calibration is 

toggled back and forth between −2389.5Δ  and −2388.5Δ. In principle, any other input 

sequence could have been used, but this choice has the benefit of a very small dynamic rage 

and it ensures rapid MNC loop convergence because it results in sk[n] sequences with a low 

percentage of zero values. With this choice, the ADC’s differential input range of only 20 

mV is sufficient to accommodate the maximum expected error from component mismatches 

and clock skew. 

 A strict requirement, however, is that the digital error estimator input must contain 

negligible aliased power from outside the DAC’s first Nyquist band. This is why an 

oversampling ADC is required, which is the MNC technique’s primary downside. A VCO-

based ADC is used in the IC because its inherent lowpass sinc filtering helps suppress the 

input signal above the DAC’s first Nyquist band [19], which made it possible to use the 

relatively low oversampling ratio of 5. Also its design is particularly simple given that the 

MNC technique’s insensitivity to nonlinearity makes ADC calibration or other linearization 

techniques unnecessary. 
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 As shown in Fig. 17, the VCO-based ADC includes a differential voltage-to-current 

(V/I) converter, each output of which is followed by a 15-element pseudo-differential current 

controlled ring oscillator (ICRO), a ring sampler, a phase decoder, and a 1 – z−1 digital 

differentiator block. The high level structure is similar to that presented in [19], except it 

consists of one instead of two signal paths, and it does not include dither or digital 

calibration because of the relaxed linearity and noise requirements. 

 The V/I converter (Fig. 18) generates currents IICRO+ and IICRO− that drive the ICROs. 

As in [19], each ICRO consists of two pseudo-differential rings, each made up of 15 current-

starved inverters. The V/I converter’s input common-mode voltage is that of the IC’s output 

signal, i.e., 1.8 V, and its common-mode output current is 1 mA. The two PMOS cascode 

bias voltages, Vbp1 and Vbp2, are generated separately to reduce kick-back from the second 

stage to the first stage, and Vbp2 is set to the 1.8 V during start-up while the other V/I 

converter nodes settle to protect the ICRO’s thin-oxide devices from start-up transients. The 

V/I converter’s DC gain is programmable but was set to its nominal value of 40 mS during 

testing. Its −3 dB bandwidth is slightly above the Nyquist frequency of the DAC.  

 The ring sampler, phase decoder, 1 − z−1 block, are similar to those described in [19]. 

They are not implemented as part of the P/R digital block because their data rate is 3 GHz 

and the P/R digital block is clocked at 600 MHz. The decimation filter is implemented in the 

P/R digital block, so its input data must have a 600 MHz sample-rate. This is achieved by a 

digital interface circuit close to the ADC which parallelizes the six 3 Gb/s ADC output lines 

to thirty 600 Mb/s lines.  
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D. Clock Generator 

 The IC is externally clocked by a single 3 GHz differential clock signal, from which 

the on-chip clock generator derives all the IC’s internal clocks. The clock generator consists 

of the three-stage differential to single-ended amplifier and the 1.2 V to 0.8 V level shifter 

shown in Fig. 19, followed by a clock divider that generates several 600 MHz clock signals 

including those shown in Fig. 14. The amplifier operates from a 1.2 V supply and generates 

a nearly rail-to-rail squared-up version of the 3 GHz clock. The third stage is a 

transimpedance amplifier which provides a signal-dependent load to the second stage that 

limits the second-stage’s swing sufficiently to prevent its transistors from entering triode 

operation. The level shifter generates the ADC’s 3 GHz clock signal which is also the input 

to the clock divider. 

 To achieve the post-cancellation DAC noise performance target, the main DAC’s 

critical 600 MHz clock paths must have RMS jitter values of less than 80 fs. The clock 

generator was designed such that the simulated RMS jitter values of these clock paths are 

below 50 fs to leave margin. The noise performance of the three-stage amplifier is the most 

critical component of these clock paths. Accordingly, the amplifier dissipates approximately 

80% of the clock generator’s total power dissipation.  

E. P/R Digital Block 

The P/R digital block contains the main DAC’s DEM encoder, the correction DAC’s 

non-DEM encoder, the lowpass decimation filter, the MNC digital error estimator, the DDS, 

the SPI, a pseudo-random sequence generator block, and miscellaneous control and test 

logic. It consists of approximately 170,000 standard logic cells, occupies an area of 700 μm 
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× 250 μm, and operates from a 0.8 V digital power supply. All registers except those in the 

SPI are clocked at 600 MHz. 

 The DDS provides the main DAC’s 14-bit input sequence. It is capable of generating 

one-tone and two-tone test signals with frequencies at arbitrary integer multiples of 600/512 

MHz, and amplitudes of 0, −6, and −12 dBFS. The DDS internally generates an 18-bit 

version of the desired sequence and performs dithered requantization to obtain the final 14-

bit sequence to suppress spurious tones in the quantization error. 

 The lowpass decimation filter is implemented as a 33-tap digital poly-phase finite 

impulse response (FIR) filter [20]. Dithered requantization is subsequently performed to 

reduce its 16-bit output sequence to a 4-bit sequence prior to the digital error estimator to 

save area. 

F. Mixed-Signal Isolation and Process-Specific Details 

 The FDSOI process provides good isolation of the IC’s transistors from substrate 

noise. Additionally, various measures were applied to reduce coupling of digital noise into 

sensitive analog circuitry. The P/R digital block is surrounded by a 2 nF ring of on-chip 

MOS power supply decoupling capacitors and substrate connections, and is separated from 

the analog circuit blocks by a 250 µm BFMOAT isolation region with reduced substrate 

doping. All analog transistors reside in triple N-wells, and the analog power supplies are 

each decoupled with 200 pF on-chip MOS capacitors. On-chip ground planes are used to 

shield critical clock signals, and the clock generator is placed as far as possible from the P/R 

digital block. Multiple parallel package bond wires are used to reduce the inductance of 

critical power supplies. 
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 Several blocks within the IC take advantage of the FDSOI IC technology. The back 

gates of all 0.8 V pMOS transistors in the P/R digital logic, 1-bit DACs, ADC, and interface 

circuitry are tied to ground to reduce threshold voltages and increased speed. The back gates 

of the pull-down nMOS transistors in the second latch stages of the 1-bit DAC switch 

drivers are tied to 1.8 V to increase pull-down strength. 

IV. MEASUREMENT RESULTS  

 

 Fig. 20 shows an annotated IC die photograph. The die dimensions are 2.5 mm by 2 

mm, and the IC’s active area is 1.15 mm2. The IC is packaged in a 36-pin QFN package with 

an exposed paddle to which all the IC’s ground pads are down-bonded. The package is 

mounted to a printed circuit board (PCB) via an Ironwood GHz elastomer QFN socket. 

The PCB includes clock input and DAC output signal conditioning circuitry, low-

noise LDO regulators, and a microcontroller for SPI communication. A Rohde & Schwarz 

SMA100A signal generator was used to provide a single-ended 3 GHz clock signal which 

was passively bandpass filtered to suppress noise and harmonics prior to the PCB. The clock 

signal is converted to differential form by a PCB balun, the outputs of which are AC coupled 

to 50 Ω impedance-controlled PCB traces. Series 5 Ω resistors between the clock traces and 

the IC’s input clock pins mitigate clock ringing associated with the package bond wire 

inductance. A PCB balun (Fig. 13) provides a non-differential version of the DAC output, 

which was measured with a Keysight N9030B PXA signal analyzer. 

 To fully characterize continuous-time DAC performance, it is necessary to measure 

both noise and nonlinear distortion over the signal band relative to the signal power. Yet 

many DAC publications report limited or no noise measurements, and most report 
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measurements of SFDR―the dB power difference between the DAC output’s fundamental 

tone and its largest spurious tone for a full-scale sinusoidal input signal―as the sole means 

of quantifying nonlinear distortion. Unfortunately, SFDR can be misleading because the 

number of spurious tones changes with input frequency, and as this number increases the 

SFDR tends to decrease even when the total distortion power remains relatively constant. To 

avoid these limitations, the IC was extensively tested to measure several values of not only 

SFDR, but also SNDR, noise spectral density (NSD), and noise and distortion spectral 

density (NDSD) as described below. 

 Each measurement was taken over a signal band that extends from 1 MHz to 265 

MHz. The DC to 1 MHz band was excluded because it is suppressed by the output balun, 

and the upper 35 MHz of the first Nyquist band was excluded because aliasing from the 

decimation filter’s transition band reduces MNC accuracy over this band. This latter 

exclusion band represents a design tradeoff. It can be reduced by increasing the digital 

filter’s complexity and, therefore, power consumption. Alternatively, the filter complexity 

can be kept relatively low, e.g., in the current design it is just a 33-tap FIR filter, but the 

DAC’s sample-rate can be increased slightly to compensate for the exclusion band. In lieu of 

other constrains, the best choice in practice is that which minimizes power dissipation for a 

given process. 

 Each measurement was made with and without DEM enabled during normal DAC 

operation. The main DAC’s error waveform is given by (63) even when DEM is disabled, 

but in this case the sk[n] sequences are nonlinear deterministic functions of x[n]. For correct 

MNC coefficient convergence, the sk[n] sequences must be uncorrelated with each other and 

with x[n], so DEM is required during foreground calibration. However, once the coefficients 

have been measured, DEM is optional; error cancellation works regardless of whether DEM 
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is enabled or disabled. With MNC enabled, DEM offers a tradeoff during normal DAC 

operation: it slightly increases the signal-band noise floor and overall power dissipation, but 

it slightly reduces harmonic distortion over the signal band and greatly reduces it outside of 

the signal band. 

 Fig. 21 shows representative measured output power spectra over the first two 

Nyquist bands for a full-scale 249.6 MHz single-tone DAC input sequence. The data were 

measured with a signal analyzer resolution bandwidth of 100 Hz, exported to files, and 

plotted via software for improved readability. Without MNC and DEM, the signal-band 

SFDR is 63.7 dB, with MNC but without DEM the signal-band SFDR improves to 86.4 dB, 

and with MNC and DEM the signal-band SFDR slightly improves further to 87.6 dB. As 

shown in Fig. 22, these SFDR results are representative of those measured for full-scale 

single-tone and two-tone input signals throughout the signal band. 

 The post-cancellation noise floor of the DAC is below that of the signal analyzer, so 

to measure the DAC’s noise floor it was necessary to use the signal analyzer’s internal 

preamplifier. To avoid being limited by the preamplifier’s nonlinearity it was further 

necessary to use passive notch and lowpass filters prior to the signal analyzer to suppress the 

signal component of DAC’s output waveform and limit the spectrum to the first Nyquist 

band.  

 Fig. 23 shows representative DAC output power spectra measured with the passive 

filters and preamplification described above for a 116 MHz full-scale sinusoidal input signal. 

The data were measured with the signal analyzer’s resolution bandwidth set to 30 kHz, the 

number of frequency trace points set to 1001, and the RMS average detector enabled. As 

indicated in the figure, enabling MNC reduced the noise by over 20 dB across the 265 MHz 

signal band.  
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 Table 1 presents values of SNDR, NDSD, and NSD calculated from measured power 

spectra for full-scale single-tone input signals with frequencies of 50.4 MHz, 116 MHz, and 

179.3 MHz. The values were calculated from power spectrum plots like those shown in Fig. 

23. Each of the three input frequencies was chosen such that the corresponding notch filter 

did not hide significant spurious tones, and for each measurement the DAC noise over the 

notch filter’s 30 MHz stop-band was estimated by extrapolation. For the SNDR and NDSD 

measurements, the total noise and distortion was calculated by integrating the measured 

power spectrum from 1 MHz to 265 MHz and then adding the extrapolated noise over the 30 

MHz notch filter stop-band. Each NDSD value is this noise and distortion value divided by 

the integration bandwidth. Each NSD value is equal to the corresponding NDSD value 

minus the measured power of each non-negligible signal-band spurious tone. 

 Extensive noise measurements performed by the authors suggest that the DAC’s 

noise floor is nearly independent of the input signal frequency. The slight drop in SNDR 

with frequency evident in Table 1 occurs mainly because of the sinc roll-off imposed on the 

input signal by the 1-bit DAC hold operations. These slight drops with frequency also occur 

for the NDSD and NSD values in Table 1 because the values are specified in units of 

dBc/Hz. 

 Measurements were also performed to assess the IC’s ISI mitigation techniques. By 

enabling and disabling partial-interleaving and the interface and switch driver ISI mitigation 

techniques for various test conditions, it was determined that the techniques together prevent 

an SNDR degradation of about 1.7 dB, with the partial interleaving technique contributing 

roughly half of this benefit. Configuring the 1-bit DACs to operate in NRZ mode with DEM 

and MNC enabled reduced the measured SFDR by about 10 dB. 
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 The IC includes a test feature that can be enabled to intentionally delay the clock 

signals that drive just two of the main DAC’s 256-weight 1-bit DACs by approximately 25 

ps. Letting MNC converge in foreground with this feature disabled, and then enabling it 

during normal DAC operation with a 0 dBFS 116 MHz input signal caused the measured 

SNDR to degrade from 77.3 dB to 63.0 dB. Given that enabling the feature only introduces 

clock skew, this 14.3 dB of degradation must be entirely from dynamic mismatch error. 

Rerunning foreground calibration with the clock delays in place and applying the same 0 

dBFS 116 MHz input signal during normal DAC operation caused the measured SNDR to 

improve to 76.8 dB. This provides experimental confirmation of the theoretical result 

presented in [16] that the MNC technique effectively cancels dynamic mismatch error.  

 Fig. 24 shows a representative subset of the 315 MNC coefficient values versus time 

measured during foreground calibration. The values were obtained by periodically freezing 

MNC and reading the coefficients from the s11[n] residue estimator (Fig. 12) via the SPI 

during foreground calibration. The observed coefficient convergence rate is consistent with 

that predicted by the analysis presented in [16]. Increasing the MNC loop gain, K, reduces 

the convergence time at the expense of accuracy. For the measurements reported in this 

paper, the loop gain was set conservatively small. Additional measurements performed by 

the authors indicate that increasing K by a factor of 16 reduced the convergence time to 2.5 

ms while degrading the SNDR by less than 0.5 dB. 

 All of the measurements presented above were made from a single randomly-selected 

copy of the IC. Fig. 25 shows representative SFDR and SNDR values measured from this 

and five other randomly-selected copies of the IC with MNC enabled. As expected, with 

MNC enabled the performance differences among the ICs are small: less than a dB for 

SNDR and less than 2 dB for SFDR. 
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 Table 2 summarizes the measured performance described above along with the 

available corresponding performance of previously published state-of-the-art DACs. 

Excluding the DAC presented in [15], the DAC reported in this paper achieves at least 7 dB 

better SFDR than the other DACs, it achieves at least 12 dB better NSD than the other 

DACs that incorporate randomization to scramble mismatches (i.e., DEM and DRRZ) 

without calibration, and it achieves at least 3 dB better NSD than those of the remaining 

DACs. However, it does not outperform the DAC presented in [15]. As this DAC uses NRZ 

1-bit DACs, DEM, and calibration that only addresses static error from component 

mismatches, its astonishingly good performance suggests that special circuit design and 

layout techniques not described in [15] must have been utilized to reduce ISI and dynamic 

mismatch error. 
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Figure 11: High-level signal processing block diagram of the prototype IC. 
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Figure 12: a) High-level structure of the digital error estimator, and b) signal processing 

details of each sk[n] error estimator. 
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Figure 13: Circuit-level block diagram of the prototype IC. 
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Figure 14: High-level diagram and timing of the ith 1-bit DAC and digital interface. 
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Figure 15: Circuit diagram of the ith RZ 1-bit sub-DAC. 
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Figure 16: Circuit diagram of the ith 1-bit DAC’s switch driver. 
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Figure 17: Block diagram of the VCO-based ADC. 
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Figure 18: Circuit diagram of the V/I converter. 
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Figure 19: Simplified diagram of the 3 GHz portion of the clock generator. 
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Figure 20: Die photograph. 
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Figure 21: Measured output spectra for a full-scale 249.6 MHz input signal. 
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Figure 22: Measured SFDR versus frequency for one-tone input signals and two-tone 

input signals separated by 3.52 MHz. 
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Figure 23:  Measured output noise and distortion spectra. 
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Figure 24: Representative plot of measured coefficient values versus time. 
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Figure 25: Measured SFDR and SNDR values across 6 parts. 
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TABLES 

Table 1: NSD/NDSD/SNDR Measurement Results 

 

 

 

Table 2: Performance Table and Comparison to Prior State-of-the-Art DACs 

 

 

 

 

 

 

 



 

71 

 

REFERENCES 

1. Y. Cong and R. Geiger, “A 1.5 V 14-bit 100 MSPS self-calibrated DAC,” IEEE 

Journal of Solid-State Circuits, vol. 38, no.12, pp. 2051–2060, Dec. 2003. 

2. M. Clara, W. Klatzer, B. Seger, A. Di Giandomenico, and L. Gori, “A 1.5V 200MS/s 

13b  25mW DAC with Randomized Nested Background Calibration in 0.13 µm 

CMOS,” IEEE International Solid State Circuits Conference, February 2007. 

3. Q. Huang, P. A. Francese, C. Martelli, and J. Nielsen,“A 200Ms/s 14b 97 mW DAC 

in 0.18µm CMOS,” IEEE International Solid State Circuits Conference, February 

2004. 

4. B. Catteau, P. Rombouts, J. Raman, and L. Weyten, “An on-line calibra- tion 

technique for mismatch errors in high-speed DACs,” IEEE Trans. Circuits Syst.–I, 

Reg. Papers, vol. 55, no. 7, pp. 1873–1883, Aug. 2008.  

5. K. L. Chan, J. Zhu, and I. Galton, “Dynamic Element Matching to Prevent Nonlinear 

Distortion From Pulse-Shape Mismatches in High-Resolution DACs,” IEEE Journal 

of Solid-State Circuits, vol. 43, no. 9, pp. 2067-2078, September 2008. 

6. K. L. Chan, N. Rakuljic, I. Galton, “Segmented Dynamic Element Matching for 

High-Resolution Digital-to-Analog Conversion,” IEEE Transactions on Circuits and 

Systems I: Regular Papers, vol. 55, no. 11, pp. 3383-3392, December 2008. 

7. W.-T. Lin, H.-Y. Huang, and T.-H. Kuo, “A 12-bit 40 nm DAC achieving SFDR > 

70 dB at 1.6 GS/s and IMD < -61 dB at 2.8 GS/s with DEMDRZ technique,” IEEE 

Journal of Solid-State Circuits, vol. 49, no. 3, pp. 708–717, March 2014. 

8. Y. Tang, J. Briaire, K. Doris, R. van Veldhoven, P. van Beek, H. Hegt, and A.van 

Roermund, “A 14 bit 200 MS/s DAC With SFDR >78 dBc, IM3 < −83 dBc and NSD 

< −163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch 

Mapping,” IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1371-1381, June 

2011. 

9. S. Su and M. S.-W. Chen, “A 12-bit 2 GS/s dual-rate hybrid DAC with pulse-error 

pre-distortion and in-band noise cancellation achieving > 74 dBc SFDR and < −80 

dBc IM3 up to 1 GHz in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 

51, no. 12, pp. 2963–2978, December 2016. 

10. S. Su, T.-I. Tsai, P. K. Sharma, and M. S.-W. Chen, “A 12 bit 1 GS/s dual-rate 

hybrid DAC with an 8 GS/s unrolled pipeline delta-sigma modulator achieving 75 dB 

SFDR over the Nyquist band,” IEEE Journal of Solid-State Circuits, vol. 50, no. 4, 

pp. 896–907, April 2015. 

11. X. Li, Q. Wei, Z. Xu, J. Liu, H. Wang, and H. Yang, “A 14 bit 500 MS/s CMOS 

DAC using complementary switched current sources and time- relaxed interleaving 



 

72 

 

DRRZ,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 

8, pp. 2337–2347, August 2014. 

12. W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12-Bit 1.25-GS/s DAC in 90 nm CMOS 

with 70 dB SFDR up to 500 MHz,” IEEE Journal of Solid-State Circuits, vol. 46, no. 

12, pp. 2845–2856, December 2011. 

13. S. M. Lee et al., “A 14 b 750 MS/s DAC in 20 nm CMOS with < −168 dBm/Hz 

noise floor beyond Nyquist and 79 dBc SFDR utilizing a low glitch-noise hybrid R-

2R architecture,” in Symp. VLSI Circuits Dig., June 2015. 

14. Engel, M. Clara, H. Zhu, and P. Wilkins, “A 16-bit 10 Gsps currentsteering RF DAC 

in 65 nm CMOS achieving 65 dBc ACLR multi-carrier performance at 4.5 GHz 

Fout,” in Symp. VLSI Circuits Dig., June 2015. 

15. C.-H. Linet al., “A 16b 6 GS/S Nyquist DAC with IMD < −90 dBc up to  1.9 GHz  in  

16 nm  CMOS,” IEEE International Solid State Circuits Conference, February 2018. 

16. D. Kong, I. Galton, “Adaptive Cancellation of Static and Dynamic Mismatch Error in 

Continuous-Time DACs,” IEEE Transactions on Circuits and Systems I: Regular 

Papers, vol. 65, no. 2, pp. 421–433, February 2018 

17. J. Remple, I. Galton, “The Effects of Inter-Symbol Interference in Dynamic Element 

Matching DACs,” IEEE Transactions on Circuits and Systems I: Regular Papers, 

vol. 64, no. 1, pp. 14-23, January 1017. 

18. R. Adams, K. Q. Nguyen, K. Sweetland, “A 113-dB SNR Oversampling DAC with 

Segmented Noise-Shaped Scrambling,” IEEE Journal of Solid State Circuits, vol. 33, 

no. 12, pp. 1871-1878, December 1998. 

19. G. Taylor and I. Galton, “A Mostly-Digital Variable-Rate Continuous-Time Delta-

Sigma Modulator ADC,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 

2634–2646, December 2010. 

20. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993. 

 

 

 

 

 

 



 

73 

 

CHAPTER 3 

SUBSAMPLING MISMATCH NOISE CANCELLATION FOR 

HIGH-SPEED CONTINUOUS-TIME DACS 

 

 Abstract— Clock skew and component mismatches in continuous-time DACs 

introduce two types of error: static error and dynamic error. Both types of error typically 

limit the performance of practical, high-resolution, continuous-time DACs, but most prior 

calibration techniques primarily reduce only static error. An exception is a recently 

published mismatch noise cancellation (MNC) technique that adaptively measures and 

cancels both types of error over the DAC’s first Nyquist band. However, a disadvantage of 

the technique is that it requires an oversampling ADC that operates at several times the 

DAC’s Nyquist rate to prevent convergence error that would otherwise be caused by 

aliasing. This paper presents a sub-sampling version of the MNC technique that avoids this 

limitation at the expense of a lower calibration convergence rate. As proven in the paper, the 

subsampling MNC technique allows aliasing to occur, but in such a way that convergence 

error is avoided. 

I. INTRODUCTION 

 

 A continuous-time DAC generates an analog output pulse for each digital input code. 

Ideally, the output pulse during each clock interval is scaled by the DAC’s input code value 



 

74 

 

during that clock interval, and except for this scale-factor it has the same shape as all the 

other pulses. Unfortunately, non-ideal circuit behavior causes input-dependent deviations of 

both the scale-factor and shape of each output pulse. Error in a DAC’s output waveform 

from pulse scale-factor deviations is called static error and that from pulse shape deviations 

is called dynamic error.  

 The most significant types of static and dynamic error in practical high-resolution 

continuous-time DACs are caused by 1) inadvertent but inevitable clock skew and 

component mismatches, 2) inter-symbol interference (ISI), and 3) signal-dependent output 

impedance [1-14]. For DACs implemented in present-day CMOS technology that target 

signal-to-noise-and-distortion ratios (SNDRs) of greater than about 65 dB, error from clock 

skew and component mismatches is the most significant limitation. Unlike the other types of 

error, analog circuit design and layout techniques to reduce error from clock skew and 

component mismatches below this level are not known. 

 Yet continuous-time DACs with SNDRs of greater than 65 dB are increasingly 

necessary in high-performance applications such as 4G and 5G cellular base station 

transmitters. In such cases, calibration techniques are necessary to suppress error from clock 

skew and component mismatches. Unfortunately, most prior digital calibration techniques 

primarily reduce only static error, which leaves dynamic error as a major limitation in high-

performance continuous-time DACs [1-14]. 

 The difficulty in suppressing dynamic error arises from a property inherent to 

continuous-time DACs. Each DAC output pulse has a bandwidth that far exceeds the DAC’s 

sample-rate, because its duration is time-limited to one clock period. Therefore, a technique 

that cancels dynamic error must either have a bandwidth that is wider than the DAC’s signal 

bandwidth, or must perform frequency selective cancellation over a single Nyquist band. 
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 Recently, a mismatch noise cancellation (MNC) technique was developed that 

addresses this difficulty [15, 16]. It incorporates a feedback loop that measures and cancels 

both static and dynamic error caused by clock skew and component mismatches over the 

DAC’s first Nyquist band. While the MNC technique solves the dynamic error problem, it 

requires an oversampling ADC that operates at many times the DAC’s Nyquist rate. This 

ultimately limits the maximum achievable signal bandwidth for a given power consumption.  

This paper presents a subsampling version of the MNC technique that avoids the 

oversampling requirement. The original version of the MNC technique requires 

oversampling to avoid aliasing that would otherwise cause convergence error in the 

technique’s error cancellation feedback loop. The modified version does not prevent 

aliasing, but is designed such that the aliasing does not cause convergence error. By avoiding 

oversampling, the modified MNC technique removes the potential signal bandwidth 

limitation of the original version at the expense of a modest reduction in the feedback loop’s 

convergence rate. The paper presents a rigorous mathematical analysis of the proposed 

technique, and demonstrates the results via computer simulations.  

II. BACKGROUND INFORMATION: OVERSAMPLING MNC  

 

 Fig. 26 shows a high-level diagram of the IC presented in [16]. It consists of a 14-bit 

main DAC enclosed in an oversampling MNC feedback loop that adaptively measures and 

cancels static and dynamic error caused by clock skew and component mismatches within 

the main DAC over the first Nyquist band. The MNC feedback loop consists of an 
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oversampling ADC, a lowpass decimation filter, a digital error estimator and a correction 

DAC. 

 The main DAC incorporates dynamic element matching (DEM) of the type presented 

in [17]. Its static and dynamic error resulting from clock skew and component mismatches, 

collectively referred to as mismatch noise in the remainder of this paper, has the form 

  
35

1

( ) ( )DAC k k t

k

e t d t s n
=

=   (64) 

where nt is the largest integer less than or equal to fst with fs = 600 MHz, each dk(t) is a 600 

MHz periodic waveform that depends on clock skew and component mismatches within the 

main DAC, and each sk[n] sequence is generated by digital logic within the main DAC’s 

DEM encoder [18]. Specifically, the sk[n] sequences are pseudo-random 600 MHz sample-

rate sequences that take on values of −1, 0 and 1 and are uncorrelated with each other and 

with the main DAC’s input sequence, x[n]. Consequently, eDAC(t) is wideband noise that is 

uncorrelated with x[n] and free of harmonic distortion. 

 Without DEM, eDAC(t) would still be given by (64), but the sk[n] sequences would be 

deterministic, nonlinear functions of x[n], so eDAC(t) would be entirely nonlinear distortion. 

Hence, DEM eliminates nonlinear distortion that would otherwise be caused by clock skew 

and component mismatches. However, it does so by converting the nonlinearity into noise, 

which severely degrades the DAC’s signal-to-noise ratio (SNR). The purpose of the MNC 

feedback loop is to cancel this noise so as to keep the benefit of DEM without the SNR 

penalty. 

 The sampling theorem implies that for any eDAC(t) there must exist a correction DAC 

input sequence, xc[n], that would cause the correction DAC output waveform, yc(t), to cancel 

eDAC(t) over the first Nyquist band up to the accuracy of the correction DAC. As the dynamic 
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range of eDAC(t) is much smaller than that of the main DAC, the resolution and step-size of 

the correction DAC, and, therefore, the error it introduces, are considerably smaller than 

those of the main DAC. Consequently, a 9-bit correction DAC with a step-size equal to a 

quarter that of the main DAC and no DEM or calibration was found to be sufficient in [16] 

to achieve more than 24 dB of error cancellation. 

 To make yc(t) well-approximate eDAC(t) over the first Nyquist band, the MNC 

feedback loop must measure eDAC(t) over the first Nyquist band. This requires a digitized 

version of the main DAC’s output waveform that has been filtered to include only the first 

Nyquist band. The oversampling ADC and decimation filter in Fig. 26 perform this 

operation, so r[n] contains a residual portion of eDAC(t) restricted to the first Nyquist band 

that is left over from imperfect MNC cancellation. Given that eDAC(t) is correlated with the 

sk[n] sequences as indicated by (64) and the decimation filter’s impulse response is many 

600 MHz samples long, it follows that the residual portion of eDAC(t) in r[n] must be 

correlated with multiple time-shifted versions of the sk[n] sequences.  

 The MNC feedback loop measures the residual portion of eDAC(t) by correlating r[n] 

with time-shifted versions of the 35 sk[n] sequences, and uses the measurement results to 

generate the correction DAC input sequence. Each of the 35 sk[n] residue estimators in the 

digital error estimator consists of a coefficient calculator block and an FIR filter with input 

sk[n+P] as shown in Fig. 26c.7 The coefficient calculator correlates r[n] with N = 9 time-

shifted versions of sk[n]. Each correlation is performed by multiplying r[n] by a time-shifted 

version of sk[n] (which is −1, 0, or 1 during each 600 MHz clock period), and the result is 

scaled by K = 8·10−6 and accumulated. The accumulator outputs, αk,0[n], αk,0[n], …, αk,8[n], 

form the impulse response of the FIR filter, so each sk[n] residue estimator operates as an 
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adaptive FIR filter. The 35 adaptive filters converge as necessary for yc(t) to well-

approximate eDAC(t) over the first Nyquist band as proven in [15]. 

  The MNC technique can operate either as a foreground or background calibration 

technique. While eDAC(t) is a broadband x[n]-dependent waveform, the dk(t) waveforms and 

the digital error estimator’s target FIR filter coefficients depend primarily on component 

mismatches, clock skew, and other parameters that do not change significantly over time. 

Hence, the IC in [16] runs the MNC feedback loop during foreground calibration, and 

subsequently freezes the FIR filter coefficients and disables the ADC during normal DAC 

operation. 

III. SUBSAMPLING MNC 

 

 As explained in [15], the accuracy required of the oversampling MNC technique’s 

ADC is modest, e.g., in the IC presented in [16] the ADC’s SNDR is less than 30 dB while 

the post-calibration signal-band SNDR of the DAC is over 77 dB. Yet the oversampling 

requirement poses a practical problem for DAC samples-rates above a few GHz. For 

instance, modifying the IC presented in [16] to have a DAC sample-rate of 6 GHz, would 

require an ADC with a sample-rate of about 30 GHz. While low-SNDR ADCs at such high 

sample-rates are not impossible, a modified MNC technique that allows for an ADC sample-

rate closer to that of the DAC would be preferable in terms of reducing power consumption, 

all other things being the same. 

                                                                                                                                                      
7 In the IC presented in [16] P, Q, and N are set to 3, 21, and 9, respectively. 
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A. MNC Convergence Accuracy in the Presence of Aliasing 

 If the oversampling ADC and decimation filter in Fig. 26 were replaced by a 

Nyquist-rate ADC sampled at the same rate as the main DAC, the ADC output would 

contain all of the content of the main DAC’s Nyquist bands aliased down onto its signal 

band. As each of the main DAC’s Nyquist bands contains components correlated to the sk[n] 

sequences, the digital error estimator would adaptively cancel the sum of the error from all 

the aliased bands simultaneously, but it would fail to cancel error in any one of the Nyquist 

bands individually. This problem could be solved by inserting an anti-aliasing filter prior to 

the ADC, but this is not a practical option given the wide bandwidth and narrow transition 

band required of the filter. 

 Although it is necessary to avoid aliasing in the oversampling version of the MNC 

technique to measure the necessary MNC FIR filter coefficients, the following line of 

reasoning implies that it is at least mathematically possible to measure the necessary MNC 

FIR filter coefficients in the presence of aliasing. The output of the correction DAC in Fig. 

1a has the form yc(t) = αc(t)xc[nt] where αc(t) is a 600 MHz periodic waveform [18]. As 

shown in [15], the MNC feedback loop causes the impulse response of the kth FIR filter in 

Fig. 26c to converge such that the filter’s transfer function well-approximates 

 ( ) -

-

( )
  for | |

( )
s s p kj T j PT

k s

p c

D j
H e e f

A j

 


 


−
=   (65) 

where fs = 600 MHz, Ts = 1/fs, and Dp-k(jω) and Ap-c(jω) are the are the continuous-time 

Fourier transforms of one period of the Ts-periodic waveforms dk(t) and αc(t), respectively.  

 It follows from (65) that the FIR filter coefficients could be calculated directly from 

one period of αc(t) and one period of each dk(t) for k = 1, 2, …, 35, and they could be 

calculated approximately from sampled versions of these 35 one-period waveforms. 
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Moreover, the samples could be measured directly from the main DAC and correction DAC 

outputs. For example, to measure five samples of αc(t) over one fs-rate clock period the input 

to the correction DAC could be set to a non-zero constant value, and the five samples could 

be measured at its output over one clock period. Although more complicated, each of the 

dk(t) waveforms could be isolated by appropriately manipulating the DEM encoder and then 

similarly sampled. 

 This procedure would still require oversampling, but it can be further modified to 

avoid oversampling by recognizing that the measurements described above could be spread 

over five clock periods rather than over a single clock period. As depicted in Fig. 27, the fs-

rate periodicity of the αc(t) and dk(t) waveforms ensures that an ADC sampled at a rate of 

5fs/6 would collect the same information over a duration of 6Ts as an ADC sampled at a rate 

of 5fs would collect over a duration of Ts, where Ts = 1/fs. Hence, oversampling can be 

avoided at the expense of a longer data collection duration. 

 The argument above is the outline of a proof-by-construction that subsampling MNC 

is mathematically possible. However, the constructed procedure would only work as a 

foreground calibration technique, whereas the oversampling MNC technique works as either 

a foreground or background calibration technique, and it would be computationally 

expensive. 

B. The Subsampling MNC Technique 

 A more practical way of exploiting the effect described above is the proposed 

subsampling MNC (SMNC) technique shown in Fig. 28. It differs from the oversampling 

MNC technique in three ways: an Rfs/(R+1)-rate subsampling ADC is used in place of the 

Rfs-rate oversampling ADC, where R is an integer greater than 1 (Fig. 26 is drawn for the 
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specific case of R = 5), a fractional decimation filter is used in place of the lowpass 

decimation filter, and a bank of latches updated at times n = 0, (R+1), 2(R+1), … separate 

each coefficient calculator and FIR filter. The fractional decimation filter is equivalent to the 

cascade of an R+1-fold up-sampler, a digital filter with impulse response g[m], and an R-fold 

down-sampler, but it can be implemented as the polyphase structure shown in Fig. 29 such 

that all its components are clocked at a rate of fs [19]. Therefore, the highest clock-rate in the 

system is fs. 

 The ADC sample-rate is slightly lower than fs whereas the DAC output spectra are 

non-zero over several fs/2-wide Nyquist bands. Therefore, the ADC output, w[q], contains 

significant aliasing. However, as explained shortly, the subsampling effect depicted in Fig. 

27 (for the specific case of R = 5) prevents the aliasing from causing MNC convergence 

error. In particular, as proven in the remainder of the paper the subsampling MNC technique 

converges to the same set of FIR filter coefficients as the original oversampling MNC 

technique, but with a lower convergence rate.  

 To show that the SMNC technique converges to the same FIR filter coefficients as 

the oversampling MNC technique, it is helpful to first redraw Fig. 28a in an equivalent form 

that is easier to compare to Fig. 26a.  Theorem 1 presented below provides this equivalent 

form. 

Theorem 1: The system shown in Fig. 30 with   

 
( )( )

[ ], if mod ( 1) 0,
[ ]

0, otherwise,

l
g m l m R

g m
 − + =

= 


  (66) 

and 

 ( )[ ] [ ]    where    ) mod ( 1)(lt nln r n R= +−= , (67) 
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(i.e., t[n] is the output of the R+1 to 1 multiplexer) generates the same t[n], xc[n], yc(t), y(t), 

and v(t) as that shown in Fig. 28a if both systems start with the same initial conditions and 

have the same input sequence, x[n].  

Proof: It follows from the definition of an up-sampler that the output of the (R+1)-fold up-

sampler in Fig. 28a can be written as d[m]p[m] where d[m] is the output of an Rfs sample-

rate ADC in Fig. 30 and 

 
1, if mod ( 1) 0,

[ ]
0, otherwise.

m R
p m

+ =
= 


 (68) 

This and the signal processing shown in Fig. 28a imply that 

 [ ] [ ] [ ] [ ]
Rn

m

t n d m p m g Rn m
=−

= −  (69) 

in Fig. 29. The signal processing shown in Fig. 30 and (67) imply that  

 
( )1( ) mod ( )

[ ] [ ] [ ]
Rn

n R

m

t n d m g Rn m
+−

=−

= −  (70) 

in Fig. 30. Therefore, it is enough to show that the right sides of (69) and (70) are equal, 

which is equivalent to showing that 

 
( )) mod ( 1)(

[ ] [ ] [ ]
n R

g Rn m p m g Rn m
+−

− = − . (71) 

 Given that [(−n) mod (R+1)] – m] mod (R+1) = (–n – m) mod (R + 1), (66) implies  

 ( ) ( )) mod 1)( ( [ ], if mod ( 1) 0,
[ ]

0, otherwise,

n R g m n m R
g m

+−  − − + =
= 



  (72) 

Given that [−n − (Rn – m)] mod (R + 1) = m mod (R + 1), replacing m with Rn − m in (72) 

results in 

 

( )) mod ( )( 1
[ ]

[ ], if mod ( 1) 0,

0, otherwise.

n R
g Rn m

g Rn m m R

+−
−

− + =
= 



  (73) 

Substituting (68) into the right side of (71) results in the right side of (73), which shows that 

(71) holds. 
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□ 

 The SMNC equivalent system of Fig. 30 is a useful analysis tool because it can be 

related to the original oversampling MNC technique as follows. Equation (66) implies that  

 
( )

0

[ ] [ ]
R

l

l

g m g m
=

=  (74) 

and Fig. 30 implies that 

 
( ) ( )[ ] [ ] [ ]

Rn
l l

m

r n d m g Rn m
=−

= − , (75) 

so 

 
( )

0

[ ] [ ] [ ]
R Rn

l

l m

r m d m g Rn m
= =−

= −  . (76) 

The right side of (76) is equal to r[n] in the oversampling MNC technique shown in Fig. 26 

(generalized with 600 MHz replaced by fs and 3 GHz replaced by Rfs). Therefore, the output 

of the oversampling MNC technique’s decimation filter can be written as  

 
( )

0

[ ] [ ]
R

l

l

r n r m
=

=  , (77) 

with r(l)[n] given by (75). 

 It follows that t[n] in Fig. 28a (which is identical to that in Fig. 30 as implied by 

Theorem 1) is different from r[n] in Fig. 26, even when the v(t) waveforms in the two 

systems are equal. In particular, for equal v(t) waveforms in the two systems, t[n] in Fig. 28a 

for each n is equal to one of the r(l)[n] sequences whereas r[n] in Fig. 26a is equal to the sum 

of the r(l)[n] sequences. This difference between t[n] and r[n] is the result of aliasing caused 

by the SMNC technique’s subsampling. As explained in Section III-A, the oversampling 

ADC is required in Fig. 26a to prevent aliasing that would cause convergence error. 

However, as proven in the next section, the SMNC technique converges correctly despite the 

aliasing caused by subsampling. 
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 A qualitative explanation of this paradox is as follows. During foreground 

calibration, x[n] is chosen such that the statistics of the sk[n] sequences do not change over 

time. The latches following each coefficient calculator in Fig. 28c ensure that R+1 samples 

of t[n] are correlated against the shifted versions of the sk[n] sequences before the FIR filter 

coefficients are updated, and it follows from (66) that each of the g(l)[n] impulse responses 

have only one non-zero value for each set of R+1 samples. These observations imply that the 

average change of each coefficient calculator’s accumulator during each set of R+1 samples 

is the same as it would be if t[n] were replaced by r[n] as given by (77) and the 

corresponding coefficient calculator were updated on just the first of every R+1 samples. 

Thus, instead of performing correlations on all R+1 of the r(l)[n] sequences simultaneously at 

each sample time, n, as done by the oversampling MNC technique, the SMNC technique 

equivalently performs correlations on all R+1 of the r(l)[n] sequences sequentially over 

successive sets of R+1 sample times.    

C. Extension to Background Operation 

 With the sk[n] residue estimators implemented as shown in Fig. 28c, it is necessary 

for the statistics of the sk[n] sequences to be time-invariant as described above. This is easy 

to achieve during foreground calibration by ensuring that the statistics of x[n] do not change 

over time. During background calibration, though, x[n] is arbitrary, so it cannot be assumed 

that its statistics are time-invariant. 

 This problem can be solved by modifying the sk[n] residue estimators during 

background calibration as follows. The main DAC’s DEM encoder ensures that the 

probability distribution of each sk[n] conditioned on sk[n] ≠ 0 is constant and independent of 

x[n] [17]. Therefore, the problem can be solved by applying two changes to Fig. 28c during 
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background calibration. The first change is to only update the bank of latches once every 

accumulator has been clocked R+1 times since the last time the bank of latches was clocked. 

The second change is to only clock the mth accumulator when sk[n+P−Q−m] ≠ 0 and n mod 

(R+1) is distinct from n' mod (R+1) for every prior time index n' of sk[n'+P−Q−m] ≠ 0 since 

the last time the bank of latches was updated. These modifications ensure that each 

accumulator in the kth coefficient calculator is updated with r(l)[n] information once for each 

value of l = 0, 1, …, R prior to each time the bank of latches is clocked and that the 

probability distribution of each sk[n] when the accumulators are updated is time-invariant. 

IV. CONVERGENCE ANALYSIS  

 

 Each r(l)[n] sequence in Fig. 30 can be written as 

 
( )( ) ( ) ( )[ ] [ ] [ ] [ ]
ll l l

ideal e cr n r n r n r n= + +  (78) 

where r(l)
ideal[n] is what r(l)[n] would have been without the main DAC’s mismatch noise and 

without the SMNC feedback loop, re
(l)[n] represents error that would have been caused by the 

main DAC’s mismatch noise without the SMNC feedback loop, and rc
(l)[n] represents the 

effect of the SMNC feedback loop. The correction DAC’s error can be neglected, because it 

is much smaller than that of the main DAC as explained in Section II. Consequently, the 

relationship between xc[n] and rc
(l)[n] well-approximates that of a linear time-invariant (LTI) 

discrete-time system with impulse response −hc
(l)[n] (the negative sign simplifies the 

subsequent analysis). The system is causal and at least one clock delay is introduced by the 

ADC, so hc
(l)[n] = 0 for all n < 1. Therefore,  

 ( )( ) ( )

1

[ ] [ ] [ ]l l

c c c

i

r n x n i h i


=

= − − ,  (79) 

where, as can be seen from Fig. 28, 
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The kth portion of the main DAC’s mismatch noise, dk(t)sk[nt] in (64), has the same form as 

the output of a DAC with input sequence sk[n] and Ts-periodic pulse shaping waveform, 

dk(t). Thus, the relationship between sk[n] and its contribution to re
(l)[n] must also be that of a 

causal LTI discrete-time system with at least one clock delay. Denoting the LTI system’s 

impulse response as bk
(l)[n], it follows from (64) that 
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 It follows from (67) that   

 
( )[ ] [ ] if mod ( 1) 0.lt n l r n l n R− = − + =   (82) 

As indicated in Fig. 28c, each FIR filter coefficient, αk,m[n], only changes at times n = 0, 

R+1, 2(R+1), …, i.e., when n mod (R+1) = 0. Therefore, Fig. 28c and (82) imply that for 

each of these values of n and for each m = 0, 1, …, N−1, 
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For all other values of n, αk,m[n] = αk,m[n − 1]. Substituting (79)-(81) into (78), and 

substituting the result into (83), implies that   
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for each n that satisfies n mod (R+1) = 0 and m = 0, 1, …, N−1, where 
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Equations (84), for m = 0, 1, …, N−1 and each n that satisfies n mod (R+1) = 0, can be 

written in matrix form as 
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where 
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k mb  is an N1 vector given by 
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and ek[n] is an N1 vector given by 
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 The ak[n] vector represents the kth adaptive FIR filter’s coefficients at time n. The 

loop gain, K, is small by design to ensure that the coefficients converge to values with low 
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variances, so (86) implies that ak[n] depends only very weakly on any one of the time-shifted 

sk[n] sequences. Furthermore, all of the time-shifted sk[n] sequences are statistically 

independent. Consequently, ak[n] is well-approximated as being statistically independent of 

each time-shifted sk[n] sequence. This type of independence assumption is widely used in the 

analysis of adaptive filters wherein slowly updated adaptive filter coefficients are assumed to 

be approximately independent from the data processed by the system [20-22]. 

 Expanding the right side of (85) results in a sum of several products. Of these, 

sk[n+P−Q−m]sj[n+P−i−q]αj,q[n−i]hc
(l)[i] and sk[n+P−Q−m]sk[n+P−i−q]αk,q[n−i]hc

(l)[i] are 

the only products whose means are not exactly zero. However, their means are nearly zero 

by the independence assumption because  sk[n+P−Q−m]sj[n+P−i−q] and sk[n+P−Q−m] 

sk[n+P−i−q] are zero mean. This implies that the mean of ek[n] is well-approximated as 

zero, i.e.,  

 [ ]k n =e 0 .  (91) 

 Given that sk[n] is restricted to values of −1, 0, and 1, and its statistics are time-

invariant, the mean of sk
2[n] is a constant, ck, between 0 and 1, i.e., 
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Taking the expectation of (86), and applying (91), (92), and the independence assumption 

yields 
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where ͞ak[n] is the mean ak[n] for each n that satisfies n mod (R+1) = 0. This can be rewritten 

as 
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where 
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 A simplification can be made by defining Hc
(J)  to be the sum of all Hm

(l)
,q over l = 0, 1, 

…, R, m = 0, 1, …, N−1, and q = 0, 1, …, N−1, restricted to values of m, l, and q that satisfy 

l+Q+m–q = J, such that  
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The lower limit of J is 1 because (88) implies that Hm
(l)

,q= 0 for m–q ≤ –Q given that hc
(l)[n] = 0 

for all n ≤ 0. Applying (96) to rearrange the triple sum in (94) and applying ͞ak[n] = ͞ak[n−1] 

for values of n that satisfy n mod (R+1) ≠ 0 gives  

 
1

( )

1

[ ] [ 1]

[ ] , if mod ( 1) 0,

, otherwise,

k k

R Q N
J

k k k k

J

n n

c K n J c K n R
+ + −

=

= −


− + + =

−



 c

a a

H a b

0

 (97) 

for each integer, n. 

 Equation (97) is an N-dimensional matrix difference equation that converges if and 

only if ͞ak[n] → ak' as n → ∞, where ak' is a constant vector. Taking the limit of (97) as n → 

∞ implies that if the system converges then 

 ' ' 'k k k k k kc K c K= − +
c

a a H a b  (98) 

where   

 
1

( )

1

R Q N
J

J

+ + −

=

= c c
H H . (99) 

It follows from (98) that if the system converges, then 

 
1'k k

−=
c

a H b . (100) 
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 Equations (88), (96) and (99) imply that 

 
( )

,

0

[ ] ,   where   [ ] [ ]
R

l

j k c c c

l

h h Q j k h n h n
=

 = = + − =  c
H . (101) 

Given that −hc
(l)[n] is the impulse response of the transfer function between xc[n] and rc

(l)[n], it 

follows from (77) and  Theorem 1 in Section III that hc[n] is the impulse response of the 

transfer function between xc[n] and r[n] in the oversampling version of the MNC technique 

shown in Fig. 26. As proven in [15], the FIR filter coefficients in the oversampling MNC 

technique converge to values that satisfy (100) with Hc = [hj,k = hc[Q+j−k]]. Therefore, 

provided the FIR filter coefficients in the subsampling version of the MNC technique 

converge, they must converge to the same values as those of the oversampling version of the 

MNC technique.   

 It remains to show that the subsampling MNC technique’s coefficients converge, i.e., 

that ͞͞ak[n] always converges to ak' as n → ∞ for each k. This is done by showing that zk[n] 

converges to 0 as n → ∞, where  

 [ ] [ ] 'k k kn n= −z a a , (102) 

and, as implied by (97) and (98), 

 

1
( )

1

[ ] [ 1]

[ ] if mod ( 1) 0

, otherwise.

k k

R Q N
J

k k

J

n n

c K n J n R
+ + −

=

= −


− + =

−



 c

z z

H z

0

 (103) 

 The analysis makes use of vector and matrix norms. For any N-dimensional vector v 

= [vj] and NN matrix H = [hj,k], the vector norm of v and the matrix norm of H are defined 

as 

 
,11 1

1

max    and    max
N

m m n
m N m N

n

v h
   

=

= = v H . (104) 
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 Theorem 2 presented below, and proven in the appendix, shows that zk[n] converges 

to 0 as n → ∞ for each k provided that hc[n], Q, and K satisfy certain conditions. It does so 

by showing that ||zk[n]|| → 0 as n→∞. To simplify the notation, the system’s initial 

conditions are taken to be zero, i.e., ͞ak[n] = 0 for all n < 0, so (102) implies that zk[n] = −ak' 

for all n < 0. 

Theorem 2: Suppose 0 ≤ r < 1, 0 < g < 1, 0 < 2Khc[Q] < 1, and zk[n] = −ak' for all n < 0, 

where 

 
( )

( )1

1

1
[ ]

[ ]

Q N

c

m Q Nc
m Q

r h m
h Q

+ −

= − −


=   (105) 

 

 
( )( )

( )( )

11 2

1 2

1 2

1( ) ( )
1 1

1

22
1 1

1 1 2 [ ]

2 [ ] 1 1 2 [ ]

JJ J
R Q N R Q N

c

J J
J J c c

Kh Q
g

h Q r Kh Q

−
+ + − + + −

+ −
= =

− −
=

− −
 

c c
H H

. (106) 

Then  

 ( )( )  ( )
/( 1) 1

[ ] ' 1 1 1
n R

k k k cn c K r g h Q
+ +  

 − − −z a  (107) 

for all n ≥ 0, where / ( 1)n R +    is the largest integer less or equal to n/(R+1).  

□ 

 Inequality (107) implies that ||zk[n]|| converges to 0 following an exponential-like 

trajectory for each k. This and (102) imply ͞ak[n] → ak' for each k. Therefore, the conditions 

in the hypothesis of the theorem are sufficient to guarantee the convergence of SMNC. 

 The theorem’s hypothesis places certain requirements on the values of hc[n], Q, and 

K. The 0 ≤ r < 1 requirement and the definition of r in (105) imply that the hc[Q] must be 

positive and larger than the sum of multiple adjacent samples of the impulse response. As 

explained in [15], 0 ≤ r < 1 is also a necessary condition for the convergence of the 
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oversampling version of the MNC technique and can be easily satisfied in practice. The 

requirement that 0 ≤ g < 1 and 0 < 2Khc[Q] < 1 sets an upper bound on K. 

 Theorem 2 also provides insight into the convergence rate. It indicates that increasing 

K increases the convergence rate. It also implies that reducing the probability of sk[n] = 0 

over time, which increases the value of ck in (92), leads to faster convergence.  

 While Theorem 2 predicts how the expected value of each filter coefficient evolves 

over time, but it does not provide insight into the variance of the noise component of each 

filter coefficient. Intuitive reasoning similar to that in [15] and extensive simulations 

indicate that the noise variance can be made arbitrarily small by reducing K. Therefore, K 

represents a tradeoff between convergence accuracy and convergence speed. 

V. SIMULATION RESULTS 

 

 Three sets of computer simulation results are presented in this section. The first set 

demonstrates that oversampling is indeed required for the original version of the MNC 

technique presented in [15] to work properly. The second set demonstrates the effectiveness 

and of the SMNC technique. The third set demonstrates the transient convergence behavior 

of the SMNC technique and compares it to that predicted by Theorem 2 presented in the 

previous section. 

 All simulations implement the same main DAC and correction DAC architectures, 

the same DAC clock-rate of fs = 3 GHz, and the same MNC design parameters P, Q, N and 

K of 3, 21, 9 and 8∙10−6, respectively. As in [16], the main DAC consists of the DEM 

encoder presented in [17] followed by 36 1-bit DACs. The DEM encoder converts the 14-bit 

main DAC input sequence, x[n], into 36 1-bit sequences, each of which drives a 1-bit DAC 
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with weight Ki. For i = 1, 2, …, 20 the values of Ki are 1, 1, 2, 2, 4, 4, …, 512, 512, 

respectively, and for i = 21, 22, …, 36, each Ki has a value of 1024. Each 1-bit DAC 

implements a 25% return-to-zero (RZ) phase to avoid ISI. Also as in [16], the correction 

DAC is implemented without DEM or calibration and its minimum step-size is Δ/4, where Δ 

is the main DAC’s minimum step-size. 

 The same set of mismatch noise parameters was used for each simulation. Dynamic 

mismatch noise was simulated by inserting a random Gaussian delay with a standard 

deviation of 0.6 ps on each 1-bit DAC clock time. Static mismatch error was simulated by 

introducing 1-bit DAC step-size errors. The step-size error for each of the 1024-weight 1-bit 

DACs was chose as a Gaussian random variable with a standard deviation of 0.15% of the 1-

bit DAC’s step size, 1024Δ. That of each of the other 1-bit DACs, including those in the 

correction DAC, were chosen similarly, except that the standard deviation was divided by 

the square root of the 1-bit DAC’s step-size divided by 1024Δ. 

 Each simulation includes a 5-bit VCO-based ADC of the type implemented in the IC 

presented in [16]. Aside from its noise and distortion, the VCO-based ADC is equivalent to 

a sinc lowpass filter followed by a first-order ΔΣ modulator ADC with 5-bit quantization 

[23]. No ADC calibration was applied, so the ADC’s nonlinearity is high: with a full-scale 

sinusoidal input waveform, the second and third harmonic distortion terms are −26 dBc and 

−47 dBc, respectively. 

 Fig. 31 shows simulated output spectra from the system with the original version of 

the MNC technique and a −1 dBFS sinusoidal input signal, with and without oversampling 

the ADC. Fig. 31a shows the output spectrum with MNC disabled and Fig. 31b shows the 

output spectrum with MNC enabled for an oversampling ratio of R = 5. This oversampling 

ratio in conjunction with the sinc lowpass filtering inherent to the VCO-based ADC is 
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sufficiently high for the aliasing error to be negligible over the DAC’s 0 to 0.42fs signal 

band.8 In this case, MNC improves the SNDR by 18 dB over the DAC’s signal band. Fig. 

31c shows the output spectrum for MNC enabled but without oversampling, i.e., with the 

ADC sampled at fs. Some SNDR improvement still occurs in this case relative to the case 

with MNC disabled, because aliasing does not prevent MNC from canceling a low-

frequency portion of the mismatch noise. However, the aliasing prevents cancellation of 

higher-frequency mismatch noise and, therefore, prevents significant SNDR improvement.    

Fig. 32 shows the simulated output spectrum from the system with the SMNC technique and 

a −1 dBFS sinusoidal input signal for an ADC sample-rate of 5fs/6, i.e., R = 5. Compared to 

the case without MNC shown in Fig. 31a, the SMNC technique improves the SNDR by 18 

dB. This result supports the paper’s assertion that the SMNC technique provides roughly the 

same SNDR improvement as the original MNC technique despite aliasing from not 

oversampling. 

 In the simulations described above, the adaptive FIR filter coefficients were obtained 

during foreground calibration mode and then frozen for use during normal DAC mode. 

During foreground calibration, x[n] was chosen to toggle randomly between −2389.5Δ and 

−2388.5Δ. In principle, any x[n] with time-invariant statistics as required by the foreground 

mode version of the SMNC technique would work, but this choice of x[n] is attractive 

because of its small dynamic range, which simplifies the ADC, and it results in sk[n] 

sequences with a low percentage of zero values, which is beneficial for rapid convergence.  

 The SMNC technique’s foreground calibration convergence time for the simulation 

results shown in Fig. 32 was about 3 ms. This is approximately R = 5 times longer than that 

                                                 
8  The decimation filter’s non-ideal transition bandwidth causes aliasing at frequencies 

between 0.42fs and 0.5fs, which limits MNC accuracy over this band. As explained in [16], 
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of the original MNC technique, as expected. Much as in the case of the original MNC 

technique as explained in [15], the convergence time of the SMNC technique can be 

decreased by increasing K, but this comes at the expense of increased noise variance of each 

adaptive FIR filter’s coefficients. A practical way to reduce the convergence time without a 

noise penalty is to use a relatively large value of K during an initial portion of foreground 

calibration mode so the conversion rate is relatively high while the adaptive FIR filter 

coefficients get close to their final values, and then reduce K during the final portion of 

foreground calibration mode to reduce the coefficient variances. 

 Fig. 33 shows the transient convergence behavior of the SMNC technique’s adaptive 

FIR filter coefficients for a representative value of k and a constant value of K, i.e., K = 

8∙10−6. The solid curves represent the differences between the instantaneous values of the 

coefficients, αk,m[n], and their ideal values for m = 0, 1, …, N−1 and a representative value 

of k. The definition of zk[n] in (102) implies that the mean of each curve must be bounded by 

−||zk[n]|| and ||zk[n]||. These upper and lower bounds, as predicted in Theorem 1, are plotted 

as dashed curves in the figure.  The simulation results show that although the noise in the 

system causes the filter coefficients to fluctuate around their mean values, they are still 

mostly within the predicted upper and lower mean bounds. 

APPENDIX 

 

 The proof uses the following well-known matrix theory results [24]. For any N1 

vectors v and w, and any NN matrix H, the vector and matrix norms defined in (104) are 

such that 

                                                                                                                                                      

this exclusion band can be reduced by increasing the digital filter’s complexity. 
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1

Hv H v  (108) 

and 

 −  +  +v w v w v w . (109) 

Proof of Theorem 2:  

 If ak' = 0, then (103) and the initial condition of zk[n] = −ak' for all n < 0 imply that 

zk[n] = 0 for all n ≥ 0 and (107) holds. The rest of the proof considers the case of ak' ≠ 0. 

 The proof applies mathematical induction. The inductive step, which is proven 

shortly, is: for any integer n≥ 0, if 

  
[ ]

1 2
[ 1]

k

k c

k

i
c Kh Q

i
 −

−

z

z
, (110) 

for all i < n, then the theorem’s hypothesis ensures that (110) also holds for i = n and  

 
( )( )  

[ ]

[ 1]

1 1 1 , if mod ( 1) 0,

1, otherwise.

k

k

k c

n

n

c K r g h Q n R

−

 − − − + =
 



z

z
 (111) 

 The induction base step requires that (110) hold for all i < 0. The proof of the base 

step follows from the initial condition of zk[n] = −ak' for all n < 0 and (104). Hence, if the 

inductive step is true, it follows from induction that (110) and (111) must hold for all n ≥ 0. 

In addition, applying  (111) for n ≥ 0 with the initial condition of zk[−1] = −ak' leads to (107).  

 It remains to show that the inductive step is true. This is shown in the remainder of 

the proof.  

 If n mod (R+1) ≠ 0, it follows from (103) that zk[n] = zk[n−1], thus (110) holds for i = 

n and (111) holds. The rest of analysis considers the case when n mod (R+1) = 0. In this 

case, (103) reduces to 

 

1
( )

1

[ ] [ 1] [ ]
R Q N

J

k k k k

J

n n c K n J
+ + −

=

= − − − c
z z H z . (112) 
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It follows from (99) that (112) can be rewritten as 
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1
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1

[ ] [ 1] [ 1]

[ ] [ 1]
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J

n n c K n
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=
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c

c

z z H z

H z z
  (113) 

and further rewritten as 
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c

c

z I H z

H z z
 (114) 

where I is an NN identity matrix. Taking the vector norm on both sides of (114) and 

applying (109) yields 

 

( )

( )
1 1
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1 1
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k k k

R Q N J
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J m
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c K n m n m
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 (115) 

and 
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[ 1] [ ] .

k k k

R Q N J
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c

z I H z
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 (116) 

 The definition of r in (105) and the condition 0 ≤ r < 1 in Theorem 2 imply that hc[Q] 

is positive. Therefore, it follows from the definition of Hc in (101) and the definition of the 

matrix norm in (104) that 

    c ch Q h Q r− 
c

I H .  (117) 

For any real N-dimensional column vector v, the vector norm of  (I−cKHc)v can be written 

as 

 ( )  ( )  ( )1k k c k cc K c Kh Q c K h Q− = − + −
c c

I H v v I H v . (118) 

Applying (108) and (109) yields 

 ( )  ( )  
1

1k k c k cc K c Kh Q c K h Q−  − + −
c c

I H v v I H v  (119) 

and  
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 ( )  ( )  
1

1k k c k cc K c Kh Q c K h Q−  − − −
c c

I H v v I H v . (120) 

Applying (117) to (119) and (120) yields 

 ( ) ( )  ( )1 1k k cc K c K r h Q−  − −
c

I H v v  (121) 

and 

 ( ) ( )  ( )1 1k k cc K c K r h Q−  − +
c

I H v v . (122) 

Replacing v by zk[n−1] in (121) and (122), and substituting the results into (115) and (116) 

gives 
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and 
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 (124) 

Equation (103) with the initial condition zk[n] = −ak' for n < 0 implies that each zk[n−m−1] − 

zk[n−m] in (123) and (124) is either 

 
1

( )

1

[ ]    or    
R Q N

J
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J
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H z 0 . (125) 

This observation applied to (123) and (124) results in 
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and 
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Applying (108) with H replaced by 1 2( ) ( )2 2 J J

kc K
c c

H H , substituting the result into (126) and (127), 

then applying (109) yields 
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and 
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It follows from (110), 0 < ck ≤ 1 in (92), and Theorem 2’s hypothesis of 0 < 2Khc[Q] < 1 that  

  ( )
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[ ] [ 1] 1 2
i

k k k cn i n c Kh Q
− +

−  − −z z  (130) 

holds for i = 2, 3, 4, …. Therefore,  
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The sum in the right side of (131) can be expanded via the geometric series formula as  

  ( )
 ( )

   ( )

1
1

2

1 2

1
1

1

2
1

1 1 2
1 2

2 1 2

J
J

m J k c

k c J J
m

k c k c

c Kh Q
c Kh Q

c Kh Q c Kh Q

−
−

− − +

+ −
=

− −
− =

−
 . (132) 

It follows from (92) that 
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Substituting (133) into (131) and substituting the result into (128) and (129) yields 
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Substituting (106) into (134) yields (111) for n mod (R+1) = 0,  and substituting (106) into 

(135) yields 
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This implies that (110) holds for i = n for any values of r and g that satisfy 0 ≤ r < 1 and 0 < 

g < 1.  

□ 
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Figure 26: a) High-level structure of the IC presented in [16], b) high-level structure of 

the digital error estimator, and c) details of each sk[n] residue estimator.  
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Figure 28: a) High-level structure of the subsampling MNC technique, b) high-level 

structure of the digital error estimator, and c) details of each sk[n] residue estimator. 
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Figure 30: Modified version of Fig. 3a with equivalent behavior. 
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Figure 31: Representative simulated output spectra with a) MNC off, b) MNC on, and c) 

MNC on but without oversampling.  

 



 

104 

 

1st Nyquist

Band

2nd Nyquist

Band

Frequency

fs

P
o

w
er

 (
d

B
F

S
)

0 fs/2 fs

-120

-100

-80

-60

-40

-20

0

1st Nyquist

Band

2nd Nyquist

Band

SNDR=63dB

0 to 0.42fs

  dBFS
signal

Frequency

0
-120

-100

-80

-60

-40

-20

0

fs/2

SNDR=81dB

0 to 0.42fs

  dBFS
signal

 

 

Figure 32: Representative simulated output spectra without/with SMNC. 
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Figure 33:  Transient convergence behavior of the SMNC technique. 
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CHAPTER 4 

A RIGOROUS MEAN-SQUARE CONVERGENCE ANALYSIS 

OF MISMATCH NOISE CANCELLATION TECHNIQUE 

 

 Abstract— Mismatch noise cancellation (MNC) technique is an adaptive digital 

calibration technique recently proposed and experimentally validated to suppress the static 

and dynamic mismatch error for continuous-time DACs. This paper presents a rigorous 

mean-square convergence analysis of MNC technique, which for the first time quantifies the 

impact of the noise present during calibration on the post-calibration DAC signal-to-noise-

ratio (SNR). The results of this paper provide guidance into the design of  MNC, and offer 

insights into the mechanism of other similar adaptive systems. 

 

I. INTRODUCTION 

 

 High-speed, high resolution Digital-to-Analog Converters (DACs) with continuous-

time outputs are critical in many applications. Each of these DACs operates by interpolating 

a discrete-time digital sequence into a continuous-time analog output. Ideally, the output of a 

continuous-time DAC is linearly scaled with its input code during each clock interval. 

Unfortunately, inadvertent but inevitable clock skew and component mismatches cause non-

ideal deviations of both the scale factor and shape of each overall DAC output pulse, which 
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give rise to static mismatch error and dynamic mismatch error, respectively. In practice, both 

types of mismatch error can significantly limit DAC performance. Various digital calibration 

techniques have been demonstrated to reduce static mismatch error [1-14], but they do not 

well-address dynamic mismatch error.  

 Mismatch noise cancellation (MNC) technique was recently proposed in [15] to 

address this problem, its effectiveness was experimentally validated in [16] with a prototype 

DAC IC. MNC incorporates a feedback loop that measures and cancels both static and 

dynamic mismatch error caused by clock skew and component mismatches over the DAC’s 

first Nyquist band. The mismatch cancellation of MNC is achieved with a correction DAC 

driven by a digital correction sequence, the sequence is derived from a large number of 

coefficients, the values of which represent the static and dynamic mismatch profile of the 

main DAC. MNC measures the main DAC’s mismatch error and uses this information to 

update these coefficients such that the main DAC’s static and dynamic mismatch error are 

suppressed over the first Nyquist band. The convergence behaviors of these coefficients 

were studied in [15] with a mean convergence analysis, which proved that the statistic mean 

of each coefficient converges to a steady-state value. However, [15] did not quantify how 

significant each coefficient can deviate from its statistic mean from time to time due to the 

large noise inevitably present during calibration, it also did not quantify how these 

deviations affect the post-calibration DAC performance. To provide the guidance on the 

design of MNC, it is necessary to answer the following questions: for a given set of design 

parameters, how to estimate the impact of these noise on the calibration accuracy and the 

post-calibration DAC performance, and how to choose the design parameters to minimize 

this impact. This paper presents answers to these questions.  
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 The paper is organized as follows. Section II presents an overview of MNC. Section 

III studied the noise impact on MNC and proves rigorously that the impact can be made 

arbitrarily small by design. Section IV presents an analytical bound of the noise contribution 

to the post-calibration DAC signal-to-noise-ratio (SNR), and presents guidelines to 

minimize this contribution. Section V presents simulation results, which are in good 

agreement with the analytical results. 

II. OVERVIEW OF MNC 

 

 As shown in Fig. 34, MNC consists of a feedback loop around a 14-bit main DAC, 

the feedback loop adaptively measures and cancels static and dynamic mismatch error within 

the main DAC’s first Nyquist band. The feedback loop consists of an oversampling ADC, a 

lowpass decimation filter, a digital error estimator and a correction DAC.  

 The main DAC incorporates a dynamic element matching (DEM) encoder and 

multiple 1-bit RZ DACs from [17]. The use of RZ 1-bit DACs mitigates the ISI effect. As 

analyzed in [18], such a DAC converts an input sequence, x[n], into an output waveform 

given by  

  ( ) ( ) ( ),t DACy t t x n e t= +  (137) 

where 
tn   denotes the largest integer less than or equal to t/Ts with Ts = 1/fs, and α(t) is a Ts-

periodic pulse shaping waveform. Each period of α(t) is scaled by an input code to form a 

corresponding pulse of α(t)x[nt], thus α(t)x[nt] represents the ideal output component of the 

DAC. The eDAC(t) term represents the DAC’s static and dynamic mismatch error, which is 

ensured by the DEM encoder to be a noise-like waveform free of nonlinear distortions. The 

eDAC(t) term is referred to as mismatch noise and has the form  
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  
1

( ) ( ) ,
L

DAC k k t

k

e t d t s n
=

=   (138) 

where each dk(t) is a Ts-periodic waveform dependent on the main DAC’s mismatch profile, 

and the sk[n] sequences for k = 1, 2, …, L are pseudo-random sequences uncorrelated with 

each other and x[n], zero-mean, and restricted to values of −1,0 and 1. Each sk[n] sequence is 

generated within the DEM encoder and is known to the system a priori, L is an integer 

number that is dependent on the structure of the DEM encoder. 

 The sampling theorem implies that no matter how the mismatch noise, eDAC(t), looks 

like, there must exist a correction DAC input sequence, xc[n], which generates a correction 

DAC output waveform, yc(t), that cancels eDAC(t) over the first Nyquist band, up to the 

accuracy of the correction DAC. The non-idealities from the correction DAC can be 

neglected if it contributes to error below the 14bit quantization noise floor of the main DAC. 

Given the small full-scale range needed to cancel eDAC(t), this level of accuracy can be easily 

achieved [15, 16].  

 The objective of MNC feedback loop is to generate the xc[n] sequence in real time 

such that yc(t) sufficiently approximates and cancels eDAC(t) over the first Nyquist band. To 

do this, it is necessary to measure eDAC(t) over the first Nyquist band, which requires a 

digitized version of the main DAC’s output waveform over the first Nyquist band. This is 

achieved with the oversampling ADC and the lowpass decimation filter in Fig. 34. 

Consequently, the decimation filter’s output, r[n], contains a digitized version of the portion 

of eDAC(t) restricted to the first Nyquist band that is not yet fully canceled by MNC.  

 It is implied by (138) that eDAC(t) is highly correlated with the sk[n] sequences. 

Therefore, if eDAC(t) is sufficiently suppressed by yc(t) over the first Nyquist band, r[n] 

would be sufficiently uncorrelated with the sk[n] sequences. Otherwise, r[n] will be 
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correlated with at least some sk[n] sequences. The digital estimator in Fig. 34 exploits such 

properties by correlating r[n] with the sk[n] sequences and use the correlation results to 

update xc[n] in real time. The MNC feedback loop operates continuously such that all the 

correlation results reduce to 0. 

 The details of the digital error estimator are shown in Fig. 35. It consists of L 

channels of sk[n] residue estimators for k = 1, 2, …, L, each of which correlates r[n] with N 

time-shifted versions of one of the sk[n] sequences, scales the results by a loop gain constant, 

K, and accumulates the results into N coefficients, αk,0[n], αk,1[n], …, and αk,N−1[n]. The input 

of each accumulator contains a mean component representing the remaining portion of dk(t) 

in (138) not yet cancelled by MNC, and a component representing correlation noise. It 

follows from the analysis in [15] that MNC causes the accumulator outputs to go up and 

down to subtract the main DAC’s mismatch error, which subsequently causes the mean 

component at the input of each accumulator to reach 0. If the correlation noise is ignored, 

this implies that each coefficient at the accumulator outputs would converge to a constant 

steady-state value. In the presence of correlation noise, each coefficient would still on 

average converge to this value, except that its instantaneous value would fluctuate above and 

below it due to noise. Mathematically, this is described by E(ak,m[n]) → ak,m' as n → ∞, 

where ak,m' is the constant steady state value of ak,m[n], and E(ak,m[n]) is the mean value of 

ak,m[n]. 

 The analysis in [15] did not quantify how much each coefficient fluctuates from its 

mean as a result of the correlation noise, this fluctuation is often predicted by steady-state 

mean squared error given by E{(ak,m[n]−ak,m')2} where n is sufficiently large. Therefore, [15] 

did not quantify the impact of correlation noise on the main DAC’s post-calibration 

performance. Although intuition implies that this impact can be reduced by decreasing the 
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magnitude of the constant loop gain, K, this remains to be proven and quantified. Since the 

power of correlation noise is dominated by that of the ADC noise and the main DAC’s 

signal component, which is of orders of magnitude larger than the post-calibration noise 

requirement of the main DAC, it is necessary to quantify this effect and provide useful 

guidance to minimize this effect. 

 A rigorous mathematical analysis of MNC convergence in presence of correlation 

noise is presented in Section III. The results of the analysis are used in Section IV to develop 

means to predict and minimize the impact of correlation noise on the post-calibration DAC 

performance. 

III. MEAN-SQUARE CONVERGENCE ANALYSIS 

 

 The impact of correlation noise on the accuracy of the MNC coefficients are 

quantified by the steady-state mean squared error given by E{(ak,m[n]− ak,m')2} where n is 

sufficiently large, k = 1, 2, …, L and m = 0, 1, …, N−1. These L×N mean squared error can 

be evaluated with a vector-based analysis. Let ak[n] denote an N-dimensional vector given 

by ak[n] = [ak,0[n], ak,1[n+1], …, ak,N−1[n+N−1]]T, and let ak' denote the constant steady-state 

value given by [ak,0', ak,1', …, ak,N−1']T, it follows that ak,m[n]−ak,m' corresponds to the mth 

entry of ak[n−m]−ak'. Denote zk[n] = ak[n]−ak', the analysis reduces to evaluating L vectors 

given by zk[n] for k = 1, 2, …, L, and the mean squared error associated with them. Sub-

section A derives the difference equation of zk[n] for each k, and sub-section B evaluates the 

mean squared error associated with them. 
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A. System-Related Difference Equations 

 It follows from the analysis in [15] that each MNC coefficient, ak,m[n], follows the 

difference equations given by 

 , , ,[ ] [ 1] [ ]k m k m k ma n a n Ku n= − +  (139) 

and 
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

 

  

 (140) 

where rideal[n] is the decimation filter output sequence that would have occurred in the 

absence of both eDAC(t) and the correction DAC feedback loop, bk[n] represents the impulse 

response of an equivalent causal discrete-time linear time-invariant (LTI) system between 

the sk[n] sequence and the decimation filter output with the correction DAC feedback path 

disabled, and −hc[n] represents the impulse response of another causal discrete-time LTI 

system between the correction DAC input and the decimation filter output (the –1 factor is 

used to simplify the analysis). Furthermore, bk[n] = 0 and hc[n] = 0 for all n < 0 for causality 

and also for n = 0 to prevent the feedback loop from being delay-free. The definition of 

rideal[n] implies that it represents the portion of ADC noise and main DAC’s signal 

component at the output of the decimation filter.  

 Without loss of generality, ak,m[n] for each k and m is evaluated at n ≥ 0 from an 

initial condition at n ≤ −1. To simplify the notation, let us define a modified sk[n] sequence 

for each k, given by Sk[n] as  

 [ ] [ ],k kS n s n P= +  (141) 
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where P is the delay term in each sk[n] residue estimator of Fig. 35. Replacing n with n+m, 

replacing i with i+m−P in the double sum of (140) and replacing i with i+m−j in the triple 

sum of (140), finally applying (141) yields 

 , , ,[ ] [ 1] [ ].k m k m k ma n m a n m Ku n m+ = + − + +  (142) 

and 
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  (143) 

Combining (142) and (143) for m = 0, 1, …, N−1 and applying the definition of ak[n] =  = 

[ak,0[n], ak,1[n+1], …, ak,N−1[n+N−1]]T yields 

    ( )  _ _
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 The lower limit of i in (144) is set to –(N−2), this is because it follows from bk[n] and 

hc[n] = 0 for all n ≤ 0 that bk_i and Hc_i  are both 0 for i < –(N−2). Equation (144) holds for 

all n ≥ 0 with the initial condition at n ≤ −1. 

 It follows from the definition of zk[n] = ak[n]−ak' that 

 _ _ _ _ _[ ] ( ') [ ].k i i k k i i k i kn i n i− − = − − −
c c c

b H a b H a H z  (146) 
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Replacing ak[n] and ak[n−1] in (144) with zk[n]+ak' and zk[n−1]+ak', respectively and then 

substituting (146) with k replaced by l into (144) yields 

     _ ,

( 2) 1

[ ] [ 1] [ ] ,
L

k k k l i l k n

i N l

n n K S n Q S n i n i K
− − =

= − − − − − +  c
z z H z e  (147) 

where each ek,n is a zero-mean additive noise vector given by 

      , _ _

( 2) 1

[ ] ( ').
L

k n k k l l i i l

i N l

S n Q n S n Q S n i
− − =

= − + − − −  c
e r b H a  (148) 

The difference equation (147) holds for all n ≥ 0 with the initial condition of zk[n] = 

ak[n]−ak' for n ≤ −1. It was proven in [15] that the bl_i−Hc_ial' terms in (148) for i = Q and all 

l are 0. 

 It follows from the definition of r[n] that Sk[n−Q]r[n] in (148) represents the portion 

of ek,n contributed by the ADC noise and main DAC’s signal component, while the 

remaining portion represents a small portion of the main DAC’s mismatch error that MNC 

cannot fully correct.  

B. Evaluating Mean-Square Error 

 Let us define the following RMS norm for any N-dimensional real vector v = [vj], 

 
2

1

.
N

j

j

E v
=

 =  v  (149) 

The RMS norm is a useful metric to evaluate the mean squared error of each coefficient, 

because it follows from the definition of zk[n] that ||zk[n]||2 represents the sum of the mean 

squared error of ak,0[n], ak,1[n], …, and ak,N−1[n]. 

 Let us constrain K to be positive, and define the following system related parameter,  

 ( )_ 20
min 1 / ,K Q

K
h


 

 
= − −

c
I H  (150) 

where ||I−αHc_Q||2 is the spectral norm of I−αHc_Q. For any N×N deterministic real matrix D, 

the spectral norm of D is given by 
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 ( )
2

2 2 2
, 0

|| || max / ,
N 

=
v v

D Dv v  (151) 

where ||Dv||2 and ||v||2 are the Euclidean norm of the vectors Dv and v, respectively, which is 

equal to the square root of the largest eigenvalue of DHD, where DH denotes the conjugate 

transpose of D. 

 The results of the analysis in this section is summarized as follows. 

Theorem 1: If the magnitude of hc[n] is bounded by an exponentially decaying curve as n 

increases, and if there exists a positive value of K satisfying hK > 0, then for any positive 

number ε, there must exist a positive number δ such that  

 
2

limsup [ ] ε for all 0 δk
n

n K
→

  z  (152) 

and k = 1, 2, …, L, provided that there exists a bounded positive integer M such that cmin[n] 

≠ 0 occurs at least once in any consecutive M samples, where cmin[n] is the minimum value 

of E{Sk
2[n]} over k = 1, 2, …, L at time index n. 

 The limit superior of ||zk[n]||2 in (152) represents the steady-state mean squared error. 

It follows from (152) that the steady-state mean squared error can be made arbitrarily small 

by reducing the magnitude of K. 

Theorem 2: If the magnitude of hc[n] is bounded by an exponentially decaying curve as n 

increases, and if there exists a positive value of K such that hK > 0 is satisfied, and if the 

statistics of r[n] and Sk[n] for each k do not change over time, then for any positive number 

ε, there must exist a positive number δ such that for all 0 < K < δ, the limit superior of 

||zk[n]||2 satisfies 
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2
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2 1

limsup [ ] [ ] ' ,
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k l i i l
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→ − − =

 
 + −  

 
  c

z r b H a  (153) 

where 
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1

ε ,
2 Kh

  +  (154) 

provided that cmin[n] > 0 for all k = 1, 2, …, L. 

 The hypothesis that the statistics of r[n] and the Sk[n] sequences are constant over 

time is reasonable in the case of foreground MNC calibration.  

 In practice, the contribution of the ||r[n]||-associated term in (153) is much larger than 

the other terms, thus if ε is sufficiently small, the bound in (153)-(154) reduces to 

KNσr
2/(2hK), where σr

2 = ||r[n]||2/N represents the power of the ADC noise and main DAC’s 

signal component after being filtered by the decimation filter. However, Theorem 2 does not 

rigorously quantify how small δ needs to be such that (153)-(154) is satisfied for a given ε, 

the answer to this question requires sophisticated and tedious computation. Instead, the 

analysis yields a guideline of K, which states that for (153)-(154) to be satisfied for a 

reasonably small value of ε, it requires  

 0 2 / ,KK h A   (155) 

where ( )
2 1 0

2 2 2
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( 2) 1 ( 2)
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i N q Q i N

A L Q
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−
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= + + + +  c c c c c
H H H H H  (156) 

If the impulse response of the MNC feedback path is a delayed delta function satisfying hc[n] 

= 1 if n = Q and hc[n] = 0 otherwise, (155)-(156) reduces to a simple equation of  

 
2

0
2 2

K
NL N Q

 
+ +

 (157) 

The results of (155)-(156) together with hK > 0 provide guidelines in the choice of MNC 

design parameters. It is found that (155)-(156) is almost always satisfied in practice (e.g., K 

used in the prototype DAC IC in [16] is close to 2hK/3000A). Although the derivation of 

(155)-(156) is not rigorous and the definition of << 1 is relatively vague, the simulation 

results in Section V confirmed that in almost all practical cases, the upper bound of (153)-
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(154) can be used to estimate the impact of correlation noise on the post-calibration DAC 

SNR within an accuracy of 1dB. 

 The proof of Theorem 1 and 2 is presented in the remainder of this section. 

Proof of Theorem 1: 

 The Sk[n−Q]Sl[n−i]Hc_i matrix and the additive noise vector ek,n in (147) are both 

associated with the Sk[n−Q]Sl[n−i] variables, each of these variables are restricted within the 

range of −1 and 1 and are associated with samples of the Sk[n] sequences. In this paper, these 

type of variables are referred to as modulation variables. More accurately, the modulation 

variables, denoted as s, is defined as a single or a product of variables, each variable must be 

within the range of −1 and 1 and is either a deterministic scaling factor or associated with 

samples of Sk[n] sequences for 1 ≤ k ≤ L at a single time index n, and different variables 

cannot be associated with samples of Sk[n] sequences of the same time index. For example, 

S1[n−3], (S3
2[n−1]S1

2[n−1])(S1
2[n−2]) and 0.5(S1

2[n−3]–1/2)(S2
2[n−6]) are all modulated 

variables, because each of them is either a single or a product of variables satisfying the 

above definition. 

 It follows from (148) that ek,n is a sum of vectors, each vector in the form of sjqj, 

where sj is in the form of a modulation variable, and qj is a vector independent of any sample 

of Sk[n] sequences for 1 ≤ k ≤ L. This type of vector is referred to as modulated vector in the 

paper. It is possible for a modulated vector to be a function of K, but it is required that for 

any bounded value of K, the sum of the RMS norm of each qj vector in any modulated vector 

is bounded.  

 Equation (147) is in a “non-causal” form since zk[n] at time index n is affected by 

zk[n−i] for i ≤ 0, this is an artifact of the analysis. It follows from Lemma 1 in Appendix A 

that (147) can be converted into an alternative causal form as 
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for all n ≥ 0, with the initial condition for n ≤ −1 identical to that of (147), where each 

Hq,k(z[n−1]) for q = 1, 2, 3 has the form of H(z[n−1]) defined in Lemma 1, and vk,n is a 

modulated vector. The H1,k(z[n−1]) term represents the double sum term in (147) except that 

each state variable with time index larger than n−1 is replaced with the same state variable 

with time index n−1, i.e., 

  ( )  1, , , ,

1 1

1 ,
L

k k l i n l

i l

n n i
 =

− = −H z H z   (159) 

where 
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 (160) 

The H2,k(z[n−1]) term is derived by summing up Sk[n−Q]Sl[n−j]Hc_j·H1,l(z[m−1]) over 1 ≤ l 

≤ L, −(N−2) ≤ j ≤ 0,  n ≤ m ≤ n−j, and then replacing each state variable with time index 

larger than n−1 by the same state variable with time index n−1. Each Hq,k(z[n−1]) for q = 1, 

2, 3 was defined in Lemma 1 for n ≥ 0. For the completeness of analysis, let us define each 

Hq,k(z[n−1]) for n ≤ −1 as 0. 

 Equation (158) has multiple state variables zk[n] for k = 1, 2, …, L. The value of 

zk[n] at any given time n ≥ 0 is a linear combination of the initial condition at n ≤ −1 and the 

additive noise vectors, Kek,p+K2vk,p for p = 0, 1, …, n. If each Kek,n+K2vk,n in (158) is 

replaced with 0, (158) reduces to 

      ( )
3

,

1

1 1 for 1, 2, ...,q

k k q k

q

n n K n k L
=

= − − − =x x H x  (161) 

and n ≥ 0, with an initial condition of xk[n] = zk[n] for n ≤ −1, where Hq,k(x[n−1]) is given 

by Hq,k(z[n−1]) with each state variable, zl[n−i], replaced by xl[n−i] of the same index l. 

Therefore, xk[n] represents the portion of zk[n] contributed by its initial condition. The 
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definition of zk[n] = ak[n]−ak' for n ≤ −1 and the initial condition of ak,m[n] in (139)-(140) 

imply that zk[n] for all n ≤ −1 are modulated vectors and zk[n] = −ak' for all n ≤ −N−1. 

Therefore, by defining Hq,k(z[n−1]) = 0 for all n ≤ −1, it follows that xk[n] in (161) resulting 

from the above initial condition can be viewed as the sum of N+1 portions, each portion is 

given by (161) evaluated from a different initial condition at n ≤ j in the form of 

 
[ ], if ,

[ ] for 1, 2, ..., ,
, if ,

k

k

n n j
n k L

n j

=
= =



v
x

0
 (162) 

where vk[n] = zk[n]−zk[n−1] for j = −1, −2, …, −N and vk  = −ak' for j = −∞. The definition of 

Hq,k(z[n−1]) = 0 for all n ≤ −1 ensures that xk[n] with the initial condition given by (162) 

evaluates to vk[j] at each time of j < n ≤ −1. 

 Similarly, the contribution of Kek,p+K2vk,p at time index p to zk[n] at time index n can 

be estimated by evaluating (161) from a different initial condition at n ≤ p given by 

 

2

, , , if ,
[ ] for 1, 2, ..., .

, if ,

k p k p

k

K K n p
n k L

n p

 + =
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
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x
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 (163) 

Therefore, evaluating xk[n] in (161) with each initial condition in (162)-(163) and applying 

superposition yields zk[n].  

 It follows that each non-zero vector of xk[n] in (162)-(163) is a modulated vector, and 

its modulation variables are either deterministic 1, or is a single or a product of samples of 

Sk[n] sequences for 1 ≤ k ≤ L, thus each of the above initial condition can be expressed as a 

sum of finite number of basis initial condition, each of which has the form 

 
base( ) ini
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where jini represents j in (162) or p in (163), it can be any integer including negative infinity, 

sbase is either deterministic 1, or is a single or a product of samples of Sk[n] sequences for 1 ≤ 

k ≤ L with the time indexes restricted within the range of jini−Q < n < jini+N (samples with 
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time indexes below this range are grouped into qbase(k), while samples with time indexes 

above this range have not yet appeared in the system thus do not influence the initial 

condition), while qbase(k) is a vector independent of any samples of Sk[n] sequences for 1 ≤ k 

≤ L except for those at time index n ≤ jini−Q. In addition, sbase in (164) associated with xk[n] 

are identical for all k, while qbase(k) can be dependent on k. It is required that E(s2
base) ≠ 0, and 

||qbase(k)|| can not 0 for all k, otherwise (164) reduces to a trivial case of all 0.   

 Equation (161), (164), and Hq,k(z[n−1]) = 0 for all n ≤ −1 imply that xk[n] for all jini 

≤ n ≤ max(jini, −1) are identical. Therefore, it is sufficient to analyze xk[n] for all n ≥ 

max(jini+1, 0). Let xmax[n] denote  

 
max

1
[ ] max [ ] ,k

k L
x n n

 
= x  (165) 

and let ck[n] denote 

    2 2 2

base base[ ] [ ] / ,k kc n E S n s E s=  (166) 

where sbase is the scaling variable in the basis initial condition given by (164). It follows from 

(166) that 

  2[ ] [ ] 1 for all , .k kc n c S n k n=    (167) 

Furthermore, since sbase is not associated with any sample of Sk[n] sequences at time index n 

≥ jini+N, it follows that  

  2

ini[ ] [ ] for .k kc n E S n n j N=  +   (168) 

 Under the hypothesis of Theorem 1 that there exists a bounded positive integer M 

such that cmin[n] ≠ 0 occurs at least once in any consecutive M samples, it follows from 

Lemma 3 and the properties of ck[n−Q] in (167)-(168) that ||xk[n]||2 for any n ≥ max(jini+1, 0) 

evaluated from any basis initial condition in (164) must be bounded by an exponential 

decaying curve given by 

 ( ) ini2 ( max( 1,0) )/2

max ini[ ] [ ] 1
n j Q N M

k Kn x j ch K
− + − −   −x  (169) 

for 1 ≤ k ≤ L, provided that the magnitude of K is less than a certain value, where c is a 

positive constant independent of K, but is associated with the value of cmin[n] averaged over 
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the entire period of convergence. Let the value of K be chosen smaller than this upper limit. 

It follows from (158) that zk[n] at time index n ≥ 0 is a linear function of its initial condition 

and the additive noise terms Kek,p+K2vk,p for  p = 0, 1, …, n. The contribution of the initial 

condition to zk[n] can be obtained by evaluating xk[n] in (161) with the initial condition in 

(162). The initial condition in (162) can be expressed as a sum of finite number of basis 

initial conditions in the form of (164), and it follows from (169) that ||xk[n]||2 → 0 as n → ∞ 

from each of these basis initial conditions, thus the rule of superposition from Lemma 3 

implies that ||xk[n]||2 → 0 as n → ∞ from the overall initial condition. This implies that the 

contribution of the system’s initial condition to ||zk[n]||2 dies out exponentially as n → ∞, 

which by itself satisfies (152). 

 Similarly, the contribution of each Kek,p+K2vk,p to zk[n] can be obtained by evaluating 

xk[n] in (161) with the initial condition in (163). The initial condition in (163) for a given p 

also can be written as a sum of finite number of basis initial conditions in the form of (164), 

where jini = p and sbaseqbase(k) represents a portion of Kek,p+K2vk,p. Therefore, the contribution 

of each sbaseqbase(k) component of Kek,p+K2vk,p to zk[n] follows from (161) and (164) with jini = 

p. Each Hq,k(x[n−1]) for q = 1, 2, 3 in (161) has the form of Hs(x[n−1]), the definition of 

Hs(x[n−1]) implies that each state variable, xl[n−i], in Hq,k(x[n−1]) is scaled by samples of 

Sk[n] sequences with time indexes strictly larger than n−i−Q. It follows from (164) with jini 

= p that all the state variables with time indexes smaller than p are 0, thus this portion of 

state variables are removed from Hq,k(x[n−1]) to simplify the analysis. Consequently, all 

state variables left in Hq,k(x[n−1]) are scaled by samples of Sk[n] sequences with time 

indexes larger than p−Q. Furthermore, (148) implies that each sbaseqbase(k) component of Kek,p 

is given by either KSk[p−Q]r[p] or KSk[p−Q]Sl[p−i](bl_i−Hc_ial') with i ≠ Q. These 

observations imply that the contributions of KSk[p−Q]r[p] for different p to zk[n] are 
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uncorrelated, and the contributions of KSk[p−Q]Sl[p−i](bl_i−Hc_ial') for different p to zk[n] 

are also uncorrelated, thus the contribution from the same component of Kek,p for p = 0, 1, 

…, n to ||zk[n]||2 is given by the sum of the power of individual contribution. The 

contribution of the KSk[p−Q]r[p] component of Kek,p to ||zk[n]||2 is bounded by (169) with 

xmax
2[p] = K2cmax[p−Q]||r[p]||, while the contribution of the KSk[p−Q]Sl[p−i] (bl_i−Hc_ial') 

component of Kek,p is bounded by (169) with xmax
2[p] = K2cmax[p−Q] ||Sl[p−i](bl_i−Hc_ial')||, 

where cmax[p−Q] is the maximum value of E{Sk
2[p−Q]} over k. Summing up all these 

components, it follows that the contribution of Kek,p for p = 0, 1, …, n to ||zk[n]||2 is given by 

o(K), where o(K) is bounded and in the order of K. 

 Unfortunately, this zero-correlation property does not apply for each component of 

K2vk,p. Instead, Lemma 2 is used to bound the overall contribution of K2vk,p for p = 0, 1, …, 

n to ||zk[n]|| by adding up the individual contribution in magnitude. The contribution of each 

sbaseqbase(k) component to ||zk[n]|| is given by ||xk[n]||, which is bounded by the square root of 

the right side of (169), and since each sbaseqbase(k) component of K2vk,p is scaled by K2, this 

implies that the overall contribution of K2vk,p to ||zk[n]|| and ||zk[n]||2 are in the order of o(K) 

and o(K2), respectively.  

 Combining all the contributions to ||zk[n]||2  yields (152).  

□  

Proof of Theorem 2 

 The proof of Theorem 1 shows that there exists a positive upper limit of K below 

which the contribution of the system’s initial condition to ||zk[n]||2 dies out to 0 as n → ∞, 

thus it remains to analyze the contribution from Kek,p+K2vk,p. The proof of Theorem 1 also 

shows that the overall contribution of K2vk,p for p = 0, 1, …, n to ||zk[n]||2 at any time n is in 

the order of o(K2), which decreases with K at a rate faster than that of (153)-(154). 
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Therefore, it is sufficient to analyze the overall contribution of Kek,p for p = 0, 1, …, n to 

||zk[n]||2.  

 It follows from (148) that each component of Kek,p is given by KSk[p−Q]r[p] or 

KSk[p−Q] Sl[p−i](bl_i−al') for i ≠ Q and l = 1, 2, …, L, each of which has the form of 

sbaseqbase(k) in (164). The contribution of each sbaseqbase(k) component to ||zk[n]||2 is given by 

||xk[n]||2, where xk[n] follows (161) and (164) with jini = p. The subsequent analysis applies 

(182) of Lemma 3 to yield a tight bound of ||xk[n]||2. Lemma 3 states that for any given 0 < β 

< 1, (182) holds if K is chosen small enough. 

 Let us first discuss a hypothetical case where β in (182) is replaced by 0, it follows 

that (182) reduces to  
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It follows from (170) and the properties of ck[n] in (167)-(168) that the contribution of each 

sbaseqbase(k) component of Kek,p to ||zk[n]||2 is bounded by ||xk[n]||2 ≤ ||xk[p]||2(1−2E{Sk
2[n]}KhK) 

(n−p−Q−N) for 0 ≤ p ≤ n, where E{Sk
2[n]} is time-invariant and satisfies E{Sk

2[n]} > 0 for k = 1, 

2, …, L as implied by the hypothesis of Theorem 2, ||xk[p]||2 = K2||Sk[p−Q]r[p]||2  for 

sbaseqbase(k) = KSk[p−Q]r[p] and ||xk[p]||2 = K2||Sk[p−Q]Sl[p−i](bl_i−al')||2 for sbaseqbase(k) = 

KSk[p−Q]Sl[p−i](bl_i−al'). It follows from the proof of Theorem 1 that the contributions of 

the same sbaseqbase(k) component of Kek,p for p = 0, 1, …, n to zk[n] are guaranteed to be 

uncorrelated. Summing up each component’s contribution for p = 0, 1, …, n in power and 

over i , l in magnitude yields (153), where α = K(1+o(K))/(2hK), thus for any given positive 

Ɛ, (154) holds if K is chosen small enough. 

 However, as stated in Lemma 3, the validity of (182) requires the value of β to be 

larger than 0. If (182) with β > 0 is used to estimate the bound,  it follows from intuition that 
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for any positive Ɛ, (153)-(154) would still hold if both β and K are small enough, this is 

proven in Appendix B, which yields (153) with α = K(1+o(K))(1+(cmax[n]/cmin[n])β/(1−β)) 

/(2hK), where cmin[n] and cmax[n] are the minimum and maximum values of E{Sk
2[n]} over k, 

respectively. Since (182) is guaranteed by choosing K to be small enough, it follows that 

(153)-(154) hold provided that K is chosen small enough and cmin[n] > 0. 

□  

 The proof of Theorem 2 implies that in order for (153)-(154) to be satisfied for a 

small positive number, Ɛ, (182) needs to be satisfied for a small positive number, β. It 

follows from the proof of Lemma 3 that this can be achieved by choosing K to be small 

enough such that λ given by (204) satisfies 0 < λ < β. It follows from the expression of λ that 

if the second-order terms are ignored, K is required to satisfy (155).  

IV. DISCUSSIONS  

 

 This section derives useful information from the analysis of section III to quantify the 

contribution of correlation noise to the post-calibration DAC SNR. It also presents design 

guidelines to minimize this noise contribution.  

 The value of ||zk[n]||2 for n → ∞, where ||zk[n]|| is the RMS norm of zk[n] defined in 

(149), represents the overall steady-state mean squared error of ak,m[n] for m = 1, 2, …, N−1. 

The results of Section III shows that if hK > 0 is satisfied, then the steady-state mean squared 

error can be arbitrarily reduced by decreasing the magnitude of K as given by (152), and if 

the magnitude of K is chosen “sufficiently small”, the steady-state mean squared error in 

MNC foreground calibration is pessimistically bounded by (154). It further provides a 

guideline in the choice of K given by (155).  
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 Let us illustrate these results with a design example. Suppose the MNC feedback 

path’s impulse response, hc[n], can be approximated as a delayed delta function and Q is 

chosen as the delay, i.e., hc[n] = 1 if n = Q and hc[n] = 0 otherwise, it follows from the 

guideline in (157) that for a prototype design of N = 9, L = 35 and Q = 21 from [16], K needs 

to satisfy 0 < K << 0.003 as indicated by (155). This can be easily achieved without 

compromising the convergence rate derived from [15]. Indeed, the actual value of K used in 

the prototype design is of the order of 10−6 and thus is much smaller than this upper bound.  

 In practice, any deviation in the shape of hc[n] from a delayed delta function will 

cause the value of hK to decrease from 1, and it follows from Theorem 1’s hypothesis that it 

is important to keep hK positive. This can be achieved by keeping the bandwidth of the 

feedback path high enough (preferred to be above the Nyquist frequency of the DAC) and 

choose Q as the closest integer to the average delay of the feedback path. 

 The results of (153)-(154) can be directly applied to estimate the contribution of 

correlation noise to post-calibration DAC SNR. It is worth noting that since the MNC 

coefficients are frozen at the end of the foreground calibration and subsequently used in the 

normal operation, the actual noise component on each coefficient will vary from calibration 

to calibration. This also means that with a given set of design parameters, the post-

calibration DAC SNR contributed by correlation noise may slightly vary from calibration to 

calibration. The analysis presented in this paper provides an estimation of the average 

contribution of correlation noise to post-calibration DAC SNR across different runs of 

calibrations, but not the SNR variation across different runs of calibrations. Fortunately, it is 

found through simulations that this variation is very small (<1dB), which is largely due to 

the averaging effect from the large number of coefficients used for generating mismatch 

cancellation waveform. 
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 The DAC input sequence during normal operation is usually different from that used 

during MNC foreground calibration, thus each ck[n] = E{Sk
2[n]} during normal operation is 

different from the corresponding value during the foreground calibration. Let ck_post[n] 

denote the value of E{Sk
2[n]} during normal operation. Furthermore, since the impact of the 

||r[n]||-associated term in (153) is much larger than the other terms, only this dominant term 

is used for estimation.  It follows from (153)-(154) with ε = 0 that the average contribution 

of correlation noise to post-calibration DAC SNR can be pessimistically bounded by 
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where the subscript c in the notation of SNRc is used to imply that it represents the SNR 

contributed by the correlation noise only, not the overall DAC SNR that would otherwise 

include quantization noise, etc. The Psig term is the DAC signal power over the first Nyquist 

band, ck_post is the time average of ck_post[n], ashape represents the roll-off introduced by the 

correction DAC’s pulse shape given by 
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where Ac(j2πf) is the Fourier Transform of the correction DAC’s pulse shape limited within 

a 1/fs-period. It follows that if the correction DAC’s pulse shape is an ideal RZ rectangular 

pulse with 80% duty cycle and magnitude of 1, then ashape = 0.54 and is independent of fs.  

 The value of N in (172) represents the number of coefficients in each sk[n] residue 

estimator shown in Fig. 35. It follows from [15] that a relatively large N (e.g., N = 9) is 

necessary to achieve significant cancellation static and dynamic mismatch error. However, 

(172) implies that a larger N results in a higher sensitivity of the post-calibration DAC SNR 
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to the correlation noise. Fortunately, this problem can be addressed by reducing the 

magnitude of K, as it follows from (172) that each reduction of K by half results in a 3 dB 

improvement of SNRc. 

V. SIMULATION RESULTS 

 

 Three sets of simulations are performed to validate the contribution of correlation 

noise on the post-calibration DAC SNR predicted by (172). Both main and correction DACs 

incorporate RZ 1-bit DACs with an 80% duty cycle, which results in ashape = 0.54. The clock 

rates of both main and correction DACs are 600 MHz, while the clock rate of the 

oversampling ADC is 3 GHz.  

 The simulation is performed with MNC first operating in foreground mode, and wait 

sufficiently long until all the coefficients fluctuate around their steady-state mean values. 

The values of these coefficients are subsequently frozen and used to generate mismatch 

cancellation waveform for the main DAC during normal operation. In the foreground mode, 

the main DAC’s input is toggled back and forth between −2389.5Δ  and −2388.5Δ, where Δ 

is the step size of the main DAC. This choice of the input sequence results in sk[n] sequences 

with a low percentage of zero values, which ensures rapid MNC loop convergence [15]. 

During the normal operation, a full-scale input signal of 179.4 MHz with a peak-to-peak 

swing of 214Δ is applied to the input of the main DAC, and the DAC SNR contributed by 

correlation noise is evaluated. 

 Each simulation sweeps one of the three parameters of (172), i.e., σr, N, and K. The 

value of L is fixed as 35, which is determined by the structure of DEM encoder used in the 

design. The value of Q is chosen as 21, which is the closest integer to the average delay of 
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MNC feedback path. The MNC feedback path is properly designed such that hK is positive, 

the value of which, as extracted from separate simulation, is 0.6 and found to be nearly 

independent of K in practical cases where K is small. Each ck_post of (172) is also estimated 

from separate simulations.  

 Fig. 36 compares (172) with the simulated post-calibration DAC SNR contributed by 

correlation noise for K = 2×10−5 , N = 9 and different values of σr, where σr is varied by 

varying the quantization step size of the ADC. Fig. 37 presents the same comparison for N = 

9, σr = 15Δ, and different values of K. Fig. 38 presents the same comparison for K = 2×10−5, 

σr = 15Δ, and different values of N. In all three cases, the analytical results closely agree with 

the simulation results. The simulations also quantitatively demonstrate that the noise impact 

on post-calibration DAC SNR can be reduced by decreasing the magnitude of K. 

APPENDIX A 

 

Lemma 1:  The difference equation (147), derived from (139)-(140), can be converted into 

(158)-(160) without change of the initial condition. Each Hq,k(z[n−1]) term in (158) for q = 

1, 2, 3 has the form of H(z[n−1]), where H(z[n−1]) is defined as a sum of a finite number of 

components, each component again is a sum term in the form of D(z[n−1]) given by 

  ( )  ,

1

1 n i i l

i

n s n i


− = −D z D z  (173) 

where l represents any integer between 1 and L, sn,i is a modulation variable associated with 

time indexes larger than n−i−Q, Di is an N×N deterministic real matrix. For any bounded 

value of K, the spectral norm of each Di is bounded by an exponentially decaying curve as i 

increases. 
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 The vk,n term, similar to ek,n, is an additive noise and has the form of a modulated 

vector. All the modulation variables of Hq,k(z[n−1]) and vk,n are a single or a product of 

samples of Sk[n] sequences with the time index smaller than n+N and must contain Sk[n−Q] 

with index k. 

Proof of Lemma 1: 

 It follows from the definition of H(z[n−1]) that the portion of the double sum term in 

(147) (excluding the scaling factor K) associated with state variables with time indexes 

smaller than n has the form of H(z[n−1]). 

 Let Hi for −(N−2) ≤ i ≤ N−2 represent any N×N deterministic real matrix that 

satisfies the following property: each entry of Hi with the row index u and column index v 

with u−v ≤ −i must be 0, it follows that Hc_i in (147) for −(N−2) ≤ i ≤ N−2  has the form of 

Hi. 

 Replacing n with n+p−i in (147) and multiplying both sides by Hi, and finally 

grouping all the terms associated with zl[n−j] for j ≥ 1 and 1 ≤ l ≤ L into H(z[n−1]), it 

follows that Hizk[n+p−i] for any −(N−2) ≤ p ≤ 0 and −(N−2) ≤ i ≤ p can be written as 
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 (174) 

The ranges of p and i imply that the upper limit of the index j in (174) is at most N−2, thus 

Hc_j has the form of Hj. The properties of Hi matrix imply that HiHc_j in (174) has the form 

of Hi+j−1. Replacing Sl[n+p−i−j]HiHc_jzl[n+p−i−j] in (174) by Sl[n+p−q−1]Hq zl[n+p−q−1]  

with q = i+j−1, and letting zk(n,i,p) and zl(n,q,p) denote Hizk[n+p−i] and Hqzl[n+p−q], 

respectively, yields 
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    (175) 

The lower index of q in (175) is set to −(N−2), this is because the properties of Hq implies 

that Hq = 0 for all q ≤ −(N−1). The following analysis proves that for each −(N−2) ≤ p ≤ 0, 

zk(n,i,p) has the form 

  ( )( , , ) ( , , )1 [ 1] for ( 2) and 1 ,k n i p i k k n i pn K n K N i p k L= − + − + − −    z H z H z w   

  (176) 

where Hi is the same Hi matrix in the expression of zk(n,i,p), and wk(n,i,p) is a modulated vector. 

The proof is done through mathematical induction. The inductive step is, if (176) holds for p 

= J−1 where −(N−2) ≤ J−1 ≤ −1, then (176) must hold for p = J.  The induction base step is 

(176) holds for p = −(N−2). The induction base step follows from (175), this is explained as 

follows. With −(N−2) ≤ i ≤ p and p = −(N−2), it follows that the double sum term in (175) 

vanishes, and the zk(n,i,p−1) term in (175), given by Hizk[n+p−1−i], can be written as 

Hizk[n−1]. Furthermore, the Hiek,n+p−i term in (175) is a modulated vector because ek,n in 

(147) is a modulated vector. The proof of the inductive step also follows from (175), this is 

explained as follows. The double sum term in (175) with p = J contains a finite number of 

terms associated with zk(n,q,J−1), each zk(n,q,J−1) has the index q restricted within the range of 

−(N−2) ≤ q ≤ J−1, this range of q in zk(n,q,J−1) is identical to that of i given by (176) with p = 

J−1. Since the inductive step is built on the premise that (176) holds for p = J−1, it follows 

that zk(n,q,J−1) can be expressed in the form of (176) with p = J−1. Furthermore, the ranges of 

i, p, q imply that the modulation variable, Sk[n+p−i−Q]Sl[n+p−q−1], in (175) is associated 

with time index larger than n−1−Q. These properties imply that the double sum term in 

(175) itself has the form of KH(z[n−1])+Kw, where w is a modulated vector. Similarly, the 

remaining portion of (175) also has this form. Combining these results yields (176).  
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 It follows from the definition of zn,i,p = Hizk[n+p−i] that each Hc_izk[n−i] component 

of (147) for −(N−2) ≤ i ≤ 0 has the form of zn,i,p with p = 0 and Hi=Hc_i, thus has the form of 

(176). Substituting (176) with p = 0 and Hi=Hc_i for −(N−2) ≤ i ≤ 0 into (147) and grouping 

all the K2 terms into K2H(z[n−1]) yields  

      ( ) 2

1, , ,01 1 ( [ 1]) for 1, 2, ..., ,k k k k nn n K n K n K k L= − − − + − + =z z H z H z v (177) 

where H1,k(z[n−1]) is given by (159) and has the form of H(z[n−1]), and vk,n,0 is a modulated 

vector. For any finite integer j ≤ 0, recursively expanding (177) and grouping all the terms 

scaled by K2 into K2H(z[n−1]), yields 

     ( ) 2

( ) , ,1 1 ( [ 1]) for 1, 2, ..., ,k k k n j k n jn j n K n K n K k L−− = − − − + − + =z z H z H z v (178) 

where Hk(n−j)(z[n−1]) is derived by summing up H1,k(z[m−1]) for n ≤ m ≤ n−j and then 

replacing each state variable with time index larger than n−1 by the same state variable with 

time index n−1. It follows that Hk(n−j)(z[n−1]) also has the form of H(z[n−1]), and each 

additive noise term vk,n,j is a modulated vector.  The reason why the recursive expansion of 

(177) yields (178) follows from mathematical induction. The induction base step, i.e., (178) 

is satisfied for j = 0, directly follows from (177). The inductive step, i.e., (178) is satisfied 

for  j = −q provided that (178) is satisfied for j = −(q−1) for q ≥ 1, follows by replacing n 

with n+1 in (178) and then applying (177) to expand a finite number of terms that is 

associated with zk[n] at time index n with respect to state variables at time index n−1 or 

smaller. 

 Substituting (178) for –(N–2) ≤  j ≤ 0 and 1 ≤ k ≤ L into (147) yields (158). Since all 

modulation variables of H(z[n−1]) and ek,n in (147) is either Sk[n−Q] or a product of Sk[n−Q] 

and some samples of Sk[n] sequences, it follows that each Hq,k(z[n−1]) term and each 

modulated vector in (158)-(160) must also follow these properties. Furthermore, it follows 

from (139)-(141) that ak,m[n+m] in the expression of zk[n] must not be dependent on samples 
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of Sk[n] sequences with time indexes equal or larger than n+N, thus all the modulation 

variables in (158) are only associated with time indexes smaller than n+N.  

□   

Lemma 2: Any N-dimensional real vectors v and w satisfy 

 .−  +  +v w v w v w  (179) 

Proof of Lemma 2: 

It follows from the definition of ||v+w||2 that 

 ( )
1 1 2

2 2 2 2

0 0

( ) .
N N

j j j j

j j

E v w E v E w
− −

= =

     + = +  +      v w  (180) 

It follows from the Cauchy–Schwarz inequality that (180) is further upper bounded by 

(||v||+||w||)2, which is same upper bound of (179). Replacing w with −w and then replacing v 

with v+w yields the lower bound of (179).  

□  

Lemma 3: If the magnitude of hc[n] is bounded by an exponentially decaying curve as n 

increases, and if there exists a positive K such that hK > 0 is satisfied, then for any 0 < β < 1, 

there must exist a positive value of Kmax such that for any 0 < K ≤ Kmax, xmax
2[n] given by 

(165) with xk[n] given by (161) and (164) must satisfy the following exponential trajectory,  
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for all n ≥ max(jini+1, 0), where K(min,n−Q) and K(max,n−Q) are the minimum and maximum 

value of 2ck[n−Q]K over k, where ck[n−Q] is given by (166) with n replaced by n−Q, and 

each ||xk[n]||2 for k = 1, 2, …, L has a tighter upper bounds of  
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 (182) 

where K(k,n−Q) = 2ck[n−Q]K for each k.  

Proof of Lemma 3: 
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 The proof of Lemma 3 uses mathematical induction. The inductive step, which is 

proven shortly, is: for any 0 < β < 1, there must exist a range of K given by 0 < K ≤ Kmax 

such that for each K within this range and each n ≥ max(jini+1, 0), if 

 
2 2

max max _ 2
[ ] / [ 1] 1 4 QJ J K−  −

c
x x H  (183) 

holds for all J < n, then the conditions of Lemma 3’s hypothesis are sufficient to ensure that 

(183) must hold for J = n, and (181)-(182) hold at time n. 

 The induction base step, i.e., (183) holds for all J ≤ max(jini, −1), follows directly 

from the basis initial condition in (164) and Hq,k(x[n−1]) = 0 for n ≤ −1. Therefore, provided 

that the inductive step is true and K is chosen within 0 < K ≤ Kmax, it follows from the 

induction that (183) and (181)-(182) hold for all integers n ≥ max(jini+1, 0). Hence, it 

remains to show that the inductive step is true. This is shown in the remainder of the proof.  

 Lemma 1 implies that each Hq,k(x[n−1]) term in (161) for q = 1, 2, 3 has the form of 

H(x[n−1]), where H(x[n−1]) is given by H(z[n−1]) defined in Lemma 1 with each state 

variable, zl[n−i], replaced by xl[n−i], and H(x[n−1]) satisfies all the associated properties of 

H(z[n−1]) described in Lemma 1.  

 For any modulation variable, s, let s[n] denote all portions of s associated with time 

index n multiplied by any deterministic scaling factor in its expression (if s is not associated 

with time index n, then s[n] is equal to the deterministic scaling factor), thus s[n] is 

restricted to values between −1 and 1 by definition. For example, if s = 

0.5(S1[6]2−1/2)S2[6]S5[7], then s[6] = 0.5(S1[6]2−1/2)S2[6]. Let c{s[n]} denote  

      2 2

base base[ ] [ ] / ,c s n E s n s E s=  (184) 

where sbase is the scaling variable in the basis initial condition given by (164) and is a single 

or a product of samples of Sk[n] sequences. A special case of c{s[n]} with s[n] = Sk
2[n] was 

previously defined by ck[n] in (166), i.e., c{Sk
2[n]} = ck[n]. It follows from these definitions 



 

136 

 

that if s[n] = Sk
2[n]−ck[n],  or if s[n] is both zero mean and in the form of a single or a 

product of samples of Sk[n] sequences at time n, then c{s[n]} = 0. 

 It follows from these properties that each modulation variable of H1,k(x[n−1]) in 

(161), given by s = Sk[n−Q]Sl[n−i] as according to (159)-(160), satisfies c{s[n−Q]} = 

ck[n−Q] for l = k and i = Q, and c{s[n−Q]} = 0 otherwise. The component of H1,k(x[n−1]) 

associated  with Sk[n−Q]Sl[n−i] for l = k and i = Q is given by Sk
2[n−Q]Hc_Qxk[n−Q]. Let 

Ak(x[n−1]) represent H1,k(x[n−1])−ck[n−Q]Hc_Qxk[n−Q], it follows that Ak(x[n−1]) is equal 

to H1,k(x[n−1]) except that the Sk
2[n−Q]Hc_Qxk[n−Q] component is replaced by (Sk

2[n−Q]− 

ck[n−Q])Hc_Qxk[n−Q], where the new modulation variable,  0.5(Sk
2[n−Q]−ck[n−Q]), 

satisfies c{s[n−Q]} = 0 (a scaling factor of 0.5 is grouped into this modulation variable to 

simplify the subsequent analysis). 

 It follows from H1,k(x[n−1]) = Ak(x[n−1])+ck[n−Q]Hc_Qxk[n−Q] that (161) contains 

a term given by xk[n–1]–Kck[n−Q]Hc_Qxk[n–Q]. To explicitly capture the effect of xk[n–Q] = 

0 for n–Q < jini as implied by (164),  xk[n–Q] is replaced by uini[n−Q]xk[n–Q], where 

uini[n−Q] = 1 if n–Q ≥ jini and 0 otherwise, thus 
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 (185) 

where I is the N×N identity matrix. If n–i < max(jini+1, 0), it follows from 1 ≤ i ≤ Q−1 that 

either uini[n−Q] = 0 or xk[n–i]– xk[n–i–1] = 0. Otherwise, the xk[n–i]–xk[n–i–1] term in (185) 

can be expanded by (161) with n replaced by n−i. Therefore, the upper index, Q−1, of the 

sum term in (185) can be replaced by Q' = min(Q−1, n–max(jini+1, 0)). Applying (161) to 

expand xk[n–i]– xk[n–i–1] and then substituting the result back into (161) yields 

 ( )  ( )2 3

( , )[ ] ( ) [ 1] [ 1] [ 1] [ 1] 1 ,k k n k k k kn K n K n K n n K n= − − − − − − + − + −x I I x u v w H x  
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where 
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where all the term scaled by K3 is grouped into K3H(x[n−1]), and H2,k(x[n−1]) in (190) 

corresponds to the same term in (161). It follows that (188)-(190) each has the form of 

H(x[n−1]). Taking RMS norm on both sides of (186) and applying Lemma 4 yields 
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where a0, a1, and a2 are given by 
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  1 ( , )( ) [ 1], 1 ,k n k ka K n n= − − −I I x u  (193) 
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As proven shortly, each of these terms can be bounded by 

  ( )
2 2

0 ini1 [ ] [ ] [ 1] ,K k ka Kh c n Q u n Q n − − − −x  (195) 

 ( )
2 2

0 _ ini2
1 [ ] [ ] [ 1] ,Q k ka K c n Q u n Q n − − − −

c
H x  (196)  

 ( )2
2 2 2

1 2 _ max2
[ ] ( ) [ 1],k Qa K a K K c n Q A o K x n+  − − + −

c
H  (197) 

where A is given by (156), o(K) is a bounded and in the order of K. The proof of (195) and 

(196) is presented as follows.  

 If ck[n−Q]uini[n−Q] ≠ 0, the definitions of hK and I(k,n) in (150) and (187), and 0 < 

Kck[n−Q]uini[n−Q] ≤ K imply that 
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 ( ) ( )( , ) ini2
1 / [ ] [ ] ,k n k KK Kc n Q u n Q h− − − − I I  (198) 

which yields  

 ( , ) ini2
1 [ ] [ ].k n K kK Kh c n Q u n Q−  − − −I I  (199) 

If ck[n−Q]uini[n−Q] = 0, then ||I−KI(k,n)||2 = 1 and thus (199) still holds. Applying Lemma 5 

and (199) to (192) yields (195). 

 It follows from Lemma 2 and Lemma 5 that  

 0 ( , ) ( , ) 2
( ) [ 1] [ 1] [ 1] .k n k k k n ka K n n K n= − −  − − −I I x x I x  

This and the definition of I(k,n) in (187) yield (196).  

 The proof of (197) is presented as follows.  

 For any finite integer q ≤ 0, recursively expanding (161) and grouping all the terms 

scaled by K2 into K2H(x[n−1]) yields 

      ( ) 2

( )1 1 ( [ 1]),k k k n qn q n K n K n−− = − − − + −x x H x H x  (200) 

where Hk(n−q)(x[n−1]) is derived by summing up H1,k(x[m−1]) for n ≤ m ≤ n−q and then 

replacing each state variable with time index larger than n−1 by the same state variable with 

time index n−1. It follows that Hk(n−q)(x[n−1]) also has the form of H(x[n−1]). The recursive 

expansion applies the same mathematical induction used in Lemma 1 to expand (177) into 

(178).  

 For any integers i, I satisfying 1 ≤ i ≤ I and n–I ≥ jini, replacing n with n−(I−1) and q 

with i−(I−1) in (200) yields  

     2

( ) ( [ ]) ( [ ]),k k k n in i n I K n I K n I−− = − − − + −x x H x H x  (201) 

where Hk(n−i)(x[n−I]) is derived by summing up H1,k(x[m−1]) for n−(I−1)  ≤ m ≤ n−i and 

then replacing each state variable with time index larger than n−I by the same state variable 

with time index n−I, and Hk(n−i)(x[n− I]) has the form of H(x[n−I]). 

 Many terms described before have the form of H(x[n−1]). The basis initial condition 

indicates that xl[n−i] = 0 for n−i < jini, thus all the components of H(x[n−1]) associated with 
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xl[n−i] for n−i < jini can be removed, this is implicitly done in the subsequent analysis. The 

definition of H(x[n−1]) indicates that its modulation variables in the scaling factor of 

xl[n−i] are associated with time indexes larger than n−i−Q, this implies that all the 

modulation variables of H(x[n−1]) are only associated with time indexes larger than jini−Q. 

Furthermore, many modulation variables introduced, denoted as s, can be factored into the 

product of two modulation variables, s1 and s2, where s1 ϵ {Sk[n−Q], ck[n−Q], 

0.5(Sk
2[n−Q]−ck[n−Q])}, s2 can either be a deterministic scaling factor or a variable 

associated with samples of Sk[n] sequences. It follows from (184), (166) and |s2| ≤ 1 that s 

must satisfy c{s[n−Q]} ≤ ck[n−Q]. This is because if s1 = Sk[n−Q], then c{s[n−Q]} ≤ 

c{|Sk[n−Q]|} = c{Sk
2[n−Q]} = ck[n−Q]. If s1 = ck[n−Q], then c{s[n−Q]} ≤ c{ck[n−Q]} = 

ck[n−Q]. If  s1 = 0.5(Sk
2[n−Q]−ck[n−Q]), then c{s[n−Q]} ≤ c{0.5Sk

2[n−Q]}+ c{0.5ck[n−Q]} 

= ck[n−Q]. 

 The inner product between two terms, each has the form of H(x[n−1]), is given by 

<H(x[n−1]), H(x[n−1])>, and can be expanded into a sum of components, each has the form 

<sDq1,i1xl1[n−i1], Dq1,i2xl2[n−i2]> for i1, i2 ≥ 1 and a finite number of q1 and q2. Since both 

||Dq1,i1||2 and ||Dq2,i2||2 by definition are bounded by exponentially decaying curves as i1 and i2 

increase, the sum of ||Dq1,i1||2||Dq2,i2||2 for all i1, i2, q1, q2 must be bounded. Let <Hn> denote 

any portion of these components where each of its modulation variable can be factored into 

s1 ϵ {Sk[n−Q], ck[n−Q], 0.5(Sk
2[n−Q]−ck[n−Q])} and another modulation variable, it follows 

that their modulation variables satisfy c{s[n−Q]} ≤ ck[n−Q]. Furthermore, let <H'n> denote 

any portion of these terms with the above constraint satisfied and an additional constraint: 

for any <sDq1,i1xl1[n−i1], Dq2,i2xl2[n−i2]> component of <H'n> with indexes i1 and i2, there 

must exist an integer p such that c{s[n−p]} = 0 is satisfied, where n−p > jini–Q and both p−i1 

and p−i2 cannot be unbounded positive integer. 
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 Let us first evaluate the value of a1. It follows from the definition of a1 in (193) that 

it is the magnitude of  

 ( )( , )( ) [ 1], [ 1] .k n k kK n n− − −I I x A x  (202) 

 To simplify the notations, let I denote In,n−Q, where In,n−Q is given by In,p defined in 

Lemma 6 with p replaced by n–Q. Given that n ≥ max(jini+1, 0), it follows from the 

definition of In,n−Q that 0 < I ≤ Q+N and n−I ≥ jini. Let v0 denote (I−KI(k,n))xk[n−I], let w0 

denote Ak(x[n−1]) with each of its state variable xl[n−j] for j = 1, 2, …, I−1 replaced by 

xl[n−I], this and (201) imply that the left-side term of (202) can be written as v0+Kv1+K2v2, 

and the right-side term of (202) can be written as w0+Kw1+K2w2, where each of vi for 0 ≤ i ≤ 

2 and wj for for 0 ≤ j ≤ 2 has the form of H(x[n−1]). Furthermore, v1 is given by 

−(I−KI(k,n))Hk(n−1)(x[n−I]), w1 is given by Ak(x[n−1]) with each of its state variable xl[n−i] 

replaced by −Hl(n−i)(x[n−I]) for 1 ≤ i < I and replaced by 0 for i ≥ I, where the definitions of 

Hk(n−1)(x[n−I]) and Hl(n−i)(x[n−I]) follow from that of Hk(n−i)(x[n−I]) in (201). Expanding 

(202) results in <v0, w0> plus a finite number of terms in the form of Kq<vi, wj> for q = 1, 2, 

3, 4. Since the modulation variables in <v0, w0> are given by those of Ak(x[n−1]) that satisfy 

c{s[n−Q]} = 0, it follows from Lemma 6 and I = In,n−Q that |v0, w0| = 0. All the other terms 

associated with Kq for q =  2, 3, 4 can be lumped into K2<Hn>, it follows from (218) in 

Lemma 7 that they are bounded by Ko(K)ck[n−Q]xmax
2[n−1], where o(K) is bounded and in 

the order of K. The remaining term is given by K<v0, w1>+K<v1, w0>. Expanding K<v0, 

w1>+K<v1, w0> and applying the definition of Ak(x[n−1]) and Hl(n−i)(x[n−I]), where both 

Ak(x[n−1]) = H0,k(x[n−1])−ck[n−Q]Hc_Qxk[n−Q] and Hl(n−i)(x[n−I]) are associated with 

H0,k(x[n−1]) defined in (159)-(160), a careful analysis of the resulting terms shows that a 

portion of them are given by K<sD1xl[n−i1], D2xl[n−i2]>, where s = Sk
2[n−Q]Sk

2[n−q], D1 = 

(I−KI(k,n))Hc_(2Q−q), D2 = Hc_q for q = Q+1, Q+2, …, Q+I−1, where i1, i2 ≥ I and are 
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bounded. It follows that these modulation variables all satisfy c{S[n−Q]} ≤ ck[n−Q], thus 

Lemma 6, I = In,n−Q, and the matrix property of ||D1D2||2 ≤ ||D1||2||D2||2 imply that each term’s 

magnitude is bounded by Kck[n−Q]||Hc_(2Q−q)||2||Hc_q||2xmax
2[n−1](1+o(K)), where o(K) = 

(1−4K||Hc_Q||2)−(i1+i2−2)/2−1 is bounded since both i1 and i2 are bounded. The remaining 

portion of K<v0, w1> and K<v1, w0> both have the form of K<H'n>,  it follows from (219) in 

Lemma 7 that their magnitudes are bounded by Ko(K)ck[n−Q]xmax
2 [n−1]. 

 Let us evaluate the value of a2. It follows from Lemma 5 that a2 is bounded by the 

sum of the magnitudes of <uk[n−1], uk[n−1]>, <(I−KI(k,n))xk[n−1], wk[n−1]> and 

<(I−KI(k,n))xk[n−1], vk[n−1]>. Expanding each of them and applying the definition of 

Ak(x[n−1]) and H1,k(x[n−1]), a careful analysis of the resulting terms shows that a portion of 

<uk[n−1], uk[n−1]> consists of a component given by <s(2Hc_Q)xk[n−Q], Hc_Qxk[n−Q]>, 

where s = (Sk
2[n−Q]−ck[n−Q])2/2, and a few components given by <Sk

2[n−Q]Sl
2[n−i]Hc_i 

xl[n−j], Hc_ixl[n−j] > for l = 1, 2, …, L, where i = j for j ≥ 2 (other than l, j = k, Q) and i = 

−(N−2), −(N−3), …, 1 for j = 1. By definition, this portion of <uk[n−1], uk[n−1]> has the 

form of <Hn>, thus (218) of Lemma 7 implies that its magnitude is bounded by 

(ρ+o(K))ck[n−Q]xmax
2[n−1], where ρ is the sum of L||Hc_i||22 for i ≥ −(N−2) and ||Hc_Q||22. A 

portion of <(I−KI(k,n))xk[n−1], wk[n−1]> consists of a total of N−1 components associated 

with H2,k(x[n−1]) in (190) given by <Sk
2[n−Q]Sk

2[n−i]Hc_ixk[n−1], Hc_ixk[n−1]> for −(N−2) 

≤ i ≤ 0, by definition, this portion has the form of <Hn>, thus (218) of Lemma 7 implies that 

its magnitude is bounded by (ρ+o(K))ck[n−Q]xmax
2[n−1], where ρ is the sum of ||Hc_i||22 for 

−(N−2) ≤ i ≤ 0. The remaining portion of <uk[n−1], uk[n−1]> and <(I−KI(k,n))xk[n−1], 

wk[n−1]> both have the form of <H'n>, thus their magnitudes are both bounded by 

o(K)ck[n−Q]xmax
2[n−1]. 
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 It follows from (189) and Lemma 4 that |(I−KI(k,n))xk[n−1], vk[n−1]| is bounded by 

the sum of |(I−I(k,n))xk[n−1], I(k,n)I(k,n−i)xk[n−i−Q]| for 1 ≤ i ≤ Q'. It follows from Lemma 8,  

Lemma 5, ||I−KI(k,n)||2 ≤ 1 from (199) and ||I(k,n)I(k,n−i)||2 ≤ ||I(k,n)||2||I(k,n−i)||2 ≤ ck[n−Q]||Hc_Q||22 

from (187) that each of them is bounded by ck[n−Q]||Hc_Q||22||xk[n−1]||·||xk[n−i−Q]||, 

combining them for 1 ≤ i ≤ Q' and further applying (183) and Q' ≤ Q−1 yields the upper 

bound, (Q−1)ck[n−Q]||Hc_Q||22xmax
2[n−1](1+o(K)), where o(K) is bounded because i is 

bounded. 

 Combining all these results yields (197). 

 Similar reasoning implies that ajKj for j = 3, 4, 5, 6 in (191) are each bounded by the 

magnitude of K3|<Hn>|, which is again bounded by ck[n−Q]K2o(K) according to (218) of 

Lemma 7, where o(K) is bounded and in the order of K. Substituting this and (195)-(197) 

into (191), and grouping all the terms in the order of at least K2 into λhKK(k,n−Q), where 

K(k,n−Q) = 2ck[n−Q]K, yields the lower bound  

 ( ) 2 2

_ ( , ) ( , ) max ini2 2

2 2

( , ) max

1 [ 1] [ 1], if ,
[ ]

[ 1] [ 1], otherwise,

Q k n Q k K k n Q

k

k K k n Q

K n h K x n n Q j
n

n h K x n





− −

−

 − − − − − 
 

 − − −

c
H x

x

x

 (203) 

 and the upper bounds in (182) with β replaced by λ, where 

 ( ) ( )( ) / 2 KK A o K h = +  (204) 

and A is given by (156), o(K) is a bounded term in the order of K. 

 Let p be chosen as the index such that ||xp[n]|| = xmax[n], substituting this into (182) 

with β replaced by λ yields 

 

2
( , ) inimax

2

( , )max

1 (1 ) , if ,[ ]

1 , otherwise.[ 1]

K p n Q

K p n Q

h K n Q jx n

h Kx n





−

−

− − − 
 

+− 
 (205) 

Combining (205) with K(min,n−Q) ≤ K(p,n−Q) ≤ K(max,n−Q) yields (181) with β replaced by λ. 
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 Let l be chosen as the index that satisfies ||xl[n−1]|| = xmax[n−1], substituting this into 

(203) yields 

 
( )( )

( )

2

max _ ( , ) ini2 2

2

max ( , )

[ 1] 1 , if ,
[ ]

[ 1] 1 , otherwise.

Q K l n Q

l

K l n Q

x n h K n Q j
n

x n h K





−

−

 − − + − 
 

 − −


c
H

x  (206) 

By definition, xmax[n] ≥ ||xl[n]|| and K(l,n−Q) ≤ K(max,n−Q), substituting these into (206) yields 

 
( )2

_ (max, ) inimax 2
2

max (max, )

1 , if ,[ ]

[ 1] 1 , otherwise.

Q K n Q

K n Q

h K n Q jx n

x n h K





−

−

 − + − 
 

− −

c
H

 (207) 

 The definition of hK in (150) implies that it does not decrease as K decreases. Under 

the hypothesis of Lemma 3, let us choose K small enough such that hK > 0 is satisfied. It 

follows from (150) and the matrix property of ||I−KHc_Q||2 ≥ ||I||2− K||Hc_Q|| that  

 ( )_ _2 2
0 1 / .K Q Qh K K  − − 

c c
I H H  (208) 

It follows from (208) that if λ satisfies 0 < λ < 1, then (207) is tighter than (183) with J = n, 

thus (183) is satisfied for J = n. Furthermore, for any 0 < β < 1, if λ satisfies 0 < λ < β, (181)-

(182) with β replaced by λ are tighter than (181)-(182), thus (181)-(182) are also satisfied. It 

remains to show that there exists a positive number, Kmax, such that 0 < λ < β is satisfied for 

all 0 < K ≤ Kmax. The proof of this directly follows from the expression of λ in (204).  

□   

Lemma 4 For any N-dimensional real vectors v = [vj], w = [wj] and u = [uj],  let <v, w> 

denote an inner product 

 
1

,
N

j j

j

E v w
=

 =  v w  (209) 

And let |v, w| denote the magnitude of <v, w>, the following properties 

 
2

,=u u u  (210) 

and , , , , , ,−  +  +u w v w u v w u w v w  (211) 
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must hold. The proof of Lemma 4 follows from the definition of inner product and RMS 

norm, and the property of  <u+v, w> = <u, v>+<u, w>. 

□  

Lemma 5: Any N-dimensional real vector v and any N×N deterministic real matrix D must 

satisfy 

 
2

.Dv D v  (212) 

Proof of Lemma 5: 

 It follows from (151) that ||Dv||2 ≤ ||D||2||v||2, where ||v||2 is the Euclidean norm of v. 

Since D is deterministic, it follows that  

    2 2 2

2 2 2
.E EDv D v  (213) 

By definition, E{||v||2} and E{||Dv||2} is the RMS norm of v and Dv, respectively, this yields 

(212). 

□  

Lemma 6: Let In,p = min(n−p+N, n−jini), where jini is the starting time index of the basis 

initial condition in (164). Let u denote <sD1xl1[n−i1], D2xl2[n−i2]>, where xl1[n] and xl2[n] 

are any two state variables in the difference equations (161) and (164), D1 and D2 are any 

N×N deterministic real matrixes, s represents any modulation variable. For any n ≥ 

max(jini+1, 0), p > jini–Q, and i1, i2 ≥ In,p,  

   1 2( 2)/22

1 2 max _2 2 2
[ ] [ 1](1 4 )

i i

Qu c s p x n K
− + −

 − −
c

D D H  (214) 

holds provided that (183) holds for all q < n, where c{s[p]} is given by (184) with s[p] 

representing all portions of s associated with time index p. 

Proof of Lemma 6: 

 Given that p > jini−Q, it follows from the definition of qbase(k) in (164) that qbase(l) for 

any 1 ≤ l ≤ L is not associated with any form of s[p] at time index p. Therefore, if the sbase 
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term in the basis initial condition of (164) is replaced by deterministic 1, neither xl[n−i] for 

n−i ≤ p−N nor n−i ≤ jini are associated with any form of s[p] at time index p. This also 

means that xl[n−i] for any i ≥ In,p must not be associated with any form of s[p] at time index 

p, let vl'[p] denote this vector. If the sbase term in (164) is included, xl[n−i] is simply v1'[p] 

multiplied by sbase and thus 

 base base[ ] '[ ] [ ] '[ ],l l ln i p s s p p− = =Dx Dv w  (215) 

where wl'[p] = Dvl'[p]sbase/sbase[p], sbase[p] represents all portions of sbase associated with time 

index p (let sbase[p] = deterministic 1 if sbase is not associated with time index p), thus neither 

wl'[p] nor (s/s[p])wl'[p] are associated with s[p] with time index p. This, (215), and Lemma 8 

imply  

   

2

1 1 1 2 2 2 base 1 2

2 2

base 1 2 base 1 2

[ ], [ ] [ ] [ ]( / [ ]) '[ ], '[ ]

[ ] [ ] ( / [ ]) '[ ], '[ ] [ ] [ ] '[ ] '[ ] .

l l l l

l l l l

s n i n i s p s p s s p p p

E s p s p s s p p p E s p s p p p

− − =

=    

D x D x w w

w w w w

  (216) 

The last step of (216) applies the property of ||(s/s[p])wl'[p]|| ≤ ||wl'[p]||, which holds because 

−1 ≤ s/s[p] ≤ 1. By definition, E{sbase
2[p]} ≠ 0 and sbase[p] is independent of wl'[p], this and 

(215) imply that ||wl'[p]|| = ||Dxl[n−i]||/(E{sbase
2[p]})1/2. Furthermore, s[p]sbase

2[p] is 

independent of (sbase'[p])2, thus E{s[p]sbase
2[p]}/E{sbase

2[p]} = E{s[p]sbase
2}/ E{sbase

2} = 

c{s[p]} This and Lemma 5 imply that (216) is further upper bounded by 

   1 2 2 1 2 22 2
[ ] [ ] [ ] .l lc s p n i n i−  −D D x x   (217) 

The definition of In,p with n ≥ max(jini+1, 0) implies that In,p > 0, which also implies that i1 > 

0 and i2 > 0. Substituting (165) and (183) into (217) yields (214).  

□  

Lemma 7: For <Hn> and <H'n> defined in the proof of Lemma 3, let their state variables 

satisfy the difference equations (161) and (164). For any n ≥ max(jini+1, 0), there must exist 
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a range of K given by 0 < K ≤ Ɛ, for each K within this range, if (183) is satisfied for all q < 

n, then  

 ( ) 2

max( ) [ ] [ 1]n ko K c n Q x n + − −H  (218) 

and  

 2

max' ( ) [ ] [ 1]n ko K c n Q x n − −H  (219) 

are both satisfied, where ρ is the sum of ||Dq1,i1||2||Dq2,i2||2 for all i1, i2, q1 and q2 in <Hn>, 

which is bounded by definition, o(K) is a bounded term in the order of K. 

Proof of Lemma 7:  

 The definition of <Hn> or <H'n> imply that each component in its sum term has the 

form of <sDq1,i1xl1[n−i1], Dq2,i2xl2[n−i2]> for i1, i2  ≥ 1 and a finite number of q1 and q2. 

Lemma 4 implies that |<Hn>| or |<H'n>| is upper bounded by the sum of the magnitude of 

each of these components. The definitions of <Hn> and <H'n> imply that c{s[n−Q]} ≤ 

ck[n−Q].  

 The proof of (218) is presented as follows. For any given <sDq1,i1xl1[n−i1], 

Dq2,i2xl2[n−i2]> component of <Hn>, if i1, i2  ≥ In,n−Q, where In,n−Q is defined in Lemma 6 

with p replaced by n−Q and is bounded by definition, then it follows from Lemma 6 that its 

magnitude is upper bounded by ck[n−Q]||Dq1,i1||2||Dq2,i2||2(1−4K||Hc_Q||2)−(i1+i2−2)/2xmax
2[n−1]. If 

at least one of i1 and i2 is smaller than In,n−Q, let I1 be the larger value of i1 and In,n−Q, and let 

I2 be the larger value of i2 and In,n−Q, it follows from this definition that both I1−i1 and I2−i2 

are bounded, thus it follows from (201) that <sDq1,i1xl1[n−i1], Dq2,i2xl2[n−i2]> can be written 

as <sDq1,i1xl1[n−I1], Dq2,i2xl2[n−I2]>  plus at most additional 3 terms, each of these additional 

terms has the form of Kj<sDq1,i1H(x[n−I1]), Dq2,i2H(x[n−I2])> for j ≥ 1, where H(x[n−I1]) 

and H(x[n−I2]) each has the form of H(x[n−1]) with n replaced by n−(I1−1) and n−(I2−1), 

respectively.  
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 Let us analyze <sDq1,i1H(x[n−I1]), Dq2,i2H(x[n−I2])> first, this term can be further 

expanded into <SDq1,i1Dq3,i3x[n−(I1−1)−i3], Dq2,i2Dq4,i4x[n−(I2−1)−i4]> for i3 ≥ 1 and i4 ≥ 1 

and a finite number of q3 and q4, where Dq3,i3 and Dq4,i4 are deterministic matrixes from 

H(x[n−I1]) and H(x[n−I2]), respectively. Since each new modulation variable, S, is scaled by 

the original modulation variable, s, thus S is also the product of s1 ϵ {Sk[n−Q], ck[n−Q], 

(Sk
2[n−Q]−ck[n−Q])/2} and another modulation variable and satisfies c{S[n−Q]} ≤ ck[n−Q], 

and since (I1−1)+i3 ≥ In,n−Q and (I2−1)+i4 ≥ In,n−Q, it follows from Lemma 6 and the matrix 

property of ||D1D2||2 ≤ ||D1||2||D2||2 that |SDq1,i1Dq3,i3x[n−(I1−1)−i3], Dq2,i2Dq4,i4x[n−(I2−1)−i4]| 

≤ ck[n−Q]||Dq1,i1||2||Dq2,i2||2||Dq3,i3||2||Dq4,i4||2(1−4K||Hc_Q||2)−(i3+I1+i4+I2−4)/2xmax
2[n−1]. Since 

||Dq3,i3||2 and ||Dq4,i4||2 are both bounded by exponentially decaying curves as i3 and i4 increase, 

it follows that if K is positive and smaller than a certain value, both 

||Dq3,i3||2(1−4K||Hc_Q||2)−i3/2 and ||Dq4,i4||2(1−4K||Hc_Q||2)−i4/2 are also bounded by exponentially 

decaying curves as i3 and i4 increase, and the sum of them over all i3, i4 ≥ 1 and a finite 

number of q3 and q4 are bounded by bxmax
2[n−1], where b is bounded. Since both I1−i1 and 

I2−i2 are bounded, it follows that |sDq1,i1H(x[n−I1]), Dq2,i2H(x[n−I2])| is bounded by 

b(1+o(K))ck[n−Q]||Dq1,i1||2||Dq2,i2||2(1−4K||Hc_Q||2)−(i1+i2)/2xmax
2[n−1]. 

 Combining these results imply that |sDq1,i1x[n−i1], Dq2,i2x[n−i2]| is bounded by 

(1+o(K))ck[n−Q]||Dq1,i1||2||Dq2,i2||2(1−4K||Hc_Q||2)−(i1+i2)/2xmax
2[n−1], where o(K) is bounded 

and in the order of K. Since ||D1,i1||2 and ||D2,i2||2 are also bounded by exponentially decaying 

curves as i1 and i2 increase, thus if K is positive and smaller than a certain value, summing 

up these results for all i1, i2  ≥ 1 and a finite number of q1 and q2 yields the bound in (218).  

 The proof of (219) is presented as follows. The definition of <H'n> implies that for 

each <sDq1,i1x[n−i1], Dq2,i2x[n−i2]> component in it, there must exist an integer p satisfying 

c{s[n−p]} = 0, where n−p > jL–Q, and both p−i1 and p−i2 cannot be unbounded positive 
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integer. Let I denote the larger value of In,n−p and In,n−Q. If both i1 ≥ I and i2 ≥ I are satisfied, 

then it follows from Lemma 6 and c{s[n−p]} = 0 that the magnitude of this term is 0. 

Otherwise, let I1 be the larger value of i1 and I, and let I2 be the larger value of i2 and I. Since 

both p−i1 and p−i2 cannot be unbounded positive integers, it follows that both I1−i1 and I2−i2 

must be bounded, thus it follows from (201) that <sD1,i1x[n−i1], D2,i2x[n−i2]> can be 

expanded into the sum of at most 4 terms, the first term is <sD1,i1x[n−I1], D2,i2x[n−I2]>, the 

magnitude of which is 0 as implied by Lemma 6, and the other terms each have the form of 

Kj<sDq1,i1H(x[n−I1]), Dq2,i2 H(x[n−I2])> for j = 1 or 2. It follows from the reasoning used in 

the proof of  (218) that the overall magnitude of these other terms is bounded by 

o(K)ck[n−Q]||Dq1,i1||2||Dq2,i2||2(1−4K||Hc_Q||2)−(i1+i2)/2xmax
2[n−1], and summing up all these 

results for all i1, i2  ≥ 1 and a finite number of q1 and q2 yields (219). 

□  

Lemma 8: Any N-dimensional real vectors v = [vj] and w = [wj] must satisfy 

 , . v w v w  (220) 

Proof of Lemma 8: 

 
2 2

1 1

, .
N N

j j j j

j j

E v w E v E w
= =

           v w  (221) 

The Cauchy–Schwarz inequality further yields (220).  

□  

APPENDIX B 

 

 For any given 0 < β < 1, suppose K is chosen small enough such that the results of 

Lemma 3 hold. The contribution of each component of Kek,p to ||zk[n]||2 is given by ||xk[n]||2 

in (182) with jini = p. Since ||xk[p]||2 is either K2||Sk[p−Q]r[p]||2 or K2||Sl[p−i]Sk[p−Q] 
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(bl_i−al')||2 with i ≠ Q, and the statistics of Sk[n] for each k is time invariant, these and (165) 

imply that xmax
2[p] = (cmax/ck)||xk[p]||2, where ck = E{Sk

2[n]}, cmax is the maximum value of ck 

over k.  

 The properties of (167)-(168) imply that K(k,n−Q) = 2ckK for n−Q ≥ p+N, this and 

(182) imply 

 ( )
2 2

[ ] [ ] 1 2 ( ),
n p Q N

k k k K pn p c Kh f 
− − −

 − +x x  (222) 

where fp(β) represents the terms contributed by β ≠ 0 given by 

 
1

2

max( ) 2 (1 2 ) [ ].
n

n i Q N

p k K k K

i p

f c Kh c Kh x i 
−

− − −

=

= −   (223) 

To simplify the notation, let  1−2ckKhK = a, 1−2(1−β)cminKhK = b, it follows from (181) that 

xmax
2[i] is upper bounded by (1+o(K))bi−pxmax

2[p], where o(K) is bounded and in the order of 

K, and it further follows from xmax
2[p] = (cmax/ck)||xk[p]||2 that xmax

2[i] is bounded by 

(cmax/ck)(1+o(K))bi−p||xk[p]||2. Substituting this into (223) yields 

 ( )
1

2

max( ) 2 1 ( ) [ ] .
n

n i i p

p K k

i p

f c Kh o K p a b 
−

− −

=

 + x   (224) 

The sum of the first term on the right side of (222) for p = 0, 1, 2, …, n is 

(1+o(K))||xk[p]||2/(2ckKhK), which corresponds to the case of β = 0 analyzed before. The same 

sum of the second term, fp(β), is bounded by the sum of the right side of (224) for p = 0, 1, 2, 

…, n, which is again bounded by 

 ( )
2

max

0 0 0

( ) 2 1 ( ) [ ] .
n n n

p p

p K k

p p p

f c Kh o K p a b 
= = =

 +  x  (225) 

It follows from the definition of a and b that (225) is bounded by 

(1+o(K))(cmax/cmin)||xk[p]||2β/(1−β)(2ckKhK). Combining these results implies that the sum of 

(222) for p = 0, 1, 2, …, n is (1+o(K))(1+(cmax/cmin)β/(1−β))||xk[p]||2/(2ckKhK), and summing 

up them with each ||xk[p]||2 replaced by its actual expression yields (153) with α = 

K(1+o(K))(1+(cmax/cmin)β/(1−β))/(2hK). 
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Figure 34: High-level signal processing diagram of MNC. 
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Figure 35: a) High-level structure of the digital error estimator, and b) signal processing 

details of each sk[n] residue estimator.  
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Figure 36: DAC SNRc for different values of σe. 
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Figure 37: DAC SNRc for different values of K. 
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Figure 38: DAC SNRc for different values of N. 
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