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Abstract— Precision oscillators are ubiquitous in modern elec-
tronic systems, and their accuracy often limits the performance
of such systems. Hence, a deep understanding of how oscillator
performance is quantified, simulated, and measured, and how
it affects the system performance is essential for designers.
Unfortunately, the necessary information is spread thinly across
the published literature and textbooks with widely varying
notations and some critical disconnects. This paper addresses this
problem by presenting a comprehensive one-stop explanation of
how oscillator error is quantified, simulated, and measured in
practice, and the effects of oscillator error in typical oscillator
applications.

Index Terms— Oscillator phase error, phase noise, jitter,
frequency stability, Allan variance, frequency synthesizer, crystal,
phase-locked loop (PLL).

I. INTRODUCTION

ELECTRONIC oscillators are in nearly all electronic
devices. They make it possible to modulate and demod-

ulate wireless signals, clock both digital and sampled-data
analog circuits, and measure time intervals. Moreover, they are
astonishingly precise. For example, present-day mobile tele-
phone transceivers incorporate several highly-tunable multi-
GHz oscillators whose output signals have integrated jitter of
less than a few hundred femtoseconds. Nevertheless, oscillator
precision is often a limiting factor in high-performance appli-
cations such as modern wireless and wireline communications,
radar, and high-speed digital circuits. Accordingly, it is critical
for engineers to understand how oscillator performance is
quantified, simulated, and measured, and how oscillator error
affects application performance.

Unfortunately, acquiring this knowledge is not easy. The
information is spread thinly across the published literature,
and there are fundamental disconnects between much of the
published information and actual practice. One disconnect
is that most textbooks and papers define oscillator error
in terms of sinusoidal oscillator signals, but most practical
circuits use squared-up versions of such oscillator signals
that approximate square waves. A related disconnect is that
most communication textbooks define a mixer as performing
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multiplication by a sinusoidal oscillator signal whereas most
practical mixer circuits perform multiplication by squared-up
oscillator signals. Fundamental questions typically are left
unanswered such as: How does the squaring-up process change
the oscillator error? How does multiplying by a squared-up
oscillator signal instead of a sinusoidal signal change a mixer’s
behavior and response to oscillator error?

Another obstacle to learning the material is that there are
three distinct oscillator error metrics in common use: phase
error, jitter, and frequency stability. Each metric offers advan-
tages in certain applications, so it is important to understand
how they relate to each other, yet with the exception of [1],
the authors are not aware of prior publications that provide
this information directly.

The goal of this tutorial is to comprehensively and sys-
tematically present this information. There are many publica-
tions that describe and model the circuit-level mechanisms of
oscillator error, e.g., [2]–[9], so this material is not covered
here. Instead, the paper describes how to evaluate, simulate,
and measure oscillator error, and the system-level effects of
oscillator error in typical circuit applications.

II. PHASE ERROR

A. Sinusoidal Oscillator Signal Model

Oscillator accuracy is critical in so many electronics applica-
tions that the recommended quantities with which to quantify
it have been specified in an IEEE standard [10]. As with most
other papers and textbooks that touch on the subject, the IEEE
standard starts from the premise that an ideal oscillator is
purely sinusoidal. It expresses the instantaneous output of a
non-ideal oscillator as

v(t) = [V0 + ε(t)] sin (ω0t + φ(t)) , (1)

where V0 is the nominal peak amplitude, ε(t) is the amplitude
error, ω0 is the nominal frequency, and φ(t) is the phase
error. The amplitude error represents the oscillator’s deviation
from the nominal amplitude, and the phase error represents the
oscillator’s deviation from the ideal phase, ω0t . It is assumed
that |ε(t)| < V0 for all t and ω0t + φ(t) monotonically
increases with t , which are reasonable assumptions given
that the purpose of the model is to characterize precision
oscillators.

The oscillator signal’s zero-crossing times, i.e., the values of
t for which v(t) = 0, are of particular importance. Throughout
this paper, the zero-crossing times are denoted as tn and
ordered such that tn > tn−1 for all integers n, so tn is an
increasing sequence that comprises all values of t at which
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v(t) = 0. It follows from (1) and the |ε(t)| < V0 assumption
that, for each integer n,

φ(tn) = πn − ω0tn . (2)

Samples of the phase error at the zero-crossing times,
i.e., φ(tn) for every integer n, can be measured directly from
v(t) by substituting the nth time at which v(t) crosses zero
into (2). In this sense, the φ(tn) values are uniquely determined
by v(t).

However, φ(t) is not uniquely determined by v(t) for values
of t that are not zero-crossing times, because at such times
there are an infinite number of ε(t) and φ(t) functions that
yield the same value of v(t). This can be verified by observing
that whenever t �= tn , the right side of (1) can be written as
[V0 + ε1(t)] sin(ω0t + φ1(t)), where

ε1(t) = [V0 + ε(t)]
sin (ω0t + φ(t))

sin (ω0t + φ1(t))
− V0 (3)

and φ1(t) is any function for which ω0t + φ1(t) is not an
integer multiple of π .

Furthermore, ε(t) is not uniquely determined by v(t) for
any value of t . This follows directly from the argument above
for each t that is not a zero-crossing time. For each t that is a
zero-crossing time, it follows because the sine function in (1)
evaluates to zero, so ε(t) can take on any value.

These ambiguities generally make it impossible to separate
the effects of φ(t) from those of ε(t) on the performance of
a circuit driven by v(t). Yet it is often the case in practice
that the effects of ε(t) on circuits driven by oscillators are
negligible compared to those of φ(t). One reason is that the
mean squared value of ε(t) is often very small for practical
oscillators. Another reason is that typical circuits driven by
oscillators only change state when v(t) is relatively close to
zero where the magnitude of the sinusoid in (1) is small, so it
attenuates the effect of ε(t). In such cases, φ(t) represents the
oscillator’s only significant non-ideal behavior, so the above-
mentioned ambiguities are avoided.

B. Squared-Up Oscillator Signal Model

Oscillator signals that switch as abruptly as possible
between ±V0 at each zero-crossing are often used instead
of the sinusoidal oscillator signal given by (1). Such oscil-
lator signals are sometimes generated by amplifying and
clipping sinusoidal oscillator signals, so they are often called
squared-up oscillator signals. Squared-up oscillator signals are
widely used in practice, because, as described shortly, they
offer practical benefits when used to drive circuits that are only
sensitive to the oscillator signals near their zero-crossings.

In analogy with (1), a squared-up oscillator signal can be
modelled as

v(t) = [V0 + ε(t)] r (ω0t + φ(t)) , (4)

where r(θ) is a 2π-periodic function which is as close as
possible to a unit square wave given by

rideal(θ) =
⎧
⎨

⎩

1, if sin (θ) > 0,

0, if sin (θ) = 0,

−1, if sin (θ) < 0.

(5)

Thus, φ(tn) is still given by (2). In cases where the squared-
up oscillator signal is obtained by amplifying and clipping a
sinusoidal oscillator signal, the φ(t) and ε(t) associated with

Fig. 1. Superimposed squared-up oscillator signals with and without
amplitude noise.

the squared-up oscillator signal are generally different from
those associated with the sinusoidal oscillator signal. However,
to the extent that the amplifying and clipping circuitry has
negligible noise and input offset voltage, the zero-crossing
times, tn , and the phase error sampled at the zero-crossing
times, φ(tn), are not altered by the squaring up process.

It is convenient to rewrite the squared-up oscillator signal
model as

v(t) = V0r (ω0t + φ(t)) + e(t), (6)

which is equivalent to (4) when e(t) = ε(t)r(ω0t + φ(t)) but
emphasizes that ε(t) can be viewed as a type of additive error.
Practical oscillator circuits typically introduce other types of
additive error as well, and error introduced by the circuits they
drive often can be modeled as input-referred error added to the
oscillator signal. Therefore, e(t) is more realistically modelled
as e(t) = ε(t)r(ω0t +φ(t))+ea(t), where ea(t) is all additive
error other than ε(t)r(ω0t + φ(t)).

To the extent that r(θ) approximates (5), v(t) is only near
zero at its zero-crossing times, a consequence of which is that
e(t) only has a significant effect on the oscillator signal when
the magnitude of v(t) is large. This phenomenon is illustrated
in Fig. 1, wherein the oscillator signal was generated by (6)
with an r(θ) that well-approximates (5). Two versions of the
waveform are superimposed: an ideal version in which e(t)
is zero, and a non-ideal version in which e(t) is a noise
waveform. The two waveforms are nearly identical except
when their magnitudes are much greater than zero. If such
an oscillator signal drives a circuit that is insensitive to the
oscillator signal when its magnitude is far from zero, e(t) has
little effect on the circuit’s behavior.

The common practice of using squared-up oscillator signals
to drive such circuits renders even relatively strong amplitude
and additive error negligible in terms of circuit performance.
Nevertheless, as described in Sections VI and VII, care must be
taken to prevent e(t) from corrupting phase error simulations
and laboratory measurements.

Unlike e(t), phase error cannot be neglected in practical
circuits. However, as explained shortly, it is not the phase
error waveform itself, but the phase error sampled at times
tn , i.e., φ(tn), that matters, and this sampling process leads to
several practical issues because of aliasing.

C. Reconciliation of the Two Oscillator Signal Models

For the reasons described above, it is neither common, nor
desirable in many cases, for oscillator signals to be sinusoidal
in practical circuits. Yet the official IEEE definition and most
communication system textbooks describe oscillator signals as
sinusoidal. As shown in this subsection, these two viewpoints
can be reconciled to an extent by observing that the sinusoidal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GALTON AND WELTIN-WU: UNDERSTANDING PHASE ERROR AND JITTER 3

Fig. 2. Power spectrum of the first three terms of the squared-up oscillator
signal given by (8).

and squared-up oscillator signal models often have nearly
equivalent spectra for frequencies from 0 to well above ω0.

Given that r(θ) in (6) is a 2π-periodic real function, it can
be expressed as a Fourier series. Substituting the Fourier series
representation of r(θ) into (6) yields

v(t) = V0

∞∑

n=0

ρn sin (nω0t + nφ(t) + θn) + e(t), (7)

where ρn and θn are constants that depend on the Fourier
series coefficients. For the case where r(θ) = rideal (θ), (7)
reduces to

v(t) = 4

π
V0

∞∑

n=1,3,5,...

1

n
sin (nω0t + nφ(t)) + e(t). (8)

Except for the 4/π constant scale factor, the n = 1 term of (8)
is identical to the right side of (1) in the absence of amplitude
error. The remaining terms are therefore the only significant
differences between the sinusoidal and squared-up oscillator
signal models in this case.

The nth term of (8) for n > 1 is a sinusoid with phase
modulation nφ(t), so Carson’s rule suggests that its bandwidth
is approximately n times larger than that of the first term [11].
However, the power spectrum of the nth term is centered
n times further away from zero than that of the first term.
Furthermore, its power is 1/n2 times that of the first term.
Consequently, it is reasonable to expect that the terms in (8) for
n > 1 are negligible at frequencies from 0 to well above ω0,
as illustrated conceptually in Fig. 2.

This phenomenon is particularly relevant to frequency trans-
lation via mixers in communication systems. The classic
communication system textbook definition of a mixer is a
circuit that multiplies an input signal by a sinusoidal oscillator
signal and filters the result. An example of such a mixer
that translates the center frequency of a bandpass signal from
a non-zero frequency, ω1, to another non-zero frequency,
ω1 – ω0, is shown in Fig. 3.

In most practical situations, the sinusoidal oscillator signal
in the communication system textbook version of a mixer
could be replaced by a squared-up oscillator signal without
significantly changing the output of the mixer. For example,
consider the mixer of Fig. 3 except with the sinusoidal
oscillator signal replaced by a squared-up oscillator signal. It is
straightforward to verify that each of the n > 1 terms in (8)
contribute signal components that lie outside the passband of
the filter provided the bandwidths of the mixer’s input signal
and bandpass filter are sufficiently narrow. In this case, only
the n = 1 term in (8) significantly affects the output of the
mixer, and this term is identical to the sinusoidal oscillator

Fig. 3. Communication system textbook version of a mixer with the addition
of oscillator phase and amplitude error.

signal model in the absence of amplitude error except for a
scale factor of 4/π .†

This behavioral equivalence between sinusoidal and
squared-up oscillator signals in mixers provides some rationale
for the persistence of the sinusoidal oscillator signal model
despite the widespread use of squared-up oscillator signals.
Mixers are of great importance in communication systems so
they are taught early at the undergraduate level, and it is easier
to explain the basic operation of communication system text-
book style mixers with sinusoidal oscillator signals than with
squared-up oscillator signals. Mixers of one type or another
have been in use for over a century [13], [14], and for the first
several decades they were the primary application of oscilla-
tors. Moreover, early mixers did approximate multiplication
by sinusoidal oscillator signals, and this remains so in very
high-frequency (e.g., millimeter wave) applications wherein
parasitic capacitances and other electronic device nonidealities
make squared-up oscillator signals impractical.

Nevertheless, as described in more detail below, the ratio-
nale breaks down somewhat with typical present-day mixers.
Furthermore, in other oscillator applications, such as sampling
and clocking, the sinusoidal oscillator model is not particularly
useful. These applications use the zero-crossing times of
oscillator signals to initiate specific events, so there is no
benefit to thinking of the oscillator signals as being sinusoidal
in such cases.

D. Circuit Applications of Oscillators

This subsection describes the types of analog and mixed-
signal circuits commonly driven by oscillators. A comprehen-
sive description of this subject could easily fill a textbook,
so it is far beyond the scope of this paper. Instead, the goal
is to provide qualitative descriptions that explain the practical
reasons which underlie the statements made above regarding
squared-up oscillator signals and why the circuits driven by
them usually are insensitive to e(t).

1) Mixers: As described in Section II-C, communication
system textbooks describe mixers as ideal multipliers followed
by filters. In contrast, circuit design textbooks typically con-
sider just the multiplier to be the mixer. Filtering is always
performed following the multiplier, but it is not considered by
most circuit designers to be part of the mixing operation.

Practical mixers do not implement true multiplication.
Instead, as depicted in Fig. 4 a practical mixer usually can
be modelled as a device that multiplies the input signal,
x(t), by a strongly nonlinearly distorted and limited version
of the oscillator signal, i.e., f (v(t)). The nonlinearity, f (v),
is monotonic and is limited in the sense that f (v) ∼= 1 when
v > Vs+ and f (v) ∼= −1 when v < Vs−, where Vs+ and Vs−

†An exception occurs if the mixer input has unwanted signal components
at ω1 – kω0, for any k = 3, 5, . . ., in which case the unwanted components
corrupt the desired component in the mixer’s output. A harmonic rejection
mixer that consists of multiple conventional mixers with squared-up oscillator
signals of different phases can be used to avoid this problem if necessary [12].
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Fig. 4. Model of a practical mixer with an example that demonstrates how
f (v) suppresses the squared-up oscillator signal’s e(t) error.

Fig. 5. Simplified diagram of a passive mixer circuit.

denote the approximate values of v where f (v) saturates at
1 and −1, respectively. The limiting causes the mixer to be
nearly insensitive to v(t) when v(t) < Vs− or v(t) > Vs+.

Suppose v(t) is the squared-up oscillator signal given by (6)
with an r(θ) that well-approximates rideal(θ), and V0 is large
enough that V0+e(t) > Vs+ and −V0+e(t) < Vs−. In this case
v(t) is nearly independent of e(t) when Vs− < v(t) < Vs+
for the reasons described in Section II-B. While v(t) does
depend on e(t) when v(t) < Vs− or v(t) > Vs+, these
are the regions over which the mixer is insensitive to v(t).
Consequently, the mixer output is insensitive to e(t) for all
values of v(t). Given that the oscillator signal is only in the
range Vs− < v(t) < Vs+ very near the oscillator signal’s
zero-crossing times, the mixer output is also insensitive to
the nonlinearity imposed by f (v). It follows that under these
circumstances the behavior of the mixer is nearly identical to
that of an ideal multiplier with the important and beneficial
exception that it practically ignores e(t). Specifically, the
mixer’s output under these circumstances well approximates

y(t) = 4

π
sin (ω0t + φ(t)) x(t). (9)

A practical example of such a mixer is shown in Fig. 5.
The figure shows the general structure of a MOS transistor
based mixer of the type currently used in mobile telephone
receivers [15], [16]. The mixer consists of a differential voltage
to current (V /I ) converter, four MOS transistors controlled by
the oscillator signal, and a differential current-to-voltage (I /V )
converter.

Each of the four transistor gates is driven by VB I AS +v(t) or
VB I AS −v(t), where VB I AS is a constant bias voltage and v(t)
is the squared-up oscillator signal. The circuit is designed such
that the four transistors approximate switches which connect
the differential outputs of the V/I converter to the differential
inputs of the I/V converter directly when v(t) is sufficiently
greater than zero and with swapped polarity when v(t) is
sufficiently less than zero.

Although the on-resistances of the transistors are never zero,
the low differential input impedance of the I/V converter
combined with the much higher differential output impedance

Fig. 6. Simplified diagram of an ADC’s sampling circuit.

of the V/I converter causes the mixer’s behavior to be fairly
insensitive to non-zero transistor on-resistance. In this context,
Vs− and Vs+ are voltage levels such that v(t) < Vs− and
v(t) > Vs+ are the ranges of v(t) over which the on-resistance
of the transistors is sufficiently low to negligibly affect mixer
performance. By design, the value of VB I AS is chosen to
cause Vs− ∼= −Vs+ and V0 is chosen large enough to ensure
V0 + e(t) > Vs+ and −V0 + e(t) < Vs− for all t , so the mixer
is insensitive to e(t) for the reasons described above.

2) Oscillators as Clocks in Non-Mixer Applications:
In most other applications, the oscillator signal is used as a
clock to mark a set of times, τn for n = . . . ,−1, 0, 1, 2, …,
that are as close to being uniformly spaced as possible.
The zero-crossing times of a squared-up oscillator are ideal
for this purpose. Typically, only the positive-going zero-
crossings or only the negative-going zero-crossings are used to
mark τn in any given application, so the oscillator signal’s duty
cycle can deviate from 50% without causing timing errors.
In the following, without loss of generality τn is taken to be the
nth positive-going zero-crossing time of the oscillator signal.

Ideally, τn = nT0, where T0 = 2π/ω0 is the oscillator
signal’s nominal period, but oscillator phase error causes
deviations from this ideal. It follows from (2) that τn = t2n =
[2πn − φ(t2n)]/ω0. This can be rewritten as

τn = nT0 + 	τn, where 	τn = −φ (τn)

ω0
. (10)

Thus, 	τn is the deviation of τn from its ideal value of nT0,
and it is proportional to the oscillator signal’s phase error
sampled at τn . It is often called absolute jitter or aperture
jitter and it is described further in Section V.

3) Analog-to-Digital Converters: A typical ADC uses a
squared-up oscillator signal, v(t), as a clock to mark the times,
τn , at which to sample its input signal, x(t). It converts the
resulting sequence of sampled values, x(τn), to a digital output
sequence. The sampling circuitry is designed to be insensitive
to the clock signal, v(t), except near its positive-going zero-
crossings, so ADCs, like mixers, are insensitive to e(t).

There are several types of ADC sampling circuits, but the
circuit shown in Fig. 6 is representative of the core operation
performed by most of them. The gates of the MOS transistors
are driven by VB I AS − v(t), where VB I AS is a constant bias
voltage and v(t) is the squared-up oscillator signal given
by (6) with an r(θ) that well-approximates rideal (θ). When
v(t) is close to −V0 the transistors are turned on, and the
voltage across the capacitor tracks x(t). At the positive-going
zero-crossing of the oscillator signal, v(t) rapidly transitions
toward V0 which abruptly turns off the transistors, thereby
freezing the voltage stored on the capacitor until the subse-
quent negative-going zero-crossing time.

The circuit is designed such that VB I AS − V0 − e(t) < Vof f
and VB I AS + V0 − e(t) > Von for all t , where Vof f and Von
are voltage levels for which the transistors have high-enough
off-resistance when VB I AS − v(t) < Vof f and low-enough on-
resistance when VB I AS − v(t) > Von so as not to degrade
performance. Hence, the use of a squared-up oscillator signal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GALTON AND WELTIN-WU: UNDERSTANDING PHASE ERROR AND JITTER 5

for v(t) ensures that VB I AS − v(t) is only between Vof f
and Von very near the zero-crossing times of v(t). One
consequence is that e(t) can be neglected much like in the case
of the mixer described above. Another consequence is that
each transistor’s nonlinear transition between its on and off
states has little effect on the sampling circuit’s performance.
Hence, the frozen voltage stored on the capacitor when v(t)
is close to V0 well-approximates x(τn).

4) Other Clocking Applications: Oscillators are also used to
clock a wide range of other analog, mixed-signal, and digital
circuits including DACs, frequency dividers, phase-frequency
detectors (PFDs), time-to-digital converters (TDCs), digital-
to-time converters (DTCs), timers, and synchronous digital
logic. In most cases, the components within these circuits
that are clocked by the oscillator signals are edge-triggered
latches or flip-flops.

The clock input of each such edge-triggered latch or flip-
flop is driven by a clock signal of the form VB I AS + v(t),
where, once again, VB I AS is a constant bias voltage and
v(t) is a squared-up oscillator signal. By design, the edge-
triggered circuit only changes its state when v(t) is in a
narrow range of values about its midpoint, and V0 is large
enough that that −V0 + e(t) and V0 + e(t) are outside this
range for all t . Therefore, by exactly the same reasoning
described above for mixers and sampling circuits, such circuits
are insensitive to e(t).

E. Phase Error Versus Phase Noise

An oscillator signal’s phase error, φ(t), usually contains
both a random component and a deterministic component. The
random component is caused by device noise, such as thermal
and flicker noise, introduced by the transistors and other com-
ponents that make up the oscillator circuit. The deterministic
component is the result of deterministic disturbances that are
inadvertently generated within or parasitically coupled into the
oscillator circuitry. For example, the deterministic component
of φ(t) in a PLL-based oscillator inevitably contains spurious
tones, also known as spurs, that are not harmonics of the
oscillator frequency.

In this paper, φ(t) is called phase error and the random
component of φ(t) is called phase noise. This choice was
made to avoid confusion because the word noise is considered
by many people to denote purely random phenomena. It is also
consistent with much of the published literature, e.g., most
papers that report the measured performance of PLL-based
oscillators refer to phase noise and spurious tones as distinct
types of phase error. Unfortunately, the literature is not con-
sistent in this respect. For instance, in the IEEE standard
φ(t) is called phase fluctuations and, somewhat confusingly,
the term phase noise is reserved exclusively for a function
L( f ) (pronounced “script-ell of f ”) equal to half the one-sided
time average power spectrum of φ(t) [10].

F. Time Average Power Spectra

Laboratory measurements and circuit simulations of power
spectra inevitably estimate time average power spectra as
opposed to statistical power spectra [17]. The two-sided time
average power spectrum of a real-valued continuous-time
signal, in this case φ(t), is defined as

Sφφ ( f ) = lim
T →∞

1

T
|FT {φT (t)}|2 for − ∞ < f < ∞ (11)

provided the limit exists, where f has units of Hz, and
FT{φT (t)} is the Fourier transform of φ(t) restricted to the
interval 0 ≤ t ≤ T . Specifically,

FT {φT (t)} =
∫ ∞

−∞
φT (t)e− j2π f t dt (12)

where

φT (t) =
{

φ(t), if 0 ≤ t ≤ T,
0, otherwise. (13)

As is well known and can be verified from the definition
above, Sφφ( f ) for any value of f can be interpreted as 1/	 f
times the time average power of φ(t) in the frequency band
between f and f + 	 f in the limit as 	 f → 0. Hence, each
value of Sφφ( f ) represents a power density per Hz. In this
case, φ(t) has units of radians, so Sφφ( f ) has units of radians2

per Hz.
Replacing |FT{φT (t)}|2 in (11) by the product of the right

side of (12) and the complex conjugate of the right side of (12)
and rearranging the result yields

Sφφ ( f ) =
∫ ∞

−∞
Rφφ(τ )e− j2πτ f dτ, (14)

where Rφφ(τ ) is given by

Rφφ(τ ) = lim
T →∞

1

T

∫ T

0
φ(t)φ(t + τ )dt (15)

and is called the time average autocorrelation of φ(t).
Equation (14) implies that Sφφ( f ) is the Fourier transform of
the time average autocorrelation. Applying the inverse Fourier
transform to (14) gives

Rφφ(τ ) =
∫ ∞

−∞
Sφφ ( f ) e j2πτ f d f . (16)

It follows from (15) that the time average power of φ(t) is
Rφφ(0), so (16) implies that the time average power of φ(t)
is the integral of Sφ( f ) over all frequencies.

The Fourier transform of any real-valued function is conju-
gate symmetric, and |c| = |c∗| for any complex number c,
so (11) implies that Sφφ( f ) = Sφφ(− f ). Consequently,
the one-sided time average power spectrum of φ(t), defined as

Sφ ( f ) = 2Sφφ ( f ) for f ≥ 0, (17)

is often used. The factor of 2 ensures that the time average
power of φ(t) is the integral of Sφ( f ) over all positive
frequencies.‡

As described above,

L( f ) = 1

2
Sφ ( f ) (18)

by definition. This definition is important because L( f ) is
what laboratory phase noise measurement instruments esti-
mate. For reasons explained in Section III-A, when L( f ) is
expressed in decibels (dB), i.e., 10log10(L( f )), its units are
defined to be dBc/Hz.

‡For the remainder of the paper, all time average power spectra are referred
to as just power spectra for brevity.
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G. Spurious Tones

A signal or its power spectrum is said to contain a spur
at a frequency fm if the signal’s power spectrum contains a
Dirac delta function at fm . The power of a phase error spur
at frequency fm is therefore given by

Pspur = lim
ε→0

∫ fm+|ε|

fm−|ε|
Sφφ( f )d f (19)

with units of radians2.
Due to the symmetry of Sφφ( f ) about f = 0, its spurs

appear in pairs, e.g., a sinusoidal component B sin(2π fmt) in
φ(t) gives rise to two B2/4-powered spurs, at frequencies fm
and − fm . Nevertheless, the power of each spur is quantified
separately by (19), a justification for which is explained in the
next section.

As shown in Section IV, spurs are especially detrimental
to the performance of wireless systems, so spur mitigation
techniques in PLL-based oscillators are an active research
topic [18]–[21].

III. OSCILLATOR SIGNAL POWER SPECTRUM

A. Relationship to Phase Error Spectrum

As described in Section II, it is usually the case in practice
that only the fundamental term of an oscillator signal (e.g., the
n = 1 term in (8)) contributes to the oscillator signal’s power
spectrum in a wide bandwidth around f = ω0/(2π), and
in many applications e(t) can be neglected. In these cases,
the oscillator signal of interest has the form

v(t) = A sin (ω0t + φ(t)) (20)

where A is a constant amplitude.
Applying the angle sum trigonometric identity to (20) gives

v(t) = A sin (ω0t) cos (φ(t)) + A cos (ω0t) sin (φ(t)) . (21)

If |φ(t)| << 1 for all t as is often the case for oscillators,
applying the sine and cosine small angle approximations
to (21) results in

v(t) ∼= A sin (ω0t) + A cos (ω0t) φ(t). (22)

The first and second terms on the right side of (22) are the
ideal oscillator signal and an additive noise term caused by
oscillator phase error, respectively.

The power spectrum of v(t) and its properties are given
by (11)-(17) except with φ replaced by v. Given that the ideal
oscillator signal term in (22) has zero bandwidth, the one-sided
power spectrum of v(t) for f �= ω0/(2π) only depends on
the noise term. It follows from well-known Fourier transform
properties and the power spectrum definition that the one-sided
power spectrum of v(t) can be written as

Sv ( f ) ∼= A2

4
Sφ

(∣
∣
∣ f − ω0

2π

∣
∣
∣

)
for f �= ω0

2π
. (23)

This can be rearranged and combined with (18) to give

L( f ) ∼= Sv

( ω0
2π + f

)

A2/2
for f > 0. (24)

The right side of (24) used to be the definition of L( f ) [22].
When this was the case, (18) followed from this definition as
an approximation. The old definition had the advantage that it
was a proxy for Sφ( f )/2 that could easily be measured directly

from an oscillator signal’s power spectrum. Unfortunately,
the simple relationship between the old definition of L( f ) and
Sφ( f ) breaks down unless |φ(t)| << 1. Given that practical
cases of interest exist for which |φ(t)| << 1 does not hold,
the definition was eventually changed to (18) [10].

The error term in (22) caused by oscillator phase error
can be viewed as an amplitude modulated (AM) waveform
with carrier signal A cos(ω0t) and modulation signal φ(t).
The time average power of the carrier signal is A2/2, and
for f �= ω0/(2π) the one-sided power spectrum of the AM
waveform is Sv ( f ). The portion of an AM waveform’s power
spectrum on either side of the carrier frequency is traditionally
called a sideband of the signal. Therefore (24) implies that
L( f ) is approximately equal to the power density per Hz in
a sideband of v(t) at an offset of f from the carrier divided
by the power of the carrier.§

It follows that 10 times the logarithm of the right side of (24)
can be interpreted as having units of dBc/Hz, i.e., the power
density per Hz in a sideband relative to the power of the
carrier in dB. Therefore, with the old definition of L( f ), the
units of 10log10(L( f )) are dBc/Hz. This is not strictly true
for the current definition of L( f ), but for consistency, and
because (24) holds approximately with the current definition,
the units of 10log10(L( f )) are defined to be dBc/Hz.

If Sφ( f ) contains a spur at fm , the argument above can be
repeated while integrating both sides of (23) over an ε-interval
around f0 + fm and applying (19). This shows that Pspur is
equal to the power of the spur in Sv ( f ) at f0 + fm , divided by
the power of the carrier. Hence, the units of 10log10(Pspur )
are defined to be dBc.

By the symmetry of Sφφ( f ), if Sv ( f ) has a spur at f0 + fm
caused by oscillator phase error, it also has a spur of the
same power at f0 − fm . Therefore, it might seem redundant to
evaluate the power of each spur individually, e.g., as in (19).
However, for reasons explained in Section VII, measurements
of oscillator signal power spectra are seldom perfectly sym-
metric for frequency offsets above and below f0, and therefore
evaluating the power of each spur separately is not redundant
in practice.

B. Continuous-Time Versus Discrete-Time Paradox

It is argued in Section II that only the samples of a squared-
up oscillator signal’s phase error at the oscillator signal’s
zero-crossing times, i.e., φ(tn), affect the oscillator output
waveform in the absence of e(t) error. Yet it is argued in
Section III-A that in many cases of interest the power spectrum
of the fundamental term of such an oscillator signal is a
function of the power spectrum of the continuous-time phase
error waveform, φ(t). This apparent contradiction can be
resolved as follows.

As described in Section II-C, a squared-up oscillator signal
can be used in place of a sinusoidal oscillator signal provided
the power spectra of the terms in the squared-up signal
centered at integer multiples of f0 = ω0/(2π) do not overlap
the power spectrum of the fundamental term centered at f0.
This requires that Sφφ( f ) be bandlimited to a bandwidth that
is lower than f0/2. In such cases the definition of Sφφ( f )
given by (11)-(13) implies that FT{φT (t)} is also bandlimited
with this bandwidth in the limit as T → ∞. It follows from
the sampling theorem that FT{φT (t)} in (11) can be replaced

§ Older literature often shows phase noise as L(	 f ) to underscore this fact.
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Fig. 7. Sampling behavior of the limiting amplifier on the oscillators phase
and additive error.

by T0 times the discrete-time Fourier transform of φ(nT0) for
| f | < f0/2. Hence, in such cases

Sφφ ( f )

=

⎧
⎪⎨

⎪⎩

lim
T →∞

T 2
0

T

∣
∣
∣
∣
∣

∞∑

n=−∞
φT (nT0) e− j2π f nT0

∣
∣
∣
∣
∣

2

, if | f | <
f0

2
,

0, otherwise.
(25)

Provided the bandwidth of Sφφ( f ) is sufficiently low, (10)
implies that φ(τn) ∼= φ(nT0) to a high degree of accuracy.
In such cases, it follows from (25) that Sφφ( f ) can be
expressed as a function of φ(t) sampled at the oscillator
signal’s positive-going zero-crossing times. A nearly identical
argument shows that it can also be expressed as a function of
φ(t) sampled at the oscillator signal’s negative-going zero-
crossing times. Thus, provided |φ(t)| << 1, it follows
from (17), (23), and (25) that Sv ( f ) can be expressed as a
function of φ(tn) instead of φ(t).

C. Sampled Phase Error

The assumption that Sφφ( f ) = 0 for | f | ≥ f0/2, which
led to (25), is usually acceptable in wireless transceivers,
because the various signal paths in wireless transceivers
typically have bandwidths much less than f0/2 by design.
In contrast, the assumption is rarely valid in clocked systems
which generally lack equivalent band-limiting circuits. In such
cases, (25) does not hold because sampling the phase error at
a rate of f0 causes aliasing.

A common approach to avoid this problem is to replace
the actual phase error power spectrum, Sφφ( f ), with a con-
ceptual modified phase error power spectrum, S	

φφ( f ), equal
to the right side of (25). Even though S	

φφ( f ) �= Sφφ( f )

when Sφφ( f ) is not bandlimited to | f | < f0/2, S	
φφ( f ) is

bandlimited to | f | < f0/2 and already contains all content that
would have aliased into the frequency band | f | < f0/2 had
Sφφ( f ) been sampled at a rate of f0. Accordingly, S	

φφ( f ) can
be used in place of Sφφ( f ) in all of this paper’s results that
relate the phase error power spectrum to f0-rate samples of
the phase error or, by extension, to absolute jitter.

Fig. 7 shows how this approach can be extended to handle
broadband additive error that gets converted to phase error
when a sinusoidal oscillator signal is amplified and clipped by
a limiting amplifier to generate a squared-up oscillator signal.

Both the broadband phase and the broadband additive error are
sampled at the zero crossings of the oscillator signal. The lim-
iting amplifier’s wide bandwidth typically causes aliasing of
many bands of broadband noise into the | f | < f0/2 frequency
band.

The conversion of additive error to phase error also affects
the clock buffers which follow the limiting amplifier. The
purpose of a clock buffer is to maintain the squared-up
edges of the clock signal over long transmission distances,
and therefore is susceptible to the same error-sampling effect
discussed for limiting amplifiers. While each clock buffer may
only contribute a small amount of phase error, in ICs such as
network routers or FPGAs where GHz clocks are distributed
several centimeters, their cumulative error usually dominates
the oscillator’s intrinsic phase error [23], [24].

The simulation methodology described in Section VI-A
ensures that the sampling and conversion effects described
above are properly captured, so that any amplitude error on
the resulting squared-up clock signal can usually be ignored,
as explained in Section II-B. The phase error power spectrum
of this squared-up clock signal can then be “input-referred”
as shown in Fig. 7 to generate the equivalent band-limited
S	
φφ( f ) which contains all the sampled noise.

Throughout the remainder of the paper, Sφφ( f ) is used
in equations that relate the phase error power spectrum to
samples of the phase error or, equivalently, to jitter, as a proxy
for either the actual phase error power spectrum or S	

φφ( f ).
In cases where the actual phase error is bandlimited to
| f | < f0/2, the reader should view Sφφ( f ) as denoting
the power spectrum of the actual phase error. Otherwise,
the reader should view Sφφ( f ) as denoting S	

φφ( f ). In this
way, the quantity denoted by Sφφ( f ) in such equations is
bandlimited to | f | < f0/2 by definition.

D. Why Sφφ( f ) Increases With Oscillator Frequency

As can be seen from (1) and (6), oscillator frequency,
ω0, and phase error, φ(t), are separate variables in both
the sinusoidal and squared-up oscillator signal models. This
separation obscures an implicit dependency of phase error
on oscillator frequency that arises because phase error rep-
resents the oscillator’s timing error as a fraction of its period
but its period is inversely proportional to its frequency. For
example, (10) implies that changing an oscillator’s frequency
by X dB without changing the mean squared value of its
absolute jitter would increase its phase error power by 2X dB.

Indeed, it has been shown for many different types of
oscillators that the effect of circuit noise on absolute jitter
is relatively independent of the frequency to which a given
oscillator is tuned [25]–[28]. In such cases, changing the
oscillator’s frequency does not significantly change the mean
squared value of its absolute jitter.

This effect can cause confusion when comparing the phase
noise performance of oscillators tuned to different frequencies.
The confusion can be avoided by normalizing the phase noise
of the oscillators to a common frequency prior to comparing
their phase noise spectra. The phase noise of an oscillator
normalized to a frequency ωn is (ωn/ω0)

2Sφφ( f ) where ω0 is
the nominal frequency and Sφφ( f ) is the phase noise spectrum
of the oscillator. In general, the phase noise of two oscillators
normalized to the same frequency will be approximately equal
if they have equivalent jitter performance. For example, two
oscillators, one with frequency ω0 and phase error power
spectrum Sφφ( f ) and one with frequency 2ω0 and phase error
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power spectrum 4Sφφ( f ) would have the same normalized
phase noise power spectrum. Normalizing the phase noise
spectra of different oscillators to a common frequency in this
fashion allows for a fair phase noise performance comparison.

A commonly-used oscillator figure of merit (FOM) that
implicitly performs this normalization is

FO M = 10 log

[(
f0

	 f

)2 1

L (	 f ) P

]

(26)

where f0 = ω0/(2π), 	 f is any frequency offset, and P is
the oscillator’s power consumption in mW [25]. For instance,
if an oscillator’s frequency is doubled (increased by 3 dB)
without changing its phase noise or power consumption, its
FOM increases by 6 dB, which is consistent with the above
discussion.

IV. EFFECTS OF PHASE ERROR ON MIXING

In wireless receivers, a mixer’s input signal, x(t), usually
consists of a desired signal plus multiple unwanted signals
at other frequencies called interferers or blockers. The inter-
ferers not only arise from unwanted signals received through
the antenna, but they can also result from non-ideal circuit
behavior. For example, in frequency division duplex (FDD)
transceivers it is not possible to fully isolate the receiver from
the transmitted signal, so a partially attenuated version of the
transmitted signal appears to the receiver as an interferer.

Ideally, the mixer frequency-translates x(t) such that the
desired signal resides within the passband of the filter fol-
lowing the mixer, and the interferers are either suppressed by
the filter or subsequently suppressed by digital filtering after
analog-to-digital conversion. Unfortunately, oscillator phase
error mixes with the interferers which can result in error
that ends up in the same frequency range as the desired
signal, thereby corrupting the desired signal and reducing
the sensitivity of the receiver. This phenomenon is known as
reciprocal mixing.

It follows from (9), (20), and (22) that the output of a typical
mixer in the band of interest can be written as

y(t) = 4

π
sin (ω0t) x(t) + 4

π
cos (ω0t) φ(t)x(t). (27)

The first term on the right side of (27) represents the ideal
behavior of the mixer, and the second term represents the
effect of oscillator phase error. The sine and cosine factors in
the two terms both perform the same frequency translations;
the sine factor frequency-translates x(t) by both ω0/(2π)
and −ω0/(2π) Hz, and the cosine factor frequency-translates
φ(t)x(t) by both ω0/(2π) and −ω0/(2π) Hz. Therefore, any
portion of the power spectrum of φ(t)x(t) that overlaps the
power spectrum of the desired signal portion of x(t) causes
reciprocal mixing error.

For example, suppose x(t) contains a desired signal com-
ponent centered at frequency fd and an interferer centered
at frequency fi , and suppose φ(t) contains a spurious tone
given by B sin[2π( fd − fi )t] where B is a constant. The
spurious tone causes φ(t)x(t) in the second term of (27) to
contain a copy of the interferer scaled by B/2 and centered at
frequency fd , which corrupts the desired signal component
unless the power spectrum of the interferer times B2/4 is
sufficiently small that it can be neglected.

More generally, multiplication in the time domain is equiv-
alent to convolution in the frequency domain, so the power

Fig. 8. Power spectra on a dBc/Hz scale of: the desired signal and an
interferer in x(t), φ(t) (frequency-shifted by fd ), and φ(t)x(t). Hash marks
show a portion of φ(t) that causes reciprocal mixing error (top plot) and the
resulting reciprocal mixing error (bottom plot).

spectrum of φ(t)x(t) has a non-zero component in the fre-
quency range fd – 	 f /2 to fd + 	 f /2 if an interferer with
bandwidth 	 f is centered at frequency fi and Sφφ( f − fd )
is non-zero for fi – 	 f ≤ | f | ≤ fi + 	 f . This component
is centered on and therefore corrupts the desired signal com-
ponent of x(t). As illustrated in Fig. 8, if the interferer has a
high-enough power relative to the desired signal, the reciprocal
mixing error can be significant even when Sφφ( f − fd ) is small
for fi – 	 f ≤ | f | ≤ fi + 	 f .

Thus, reciprocal mixing error is caused by phase error
mixing with interferers via the φ(t)x(t) term in (27), and
the corresponding signal-to-noise ratio (SNR) over the desired
signal band decreases with increasing interferer power. This
often places stringent restrictions on the phase error, because
interferers can be extremely powerful relative to the desired
signal in typical wireless receivers.∗∗ For example, in LTE
cellular handset receivers, interferers with | fi – fd | ≥
10 MHz can be up to 87 dB more powerful than the desired
signal [29].

Of course, the phase error also mixes with the desired
signal component via the φ(t)x(t) term, and this causes
error in the desired signal band too. In applications such as
GSM handset receivers wherein the required SNR over the
signal band is modest, this error is less problematic than
reciprocal mixing error because the SNR does not decrease
with increasing signal power. However, in receivers for high-
order modulation formats, such as 256 QAM in LTE handset
receivers, the required SNR over the signal band is high
enough that close-in oscillator phase error, i.e., phase error
below several MHz, becomes one of the most challenging
oscillator specifications to meet [21].

Oscillator phase error also causes mixing error in wire-
less transmitters. Mixers are used in a wireless transmitter
to frequency-translate the desired signal to the RF transmit
frequency. As in receivers, each mixer behaves according
to (27); it performs the same frequency translations on both
its input signal, x(t), and the phase error term, φ(t)x(t).
After frequency translation, these signals have spectral shapes
comparable to the interferer and φ(t)x(t) power spectra,

∗∗Typically, large interferers occur relatively far from fd , so they place
stringent requirements on the far-out phase error, i.e., on the phase error
power spectrum above at least several MHz.
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respectively, shown in the bottom plot of Fig. 8, except in
this case fi corresponds to the transmit frequency.

The combined signals are passed through a power amplifier
and then bandpass filtered. Typically, the bandpass filter is
a SAW filter or duplexer which attenuates the out-of-band
portion of φ(t)x(t) by about 50 dB, but the amplification
prior to filtering is often so high that the residual out-of-band
emission from the term corresponding to φ(t)x(t) can still be
significant. For example, in FDD transceivers, its overlap with
the receive band can desensitize the receiver. This out-of-band
emission phenomenon generally dictates the maximum far-out
phase error that can be tolerated in a given application.

The close-in phase error results in the portion of the
error power spectrum arising from φ(t)x(t) that overlaps the
desired transmitted signal. As in receivers, this term can be
problematic in applications that use high-order modulation
formats such as the 256 QAM option in LTE handset receivers
unless the close-in phase error is kept very low.

V. JITTER

In mixers it is convenient for the reasons described
above to represent non-ideal oscillator behavior in terms of
continuous-time phase error, φ(t). In most other applications,
it is more useful to represent the non-ideal behavior in terms
of the absolute jitter, 	τn , as defined in (10), or quantities
derived from the absolute jitter.

Like phase error, jitter typically consists of random and
deterministic components. Accordingly, the modifiers ran-
dom or deterministic are applied to jitter metrics in cases
where the metrics represent only the effects of the random
or deterministic components, respectively. The modifier total
is also often used to indicate when a jitter metric represents
the effects of both components, e.g., total absolute jitter is
comprised of random absolute jitter and deterministic absolute
jitter. Without a modifier, the total quantity is usually implied.

A. Jitter Density

In many clocked systems, the clock signal undergoes several
frequency multiplications and divisions between its source and
each circuit that it drives. In such cases, phase error is an
inconvenient metric, because, as discussed in Section III-D,
it increases with clock frequency. To avoid the tedium of scal-
ing phase error after every frequency translation, a normalized
power spectrum called jitter density and defined as

J ( f ) = 1

ω2
0

Sφ( f ) (28)

is often used in place of the phase error power spectrum when
analyzing such systems. Jitter density is so-named because for
f < f0/2 it is proportional to the single-sided discrete-time
power spectrum of the absolute jitter sequence, 	τn . This can
be seen by dividing both sides of (25) by ω2

0, and using (10)
and the symmetry property (17). The units of 	τn are seconds,
so the units of J ( f ) are seconds2 per Hz.

The jitter densities of oscillator signals at different nominal
frequencies do not need to be normalized to a common
frequency for comparison as would be necessary for the corre-
sponding phase error power spectra, because the normalization
is built into the definition of jitter density. This property
simplifies many practical computations as demonstrated in the
following sections.

Fig. 9. Divide-by-N circuit block diagram and effect on input clock jitter.

B. Jitter of Divided Clocks

A clock divider that reduces the frequency of its input
clock by an integer factor, N , is a fundamental building
block in many clocked systems. As shown in Fig. 9, such
a clock divider typically consists of edge-selection logic,
i.e., an N-fold digital divider driven by the oscillator signal,
v(t), followed by a retiming flip-flop. The retiming operation
renders the absolute jitter of the output clock signal insensi-
tive to noise and other non-ideal circuit behavior within the
edge-selection logic, thereby isolating the jitter-contributing
circuitry to just the retiming flip-flop. To the extent that the
absolute jitter added by the retiming flip-flop is negligible,
the output clock signal’s absolute jitter is approximately equal
to a sub-sampled version of the input clock signal’s absolute
jitter.

The jitter density of a typical clock signal has regions with
different slopes [30]. The top right plot in Fig. 9 shows the
jitter density of the divider’s input clock, where the sloped
regions have been simplified into a single low-frequency
(close-in) sloped region with jitter density Jnb( f ), and a
broadband (far-out) flat region with jitter density Jwb( f ). The
bottom right plot in Fig. 9 shows the jitter density of the
divider’s output clock signal for the case of division by 2
(i.e., N = 2). In this example, the power of the input clock
signal’s close-in jitter density falls far below the power of the
far-out jitter density in the frequency band [ f0/4, f0/2), so the
aliased contribution of the close-in jitter density to the jitter
density of the output clock signal is negligible. The far-out
jitter density of the output clock signal is, however, doubled
in power because of aliasing introduced by the sub-sampling.

Generalizing this example to N-fold division, the output
clock’s close-in jitter density remains that of the input clock,
whereas its far-out jitter density is N times that of the input
clock. In theory, it is possible for the division ratio, N , to be
large enough that aliasing of the close-in jitter density is
non-negligible, but this rarely happens in practical low-jitter
circuits.

C. Integrated Jitter

In some applications, the mean squared value of the absolute
jitter, i.e., the time average of (	τn)

2, is of interest. This can
usually be related to the phase error spectrum as shown below.

Equation (25) can be rearranged as

Sφφ ( f ) = T0

∞∑

k=−∞
Rφφ [k]e− j2π f kT0 , for | f | <

f0

2
(29)
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where

Rφφ [k] = lim
N→∞

1

N

N−1∑

n=0

φ (nT0) φ ((n + k) T0). (30)

The summation on the right side of (29) has the form of a
discrete-time Fourier transform. Applying the inverse discrete-
time Fourier transform equation gives

Rφφ [k] =
∫ ∞

−∞
Sφφ ( f ) e j2π f kT0 d f . (31)

It follows from (30) that the mean squared value of φ(nT0)
is Rφφ [0], so (31) implies that the mean squared value of
φ(nT0) is equal the integral of Sφφ( f ) over all frequencies.
To the extent that φ(τn) ∼= φ(nT0), this with (10) implies that
the mean-squared value of the absolute jitter is given by

σ 2
abs = 1

ω2
0

∫ ∞

−∞
Sφφ ( f )d f = 1

ω2
0

∫ ∞

0
Sφ ( f )d f. (32)

This and other mean-squared quantities derived from the
absolute jitter that are defined in the next section are often
stated as their square-root equivalents, i.e., the root-mean-
squared (rms) absolute jitter σabs .

Section III-C defined the use of Sφ( f ) in this paper as
a proxy for either the one-sided power spectrum of the
continuous-time phase error, or S	

φ( f ), the conceptual mod-
ified power spectrum. As explained in that section, clocked
circuits tend to contain sources of broadband noise which
result in broadband jitter, and the applications which they
serve also tend to have wide bandwidths. For these rea-
sons, it is almost always S	

φ( f ) that is used in applications
that specify jitter. Irrespective of whether Sφ( f ) or S	

φ( f )
is appropriate, both are bandlimited to the frequency
range [0, f0/2). Therefore, (32) can be rewritten as

σ 2
abs = 1

ω2
0

∫ f0/2

0
Sφ( f )d f =

∫ f0/2

0
J ( f )d f . (33)

Actually integrating the jitter density down to f = 0 would
yield an unbounded result in practice, because oscillator phase
error power spectra (and correspondingly, jitter density) tend
to be unbounded at low frequencies [30]. Usually this is not
a practical concern, though, as many clocked systems are
designed to be insensitive to low-frequency jitter density. For
example, transmitter-receiver pairs in serial communication
links use PLL-based oscillators and clock and data recov-
ery (CDR) circuits configured in a manner that effectively
bandpass-filters the transmitter clock jitter density before it
reaches timing-sensitive circuits in the receiver [31].

Hence, in practice the integration limits of 0 and f0/2 in (33)
are usually replaced by limits that are greater than 0 and
less than f0/2, respectively. In particular, integration limits
of 12 kHz to 20 MHz are widely used. These limits were
first seen in the specifications for the PLL-based oscillators
designed for the synchronous optical network (SONET) [32].
They have since proliferated to applications where they no
longer have any architectural significance, but because most
PLL-based oscillators have qualitatively similar phase error
power spectra, they provide a useful means by which to
quickly compare the performance of different PLL-based
oscillators.

In some applications, it is of interest to evaluate the contri-
bution of a phase error spur at a particular frequency to σ 2

abs .

It follows from (33) that this contribution can be written as

σ 2
abs−spur = 1

ω2
0

lim
ε→0

∫ fm+|ε|

fm−|ε|
Sφ( f )d f (34)

where fm is the frequency of the spur. Hence, (17) and (19)
imply that

σ 2
abs−spur = 2

ω2
0

Pspur = 2

ω2
0

10Pd Bc/10 (35)

where PdBc is the spur power in units of dBc, obtained through
measurements as described in Section VII.

D. Other Jitter-Based Metrics

In typical clocked digital circuits, multiple flip-flops whose
inputs and outputs are interconnected through combinational
logic are driven by the same clock signal. Each timing path
in such a digital circuit is defined as a path that begins at the
output of a flip-flop, passes through combinational logic, and
ends at the input of a flip-flop. Correct functionality of the
overall digital circuit requires that the maximum delay among
all such timing paths, which is called the critical path delay,
is less than the minimum clock period. The minimum clock
period depends on the jitter: the higher the jitter the lower the
minimum clock period and, therefore, the lower the maximum
possible clock frequency of the digital circuit.

In particular the variation of a clock signal’s period from
its nominal value, i.e., 	τn − 	τn−1, is the jitter metric of
interest. It is called period jitter, and is frequently used in
place of absolute jitter to specify the performance of clock
signals for digital circuits.

The concept of period jitter can be generalized to accu-
mulated jitter, which is also known as N-cycle, or long-term
jitter. Accumulated jitter is defined as the variation of the time
interval spanned by a clock edge and the N th edge preceding
it minus N times the nominal period, so it can be expressed
as 	τn − 	τn−N . Thus, accumulated jitter for N = 1 is just
period jitter.

By definition, accumulated jitter is equivalent to absolute
jitter passed through a discrete-time filter with transfer func-
tion 1 – z−N , so its mean squared value can be written as

σ 2
acc(N) =

∫ f0/2

0

∣
∣
∣1 − e− j2π N f/ f0

∣
∣
∣
2

J ( f )d f. (36)

E. Effects of Jitter on Analog to Digital Conversion

A common use of precision oscillators is the clocking of
ADCs. The operation of many ADCs can be abstracted into
two sequential operations. The first operation is sampling the
continuous-time, continuous-valued input signal, x(t), at a
discrete set of times defined by the oscillator, τn . The second
operation is quantizing the sequence of continuous-valued
samples, x(τn), into a sequence of digital codes. In many ADC
architectures, the second operation is insensitive to clock jitter,
so only the initial sampling operation is analyzed here [33].

Fig. 6 shows a simplified input sampling circuit. Ignoring
all non-idealities except clock jitter, the nth sample of the
input voltage is given by y[n] = x(nT0 +	τn). Equation (10)
implies that the |φ(t)| << 1 assumption made in previous
sections is equivalent to |	τn| << T0. Assuming x(t) is
bandlimited to prevent aliasing, the sampling error caused by
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jitter can be approximated as y[n] ∼= x(nT0) + x 	(nT0) · 	τn ,
where x 	(t) is the first derivative of x(t).

Even with these assumptions and approximation, the jitter-
induced error, x 	(nT0) · 	τn , is hard to analyze without
simulation. Textbooks typically consider a worst-case scenario
in which x(t) is a maximum-frequency, maximum-amplitude
sinusoid, x(t) = Amax sin(ωx t) [33]. In this case, the sampled
voltage error is approximately Amaxωx	τncos(ωx nT0). Thus,
prior to quantization, this jitter-induced error already sets an
upper bound on the maximum achievable SNR given by

SN Rmax =10 log10

(
1
2 A2

max
1
2 A2

maxω
2
xσ

2
abs

)

=10 log10

(
1

ω2
xσ

2
abs

)

.

(37)

Restricting x(t) to be a single sinusoid makes the analysis
tractable, but it has been shown empirically that the SNRs
of ADCs with broadband input signals achieve much higher
performance than the single-tone result would suggest [34].
Yet (37) remains useful as pessimistic performance bound.

Moreover, σabs , the clock quality metric on which SNRmax
depends, is often used instead of Sφ( f ) to stipulate the
required ADC clock quality in applications. When an ADC’s
input signal, x(t), is broadband, the error caused by jitter,
i.e., x(nT0 + 	τn) – x(nT0), tends to be spread across the
Nyquist band in a way that does not depend strongly on
the shape of Sφ( f ), so σabs is a more convenient metric.
Notable exceptions are software-defined and reconfigurable
radios in which ADCs capture broad spectrum signals, but
the constituent desired signals and interferers each occupy
relatively narrow bandwidths [35]. In such cases, Sφ( f ) is
required to characterize the full radio performance [36].

F. Jitter Histograms

Equation (33) provides a means with which to calculate
σabs from J ( f ), but it is possible to approximate σabs without
knowing J ( f ) by plotting a histogram of the 	τn sequence.
The histogram provides an estimate of the probability distribu-
tion of 	τn from which σabs can be calculated directly. This is
useful in applications like ADC clocking wherein J ( f ) is not
particularly useful. Furthermore, with reasonable assumptions
on the sources of the random and deterministic absolute jitter
contributions to the total absolute jitter, it is possible to
estimate the relative magnitudes of their contributions [37].

For many clocked systems, jitter histograms are also a useful
visualization of clock signal phase error. For example, in a
serial communication receiver there is a circuit which samples
incoming data at time intervals controlled by a sampling clock.
As described in Section VII-C, it is usually possible to observe
the waveforms of the data and sampling clock in the time
domain. Knowing the histogram of the sampling clock jitter
shows the distribution of when the data is sampled in time,
which is usually informative because realistic absolute jitter
histograms are non-Gaussian. In contrast, simply calculating
σabs by integrating J ( f ) would give no information on the
distribution of 	τn .

VI. PHASE ERROR SIMULATION

In principle, an oscillator’s phase error could be esti-
mated via transistor-level transient simulations. However, this
is rarely practical, even with present-day high-performance
computers. The difficulty arises from the large timescales

necessary to capture phase error quantities of interest. For
example, to measure the phase error of a 1 GHz oscillator
down to 1 kHz would require running a transient simulation
for one million oscillator periods just to capture a single period
of a 1-kHz phase error component.

For the past few decades, simulation methods have been
available that greatly accelerate the analysis of relatively
simple circuits that generate and process periodic signals, such
as oscillators and clock buffers. While such methods are much
faster than direct transient simulation, they have limitations,
as described below, which make them generally inapplica-
ble to the simulation of larger systems such as PLL-based
oscillators.

For larger systems, it is more common to use the data gener-
ated in block transistor-level simulations to develop behavioral
models, which are then used to simulate the complete system
in an event-driven simulator. As explained below, event-driven
simulators are ideally suited for simulating large systems that
process discrete events, such as an oscillator’s zero crossings.

A. Transistor-Level Simulation

To perform a phase noise or random jitter simulation,
the simulator must first compute the circuit’s periodic steady
state, which is comprised of the periodic waveforms at the
various circuit nodes after all transient settling effects have
died out. For example, when an oscillator with a high-
Q resonator is started, it usually takes many cycles for
the oscillation envelope to stabilize. In contrast, a clock
buffer driven by an external clock signal may only need
a few cycles to stabilize [38]. There are two main tech-
niques used to compute this solution: shooting and harmonic
balance [39]–[41].

The shooting method is a time-domain approach wherein
the circuit is iteratively simulated over a time interval equal
to the expected period. After each iteration, the differences
between the circuit’s initial and final states are measured, and
the initial state for the next iteration is modified. This process
continues until the circuit’s final state is equal to its initial
state, indicating the periodic solution is achieved [39]. The
majority of the computation time is spent on transient simu-
lations, so this method is especially effective for circuits with
short periodicities, e.g., multi-GHz RF oscillators. Moreover,
as the waveforms are computed in the time-domain, sharp
transitions resulting in broadband frequency-domain content,
such as occur in ring oscillators and CMOS clock buffers, are
not problematic [42].

In contrast, harmonic balance is considered a frequency-
domain method. The circuit is first divided into two partitions,
one containing all the linear elements, and another containing
the nonlinear elements. The simulator iteratively solves for
the voltages at, and current through, the nodes at the interface
between these two partitions. Given an initial guess at the
node voltages, the currents into the linear partition are solved
in the frequency domain, which are computed using simple
matrix multiplications. This is much faster than a transient
simulation which requires iteratively solving differential equa-
tions. The currents into the nonlinear partition are solved by
first applying the Inverse-Fast-Fourier Transform (IFFT) to the
node voltages, computing the currents in the time domain,
then returning them to the frequency domain via the FFT.
By Kirchoff’s current law, the current into the linear partition
must equal the current leaving the nonlinear partition, so the
simulator iterates until this condition is satisfied.
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The computation of the nonlinear currents is cumbersome,
but the huge speed advantage gained in the frequency-domain
computation of the linear currents gives the harmonic bal-
ance method an overall advantage for circuits which are
weakly nonlinear, only have a few nonlinear elements, or have
extremely long periodicities. For weakly nonlinear circuits,
the overhead of the FFT and IFFT operations is modest
because the circuit solution can be represented by only a
few harmonics in the frequency domain, and by having few
nonlinear elements, the quantity of time-domain computations
is reduced. For circuits with long periodicities, to achieve
a given accuracy the harmonic balance method is usually
more efficient than the shooting method because it does not
suffer from accumulated numerical noise which plagues long
transient simulations. Ideal candidates for harmonic balance
analysis are low-noise, extremely high-Q systems such as
crystal oscillators [42].

Regardless of how the circuit’s periodic steady state solution
is calculated, the second step in a phase noise or random jitter
simulation is to use this solution to compute how the different
circuit noise sources contribute to voltage noise on the periodic
signal at a chosen node. This method takes advantage of the
periodicity of the signals within the circuit so that the effect of
very low frequency circuit noise can be analyzed using only
a single period of the circuit’s behavior [43], [44].

The distinctions made in the above discussion regarding the
types of circuits best suited to either the shooting or harmonic
balance methods were more critical when these methods
were first developed. However, the rapid improvement in
simulation and computer technology over the intervening
decades has blurred this separation. While there do still exist
specialized problems which are better served by one or the
other method, there are now general-purpose industry-standard
simulation tools based on both methods, as well as hybrid
methods [45], [46].

Moreover, while early incarnations of these simulators
only estimated the raw signal power spectrum, present-day
simulators are able to estimate both phase and amplitude
error power spectra, and decompose the spectra into upper-
and lower-sideband contributions [47]. Furthermore, provided
the necessary information, they can accurately compute the
modified phase error power spectrum resulting from sampling
and/or noise folding, as discussed in Section III.C [48].

Simulation technology has reached a level of maturity where
the simulator tool is typically no longer the design bottleneck.
Rather, assuming the device models are accurate, most analysis
errors are the result of improper or incomplete simulation
methodology. For example, a complete clock distribution sys-
tem comprised of an oscillator, limiting amplifier, and clock
buffers is usually still too large to be simulated efficiently
in one circuit. Rather, it is partitioned into sections which are
simulated independently. Unfortunately, oscillators and buffers
tend to be extremely sensitive to the circuits they drive, and
buffers additionally tend to be sensitive to the circuits that
drive them [49], [50]. Therefore, realistic driving and loading
conditions must be included when simulating each partition.

In particular, the oscillator and its limiting amplifier is a
critical combination, as the interface between them is espe-
cially susceptible to broadband additive noise to phase noise
conversion. When simulating the jitter of an oscillator and
its limiting amplifier, the clock buffer following the limiting
amplifier should be included. This only serves as a realistic
load, for reasons described above, as the simulation analysis

is performed on the clock signal at the output of the limiting
amplifier.

In spite of the advancements in simulator technology, there
are still situations where simulating the combined oscillator
and limiting amplifier can cause the simulator to have conver-
gence issues. For example, this often occurs when simulating
a high-Q crystal oscillator driving a CMOS limiting amplifier.
For the reasons discussed above, the oscillator and its limiting
amplifier are optimally simulated using the harmonic balance
and shooting methods, respectively, so their combination is
challenging for either simulator. In this situation, what is
often done is to perform separate simulations on each block,
while loading the oscillator with an approximation of the
CMOS buffer load, and driving the CMOS buffer with an
approximation of the oscillator’s sinusoidal output. The two
results are then added in power to represent the total phase
noise at the CMOS buffer’s output.

When simulating clock buffer chains, their layout strongly
influences the clock signal waveforms, which in turn influ-
ences their jitter performance. It is therefore important to
electromagnetically model the interconnect between the clock
buffers, including both the signal and ground return path,
to account for potential transmission-line effects that are not
accurately captured in RC parasitic extractors [51]. The results
from electromagnetic simulators are invariably high-order
frequency-domain models in the form of s- or y-parameters.
Such models are most efficiently simulated in their native form
using the harmonic balance method. Alternatively, their domi-
nant effects can usually be captured in lumped element models
to be used with transient-based simulators, and some simula-
tors can automatically perform this conversion [46], [47].

Clock buffer chains are also highly sensitive to their power
supplies and power distribution networks. This includes the
interconnect between the clock buffers’ voltage regulators,
the voltage regulators themselves, and even the package
models. Clock buffer supply current waveforms usually have
broadband content at frequencies well beyond a voltage
regulator’s bandwidth. At these high frequencies, there are
often parasitic resonances. Therefore, accurate clock buffer
simulations require not only the circuits and their drivers and
loads, but electromagnetic models of their complete on-chip
environment, and their supply circuitry as well [52]–[54].

B. Behavioral Simulation

There are two major obstacles to using the simulation
methods described above for more complicated systems such
as PLL-based oscillators. The first obstacle is that a peri-
odic steady-state solution must exist and be computed [42].
This precludes the simulation of fractional-N type PLL-based
oscillators, as well as systems which use digitally-generated
pseudorandom dither, because such circuits tend to have
extremely long periods (e.g., several days) [48]. The second
obstacle is that even in cases where the period is relatively
small, the complexity of a complete PLL-based oscillator
imposes impractical processing and memory requirements, and
even when these resources are available, computing the peri-
odic steady-state solution can still take days. This simulation
methodology would provide little utility during the design
phase, where many iterations usually are required.

A more practical method for simulating PLL-based oscil-
lators is to use behavioral event-driven simulations [55]–[57].
These simulations offer a huge speed advantage over transient
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transistor-level simulations, because behavioral event-driven
simulations only capture the relevant functionality of circuits
rather than all of the voltages and currents of every node with
very small time steps. For example, a transistor-level oscillator
simulation iteratively solves differential equations to compute
many points per period of the oscillator waveform. Yet, as has
been argued throughout this paper, many circuits driven by an
oscillator signal are insensitive to the oscillator signal at times
other than its zero crossings. Therefore, PLL-based oscillators
are almost always behaviorally-modeled by generating the
sequence of their rising or falling zero-crossing times, τn . This
sequence can be processed using (10) and (25) to generate the
conceptual band-limited phase error power spectrum, S	

φφ( f ).
Even though the shape of the oscillator signal waveform is lost
in a behavioral simulation, many non-idealities such as noise
and nonlinearity can still be accurately modeled [55]–[59].

The main drawback of behavioral event-driven simulations
is that their results are only as accurate as their behav-
ioral models of the circuit’s sub-blocks. Care is therefore
required to continually cross-verify the behavioral models
against transistor-level simulations of the corresponding circuit
sub-blocks.

Mixed-signal simulators, or co-simulators, bridge the gap
between the speed of behavioral event-driven simulators and
the functional accuracy of transistor-level simulators [60].
A co-simulator can efficiently simulate a system comprised
of transistor circuits, behaviorally-modeled circuits, and fully-
digital circuits. The behavioral models are written in a mixed-
signal language such as Verilog-AMS, while the digital circuits
can be described in Verilog. The co-simulator partitions the
system into its different types, and runs simulators optimized
for each type in lock-step. Data between the simulated parti-
tions is continually communicated, so that the whole system
is simulated in unison.

The power of a co-simulation is that a design can start
with all behavioral models, and then transistor-level circuit
blocks can be used in place of the corresponding behavioral
models as they are designed. As different combinations of
transistor-level circuits and behavioral models can be run,
this implicitly improves the behavioral model verification.
Unfortunately, because the analog portions of the system are
simulated with a transistor-level simulator, co-simulations still
take orders of magnitude more simulation time than fully
behavioral simulations.

VII. PHASE ERROR MEASUREMENT

A. Spectrum Analyzers

A spectrum analyzer performs the equivalent of passing its
input signal through a bandpass filter whose center frequency
is swept across a user-defined range of frequencies, called
the span.†† This frequency-swept bandpass filter is called the
equivalent bandpass filter. The power of the equivalent band-
pass filter’s output signal is measured, and this power is plotted
on the spectrum analyzer display’s vertical axis on a dB scale
against the equivalent bandpass filter’s center frequency on
the horizontal axis. The bandwidth of the equivalent bandpass
filter is called the resolution bandwidth (RBW), and the time
it takes for the equivalent bandpass filter’s center frequency to
traverse the span is called the sweep time.

If the spectrum analyzer input is driven by an oscillator
signal, then the displayed power on the spectrum analyzer
at a frequency f is equal to the power of the oscillator

signal in the frequency band ( f − RBW/2, f + RBW/2).
This is proportional to an estimate of the power spectrum of
the oscillator signal, Sv ( f ), as described in Section II-F. The
accuracy of this estimate improves as the RBW decreases.

If the assumptions that ε(t) ∼= 0 and |φ(t)| << 1 made
in Section III-A are valid, then (23) can be used to estimate
Sφ( f ) from Sv ( f ). As oscillator phase error power spectra
tend to rise at low frequencies, this approximation becomes
invalid at very low offsets from the carrier [61]. Extremely
low frequency oscillator phase error is indistinguishable from
frequency drift, which can also corrupt spur measurements,
as explained shortly.

Most spectrum analyzers have modes specifically for phase
noise measurement which perform the carrier power normal-
ization and apply any instrument-specific correction factors
automatically. Examples of correction factors include account-
ing for the exact transfer function of the equivalent bandpass
filter, and accounting for non-idealities in the power detector
that follows the equivalent bandpass filter [62], [63].

If amplitude error is not negligible, then replacing A with
[A+ε(t)] in (20) results in an extra additive term ε(t) sin(ω0t)
in (22). Furthermore, any additive error on the oscillator signal
will also appear in its power spectrum. Therefore, the oscillator
signal power spectrum contains both amplitude error as well
as additive error, and these errors are indistinguishable from
phase error in Sv ( f ). This results in a pessimistic estimate of
Sφ( f ) from Sv ( f ).

The full form of the right side of (22) including ampli-
tude modulation is the carrier signal plus ε(t)sin(ω0t) +
Acos(ω0t)φ(t), where ε(t) and Aφ(t) can be viewed as com-
plex modulation of the carrier. Therefore, when the oscillator
signal has both phase and amplitude error, the sidebands of
its power spectrum are no longer symmetric, in contrast to the
case of pure phase error described in Section III-A. Parasitic
coupling in both the circuit as well as the measurement setup
can result in amplitude modulation of the oscillator signal,
leading to such asymmetries. This effect is often noticeable in
the spurious tones of PLL-based oscillators.

As explained in Section III-A, the power of a spur in the
oscillator phase error power spectrum at frequency fm is equal
to the power of the spur in the oscillator signal power spectrum
at frequency f0+ fm , divided by the power of the carrier. Thus,
the phase error spur power in dBc can be read from a dB-scale
oscillator signal power spectrum as the difference between the
values of the power spectrum at f0 + fm and f0.

However, there is a caveat to this spur measurement tech-
nique. As described above, the value of the spectrum analyzer
measurement at frequency f0 + fm is the power at the output
of the conceptual RBW-bandwidth bandpass filter centered
at frequency f0 + fm . Therefore, the measured power is
approximately the sum of the spur power plus the oscillator
signal noise power density integrated over the band ( f0 + fm −
RBW/2, f0 + fm + RBW/2). As the power of the spur of
interest decreases, the RBW must be decreased so that the
measured power at that frequency is dominated by the spur
power, not the integrated noise power.

The left plot in Fig. 10 shows a PLL-based oscillator’s signal
measured power spectrum over a 100 kHz span centered at the
2.4 GHz carrier frequency, measured by a Rohde & Schwarz
FSW13 spectrum analyzer. Symmetric spurs are visible at

††This is a behavioral description, not an explanation of how spectrum
analyzers are implemented (a good explanation of which can be found in [17]).
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Fig. 10. Measured power spectra of a PLL-based oscillator signal (left) and its phase noise (right).

approximately 7.4, 14.7, and 29.5 kHz offsets from the carrier,
with the largest shown by the delta marker as −73 dBc. The
phase noise of this PLL-based oscillator in the 10 kHz to
100 kHz region is known to be −108 dBc/Hz. However,
because this measurement was taken with a 10 Hz RBW
and without averaging, any spur below about −80 dBc would
become indistinguishable from the noise, so to resolve a lower-
power spur would require a narrower RBW.

Unfortunately, narrow RBWs can complicate spur measure-
ments and lead to erroneously optimistic results, because the
time it takes for the spectrum analyzer to measure the power
at the output of the equivalent bandpass filter increases as the
RBW decreases. Oscillator frequency drift may cause the spur
frequency to drift in the measurement. Often, this has the effect
of spreading the spur power across a range of frequencies that
can extend beyond the bandwidth of the spectrum analyzer’s
conceptual bandpass filter, thereby underestimating the spur
power. Moreover, because frequency drift varies randomly
over time, its effect on a spur may differ from its effect on
the carrier, as they are measured at different points during the
sweep time. These effects can cause spur power measurement
to be optimistic, often by several dB.

The above discussion also explains why it is necessary to
disable spectrum analyzer averaging when measuring spurs.
Spectrum analyzer averaging causes the instrument to average
the results of multiple sequentially captured measurements.
This mode is useful for increasing the precision of noise
measurements. Unfortunately, oscillator frequency drift causes
the spur to appear at different frequencies across different
measurement sweeps. When these results are averaged, the
resulting spur power is reduced as it is averaged with noise,
and just as explained above, the averaging may affect the spur
power and carrier power differently, due to any randomness in
the frequency drift.

Most spectrum analyzers implement the conceptual band-
pass filtering operation described above by either downcon-
verting the input signal to a fixed intermediate frequency
and passing the result through a fixed-frequency bandpass
filter, or digitizing the input signal and performing fast Fourier
transform (FFT) based spectrum estimation [17]. Either way,
the accuracy of the center frequency of the conceptual band-
pass filter depends on the accuracy of the spectrum analyzer’s
local oscillator frequency, which, in turn, depends on the accu-
racy of the spectrum analyzer’s reference oscillator frequency.
Most spectrum analyzers offer the option of using an exter-
nal reference oscillator signal. When measuring PLL-based
oscillator phase error spurs, this feature makes it possible to

lock the spectrum analyzer’s local oscillator to the PLL-based
oscillator’s reference oscillator [62]. In this case, the spectrum
analyzer’s local oscillator has the same frequency drift as
the PLL-based oscillator, which avoids the spur-measurement
problem described above.

B. Phase Noise Analyzers

The lowest-noise phase noise measurements are made with
phase noise analyzers, which are also called signal source ana-
lyzers depending on the manufacturer. Phase noise analyzers
are essentially extremely sensitive receivers, and are capable
of differentiating between the amplitude and phase noise com-
ponents of an oscillator signal over a limited bandwidth [64].

Two different measurement techniques are commonly used,
homodyne phase discrimination and heterodyne frequency
discrimination [65]. The phase discrimination method is typ-
ically called narrowband-optimized mode, as it is optimized
for measuring the close-in phase noise of oscillators with very
little frequency drift, such as crystal oscillators and PLL-based
oscillators locked to crystal oscillators. The frequency discrim-
inator method is often called wideband-optimized mode, and
is better-suited to measure the phase noise of oscillators with
relatively high low-frequency phase noise or frequency drift,
such as free-running voltage-controlled oscillators. Both of
these measurement methods are further improved by corre-
lation techniques, which essentially average out the uncorre-
lated noise between multiple identical measurement channels
inside the instrument [66]. The total added noise from these
instruments can be less than 10 femtoseconds of integrated
jitter.

The right side of Fig. 10 shows the phase noise plot of
the same PLL-based oscillator discussed in the previous sub-
section, as measured by a Keysight E5052B signal source
analyzer. For the reasons given in the previous section,
the averaging techniques used by this instrument to improve
the noise measurement precision adversely affects its ability to
resolve spurs. For example, the spurs at 7.4, 14.7, and 29.5 kHz
in the left-side power spectrum are also visible in the phase
noise plot, but their powers are not directly readable as they
are spread over a range of frequencies.

C. Time-Domain Methods

For serial communication applications, phase error is usu-
ally measured in the time domain with high-speed digitizing
oscilloscopes, as they can make measurements that would
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Fig. 11. Measured 14 GHz clock eye diagram and jitter histogram.

be impossible with other instruments [67]. Digitizing oscil-
loscopes fall into two categories, realtime and sampling (also
called equivalent-time). A realtime oscilloscope operates like
a digital version of a traditional analog oscilloscope, in that
continuous segments of the input signal are digitized and
displayed onscreen. The maximum bandwidth of the input
signal is limited by the sample-rate of the ADC, which is
currently up to well over 100 GS/s [68].

Realtime oscilloscopes often have internal configurable
zero-crossing detectors, so that finite-duration segments of the
oscillator signal absolute jitter can be extracted. An absolute
jitter sequence can be processed via an FFT, which, by (25),
gives an estimate of the oscillator phase error’s modified
conceptual power spectrum. An absolute jitter sequence can
also be viewed as a histogram, and by analyzing the histogram
as described in Section V-F, various aspects of the type and
magnitude of the jitter can be inferred.

Fig. 11 shows measurement results for a 14 GHz clock
signal via a Keysight DSAZ634A realtime oscilloscope. The
clock signal was generated by a 28 Gb/s serial transmitter,
transmitting a repetitive “01” sequence. The left plot in Fig. 11
is comprised of over 11 million segments of the measured
clock waveform shifted and overlaid atop one another, in a plot
known as an eye diagram [69]. The right plot in Fig. 11 shows
the histogram of the clock signal’s zero crossings. It shows the
total jitter, random jitter, and two additional terms: periodic
jitter (PJ) and data-dependent jitter (DDJ). The complete cate-
gorization of jitter used by this instrument is described in [70].

A realtime oscilloscope’s unique ability to debug circuit
problems in the time domain is particularly valuable in that
it makes it possible to compare, edge by edge, the absolute
jitter on a clock signal against other signals in the system. For
example, in a serial transmitter circuit, coupling may cause
transitions in the data being transmitted to disturb the edges
of its PLL-based oscillator signal [31]. By viewing the clock
and data signals simultaneously on a realtime oscilloscope,
it is possible to verify this effect, whereas if the clock signal
were viewed on a spectrum analyzer, a spur would be visible
with no indication of its phase.

In contrast to the Nyquist-rate sampling in a realtime
oscilloscope, a sampling oscilloscope sub-samples its input
signal at a much lower rate, usually below 1 MHz [67]. On the
other hand, its maximum input frequency is no longer limited
by the sampling rate, but by the bandwidth of the analog
frontend and sampling circuitry. Furthermore, as the sampling
oscilloscope’s ADC has more time to process each sample,
it can achieve higher voltage resolution. Currently, realtime
oscilloscopes have 8-10 bits of resolution, whereas sampling
oscilloscopes typically have over 12 bits of resolution [67].

Due to its sub-sampling behavior, a sampling oscilloscope
cannot be used to generate phase error power spectra, but
it can generate jitter histograms, and its ability to debug
time-domain issues is only slightly limited compared to a
realtime oscilloscope. For example, a serial transmitter can

be configured to transmit a repeating data sequence. Provided
the duration of each data sequence transmission is slower than
the maximum sub-sampling rate of the sampling oscilloscope,
it is possible to sub-sample a very high-speed clock signal
relative to the start time of each repeated data sequence. The
full clock signal can then be slowly reconstructed in the time
domain, hence the “equivalent-time” name for this instrument.
The limitation of this method stems from the instrument’s sub-
sampling behavior, in that any periodic disturbances in the
oscillator signal not harmonically-related to the sub-sampling
rate can corrupt the measurement.

A drawback of time-domain measurement instruments is
caused by their wide analog bandwidths. The analog circuitry
present in both types of oscilloscopes prior to their ADCs
adds broadband thermal noise to the oscillator signal, and this
additive noise corrupts the oscillator signal via the mechanism
described in Section III-C. Therefore, even the highest-
performance realtime and sampling oscilloscopes have inte-
grated jitter floors well above those of phase noise analyzers.

VIII. FREQUENCY STABILITY

In the preceding sections, oscillator error was analyzed in
the frequency domain via phase error and jitter power spectra,
Sφ( f ) and J ( f ). There exist, however, a broad class of prob-
lems in fields such as astronomy [71], satellite navigation [72],
and precision metrology [73], [74] in which oscillator error
is usually characterized in the time-domain with a quantity
called the Allan variance, σ 2

y (τ ), which is described in this
section. The main utility of the Allan variance and its variants
is that they allow for simple characterization of very long-
term oscillator behavior (days to years). For example, they
are useful in analyzing the behavior of a system where
the frequency of a low-precision oscillator is periodically
re-calibrated with a high-precision oscillator, a situation which
frequently occurs in mobile devices [75]. The development of
the time-domain approach to oscillator error was primarily
driven by the invention of the atomic clock, whereas the
phase error frequency-domain approach was motivated by the
development of Doppler radar [76], [77].

This section considers only the phase noise component
of phase error. Spurious tones and deterministic modulation
in the oscillator phase error have been extensively analyzed
within this framework [78], [79], but they require special
consideration which is beyond the scope of this tutorial.

A. Frequency Fluctuations

The instantaneous frequency, ω(t), of the oscillator sig-
nal given by (1) is defined as the derivative of the argu-
ment of the sine term, i.e., ω(t) = ω0 + φ	(t) [80]. The
frequency fluctuations function is defined as ω(t) − ω0,
i.e., the deviation of the instantaneous frequency from its
nominal value. The fractional frequency fluctuations function,
y(t), is the frequency fluctuations function normalized by ω0,
i.e., y(t) = φ	(t)/ω0.

The use of frequency rather than phase as the variable of
interest stems from early research characterizing oscillators
by counting its cycles [81]. A digital counter can be used to
approximately measure sequences of time averages of y(t) of
the form

ȳk =
∫ λk+τ

λk

y(t)

τ
dt = φ(λk + τ ) − φ(λk)

ω0τ
, (38)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 12. Frequency-domain signal processing of the Allan variance. Inset
shows the equivalent bandpass filter transfer function.

where λk denotes the time of the kth measurement, and τ
is the duration of the average, also known as the counter
gating interval, or stride [82]. It follows from (38) that the
ȳk sequence is generated by sampling the result of a τ -width
moving average filter applied to y(t), which is a type of
lowpass filter. Hence, ȳk can be interpreted as samples of the
continuous time sequence whose power spectrum is a lowpass-
filtered version of Sy( f ).

Counters only measure the zero crossings of a clock, so the
measurement of (38) incurs quantization noise. Laboratory
frequency counters use various methods to improve the mea-
surement accuracy of ȳk , especially for short gating intervals
relative to the clock period [83], [84]. However, for the types
of problems where Allan variance is a useful metric, the values
of τ of interest are typically many orders of magnitude larger
than the clock period, so this quantization error can often be
ignored. However, there are other non-idealities within the
measurement instrument such as drift and noise in its internal
time base. These cannot be ignored, and must be considered
as part of the uncertainty in the measurement [85].

B. Allan Variance

A focus of early research on precision oscillators was char-
acterizing flicker frequency noise, which manifests as the low-
frequency region of Sy( f ) that decays at −10 dB/decade [86],
shown in Fig. 12. Unlike other types of noise, such as
white frequency noise (flat in Sy( f )) or white phase noise
(+20 dB/decade in Sy( f )), measurement uncertainty due to
flicker frequency noise cannot be removed by averaging, which
leads to an accuracy limitation for measurements that depend
on averaging over time intervals. Its measurement also defies
characterization by the variance, because the integral over
positive frequencies including 0 of a lowpass-filtered Sy( f )
is unbounded, due to the divergence of the integral of 1/ f at
f = 0 [87].

The divergence of the flicker noise model at low frequencies
is shown to be accurate over extremely long observation inter-
vals, well beyond practical measurement durations [88], [89].
One method to bound the integral of Sy( f ) is to use arguments
similar to those in Section V-C, where a restricted jitter density
integration interval is used to bound the calculation of absolute
jitter. However, there is no unique interval of frequency noise
integration for the characterization of oscillators that would be
applicable in all scenarios [86]. Therefore, a different metric
is needed that is both generally applicable and practically
measurable.

The problem with computing the variance of ȳk occurs
because the integral of Sy( f ) diverges at f = 0, so the most

Fig. 13. The σ -τ plot, annotated with the slopes of different regions
indicating the different noise type contributions.

straightforward solution is to take the variance of the first
difference of ȳk . The Allan variance, or two-sample variance,
is thus defined as

σ 2
y (τ ) = 1

2
E

[
(ȳ2 − ȳ1)

2
]
. (39)

Hence, the value σ 2
y (τ ) is equal to the variance of the

difference between two adjacent τ -duration average frequency
measurements, normalized to the nominal frequency. This may
seem contrived, but it has an intuitive interpretation in relation
to timekeeping, which is explained in the next sub-section.

Taking the first difference in the time domain is equivalent
to a highpass filter in the frequency domain, so the combined
response of the first difference and the τ -width moving average
filter is equivalent to a bandpass filter applied to Sy( f ) [90].
The behavior of this filter is shown in Fig. 12, for three
different values of τ . The bandwidth and center frequency of
this filter is proportional to 1/τ , so it has a constant logarithmic
bandwidth. As flicker noise has constant integrated power over
logarithmic bandwidths, σ 2

y (τ ) is constant when the value
of τ places the filter’s center frequency in regions of Sy( f )
dominated by flicker frequency noise.

The square root of the Allan variance, σy(τ ), is called the
Allan deviation. This is typically plotted on a log-log scale
versus τ , in what is called a σ -τ plot, shown in Fig. 13.
Like a phase noise plot, different regions of the σ -τ plot
are dominated by different types of noise. A typical σ -τ
plot shows, for increasing τ , a downward sloping region,
a flat region, and an upward sloping region. As indicated,
all but the upward-sloping region (random-walk frequency)
can be attributed to the intrinsic noise processes encountered
in IC design. The random-walk frequency region tends to be
dominated by external effects, such as random temperature
fluctuations.

The value of τ required to measure the upward sloping
region depends on the type of oscillator. For example, preci-
sion temperature-compensated crystal oscillators (TCXO) can
show this region after τ ’s of minutes or hours, whereas the
Rubidium oscillators in GPS satellite clocks require a τ of
several days [91]! It is important to note that, as τ (and hence
measurement duration) becomes large, it becomes increasingly
difficult to isolate the performance of the oscillator under test
from the measurement environment. In addition to temperature
fluctuations, issues such as physical vibration due to office foot
traffic, power surges causing equipment failure, or failure of
the oscillator itself can all be considered random events that
tend to manifest during long-term measurements.
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C. Interpretation and Comparison With Phase Noise

Mobile devices such as cellular phones and GPS receivers
contain circuits called realtime clocks (RTC). An RTC contains
an internal oscillator tuned to a known nominal frequency.
By counting the oscillator’s cycles, a sense of time is kept.
The frequency stability of the mobile device RTC oscillator is
typically poor, so the RTC is periodically recalibrated using
the base station time as described below.

Every τ seconds, the base station transmits its time to the
mobile device. The mobile device updates its internal time to
the received time, but also computes the error between the
RTC’s measurement of the τ -second interval and the actual
interval as defined by the base station. The mobile device then
uses this measured error to correct the RTC’s prediction of the
subsequent τ -second interval.

In this manner, the mobile device’s time error from the
base station time is reset to 0 every τ seconds, but its time
error grows as time elapses from the most recent reset up
to the next reset. In this scenario, the standard deviation
of the mobile device’s time error immediately before each
recalibration is closely approximated by τσy(τ ). While this
idealized example ignores practical challenges faced by such
systems, e.g., temperature fluctuations between recalibrations,
it illustrates how the Allen variance is a useful tool to
characterize the precision of time measurements based on the
performance of the underlying oscillator used to measure the
time interval.

Using a σ -τ plot in the above example, if the chosen τ falls
in the −1 sloped region, then τσy(τ ) is a constant with respect
to τ . If τ falls in the flat region, then τσy(τ ) grows linearly
with τ , and if τ falls in the rising region, then τσy(τ ) grows
at a much higher rate. From the σ -τ plot, it is also easy to
calculate the maximum allowable time between recalibrations
given a maximum time error standard deviation requirement.
In contrast, such information is not evident from a plot of
either Sφ( f ) or J ( f ).

The time between the negative-slope region and the flat
region in a σ -τ plot is of particular interest. This time, called
τ0, corresponds to the time after which averaging a frequency
measurement longer than τ0 seconds does not increase the
measurement precision. Thus, the flicker noise floor of fre-
quency stability is a critical specification of precision oscil-
lators for metrology applications. Recent publications have
reported reaching a frequency stability of below 1.5 × 10−18

with just 30 minutes of averaging [92]. For a point of scale,
this is equivalent to measuring the diameter of the earth to a
precision of less than the width of a hydrogen atom [93]!

The Allen variance is a convenient metric not only because
it is simple to estimate through measurement, but also because
its estimate converges for all the commonly encountered
power-law noise types. There exist several other types of
variances that offer advantages over the Allen variance. For
example, the modified Allan variance (MVAR) introduces a
τ -dependent scale factor to the Allan variance that gives the
white phase and flicker phase noise regions different slopes
on the σ -τ plot [94]. The total variance (TVAR) is another
Allan variance like metric that has better convergence of the
estimator sequences for long τ in the presence of effects
such as linear frequency drift [95]. Another metric is the
Hadamard variance which has a sharp frequency selectivity
and can estimate very high order frequency noise, namely
flicker walk frequency (−50 dB/dec phase noise) and flicker
run frequency (−60 dB/dec phase noise) noise [96]. This was

needed to analyze the Rubidium oscillators in GPS satellites
that exhibit complex frequency drift behavior [91].

The approach to selecting a type of variance is similar to
the choice of window type for power spectrum estimation. The
different types emphasize (or obscure) different aspects of the
signal, and depending on the features of interest one may be
more appropriate than another. The references [90], [97], [98]
provide more details on many commonly-used types of
variance.

IX. CONCLUSION

Oscillators and the clock signals they generate are ubiqui-
tous in modern electronic systems. Due to their wide range of
applications, different disciplines have each developed their
own metrics and methods by which to characterize oscillator
non-idealities, each uniquely suited to their particular appli-
cation. Wireless systems are predominantly concerned with
the oscillator’s phase error power spectrum. Digital clocked
circuits, and wireline communication systems are more fre-
quently analyzed using time-domain jitter calculations. Metrol-
ogy and physics applications frequently employ the Allan
variance. Although these metrics, and the instruments used
to measure them, appear very different, as explained in this
tutorial they are all just different perspectives on oscillator
phase error.
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