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Multi-Rate DEM With Mismatch-Noise
Cancellation for DCOs in Digital PLLs
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Abstract— Mismatches among frequency control elements in
digitally-controlled oscillators can be a significant source of
phase error in digital phase-locked loops (PLLs). This paper
presents a multi-rate dynamic element matching technique and
an adaptive mismatch-noise cancellation (MNC) technique that
work together to address this problem. The two techniques
operate in background during normal PLL operation, and the
MNC technique has typical cold start convergence times of a
few seconds.

Index Terms— Delta-sigma modulation, digitally-controlled
oscillator (DCO), digital calibration, dynamic element matching
(DEM), mismatch-noise cancellation (MNC), digital phase-locked
loop (PLL), spectral breathing.

I. INTRODUCTION

H IGH-PERFORMANCE phase-locked loops (PLLs) are
critical components in modern electronic communication

systems. For example, in wireless transceivers they generate
radio frequency local oscillator signals for up-conversion and
down-conversion of transmitted and received signals, the phase
error of which often limits overall transceiver performance.

Most PLLs incorporate either analog filters and voltage-
controlled oscillators (VCOs) or digital filters and digitally-
controlled oscillators (DCOs). The former are often called
analog PLLs and the latter are often called digital PLLs.
To date, analog PLLs have the best phase error performance,
but digital PLLs have the lowest circuit area and are more
compatible with highly-scaled CMOS IC technology. Thus,
reducing phase error in digital PLLs has been the subject of
intensive research and development for over a decade [1]–[49].

Nevertheless, frequency control element (FCE) mismatches
in DCOs remain a significant source of phase error in high-
performance digital PLLs [39]. This problem has only been
addressed in prior work via an offline calibration technique
that requires several minutes to complete [16], [18]. This
paper presents a multi-rate dynamic element matching (DEM)
technique and an adaptive mismatch-noise cancellation (MNC)
technique that work together to address the problem. Both
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techniques run in background during normal PLL operation,
and the MNC technique typically converges in a few seconds
from a cold start.

The paper describes the proposed multi-rate DEM and
MNC techniques in detail. Section II provides DCO back-
ground information. Section III discusses the effects of FCE
mismatches on the DCO frequency. Section IV presents an
error model for FCE mismatches. Section V presents the
multi-rate DEM technique. Section VI presents the MNC
technique. Section VII presents behavioral simulation results
that support the analysis of the paper. The proposed techniques
are described in the context of an example to simplify the
explanations.

II. BACKGROUND INFORMATION

A DCO is an oscillator whose frequency is controlled by
one or more FCEs, each of which is controlled by a 1-bit
digital sequence. For instance, each FCE in an LC-based DCO
contributes to the DCO’s tank a capacitance that takes on one
of two values depending on the state of the FCE’s input bit.
Changing the FCE’s input bit increases or decreases the DCO
frequency by a fixed frequency step.

The instantaneous frequency of a DCO is given by a fixed
offset frequency plus ftune(t), where

ftune(t) =
NFCE�

i=1

fi (t), (1)

NFCE is the number of FCEs in the DCO, and fi (t) is the
contribution of the i th FCE to the DCO frequency. Ideally,

fi (t) = (bi [mt ] − 1/2)�i , (2)

where bi [m] is the FCE’s input bit value (either 0 or 1) over
the mth clock interval, mt = � fFCEt�, fFCE is the clock-rate
of the input bit, and �i is the FCE’s frequency step size.1

The DCO’s input sequence, d[n], represents the ideal value
of ftune(t) over the nth clock interval. For example, suppose
d[n] is represented as a 16-bit two’s complement code where
the least significant bit (LSB) represents a DCO frequency step
of � (e.g., � = 100 Hz). Then

d[n] =
�

−215d15[n] +
14�

i=0

2i di [n]
�
�, (3)

where di [n], for each i = 0, 1,…, 15, is the value of the i th
bit of the code (either 0 or 1) over the nth clock interval.

1By definition, mt is the largest integer less than or equal to fFCEt at
time t , so it is a continuous-time waveform. Hence, bi [mt ] is a continuous-
time waveform even though bi [m] is a discrete-time sequence.
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Fig. 1. Conventional frequency control technique for an LC-based DCO.

Ideally, ftune(t) = d[nt ], where nt = � fint� and fin
is the clock-rate of the DCO input. Equations (1)-(3) with
fFCE = fin imply that this can be achieved with a bank
of 16 FCEs, where the i th FCE’s frequency step size is
�i = 2i−1�, bi [n] = di−1[n] for i = 1, 2,…, 15, and
b16[n] = 1 − d15[n].

Unfortunately, in PLL applications that require low phase
noise, such as local oscillator synthesis for cellular telephone
transceivers, DCOs with minimum frequency steps of tens
of Hz are required, but most existing FCEs have minimum
frequency steps of tens of kHz or more [50], [51]. A common
solution to this problem is described below for an exam-
ple case in which ftune(t) needs to be controlled in steps
of �, yet the smallest realizable FCE frequency step size is
�min = 28�. In this case, the eight LSBs of d[n] are said to
represent the fractional part of d[n] because they cause DCO
frequency steps that are fractions of �min, and the eight most
significant bits (MSBs) of d[n] are said to represent the integer
part of d[n] because they cause DCO frequency steps that are
multiples of �min.

The idea is to have two FCE banks: an integer FCE bank
controlled by the integer part of d[n], and a fractional FCE
bank controlled by the output of an oversampling digital ��
modulator driven by the fractional part of d[n] [2]. The ��
modulator’s highpass-shaped quantization noise is lowpass
filtered by the DCO, so provided the oversampling rate is
sufficiently high, it negligibly contributes to the DCO’s phase
error.

Fig. 1 shows a specific example in the context of an LC-
based DCO, where pt = � ffastt�, ffast � fin, and dI [nt ]
and dF [nt ] are the integer and fractional parts of d[nt ],
respectively. The ffast-clk signal is such that pt changes
synchronously with nt , so that nt can be written as a function
of pt , i.e.,

nt = g(pt). (4)

In this example g(pt) = �( fin/ ffast)pt�, where ffast/ fin is an
integer much greater than 1.

It follows from (3) that d[nt ] = dI [nt ] + dF [nt ], where

dI [nt ] =
�

−215d15[nt ] +
14�

i=8

2i di [nt ]
�
� (5)

and

dF [nt ] = �

7�

i=0

2i di [nt ]. (6)

As shown in Fig. 1, dF [nt ] is sampled at a rate of ffast by
a second-order digital �� modulator. The �� modulator’s
output is a four-level sequence quantized to multiples of �min
and can be written as

y��[pt ] = dF [nt ] + e��[pt ], (7)

where e��[pt ] is second-order highpass-shaped quantization
noise plus any dither used within the �� modulator. A ther-
mometer encoder maps y��[pt ] to a 4-bit thermometer code
which drives a bank of four FCEs, each with a frequency
step of �min. It follows from (1), (2) and (7) that the
contribution of the fractional FCE bank to the DCO frequency,
fF (t), is

fF (t) =
4�

i=1

fi (t) = dF [nt ] + e��[pt ]. (8)

The integer FCE bank is directly driven by dI [nt ]. Specif-
ically, the i th FCE, for i = 5, 6,…, 11, has input bi [nt ] =
di+3[nt ] and frequency step size �i = 2i+3�, and the
12th FCE has input b12[nt ] = 1 − d15[nt ] and frequency step
size �12 = 215�. It follows from (1), (2) and (5) that the
contribution of the integer FCE bank to the DCO frequency,
f I (t), is

f I (t) =
12�

i=5

fi (t) = dI [nt ], (9)

where a constant additive term has been omitted.
The contribution of the two FCE banks to the DCO fre-

quency is ftune(t) = f I (t)+ fF (t), so (8) and (9) imply that

ftune(t) = d[nt ] + e��[pt ]. (10)

Accordingly, e��[pt ] causes DCO frequency error. The
DCO’s phase error is the integral of its frequency error,
so as mentioned above, a lowpass-filtered version of e��[pt ]
appears as a component of the DCO’s phase error. Given
that e��[pt ] has a highpass-shaped spectrum that peaks at
ffast/2, its contribution to the DCO’s phase error can be made
negligible relative to other sources of phase error if ffast is
large enough [2], [11], [50].

III. EFFECTS OF FCE MISMATCHES

The FCEs in the previous example are ideal. Unfortunately,
non-ideal circuit behavior causes fi (t) to deviate from (2).
For example, suppose for now that fi (t) is modeled as ideal
except for a static gain error given by αi , i.e.,

fi (t) = (bi [mt ] − 1/2) αi�i . (11)

Ideally, αi = 1 for i = 1, 2, ..., NFCE, but inevitable com-
ponent mismatches introduced during fabrication cause αi to
deviate from 1.

Repeating the analysis for the example in Fig. 1 with (11)
in place of (2) gives

ftune(t) = αF ftune-ideal(t)+ eF (t)+ eI (t)

+ (αI − αF ) dI [nt ], (12)
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where ftune-ideal(t) is given by the right side of (10), αF and αI
are the averages of αi for i = 1, 2, 3, 4 and i = 5, 6,…, 12,
respectively,

eF (t) =
4�

i=1

(αi − αF ) (bi [pt ] − 1/2)�min (13)

and

eI (t) =
12�

i=5

(αi − αI ) (bi [nt ] − 1/2)�i . (14)

Hence, the FCE static gain errors introduce a gain factor, αF ,
and three additive error terms to ftune(t). The αF gain factor
does not significantly degrade performance in typical PLLs.
In contrast, as explained next, the three additive error terms
in (12) tend to cause spurious tones and increase phase error
in PLLs because they are nonlinear functions of d[nt ].

The individual bits of d[n], i.e., di [n], for each
i = 0, 1,…, 15, each depend on d[n] but are restricted to
values of 0 and 1. Hence, each di [n] is a nonlinear function
of d[n]. Nevertheless, they can be combined as in (3) to yield
d[n], which implies that multiplying d0[n], d1[n], …, d14[n],
and d15[n] by 20, 21, …, 214, and −215, respectively, and
adding the results causes the nonlinear components from the
individual bits to cancel each other. Any deviation from a set
of scale factors proportional to those mentioned above prevents
full cancellation of the nonlinear components. It can be verified
from (5), (13) and (14) that eF (t), eI (t), and (αI − αF )dI [nt ]
are each a function of a subset of the individual bits of d[nt ],
so they are nonlinear functions of d[nt ].

A partial solution to this problem is to replace the ther-
mometer encoder in Fig. 1 with a mismatch-shaping DEM
encoder [52]. Doing so would cause eF (t) to be replaced by
highpass-shaped noise that is free of nonlinear distortion and
is uncorrelated with d[nt ], so it would be suppressed by the
DCO like the �� quantization noise. Similarly, the integer
FCE bank could be modified to accommodate a mismatch-
shaping DEM encoder clocked at a rate of fin, which would
cause eI (t) to be replaced by shaped noise that is free of
nonlinear distortion and is uncorrelated with d[nt ]. However,
fin � ffast , so less of the shaped noise would be suppressed
by the DCO. Unfortunately, DEM as described above would
not help prevent the last term in (12) from introducing
nonlinear distortion because dI [nt ] is a non-linear function
of d[nt ].

As demonstrated in [39], the last two terms in (12) increase
the phase error in a PLL unless dI [nt ] remains constant once
the PLL is locked. In most published digital PLLs d[n] varies
by much less than�min when the PLL is locked, and measured
results are usually presented for PLL frequencies at which
dI [nt ] does not change during the measurement interval. This
renders the last two terms in (12) constant, so they do not
contribute phase error. Unfortunately, this is not a viable option
in practice because DCO center frequency drift caused by
flicker noise, voltage and temperature variations, and pulling
from external interference cause d[nt ] to vary by far more than
�min over time. For instance, measurement results indicate
that the frequency of the DCO presented in [39] varies by
about −200 kHz/°C, which corresponds to ∼7�min per degree
Celsius. In practice, this causes the digital PLL’s phase noise

to increase drastically from time to time as d[nt ] slowly
drifts past integer multiples of �min. This issue is sometimes
called “spectral breathing” because the phase noise spectrum,
as viewed on laboratory measurement equipment, appears to
swell up every now and then as if it is taking deep breaths.
During these “breaths” the PLL’s performance is extremely
degraded. Furthermore, when the PLL is used to generate
phase or frequency modulated signals, such as a GFSK signal
for a Bluetooth transmitter, d[nt ] typically varies by more than
�min, so there are no periods between “breaths” during which
the phase noise performance is good.

To address this problem, a single bank of FCEs driven
by a �� modulator and a mismatch-shaping DEM encoder
could be used, where the �� modulator oversamples d[nt ]
instead of just dF [nt ]. The DEM encoder would cause any mis-
matches among the FCEs to contribute shaped noise instead of
nonlinear distortion, and the oversampling would ensure that
most of the noise is suppressed by the DCO. Unfortunately,
high oversampling ratios would be required in practice, which
makes this solution impractical because of the associated high
power consumption.

In the remainder of the paper, a new multi-rate DEM
technique and an MNC technique that work together within a
PLL to solve the problems that arise from FCE mismatches
are presented. As in Fig. 1, two FCE banks are used. Both
FCE banks are driven by a multi-rate DEM encoder, which
ensures that the error arising from FCE mismatches is free of
nonlinear distortion. In addition, the multi-rate DEM encoder
avoids high power consumption because most of its digital
logic is clocked at a rate of fin instead of ffast .2 Much of the
additive error is not oversampled, so instead of relying on the
DCO to suppress it, the MNC technique adaptively measures
the error and cancels it in real time.

IV. FCE MISMATCH MODEL

FCEs with �i > �min are usually built by connect-
ing nominally identical minimum-weight FCEs in parallel.
Static mismatches among these FCEs are sources of error,
but other non-idealities such as the non-instantaneous fre-
quency transitions of realizable FCEs are also sources
of error. Hence, a more comprehensive model than (11)
for fi (t) is

fi (t) = (bi [mt ] − 1/2)�i + ei (t), (15)

where ei (t) is error that models both the static mismatch
and the non-ideal frequency transitions of the i th FCE.
FCEs are designed such that frequency transitions caused by
input bit changes settle within a clock period, so ei (t) only
depends on bi [mt − 1] and bi [mt ]. This can be modeled as

ei (t) =

⎧
⎪⎪⎨

⎪⎪⎩

e11i , if bi [mt − 1] = 1, bi [mt ] = 1,
e01i(t), if bi [mt − 1] = 0, bi [mt ] = 1,
e00i , if bi [mt − 1] = 0, bi [mt ] = 0,
e10i (t), if bi [mt − 1] = 1, bi [mt ] = 0,

(16)

where e11i , e01i (t), e00i , and e10i (t) represent the error
over each clock interval corresponding to the four

2Although the hardware of the proposed techniques is different from that
of the solution in which d[nt ] is oversampled and a DEM encoder clocked
at a high rate is used to control the FCEs, a pessimistic power consumption
analysis suggests that the proposed techniques are at least five times more
power-efficient.
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Fig. 2. Example waveforms related to (15) and (16) for an FCE input bit
sequence of 1, 0, 1, 1, 0.

different possibilities of the FCE’s current and prior input bit
values [53].3

Fig. 2 shows example waveforms associated with (15)
and (16). A consequence of the frequency transitions settling
within a clock period is that when an FCE’s input bit does not
change between clock periods, neither does its contribution to
the DCO frequency, so e00i and e11i are constant. In contrast,
e01i(t) and e10i(t) are not constant because they represent
deviations from the FCE’s ideal instantaneous frequency tran-
sitions when its input bit changes. As shown in Fig. 2,
the shape of each of these frequency transitions depends
only on whether the corresponding FCE input changed
from 0 to 1 or 1 to 0, and both e01i(t) and e10i(t) are 1/ fFCE-
periodic.

Experimental results suggest, at least for the LC-based
DCOs presented in [36] and [39], that the frequency tran-
sition introduced by each FCE when its input bit changes
from 0 to 1 and that when the input bit changes from 1 to 0
are antisymmetric to a high degree of accuracy, i.e.,
e11i − e01i(t) = −[e00i − e10i(t)]. Therefore, substituting
(16) into (15), applying this observation, collecting terms and
omitting constant additive terms yields

fi (t) = (bi [mt ] − 1/2) αi (t)�i + (bi [mt − 1] − 1/2) γi (t),

(17)

where

αi (t) = 1 + (e01i(t)− e00i )
	
�i and γi (t) = e11i − e01i (t).

(18)

Given that αi (t) and γi (t) are functions of e01i(t) and e10i(t),
which are 1/ fFCE-periodic, they are also 1/ fFCE-periodic.

V. MULTI-RATE DEM

A. Starting Point: Single-Rate Segmented DEM

Suppose the DCO’s input sequence is given by (3), and
for now suppose that �� quantization is not necessary
because FCEs with small-enough step sizes are available,

3The FCE model given by (15) and (16) is analogous to that of a
non-return-to-zero (NRZ) 1-bit DAC. To prevent ei (t) from depending on
bi [mt − 1], return-to-zero (RZ) FCEs could be implemented by setting the
FCEs to a signal-independent state for a fraction of each clock period, but
this is not practical for PLLs because it would periodically slew the DCO
frequency and thereby introduce excessive phase noise.

Fig. 3. Segmented DEM encoder example.

Fig. 4. (a) Segmenting switching block, (b) non-segmenting switching block,
and (c) switching sequence generator.

i.e., �min = �. Even in this case, FCE mismatches are a prob-
lem because they cause nonlinear distortion. A conventional
single-rate segmented DEM encoder can be used to prevent
this problem. For example, the mismatch-shaping segmented
DEM encoder shown in Fig. 3 can be used with 34 FCEs [54].
The i th FCE has input bi [nt ] = ci [nt ] and frequency step size
�i = Ki�, where

K2i−1 = K2i = 2i−1 for i = 1, 2, . . . , 13 and

Ki = 213 for i = 27, 28, . . . , 34. (19)

The DEM encoder’s input sequence, c[nt ], is obtained from
the DCO input sequence as

c[nt ] = d[nt ]
	
�+ 215 + 213 − 1 (20)

for reasons explained in [54].
As shown in Fig. 3, the DEM encoder consists of 33 digital

switching blocks (SBs), labeled Sk,r for k = 1, 2,…, 16,
and r = 1, 2,…, 17, configured in a tree structure. The
13 shaded SBs are called segmenting SBs, whereas the other
20 SBs are called non-segmenting SBs. The functional details
of the SBs are shown in Fig. 4. The top and bottom outputs
of each segmenting SB are ½(ck,1[nt ] − 1 − sk,1[nt ]) and
1 + sk,1[nt ], respectively, where ck,1[nt ] is the SB input
sequence, and sk,1[nt ], called a switching sequence, is 0 when
ck,1[nt ] is odd and ±1 otherwise. Similarly, the top and bottom
outputs of each non-segmenting SB are ½(ck,r [nt ] − sk,r [nt ])
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Fig. 5. Multi-rate DEM encoder example.

and ½(ck,r [nt ] + sk,r [nt ]), respectively, where ck,r [nt ] is the
SB input sequence and sk,r [nt ] is 0 when ck,r [nt ] is even
and ±1 otherwise.

Regardless of the SB type, each switching sequence is zero-
mean and has a first-order highpass-shaped power spectral
density (PSD) that peaks at fin/2. It is generated in two’s
complement format by the logic shown in Fig. 4(c), wherein
dk,r [nt ] is generated within each SB and is well-modeled
as a two-level white random sequence that takes on values
of 0 and 1 with equal probability and is independent of the
dk,r [nt ] sequences in the other SBs.

B. Extension to Multi-Rate Segmented DEM

Now suppose that the smallest practical FCE frequency
step size is �min = 28�. As the lower 16 FCEs in the
example above all have frequency step sizes smaller than�min,
the bottom 16 outputs of the DEM encoder can no longer
drive FCEs directly. The multi-rate DEM architecture shown
in Fig. 5 addresses this situation, where the bottom 4 FCEs
make up the fractional FCE bank, the top 18 FCEs make up
the integer FCE bank, and wt = pt − 1 is a Tfast-delayed
version of pt , where Tfast = 1/ ffast. As in Fig. 1, nt = g(pt)
changes synchronously with pt .

The block labeled slow DEM encoder in Fig. 5 is a modified
version of the DEM encoder in Fig. 3. Its outputs c17[nt ],
c18[nt ], …, c34[nt ] are identical to those in Fig. 3, and instead
of outputs c1[nt ], c2[nt ], …, c16[nt ] it has an output, x f [nt ],
given by

x f [nt ] = �

16�

i=1

Ki (ci [nt ] − 1/2). (21)

Each ci [nt ] takes on values of 0 and 1, so (19) and (21)
imply that |x f [nt ]| ≤ 255� and x f [nt ] is restricted to
multiples of �.

The slow DEM encoder could be implemented from the
DEM encoder of Fig. 3 directly by combining c1[nt ], c2[nt ],
…, c16[nt ] as in (21), but the structure of Fig. 6 is used instead
because is simpler. As implied by Fig. 4(b), the sum of the
outputs of each non-segmenting SB is equal to the SB’s input,
so it follows from (21), Fig. 3 and Fig. 4(a) that x f [nt ] can

Fig. 6. Slow DEM encoder example.

Fig. 7. Details of the second-order digital �� modulator.

be computed directly from the bottom outputs of S16,1, S15,1,
…, S9,1 as

x f [nt ] = �

16�

k=9

216−ksk,1[nt ]. (22)

Hence, as shown in Fig. 6, S1,1, S1,2, …, S1,8 are not necessary
in the slow DEM encoder.

The � scale factor shown in Fig. 6 is not an actual multi-
plier; it just denotes that the subsequent digital logic should
interpret the LSB of x f [nt ] to represent a DCO frequency step
size of �.

As shown in Fig. 5, x f [nt ] is sampled at a rate of ffast
by a second-order digital �� modulator whose functional
diagram is shown in Fig. 7. The dither sequence, d��[pt ],
is generated such that it can be well-modeled as a two-
level white random sequence that is independent of d[nt ] and
x f [nt ] and takes on values of 0 and � with equal probability.
It ensures that the �� modulator’s quantization noise is
asymptotically independent of x f [nt ] and d��[pt ], and has
a PSD equal to that of the output of a filter with transfer
function (1 − z−1)2 driven by white noise with a variance of
�2

min/12 [55]. The �� modulator output is quantized to values
in the set {−2�min,−�min, 0,�min, 2�min} and is given by

y��[pt ] = x f [nt ] + e��[pt ], (23)

where e��[pt ] is second-order highpass-shaped quantization
noise plus d��[pt ].

The block in Fig. 5 labeled fast DEM encoder is a conven-
tional mismatch-shaping non-segmented DEM encoder with
a clock rate of ffast . It is implemented as a tree of non-
segmenting SBs, and it maps y��[pt ] to four 1-bit sequences,
each of which drives an FCE with a frequency step size of
�min [56], [57].
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Each bi [wt ] in Fig. 5, for i = 1, 2, 3, 4, is clocked at a
rate of ffast and toggles rapidly enough such that the FCE
frequency transitions from the fractional FCE bank introduce
high-frequency error components to the DCO’s phase error.
Such components are lowpass filtered by the DCO, so they
are not a problem in practice provided ffast is large enough.
Consequently, the frequency transitions of the FCEs from the
fractional FCE bank are modeled as ideal, so that fi (t) is given
by (11) for i = 1, 2, 3, 4.

It follows from the results presented in [53] and (11) that

fF (t) = αF y��[wt ] + eF (t), (24)

where αF is the average of αi for i = 1, 2, 3, 4 and eF (t)
is a function of the errors introduced by the fractional FCE
bank and the switching sequences from the fast DEM encoder.
The fast DEM encoder ensures that eF (t) is free of nonlinear
distortion, uncorrelated with y��[wt ], and has a first-order
highpass-shaped PSD that peaks at ffast/2, so this term is not
a problem in practice provided ffast is large enough. Thus,
substituting (23) into (24) and neglecting eF (t) gives

fF (t) = αF x f [g(wt)] + αF e��[wt ]. (25)

As shown in Fig. 5, the c17[nt ], c18[nt ], …, c34[nt ] outputs
of the slow DEM encoder drive the same FCEs as those of
the DEM encoder of Fig. 3. As shown in Appendix A, this
implies that f I (t) is given by

f I (t) = αI (t)d[g(wt )] + γI (t)d[g(wt − 1)] + eI (t), (26)

where

eI (t) = �
�

k,r



αk,r (t)sk,r [g(wt )] + γk,r (t)sk,r [g(wt − 1)]�,

(27)

αI (t), γI (t), αk,r (t) and γk,r (t) are Tfast-periodic waveforms
that depend on the errors introduced by the integer FCE bank,
and the summation indices indicate the summation over all k
and r values corresponding to the SBs within the slow DEM
encoder.

The contribution to the DCO frequency from both FCE
banks is ftune(t) = f I (t) + fF (t), so (25) and (26) imply
that

ftune(t) = αI (t)d[g(wt )]
+ γI (t)d[g(wt − 1)] + αF e��[wt ] + eM (t), (28)

where

eM (t) = eI (t)+ αF x f [g(wt)] (29)

is called FCE mismatch error. As shown below, eM (t) is
a linear combination of the switching sequences from the
slow DEM encoder whose coefficients depend on the errors
introduced by both FCE banks.

The γI (t)d[g(wt − 1)] term in (28) is proportional to a
Tfast-delayed version of d[g(wt)], so it represents a linear
filtering operation. It follows from the expressions for αI (t)
and γI (t) in Appendix A that this term tends to be much
smaller than the desired signal component, αI (t)d[g(wt )],
so it is not a problem in practice. The αF e��[wt ] term is
proportional to �� quantization noise plus dither so it is free

of nonlinear distortion, is uncorrelated with the other terms
in (28), and has a highpass-shaped PSD. The eM (t) term also
has these properties because it is a linear combination of the
switching sequences from the slow DEM encoder. The PSD
of αF e��[wt ] peaks at ffast/2, whereas the PSD of eM (t)
peaks at fin/2. Hence, ffast can be increased to make the
DCO phase error introduced by αF e��[wt ] negligible, but
this would not reduce the DCO phase error contribution from
eM (t). Therefore, eM (t) is the only problematic term in (28).

Substituting (22) and (27) into (29) yields

eM (t) = �
�

k,r



δk,r sk,r [g(wt)]

+ γk,r (t)
�
sk,r [g(wt − 1)] − sk,r [g(wt )]


�
, (30)

where

δk,r =
�
αk,r (t)+ γk,r (t)+ αF 216−k, if k ≥ 9, r = 1,

αk,r (t)+ γk,r (t), otherwise,
(31)

is constant for each k and r , even though neither αk,r (t) nor
γk,r (t) are constant. As can be verified by substituting (18)
into the expressions for αk,r (t) and γk,r (t) in Appendix A,
the non-constant terms in each αk,r (t) are equal in magnitude
but opposite in sign to the corresponding terms in γk,r (t),
so αk,r (t) + γk,r (t), and hence δk,r , are constant. Therefore,
the terms proportional to δk,r in (30) represent the DCO
frequency error contribution from FCE static gain errors,
whereas the terms proportional to γk,r (t) in (30) represent
the DCO frequency error contribution from non-ideal FCE
frequency transitions.

VI. ADAPTIVE FCE MISMATCH NOISE CANCELLATION

The purpose of the MNC technique is to cancel most of the
DCO phase error that would otherwise be caused by eM (t).
To do this, the sequence

eMNC[pt ] = �
�

k,r



ak,r sk,r [nt ]

+ bk,r
�
sk,r [g(wt)] − sk,r [nt ]


�
, (32)

where ak,r and bk,r are called the MNC coefficients, is injected
into the fractional path of the multi-rate DEM encoder. The
ideal MNC coefficient values, i.e., the values of ak,r and
bk,r for which the DCO phase error contribution of eM (t) is
minimized, are estimated with a least-mean-square (LMS)-like
algorithm.

In the following, it is explained how eMNC[pt ] affects the
DCO’s phase error, how the FCE mismatch error is measured,
and how the MNC coefficients are adaptively computed from
the FCE mismatch error measurement.

A. MNC Sequence Application

Fig. 8 shows the fractional path of the multi-rate DEM
encoder shown in Fig. 5 modified to accommodate MNC.
The eMNC[pt ] sequence is subtracted from x f [nt ] prior to the
�� modulator, and the output range of the �� modulator,
the range of the fast DEM encoder, and the number of FCEs
driven by the fast DEM encoder are all four times those of the
original system to accommodate the resulting dynamic range
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Fig. 8. Fractional path of the example multi-rate DEM encoder shown
in Fig. 5 modified to accommodate eMNC[pt ].

increase. Thus, fF (t) is still given by (24), but now y��[pt ]
is given by the right side of (23) minus eMNC[pt ]. Despite
having the same qualitative properties as before, αF and eF (t)
in (24) are slightly different in the modified system because
of the additional FCEs.

An analysis almost identical to that presented in Section V
shows that ftune(t) is now given by

ftune(t) = αI (t)d[g(wt )]
+ γI (t)d[g(wt − 1)] + αF e��[wt ] + eR(t), (33)

where

eR(t) = eM (t)− αF eMNC[wt ] (34)

is the residual FCE mismatch error, i.e., what is left of eM (t)
when eMNC[pt ] is applied. It follows from (30), (32) and (34)
that

eR(t) = �
�

k,r



δk,r-ressk,r [g(wt )]

+ γk,r-res(t)
�
sk,r [g(wt − 1)] − sk,r [g(wt )]


�
, (35)

where δk,r-res and γk,r-res(t) are defined as

δk,r-res = δk,r − αF ak,r and γk,r-res(t) = γk,r (t)− αF bk,r ,

(36)

respectively.
Given that δk,r is constant, there exists an ak,r that causes

δk,r-res = 0. In contrast, there is no bk,r that causes γk,r-res(t)
to vanish completely, because γk,r (t) is not constant. However,
γk,r (t) is Tfast-periodic so there exists a bk,r that makes the
DC component of γk,r-res(t) zero, such that γk,r-res(t) is a
linear combination of sinusoids with frequencies that are non-
zero multiples of ffast [58]. Therefore, it follows from (36)
that if

ak,r = δk,r

αF
and bk,r = 1

αF Tfast

� Tfast

0
γk,r (τ )dτ , (37)

for each k and r , then

δk,r-res = 0 and
� Tfast

0
γk,r-res(τ )dτ = 0. (38)

In the absence of FCE static mismatches, ak,r = 0, and if the
FCE frequency transitions are ideal, bk,r = 0.

Phase error is the integral of frequency error, so the DCO
phase error introduced by eR(t) is given by

θR(t) =
� t

0
eR(τ )dτ . (39)

Fig. 9. General form of a digital fractional-N PLL.

If (38) is satisfied, then (35) and (39) imply that

θR(t) = �
�

k,r

�
sk,r [g(wt − 1)] − sk,r [g(wt)]




×
� t−pt Tfast

0
γk,r-res(u)du, (40)

where t − pt Tfast = t − � ffastt�Tfast < Tfast. The term within
the parenthesis in (40) equals zero when g(wt )−g(wt −1) = 0
and sk,r [g(wt)−1]−sk,r [g(wt)] otherwise. Given that g(wt )−
g(wt − 1) can only take on values from the set {0,1}, then

sk,r [g(wt − 1)] − sk,r [g(wt )]
= (g(wt)− g(wt − 1))

�
sk,r [g(wt)− 1] − sk,r [g(wt)]



.

(41)

Furthermore, g(wt ) is a Tfast-delayed version of nt , which
increases by one unit every Tin = 1/ fin, so g(wt )− g(wt − 1)
is Tin-periodic and is given by

g(wt )− g(wt − 1) =
∞�

k=−∞
r (t − kTin), (42)

where r(t) = 1 for t ∈ [Tfast, 2Tfast) and 0 otherwise.
It follows from (42) that the Fourier expansion of
g(wt )− g(wt − 1) is

fin

ffast
+

∞�

m=1

2

mπ
sin

�
mπ

fin

ffast

�
cos

�
2πm fin

�
t − 3

2
Tfast

��
.

(43)

Thus, if the conditions shown in (38) are satisfied,
(40), (41) and (43) imply that θR(t) would be given by second-
order shaped noise multiplied by a Tin-periodic waveform and
a DC-free Tfast-periodic waveform. Consequently, eR(t) would
introduce components with frequencies around fn,m = n ffast±
mfin to the DCO’s phase error, where n = 1, 2, 3,… and
m = 0, 1, 2,…. It follows from (43) that the power of the
components around frequencies fn,m with m near multiples of
ffast/ fin is very low. Therefore, θR(t) would not be a problem
if ffast is large enough because eR(t) would only introduce
high-frequency components to the DCO’s phase error that
would be lowpass filtered by the DCO. Simulation results also
suggest that θR(t) is not a problem provided the conditions
shown in (38) are satisfied and ffast is large enough.

B. FCE Mismatch Error Measurement

The ideal MNC coefficient values are estimated as part
of the feedback loop in a digital fractional-N PLL that
incorporates the DCO. This is done during the PLL’s normal
operation by adaptively adjusting ak,r and bk,r such that the
conditions shown in (38) are satisfied for each k and r , thereby
minimizing eR(t).

The purpose of a fractional-N PLL is to generate a periodic
output signal, vPLL(t), with frequency fPLL = (N + α) fref ,
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Fig. 10. (a) Synchronization circuit used at DCO input, and (b) illustration
of the clock signals within the DCO, pt , and nt = g(pt ) for ffast = 4.5 fref .

where N is a positive integer, α is a fractional value and fref is
the frequency of a reference oscillator waveform, vref(t). The
general form of a digital fractional-N PLL without MNC is
shown in Fig. 9. It consists of a phase-error-to-digital converter
(PEDC), a lowpass digital loop filter (DLF), and a DCO. The
PEDC’s output is an fref -rate digital sequence of the form

p[n] = −θPLL[n] + ep[n], (44)

where θPLL[n] is an estimate of the PLL’s phase error and
ep[n] is additive error that includes quantization error from
the PEDC’s digitization process as well as error from circuit
noise and other non-ideal circuit behavior in both the PEDC
and reference oscillator.

Suppose the DCO contains the multi-rate DEM structure
shown in Fig. 5 modified as shown in Fig. 8 with fin = fref .
Typically, ffast-clk is a divided-down version of vPLL(t). Given
that fPLL = (N + α) fref , fref and ffast are incommensurate
frequencies when α �= 0, so it is not possible for nt to change
synchronously with pt = � ffastt� if nt = � fref t�. Therefore, as
shown in Fig. 10, in practice the DCO input is synchronized to
ffast-clk so (4) is satisfied, i.e., so nt only changes at times μn ,
which are multiples of Tfast , instead of times nTref , where
Tref = 1/ fref is the reference period. It is common practice in
digital PLLs to synchronize the DLF output to the clock signal
of the fractional path, so this is not a special requirement of
the proposed system. A circuit to avoid metastability issues
is also needed as part of the synchronization circuit shown
in Fig. 10(a), but it has been omitted for simplicity [59].

A key requirement of a PLL is to suppress low-frequency
DCO error, which is achieved by subjecting additive frequency
error introduced by the DCO to a highpass filter that has at
least one zero at DC. In the following, the impulse response
of this filter is denoted as h[n], and its running sum, i.e.,
h[0] + h[1] + … + h[n], is denoted as l[n].

As shown in Appendix B, p[n] can be written as

p[n] = pideal[n] + pR[n], (45)

where pideal[n] represents the contribution to p[n] of all noise
sources except FCE mismatches and pR[n] is the contribution
to p[n] from eR(t). Specifically, pR[n] is given by

pR[n] = �αF Tfast

n−1�

i=0

�

k,r



yk,r-a[i ] + yk,r-b[i ]

�
l[n − 1 − i ],

(46)

Fig. 11. (a) Digital fractional-N PLL with multi-rate DEM and MNC,
(b) details of the MNC logic, and (c) details of each switching sequence
residue estimator.

where yk,r-a[i ] + yk,r-b[i ] is proportional to the PLL’s fre-
quency error introduced by the sk,r [n] sequences. As explained
in Appendix B, if ak,r and bk,r in (32) are replaced by ak,r [nt ]
and bk,r [nt ], respectively, then

yk,r-a[i ] = (qi−1 − 3) sk,r [i − 1]ak,r-error[i − 1]
+ 3sk,r [i ]ak,r-error[i ] (47)

and

yk,r-b[i ] = �
sk,r [i − 1] − sk,r [i ]



bk,r-error[i ], (48)

where qi−1 is the number of Tfast periods between times μi−1
and μi , and

ak,r-error[n] = ak,r [n] − ak,r and

bk,r-error[n] = bk,r [n] − bk,r (49)

are the MNC coefficient errors at sample time n.
The term proportional to sk,r [i ] in (47) arises because the

time at which the PEDC samples the PLL’s phase error, which
is given by μn + 4Tfast in the design example, is not equal to
the time at which the integer FCE bank’s inputs are updated,
i.e., μn + Tfast. Accordingly, the integer FCE bank’s inputs are
updated three Tfast before the PLL’s phase error is sampled,
which causes yk,r-a[i ] to depend on sk,r [i − 1] and also on
sk,r [i ].

As implied by (45)-(48), the PEDC’s output has information
regarding the MNC coefficient errors. The MNC coefficient
estimation process described next is based on this result and
on the properties of the switching sequences.

C. MNC Coefficients Estimation

A digital fractional-N PLL with the multi-rate DEM
encoder and MNC technique is shown in Fig. 11(a). The
details of the MNC logic are shown in Fig. 11(b) and
Fig. 11(c), wherein

tk,r [n] =
n�

i=0

sk,r [i ] (50)
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is the running sum of sk,r [n], and Ka and Kb are called the
MNC gains. The MNC logic block consists of an adder and
25 sk,r [nt ] residue estimators.

It follows from Fig. 4 that each sk,r [n] sequence is
a concatenation of sequences of the form 1, 0, …,
0, –1, 0, …, 0 or –1, 0, …, 0, 1, 0, …, 0, where
each 0 is present only when the input of the sk,r [n] gen-
erator is zero [52]. Thus, |sk,r [n]| ≤ 1, |tk,r [n]| ≤ 1
and |sk,r [n] − sk,r [n − 1]| ≤ 2 for all n, so the multipliers
in Fig. 11(c) are simple in terms of hardware.

The sk,r [nt ] residue estimators are responsible for the com-
putation of the MNC coefficients. At each sample time, the
MNC coefficient errors are measured and ak,r [nt ] and bk,r [nt ]
are updated such that they approach the values shown in (37).
The measurement of the MNC coefficient errors is based on
the statistical properties of the switching sequences [60].

As explained in [57] and can be verified from Fig. 4,
although each sk,r [n] sequence depends on the input of its
corresponding SB, when it is non-zero, its sign depends on
dk,r [n]. Given that the dk,r [n] sequences are independent of
the dk,r [n] sequences in the other SBs, this provides enough
randomization for the sk,r [n] sequences to be uncorrelated
with each other. Furthermore, as the dk,r [n] sequences are also
independent of all electronic device noise sources in the PLL,
each sk,r [n] sequence is uncorrelated with all such sources as
well, and it is also uncorrelated with the PEDC’s quantization
noise in PLLs where such noise source is uncorrelated with
the PLL’s phase error [29], [39]. Hence, in such cases, the
sk,r [n] sequences are uncorrelated with all PLL noise except
the terms in p[n] arising from eR(t), i.e., pR[n].

As explained above, the yk,r-a[i ] and yk,r-b[i ] terms in p[n]
depend on the MNC coefficient errors, and such terms are
proportional to functions of the sk,r [n] sequences. Specifically,
it can be seen from (45)-(48) that p[n] has information about
an accumulated version of

(qn−2 − 3) sk,r [n − 2]ak,r-error[n − 2], (51)

and that p[n] − p[n − 1] has information about
�
sk,r [n − 2] − sk,r [n − 1]
 bk,r-error[n − 1]. (52)

Therefore, it follows that the accumulator inputs in Fig. 11(c),
i.e., −p[n]tk,r [n − 2] and (p[n − 1] − p[n])(sk,r [n − 2] − sk,r
[n−1]), when non-zero, are noisy estimates of ak,r-error[n] and
bk,r-error[n], respectively, so they can be used to adaptively
compute the ideal MNC coefficients. In practice, the top
and bottom branches within each sk,r [nt ] residue estimator
interfere with each other in a way that makes the accumulator
inputs have information about both MNC coefficient errors.
However, extensive simulations run by the authors suggest
that the MNC coefficient values converge to their ideal values
regardless of such interferences provided the MNC gains are
set properly.

It would also be possible to correlate p[n − 1] − p[n] by
sk,r [n − 2] to get an estimate of ak,r-error[n]. However, as
ak,r [n] is only updated when the accumulator input is non-
zero, correlating p[n − 1] − p[n] against sk,r [n − 2] instead
of −p[n] against tk,r [n − 2] would significantly decrease the
convergence speed of ak,r [n] because normally sk,r [n − 2] is
zero more often than tk,r [n − 2]. Although correlating −p[n]

Fig. 12. Example frequency transitions normalized to �i /2 versus time over
Tfast = 8TPLL for six different FCEs.

against tk,r [n − 2] effectively increases the error variance of
ak,r [n], as explained next, this problem can be mitigated by
reducing Ka .

As is common in most LMS-like algorithms, the choice of
Ka and Kb represents a tradeoff. The larger the MNC gains,
the faster the convergence, but the larger the error variance
of ak,r [n] and bk,r [n]. Also, as the sk,r [nt ] residue estimators
comprise two LMS-like loops in parallel that interfere with
each other, Ka and Kb each affect the convergence time
and error variance of both ak,r [n] and bk,r [n]. Although it
might be possible to develop closed-form expressions that
quantify these tradeoffs, the authors currently use simulations
to assist the design process and to choose the values of Ka
and Kb.

VII. SIMULATION RESULTS

The multi-rate DEM and the MNC techniques were tested
in an event-driven behavioral simulation of a modified version
of the �� frequency-to-digital converter based fractional-N
PLL presented in [39] and [40]. As explained in [38], p[n] is
given by (44) where ep[n] is first-order shaped quantization
noise that is uncorrelated with the PLL’s phase error plus error
from both the PEDC and reference oscillator.

The DLF consists of two single-pole IIR stages and a
proportional-integral stage. Its transfer function is

L(z) = KM

�
K P + KI

1 − z−1

� 1�

i=0

λi

1 − (1 − λi ) z−1 , (53)

where KM , K P , KI , λ0 and λ1 are constant loop filter
parameters. The DCO consists of an LC oscillator core with a
power-of-two-weighted coarse capacitor bank, an integer FCE
bank and a fractional FCE bank. The latter two are driven by
the multi-rate DEM encoder shown in Fig. 5 and modified
as shown in Fig. 8 with ffast = fPLL/8 and �min = 40 kHz
(i.e., � = 156.25 Hz).

The static gain error of the i th FCE was modeled as an
additive zero-mean Gaussian random variable with a standard
deviation of 5% of �i divided by the square root of �i /�min,
which is consistent with measurement results obtained by
the authors from the PLL IC presented in [36]. The FCE
frequency transitions were modeled as second-order transients
that settle within one Tfast period. The parameters of these tran-
sients, such as the damping factor and the natural frequency,
are modelled as random variables with means and standard
deviations determined from transistor-level simulation results.
Fig. 12 shows example frequency transients used in the
simulation.

The simulated noise parameters of the DCO and the refer-
ence oscillator, as well as the PEDC internal parameters, are
the same as those used in [38]. Specifically, fref = 26 MHz,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 13. Simulated PLL phase noise PSD versus frequency with (a) static gain
errors and non-ideal frequency transitions enabled and the multi-rate DEM
technique disabled, (b) static gain errors and non-ideal frequency transitions
enabled separately and the multi-rate DEM technique enabled, and (c) both
sources of error enabled, the multi-rate DEM technique enabled and the MNC
technique disabled and enabled.

N = 134 and α = 0.0003846153, so that fPLL = 3.484 GHz
and ffast = 435.5 MHz. The DLF parameters used were
KM = 1.25, K P = 24, KI = 2−4, λ0 = 2−3 and λ1 = 2−2,
and the MNC gains were set to Ka = 2−3 and Kb = 2−5.
The simulated PLL has a bandwidth of 206 kHz and a phase
margin of 63 degrees.

Fig. 13(a) shows the simulated PLL phase noise PSD with
the multi-rate DEM technique disabled, i.e., with the flip-
flops in both the slow and fast DEM encoders frozen. The
two curves in Fig. 13(a) were obtained from two different
simulations: one in which dI [nt ] is constant and another one in
which dI [nt ] changes frequently. As mentioned in Section III,
although the DCO input sequence does not vary significantly
in the short term once the PLL is locked, its moving average
drifts over time such that dI [nt ] eventually begins to change
frequently, at which point it degrades the PLL’s phase noise
as shown in Fig. 13(a). Once the multi-rate DEM technique
is enabled, whether or not dI [nt ] changes has no significant
effect on the DCO’s frequency, so spectral breathing no longer
occurs.

Fig. 13(b) shows the simulated PLL phase noise PSD with
the multi-rate DEM technique enabled for two cases: one
case with just static gain errors, and the other case with
just non-ideal frequency transitions. Fig. 13(c) shows the
simulated PLL phase noise PSD considering both sources of
error with the multi-rate DEM technique enabled and with
the MNC technique disabled and enabled. The theoretical
PLL phase noise PSD for ideal FCEs, which was computed
using the linearized model presented in [38], is also plotted
as the dashed curves in Fig. 13 to provide a comparison
baseline.

Fig. 14. MNC coefficient error evolution over time for Ka = 2−3 and
Kb = 2−5.

As shown in Fig. 13(c), when the MNC technique is enabled
the resulting phase noise PSD matches the theoretically-
predicted phase noise PSD for ideal FCEs after 13 · 107

reference periods (5 seconds) from a cold start. This implies a
phase noise improvement of more than 20 dB at an offset
frequency around 10 MHz. As the FCE mismatches are
mostly determined by circuit component mismatches, they
are not expected to change significantly over time. Hence,
once obtained, the MNC coefficients can be stored in memory
and used subsequently by the PLL, thereby avoiding future
convergence time delays.

Fig. 14 shows the evolution of the MNC coefficient errors
over time from the simulation used to generate the curves
in Fig. 13(c). As shown in Fig. 14, some bk,r [n] coefficients
initially move away from their ideal values. As explained
above, this happens because the top and bottom branches of
each sk,r [nt ] residue estimator interfere with each other so that
the error estimate at the input of each accumulator is biased by
the MNC coefficient error of the opposite branch. As suggested
by Fig. 14, if the MNC gains are set properly, this is not a
problem in practice because this effect becomes less significant
as either one or both MNC coefficients approach their ideal
values.4

It follows from (47) and (48) that the terms proportional
to ak,r-error[n] in p[n] are qn − 3 times larger than those
proportional to bk,r-error[n] (e.g., qn ∼= 16 in the design
example), so for Ka = Kb, the error variance of each
bk,r [n] is expected to be larger than that of ak,r [n]. Therefore,
in order to make the error variance of the bk,r [n] coefficients
comparable to that of the ak,r [n] coefficients, Kb has to be
smaller than Ka . As shown in Fig. 14, this causes the bk,r [n]
coefficients to converge to their ideal values at a slower rate
than the ak,r [n] coefficients, so the convergence speed of the
MNC technique is limited by Kb. Nonetheless, it follows
from Fig. 14 that the ak,r [n] coefficients get close to their
ideal values in less than 107 reference periods (∼0.4 seconds).

4Furthermore, extensive simulations run by the authors in which p[n] was
subjected to pessimistic nonlinearities suggest that the convergence of the
MNC coefficients is barely affected by nonlinearities in the PEDC.
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Fig. 15. MNC coefficient error evolution over time for MNC gains that
change over time. Initially Ka = 2−1 and Kb = 2−2, and after 3.5 · 107

reference periods Ka = 2−6 and Kb = 2−6.

Hence, as the most significant sources of phase noise are
the FCE static gain errors, the MNC technique allows for
a considerable phase noise improvement in less than half a
second.

To reduce the cold-start convergence time of the MNC tech-
nique, large MNC gains can be used initially and decreased
over time [61]. Fig. 15 shows the evolution of the MNC
coefficient errors over time for 7.8 · 107 reference periods
(3 seconds) for an example case in which Ka and Kb are
initially set to 2−1 and 2−2, respectively, and then divided
by two at the times indicated by the vertical dashed lines.
In this case, the MNC coefficients reach the final values shown
in Fig. 14 in roughly 3 seconds, and the ak,r [n] coefficients
get close to their ideal values in less than 2 · 106 reference
periods (∼0.08 seconds), which is five times faster than
in Fig. 14.

APPENDIX A

It follows from Fig. 5 and (17) that

f I (t) =
22�

i=5

�
(bi [wt ] − 1/2) αi (t)�i

+ (bi [wt − 1] − 1/2) γi (t)
�
. (54)

Expressions for each bi [wt ] = ci+12[g(wt)] in terms of
d[g(wt)] and the switching sequences can be found by tracing
through the tree of Fig. 6 and applying (20) and the expres-
sions shown in Fig. 4(a) and Fig. 4(b). This leads to

ci [g(wt )] − 1/2 = mi d[g(wt )]
	
�+

�

k,r

κk,r,i sk,r [g(wt )],

(55)

where

mi = 0 for 17 ≤ i ≤ 26 and mi = 2−16 for 27 ≤ i ≤ 34,

(56)

and each κk,r,i is one of 0, −½, ½, −2−k or 2−k . Combining
(4), (19) and (54)-(56) yields (26) and (27), where αI (t) and
γI (t) are the averages of αi (t) and (2−13/�)γi(t) for i = 15,
16, …, 22, respectively,

αk,r (t) =
22�

i=5

αi (t)Ki+12κk,r,i+12 and

γk,r (t) =
22�

i=5

γi (t)

�
κk,r,i+12. (57)

Each αI (t), γI (t), αk,r (t) and γk,r (t) is Tfast-periodic, because
it is a linear combination of αi (t) and γi (t), which are
Tfast-periodic.

APPENDIX B

The phase error of the digital PLL shown in Fig. 9 is given
by

θPLL(t) =
� t

0
ψPLL(u)du, (58)

where ψPLL(t) is the PLL’s frequency error at time t . The
θPLL[n] term in (44) is a sampled version of θPLL(t) given by

θPLL[n] = θPLL(τn), (59)

where τn = nTref + λn and λn is a small implementation-
dependent deviation of τn from its ideal value. It follows from
(44), (58) and (59) that

p[n] = p[0] − Tref

n�

i=1

ψPLL[i ] + ep[n], (60)

where

ψPLL[i ] = 1

Tref

� τi

τi−1

ψPLL(u)du (61)

is the PLL’s average frequency error over the time interval
[τi−1, τi ] and p[0] is the initial value of p[n]. Fig. 9 and (61)
imply that eR(t) causes a term in ψPLL[i ] given by

{eR ∗ h} [i ] =
∞�

j=0

h[ j ]eR[i − j ], (62)

where

eR[i ] = 1

Tref

� τi

τi−1

eR(u)du (63)

and h[ j ] is the impulse response of the highpass filtering oper-
ation imposed by the PLL on the DCO’s additive frequency
error as described in Section VI-B.

In the design example of this paper λn = 4.2Tfast +
1/8Tfastv[n], where v[n] is an integer-valued sequence
restricted to the set {–6, –5, …, 5, 6}, so τn = nTref +4.2Tfast+
1/8Tfastv[n]. As the magnitude of 1/8Tfastv[n] is at most ¾Tfast,
its effect is negligible. Furthermore, for the sake of simplicity,
τn is assumed to be given by

τn = μn + 4Tfast, (64)

where μn , as shown in Fig. 10(b), is a multiple of Tfast. Given
that 0 < μn − nTref ≤ Tfast for all n and that Tfast is a
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small fraction of Tref , this approximation does not significantly
affect the following results. Substituting (36) with ak,r and
bk,r replaced by ak,r [g(wt )] and bk,r [g(wt )], respectively,
into (35), and the result of this operation and (64) into (63)
yields

eR[i ]
= �

Tref

�

k,r

� μi +4Tfast

μi−1+4Tfast


�
δk,r − αF ak,r [g(wt )]



sk,r [g(wt )]

+ �
γk,r (t)− αF bk,r [g(wt)]




× �
sk,r [g(wt − 1)] − sk,r [g(wt )]


�
dt . (65)

Given that t ∈ [μn, μn+1) implies g(pt) = n − 1, it follows
that g(wt ) = i − 2 for t ∈ [μi−1 + 4Tfast, μi + Tfast) and
g(wt ) = i − 1 for t ∈ [μi + Tfast , μi + 4Tfast), so (65) can be
written as

eR[i ]=−�αF Tfast

Tref

�

k,r



yk,r-a[i − 1]+yk,r-b[i − 1]�, (66)

where yk,r-a[i ] and yk,r-b[i ] are given by (47) and (48), respec-
tively, and it has been assumed that qi = (μi+1 − μi )/Tfast is
greater than 3 for all i (e.g., qi ∼= 16 in the design example).
Substituting (66) into (62) and the result into (60), rearranging
terms and considering that sk,r [n] = 0 for n < 0 gives (45)
and (46).
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