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Adaptive Cancellation of Static and Dynamic
Mismatch Error in Continuous-Time DACs
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Abstract— Inadvertent but inevitable mismatches among nom-
inally identical unit element 1-bit digital-to-analog convert-
ers (DACs) within a multi-bit Nyquist-rate DAC cause both
static and dynamic error in the DAC’s continuous-time out-
put waveform. Prior calibration techniques are able to sup-
press static mismatch error, but have had limited success
in suppressing dynamic mismatch error. This paper presents
a digital calibration technique that adaptively measures and
cancels both static and dynamic mismatch error over the
DAC’s first Nyquist band. The technique is capable of
either foreground or background operation, and is relatively
insensitive to non-ideal circuit behavior. The paper presents
a rigorous mathematical analysis of the technique, and demon-
strates the results of the paper with both behavioral and
transistor-level circuit simulations.

Index Terms— Digital-to-analog converter, dynamic element
matching, mismatch error cancellation.

I. INTRODUCTION

H IGH-RESOLUTION Nyquist-rate DACs with
continuous-time output signals are required in critical

applications such as wireless transmitters. Each such
digital-to-analog converter (DAC) interpolates a discrete-time
input sequence to create a continuous-time output signal, so it
can be viewed as a device that generates an analog output
pulse for each input code. Ideally, the output pulse during
the nth clock interval is scaled by the nth input code value,
and except for this scale factor all the pulses have the same
shape.

Such DACs generally consist of several nominally identical
unit element 1-bit DACs in parallel. Unfortunately, inadvertent
but inevitable fabrication mismatches among the unit element
1-bit DACs often limit performance. The mismatches cause
non-ideal deviations of both the scale factor and shape of
each overall DAC output pulse. Error in the overall DAC’s
output waveform from mismatch-induced pulse scale factor
deviations is called static mismatch error and that from
mismatch-induced pulse shape deviations is called dynamic
mismatch error. Both types of error can significantly limit
performance in practice.
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Of course, there are many other types of non-ideal circuit
behavior that contribute error in addition to static mismatch
error and dynamic mismatch error. For example, if any of the
unit element 1-bit DAC output waveforms depend on prior
DAC input values in addition to the current DAC input value,
a type of dynamic error called inter-symbol interference (ISI)
is introduced. Nevertheless, these other types of error can
be mitigated to a large extent by known circuit and system-
level techniques. The same is true of static mismatch error.
In contrast, prior techniques have been less successful in
mitigating dynamic mismatch error.

Dynamic element matching (DEM) and digital calibration
have been applied to address this problem in prior work, but
with mixed results. DEM has been shown to prevent both
static and dynamic mismatch error from causing nonlinear
distortion, but it does so at the expense of degrading signal-to-
noise ratio (SNR) [1]–[4]. Digital calibration techniques have
been demonstrated that reduce static mismatch error, but prior
calibration techniques do not significantly reduce dynamic
mismatch error [5]–[11].

The difficulty arises from a fundamental property of
continuous-time output DACs. Each DAC output pulse has
a bandwidth that far exceeds the DAC’s signal bandwidth,
because the pulse’s duration is limited to one clock interval.
Hence, any technique to cancel dynamic mismatch error
must either have a bandwidth that is much wider than the
DAC’s signal bandwidth, or must somehow perform frequency
selective cancellation over a particular band of interest such
as the first Nyquist band. The situation is different in systems
that only use sampled versions of DAC output signals, such
as switched-capacitor delta-sigma ADCs and pipelined ADCs,
and well-known techniques have been developed to can-
cel or otherwise suppress the effects of component mismatches
in such cases [12]–[14]. Unfortunately, these techniques are
not applicable to DACs with continuous-time output signals
that are not resampled such as in wireless transmitters.

This paper proposes a mismatch noise cancellation (MNC)
technique that addresses this problem. The MNC technique
consists of a feedback path around a main DEM DAC. The
feedback path adaptively measures and cancels both static and
dynamic mismatch error within the DEM DAC’s first Nyquist
band. The feedback path consists of an ADC, digital signal
processing logic, and a correction DAC. As demonstrated in
the paper, the performance requirements of the ADC and
correction DAC are modest compared to the overall system
performance.

The feedback path forms an estimate of the Nyquist-band
portion of the main DEM DAC’s static and dynamic mismatch
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Fig. 1. Desired DAC behavior.

error by driving the correction DAC with the sum of the
outputs of multiple digital filters driven by different pseudo-
random digital sequences. The pseudo-random sequences are
generated explicitly within the main DAC’s DEM logic so
they are known a priori, but the filter coefficients depend
on the component mismatches, so they must be estimated by
the MNC technique. The feedback path correlates a digitized
version of the overall system’s analog output waveform by
time-shifted versions of each pseudo-random sequence and
uses the results to adaptively estimate the filter coefficients.
Thus, the feedback path implements several feedback loops
that operate in parallel.

The MNC technique functions regardless of the DAC’s input
sequence, so it can be used in both foreground and background
calibration modes. The convergence rate can be maximized in
foreground mode, though, so foreground mode can be used to
minimize the initial convergence time and background mode
can be used to adaptively track out temperature variation
effects.

The paper describes the proposed MNC technique
in detail, presents a rigorous mathematical convergence-
rate analysis, and presents simulation results. Section II
presents DEM DAC background information. Section III
describes the MNC technique and its analysis in detail.
Section IV presents behavioral and transistor-level simu-
lation results that support the theoretical findings of the
paper.

II. BACKGROUND INFORMATION

A. Ideal Behavior of a Practical DAC

As illustrated in Fig. 1, a DAC converts a discrete-time digi-
tal sequence, x[n], with a sample-rate of fs , into a continuous-
time analog waveform, y(t). The ideal output of a practical
DAC is

y(t) = α(t)x[nt ] where nt = � fs t� , (1)

and α(t) is a periodic pulse shaping waveform with
period 1/ fs .1 It can be verified that the continuous-time Fourier
transform of y(t) is

Y ( jω) = X
(

e jωTs
)

A p ( jω) (2)

1By definition, nt is the largest integer less than or equal to fs t at time t ,
so it is a continuous-time waveform. Hence, x[nt ] is a continuous-time
waveform even though x[n] is a discrete-time sequence.

Fig. 2. Example DAC spectra.

Fig. 3. General form of a DEM DAC.

where X (e jω) is the discrete-time Fourier transform of x[n],
A p( jω) is the continuous-time Fourier transform of

αp(t) =
{

α(t) if 0 ≤ t ≤ Ts ,

0, otherwise,
(3)

and Ts = 1/ fs is the sample period of the DAC [15].
Example spectra are shown in Fig. 2. The periodicity of the

discrete-time Fourier transform gives rise to multiple Nyquist
bands, three of which are shown in the figure.2 A practical
DAC is designed to faithfully represent its input sequence
over a single Nyquist band, most commonly the first Nyquist
band. Strictly speaking, this would require that A p( jω) have a
magnitude of unity and a constant group delay over the desired
Nyquist band, which is not easy to achieve with practical
circuits. However, a digital filter can be inserted between
x[n] and the DAC’s input to compensate for deviations of
A p( jω) from unity magnitude and constant group delay over
the desired Nyquist band. Therefore, moderate deviations of
A p( jω) from unity magnitude and constant group delay over
the desired Nyquist band are not problematic in practice.

B. Dynamic Element Matching

Fig. 3 shows the general form of a DEM DAC for an input
sequence which takes on values in the range {−1/2 L�,
� − 1/2 L�, 2� − 1/2 L�, . . . , L� − 1/2 L�}, where
L is the number of input levels minus one and � is the DAC’s
minimum input step-size [3]. The DEM DAC consists of an
all-digital DEM encoder followed by I 1-bit DACs, the outputs
of which are summed to form y(t). The output of the i th 1-bit
DAC has the form

yi (t) = (
ci [nt ] − 1

2

)
Ki� + ei (t) (4)

where the 1-bit DAC’s fs -rate input bit sequence, ci [n], takes
on values of 1 and 0, Ki is a constant called the 1-bit DAC’s
weight, and ei (t) represents all deviations from pure two-level

2The kth Nyquist band for k = 1, 2, . . ., is defined as the set of frequencies
that satisfy π (k − 1) fs < |ω| < πk fs .
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behavior including effects such as intentional pulse-shaping
and unintentional error from non-ideal analog circuit behavior.

By design, each Ki is an integer, K1 = 1, and Ki−1 ≤
Ki ≤ K1 + K2 + · · · + Ki−1 + 1 for i = 2, 3, . . . , I [16].
In practice, 1-bit DAC weights of Ki > 1 are implemented by
combining multiple unit element 1-bit DACs in parallel. Thus,
the i th 1-bit DAC consists of Ki unit element 1-bit DACs in
parallel.

The DEM encoder maps each input sample, x[n], to
I output bits, ci [n], for i = 1, 2, . . . , I , under the constraint

x[n] =
I∑

i=1

Ki

(
ci [n] − 1

2

)
�. (5)

This constraint is sufficient to ensure that the DEM DAC
satisfies (1) with α(t) = 1 if ei (t) = 0 for every
1-bit DAC and that the number of input levels, L, is
K1 + K2 + · · · + KI [16].

In practice, ei (t) in (4) is often well-modeled as

ei (t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e11i (t), if ci [nt − 1] = 1, ci [nt ] = 1,

e01i (t), if ci [nt − 1] = 0, ci [nt ] = 1,

e00i (t), if ci [nt − 1] = 0, ci [nt ] = 0,

e10i (t), if ci [nt − 1] = 1, ci [nt ] = 0,

(6)

where e00i (t), e01i (t), e10i (t), and e11i (t), are Ts-periodic
waveforms corresponding to the four different possibilities
of the current and previous 1-bit DAC input bit values [15].
During any given Ts clock period, ei (t) is equal to exactly
one of the e00i (t), e01i (t), e10i (t), and e11i (t) waveforms,
so ei (t) is non-periodic and signal-dependent in general.

In DEM DACs, the 1-bit DAC weights by design are such
that for most values of x[n] there are multiple distinct sets of
DEM encoder output bit values that satisfy (5). During each
Ts clock period, the DEM encoder sets its output bits to one
of these sets chosen as a function of a pseudo-random variable
and, when spectral shaping of the DEM DAC error is required,
also as a function of past input samples. This causes

y(t) = α(t)x[nt ] + β(t) + eD AC(t) (7)

where α(t) and β(t) are Ts-periodic functions of e00i (t),
e01i(t), e10i(t), and e11i (t) that are independent of the type
of DEM used, and eD AC(t) is an error waveform, called
DAC noise, that depends on the type of DEM used, x[n],
and e00i (t), e01i (t), e10i (t), and e11i (t) [15]. The first term on
the right side of (7) corresponds to the ideal DAC behavior
given by (1). The β(t) term is Ts-periodic so it consists only
of tones at multiples of fs . As these tones do not fall within
any Nyquist band of the DAC output and do not depend on
the DAC input, they do not cause significant problems in
most DAC applications. Hence, eD AC (t) is the only significant
undesirable component of the DAC output.

It can be shown that (6) implies that eD AC(t) contains two
types of error in general, one that depends only on the current
DEM DAC input sample, and one that depends on both the
prior and current DEM DAC input samples [15]. The first
type of error is caused by mismatches among the nominally
identical unit element 1-bit DACs, so it is the sum of all static

mismatch error and dynamic mismatch error, and is called
mismatch noise. The second type of error results from non-
ideal memory effects within each unit element 1-bit DAC that
cause ei (t) to depend not only on ci [nt ] but also on ci [nt −1].
Hence, this latter type of error is ISI error.

DEM causes the mismatch noise to be a pseudo-random
noise waveform that is free of nonlinear distortion, and in some
cases spectrally shaped so as to minimize the noise within a
desired frequency band. DEM causes much of the ISI error to
be a pseudo-random waveform too, but even with DEM the
ISI error contains a second-order distortion component.
If DEM were not used (i.e., if the encoder were to choose
only one of the possible sets of output bits for each given
input value), (7) would still hold, but eD AC (t) would be a
deterministic high-order nonlinear function of x[n].

III. MISMATCH NOISE CANCELLATION TECHNIQUE

A. Problem Statement

DEM DACs achieve high linearity by effectively converting
much of what would otherwise be nonlinear distortion into
pseudo-random noise. While often preferable to nonlinear
distortion, the noise is nevertheless a problem in wideband
analog signal generation applications.

In the absence of ISI, if all of the unit element 1-bit DACs
were perfectly matched and clocked at exactly the same time,
then eD AC (t) would be zero. In this case, the e00i (t), e01i (t),
e10i (t), and e11i (t) waveforms would differ from 1-bit DAC
to 1-bit DAC only by the ideal 1-bit DAC scale factors, Ki .
However, mismatches among the unit element 1-bit DACs
including relative skew among their clock signals inevitably
result from random errors introduced during fabrication as
well as from systematic circuit design and layout constraints.
Some of these errors change the scale factors of the e00i (t),
e01i (t), e10i (t), and e11i (t) waveforms thereby giving rise to
static mismatch error in the DAC’s output waveform. Others
change the relative shapes of the e00i (t), e01i (t), e10i (t), and
e11i (t) waveforms across the 1-bit DACs thereby giving rise
to dynamic mismatch error in the DAC’s output waveform.
As examples, in current steering 1-bit DACs, threshold
voltage mismatches among the current source transistors
contribute static mismatch error whereas capacitance mis-
matches and clock skew contribute dynamic mismatch
error.

The objective of the proposed MNC technique is to adap-
tively measure and cancel the entire mismatch noise compo-
nent of eD AC(t) over the first Nyquist band, which includes
both static and dynamic mismatch error. The MNC technique
cancels only a portion of the ISI error component of eD AC (t),
so it should be applied to DEM DACs in which ISI error
is not the dominant type of error. This requires that the
rise and fall transients of each unit element 1-bit DAC are
sufficiently well matched or else that return-to-zero (RZ)
1-bit DACs are used. RZ 1-bit DACs reset their outputs to a
fixed value (usually zero) at the end of each Ts clock period.
This causes e00i (t) = e10i (t) and e11i (t) = e01i (t) in (6),
so ISI is avoided because ei (t) does not depend on past values
of ci [n].
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Fig. 4. Proposed MNC technique applied to a main DEM DAC.

B. Proposed Solution

The MNC technique is explained below in the context
of a design example that targets an effective number of
bits (ENOB) of 13.5 over a 200 MHz first Nyquist band.
The purpose of presenting the MNC technique in the context
of the design example is to simplify the explanation, but
the technique is not restricted to the specific design example
details.

Fig. 4 shows a high-level block diagram of the design exam-
ple system. It consists of a main DAC and a feedback path. The
feedback path consists of a VCO-based oversampling ADC
of the type described in [17] with an oversampling ratio of
R = 5, a digital lowpass decimation filter, a bank of digital
residue error estimators, and a correction DAC. The details of
each block and the overall system’s theory of operation are
described in the remainder of this section and in Section IV,
respectively.

The main DAC is a 14-bit DEM DAC with a DEM encoder
of the type described in [3], 36 current-steering RZ 1-bit
DACs, and a clock rate of fs = 400 MHz. As shown in [16],
it converts the input sequence, x[n], into an analog waveform,
y(t), given by (7) with

eD AC(t) =
35∑

k=1

dk(t)sk [nt ] (8)

where each dk(t) is a Ts-periodic linear combination of the
36 sets of e00i (t), e01i (t), e10i (t), and e11i (t) waveforms,
and the sk[n] sequences for k = 1, 2, . . . , 35 are white
random sequences that are uncorrelated with x[n], uncorre-
lated with each other, zero-mean, and restricted to values of
−1, 0, and 1. The DEM encoder randomly chooses the sign
of sk[n] independently for all k and n, so all non-zero values
of sk [n] are zero-mean, independent random variables. As the
dk(t) waveforms are functions of component mismatches, they
are not known a priori. In contrast, the sk[n] sequences are
generated explicitly within the DEM encoder, so they are
known to the system a priori.

Like the main DAC, the correction DAC is based on current-
steering 1-bit DACs, and both DACs have differential outputs.
The differencing operation in Fig. 4 is implemented at the
circuit level by simply connecting the negative and positive
outputs of the correction DAC to the positive and negative
outputs, respectively, of the main DAC.

Fig. 5. Details of each sk [n] residue estimator.

Although not shown explicitly in Fig. 4, the output of the
bank of error residue estimators is re-quantized to have the
same minimum step-size as the correction DAC. This step-
size must be small enough that both the quantization error and
any additional error introduced by the correction DAC have
negligible effects on the performance of the overall system.
It was found that a step-size equal to a quarter of that of the
main DAC is more than sufficient to meet this objective. The
maximum swing of the main DAC’s output, y(t), is much
greater than that of eD AC(t) in practice, so the maximum
swing of the correction DAC need only be a fraction of that
of the main DAC. This makes it practical for the correction
DAC’s resolution to be modest despite its reduced minimum
step-size relative to that of the main DAC. Accordingly, in this
design example the correction DAC has a resolution of 9-bits
and does not incorporate DEM.

The VCO-based ADC and lowpass decimation filter are
designed such that the fs sample-rate output of the deci-
mation filter is equivalent to a digitized version of just the
first Nyquist band of the overall output, v(t). Although the
design example system has a 200 MHz Nyquist band and
an ADC oversampling ratio of R = 5, simulation results
suggest that fairly high ADC noise and nonlinear distortion
can be tolerated. In particular, they indicate that the noise
and nonlinear distortion introduced by the VCO-based ADC
prototype in [17] would negligibly affect the performance
of the feedback loop even without the digital linearization
described in [17]. They also indicate that the high input
impedance of the ADC would negligibly load the outputs of
the DACs.

The sk[n] residue estimators in Fig. 4 for k = 1, 2, . . . , 35
are digital blocks that together generate the correction DAC’s
input sequence. Each sk[n] residue estimator is responsible
for adaptively generating an output sequence that contributes a
component in the correction DAC’s output equal to the portion
of the kth term in (8) over the first Nyquist band.

The details of the sk [n] residue estimator for each k are
shown in Fig. 5, wherein N , P , Q, and K have values
of 9, 3, 15, and 6 · 10−5, respectively, for the example
system. As described in more detail shortly, N represents a
tradeoff between cancellation accuracy and digital complexity,
P and Q are chosen according to the delay and impulse
response spread, respectively, of the MNC feedback path, and
K represents a tradeoff between MNC convergence speed and
accuracy.
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The sk[n] residue estimator consists of N fs -rate channels,
the inputs of which are the decimation filter output sequence,
r [n], and the outputs of which are summed to form the
sk[n] residue estimator’s output. The mth channel multiplies
the decimation filter output by a time-shifted version of the
sk[n] sequence, accumulates the result to generate a sequence
ak,m [n], and multiplies ak,m [n] by another time-shifted ver-
sion of the sk[n] sequence. As described above, the sk [n]
sequences are restricted to values of −1, 0, and 1 which
greatly simplifies the multipliers, and they are known to the
system because they are calculated explicitly within the main
DAC’s DEM encoder. P-sample advanced versions of the
sk[n] sequences are required, but this is not an issue provided
x[n] is known P samples in advance.

It can be seen from Fig. 5 that the output of the sk[n] residue
estimator can be written as

N−1∑
m=0

hk [m]sk[n + P − m]. (9)

where hk[m] = ak,m[n] for m = 0, 1, . . . , N − 1. It follows
that the output of the sk[n] residue estimator is equivalent
to the output of an N-tap FIR filter with input sk [n + P]
and impulse response hk[m]. The filter is not time-invariant
because the impulse response evolves over time, n. As proven
in Section IV, the feedback system causes the impulse response
to adaptively converge such that the correction DAC’s output
contains a component equal to the portion of the kth term
in (8) over the first Nyquist band. Therefore, the bank of sk [n]
residue estimators in Fig. 4 can be viewed as the bank of
adaptive FIR filters shown in Fig. 6, where Hk(z) denotes the
z-transform of hk [m].

C. Mismatch Noise Cancellation Principle

Even though the correction DAC does not incorporate DEM,
its output has the same form as (7), i.e.,

yc(t) = αc(t)xc[nt ] + βc(t) + eD AC-c(t) (10)

where the subscript c is used to distinguish the various
terms from their main DAC counterparts, except eD AC-c(t) is
harmonic distortion rather than noise [18]. Analysis as well as
transistor-level simulations with realistic mismatches indicate
that the correction DAC’s minimum step-size is sufficiently
small relative to that of the main DAC that eD AC-c(t) is
negligible relative to eD AC (t). Hence, eD AC-c(t) is neglected
in the analysis below. The βc(t) term is also neglected, because
it does not have any components within the first Nyquist band,
so it does not interfere with the cancelation process.

Therefore, by the same reasoning that led to (2), the
continuous-time Fourier transform of the correction DAC
output over the first Nyquist band is well-approximated as

Yc ( jω) = Xc

(
e jωTs

)
A p-c ( jω) (11)

where Xc(e jω) is the discrete-time Fourier transform of xc[n]
and A p-c( jω) is the continuous-time Fourier transform of the
right side of (3) with α(t) replaced by αc(t). Also by the

Fig. 6. Equivalent behavior of the sk [n] residue estimator bank.

same reasoning that led to (2), the continuous-time Fourier
transform of (8) is

ED AC ( jω) =
35∑

k=1

Sk

(
e jωTs

)
Dp-k ( jω) (12)

where Sk(e jω) is the discrete-time Fourier transform of sk[n]
and Dp-k( jω) is the continuous-time Fourier transform of the
right side of (3) with α(t) replaced by dk(t). To cancel eD AC(t)
over the first Nyquist band it is necessary for (11) and (12) to
equal each other for all |ω| < π fs . It follows from (11), (12),
and Fig. 6 that this is achieved if

Hk(e
jω) = e− jωP Dp-k( jω)

A p-c( jω)
for |ω| ≤ π fs (13)

The inverse discrete-time Fourier transform of the right
side of (13) is the ideal Hk(z) filter impulse response and
it is both infinite-length and two-sided, yet the actual Hk(z)
filters only have impulse responses that are nonzero for n =
0, 1, . . . , N −1. Consequently, it is not possible to satisfy (13)
perfectly. However, (13) represents a stable system, so the
ideal impulse response converges to 0 as n → ±∞. It follows
from (13) that P is just a delay term, so increasing P simply
shifts the ideal impulse response to the right. Consequently,
P can be chosen large enough that the terms of the ideal
impulse response are negligible for n < 0. Similarly, N can
be chosen large enough that the terms of the ideal impulse
response are negligible for n ≥ N . So choosing N and
P ensures that the error incurred by using length-N Hk(z)
filters to approximate (13) is negligible. As demonstrated in
Section IV, N = 9 and P = 3 are sufficient to achieve
more than 2.5 bits of both static mismatch error and dynamic
mismatch error cancellation in the design example system.

It remains to show that the feedback causes ak,m[n] for
m = 0, 1, . . . , N − 1 and k = 1, 2, . . . , 35 to converge to
values that cause (13) to be well approximated. A rigorous
analysis that proves this result is presented next.

D. Convergence Analysis

The decimation filter’s output can be written as r [n] =
rideal [n] + re[n] + rc[n], where rideal [n] is the decimation
filter output sequence that would have occurred in the absence
of both eD AC(t) and the correction DAC feedback loop,
re[n] is the additional error caused by eD AC(t) that would
have occurred in the absence of the correction DAC feedback
loop, and rc[n] is the additional component introduced by the
correction DAC feedback loop. Therefore, the objective of the
correction DAC feedback loop is to adjust the ak,m[n] values
such that rc[n] = −re[n] for all n.
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Each term in the summation on the right side of (8) has the
form of (1) with dk(t) playing the role of α(t) and sk[nt ]
playing the role of x[nt ]. Consequently, each term can be
viewed as being contributed by a separate ideal DAC with
input sequence sk[n] and pulse shaping function dk(t). It fol-
lows that the relationship between sk[n] and its contribution
to re[n] must be that of a causal linear time-invariant (LTI)
discrete time system. Denoting the impulse response of this
LTI system by bk[n], it follows that

re[n] =
35∑

k=1

bk[n] ∗ sk [n] =
35∑

k=1

∞∑
i=0

bk[i ]sk[n − i ]. (14)

To the extent that nonlinearity and aliasing from the ADC can
be neglected, similar reasoning implies that the relationship
between xc[n] and rc[n] must also be that of a causal discrete-
time LTI system. Hence,

rc[n] = xc[n] ∗ (−hc[n]) (15)

where −hc[n] is the LTI system’s impulse response (the
−1 factor in this definition of hc[n] simplifies notation in the
subsequent analysis). Furthermore, hc[n] = 0 for all n < 0
for causality and also for n = 0 to prevent the feedback loop
from being delay-free.

These observations and the signal processing operations
shown in Fig. 4 and Fig. 5 imply that the input to and the
output of the mth accumulator in the sk[n] residue estimator
can be written as

uk,m [n] = sk [n − m + P − Q]

⎛
⎝rideal [n] + re [n]

−
35∑

l=1

n−1∑
i=−∞

N−1∑
j=0

hc[n − i ]al, j [i ]sl [i + P − j]

⎞
⎠,

(16)

and

ak,m[n] = ak,m[n − 1] + K uk,m [n], (17)

respectively. It follows that uk,m [n] = 0 at each value of n for
which sk[n−m+P−Q] = 0, so ak,m [n] only changes at values
of n for which sk[n−m+P−Q] 	= 0. Given that the only non-
zero values of sk[n] are 1 and −1, this implies that ak,m [n]
only changes at values of n for which s2

k [n −m + P − Q] = 1.
Given that the convergence rate of each ak,m[n] sequence

depends on the particular pattern of zeros and ones taken on
by s2

k [n] for all n, the expected values of uk,m [n] and ak,m [n]
conditioned on this pattern of zeros and ones are of interest.
In the following, these conditional expectations are denoted
as ūk,m [n] and āk,m[n], respectively. As described above, all
non-zero values of sk[n] are independent zero-mean random
variables that take on values of 1 and −1. Furthermore, (16)
and (17) imply that al, j [n] does not depend on sk[n′] for any
n′ ≥ n + P . These properties with (14) and (16) imply that

ūk,m [n] = s2
k [n − m + P − Q]

⎛
⎝bk [m − P + Q]

−
35∑

l=1

n−1∑
i=n−m−Q

N−1∑
j=0

hc[n − i ]El,i, j [n]
⎞
⎠ (18)

where El,i, j [n] is the mean of al, j [i ]sl[i + P − j ]sk[n − m +
P − Q] conditioned on the pattern of zeros and ones taken on
by s2

k [n] for all n.
By definition, El,i, j [n] = āk, j [n − m − Q + j ]s2

k [n − m +
P − Q] when l = k and i − j = n − m − Q. Given that
K is very small (e.g., K = 6 · 10−5 in the design example) it
follows from (17) that al, j [i ] is only very weakly correlated
with sk [n − m + P − Q] for all other values of l, i , and j
in the triple sum of (18). Hence, any of these terms that are
non-zero are very close to zero because all non-zero values
of sk[n − m + P − Q] are independent, zero-mean random
variables. Consequently, (18) can be well approximated as

ūk,m [n] = s2
k [n − m + P − Q]

⎛
⎝bk [m − P + Q]

−
N−1∑
j=0

hc [Q + m − j] āk, j [n − m − Q + j]

⎞
⎠

(19)

The expectation operator is linear, so (17) implies

āk,m [n] = āk,m [n − 1] + K ūk,m [n]. (20)

The set of difference equations given by (20) with ūk,m [n]
given by (19) for m = 0, 1, . . . , N − 1 specifies the evolution
of the expectation of the coefficients of the kth FIR filter
in Fig. 6. However, these difference equations present two
analysis complications because of the s2

k term in (19). One
complication is that the difference equations, while linear, are
not time-invariant because the s2

k terms are zero for some
values of n. The other complication is that the s2

k terms
across the different equations are not zero for the same values
of n.

The latter complication can be solved by replacing n with
n + m in each of the difference equations, because, as can
be verified from (19), the s2

k terms in the expressions for
ūk,m [n + m] are identical for all m = 0, 1, . . . , N − 1. The
N equations obtained by substituting (19) into (20) for every
m = 0, 1, . . . , N − 1 and replacing every occurrence of n by
n + m can be written in matrix form as

ak[n] = ak[n − 1]
−

{
0 if sk [n + P − Q] = 0,

K Hcak[n−Q]−K bk, otherwise,

(21)

where

ak[n] =

⎡
⎢⎢⎢⎣

āk,0[n]
āk,1[n + 1]

...
āk,N−1[n + N − 1]

⎤
⎥⎥⎥⎦,

bk =

⎡
⎢⎢⎢⎣

bk[Q − P]
bk[Q − P + 1]

...
bk[Q − P + N − 1]

⎤
⎥⎥⎥⎦, (22)
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and

Hc

=

⎡
⎢⎢⎢⎣

hc[Q] hc[Q − 1] · · · hc[Q−N +1]
hc[Q + 1] hc[Q] · · · hc[Q−N +2]

...
...

. . .
...

hc[Q + N − 1] hc[Q + N − 2] · · · hc[Q]

⎤
⎥⎥⎥⎦.

(23)

This is an N-dimensional, Qth-order, time-varying matrix
difference equation. It converges if and only if ak[n] → a′

k as
n → ∞ where a′

k is the constant steady-state solution of (21).
Furthermore, if the system converges it follows from taking
the limit of (21) as n → ∞ that

Hca′
k = bk . (24)

Defining zk[n] = ak[n] − a′
k , (21) and (24) imply that

zk[n] =
{

zk[n−1], if sk[n+ P−Q] = 0,

zk[n−1] − K Hczk[n − Q], otherwise,

(25)

and the system converges if and only if zk[n] → 0 as n → ∞.
If sk [n] were never zero, then (25) would be a time-invariant

as well as linear matrix difference equation. In this case (25)
could be rewritten as a QN-dimensional, first-order matrix
equation and shown to converge provided the eigenvalues of its
system matrix all have magnitude less than one. Unfortunately,
sk[n] = 0 for some values of n as described above, which
complicates the analysis. A new analysis is presented in the
remainder of the section that addresses this problem. The
analysis shows that the system parameters can be chosen such
that zk[n] → 0 as n → ∞ and provides a measure of the
convergence rate.

The analysis makes use of the following standard matrix
theory definitions and results [19]. For any N-dimensional
vector v = [v j ] and N × N matrix A = [a j,k], the max
norm of v and the maximum absolute row sum norm of A
are defined as

‖v‖ = max
1≤m≤N

|vm | and ‖A‖1 = max
1≤m≤N

N∑
n=1

∣∣am,n
∣∣, (26)

respectively, and these definitions imply that

‖Av‖ ≤ ‖A‖1 ‖v‖ . (27)

For any two vectors v and w of equal dimension

‖v‖ − ‖w‖ ≤ ‖v + w‖ ≤ ‖v‖ + ‖w‖ . (28)

The following system-related definitions are used by the
theorems presented below:

r = 1

hc [Q]

∑
m 	=Q

|hc[m]|, (29)

and

g =
∥∥H2

c

∥∥
1

[
1 − (1 − 2hc [Q] K )Q−1]

2h2
c [Q] (1 − r) (1 − 2hc [Q] K )2Q−2 . (30)

The following theorem shows that zk[n] → 0 as n → ∞
for the case where the system is started at time n = 0 with
all registers initialized to zero. It does so by showing that
||zk[n]|| → 0 as n → ∞. From the definition of zk[n], this
initial condition implies that zk[n] = −a′

k , for all n < 0
Theorem 1: If 0 ≤ r < 1, 0 < g < 1, and zk[n] = −a′

k for
all −Q ≤ n < 0, then

‖zk[Jm ]‖ ≤ ∥∥a′
k

∥∥ (1 − K (1 − r) (1 − g) hc [Q])m (31)

for all m ≥ 1, where Jm is the mth largest non-negative integer
n for which sk[n + P − Q] 	= 0.

�
As implied by (25), zk[n] = zk[n −1] when n 	= Jm for any

m = 1, 2, . . ., so the theorem implies that zk[n] → 0 at least
exponentially with the number of times that sk[n+ P −Q] 	= 0
over n provided the theorem’s hypothesis is satisfied.

As explained below, the conditions placed on hc[n] and
K by the theorem’s hypothesis are easy to meet in a practical
design, and the dependence of the convergence on how fre-
quently sk[n + P − Q] is non-zero does not present a problem
in practice.

The theorem also gives insight into the choice of Q. The
requirement that 0 ≤ r < 1 implies that hc[Q] must be
positive and that it must be the maximum value of the impulse
response.

Proof of Theorem 1: If a′
k = 0 then (25) implies that

zk[n] = 0 for all n ≥ 0, so Theorem 1 holds for this case.
The remainder of the proof considers the case of a′

k 	= 0.
The proof uses mathematical induction. The inductive step,

which is proven shortly, is: for any m = 1, 2, 3, . . ., if

‖zk[i ]‖
‖zk[i − 1]‖ ≥ 1 − 2hc [Q] K , (32)

for all −Q+1 ≤ i < Jm ,3 then the conditions of the theorem’s
hypothesis are sufficient to ensure that (32) holds for i = Jm

and

‖zk[Jm]‖
‖zk[Jm − 1]‖ ≤ 1 − K (1 − r) (1 − g) hc [Q] . (33)

The induction base step, i.e., that (32) holds for −Q + 1 ≤
i < J1, follows directly from (25), the max norm definition
in (26), and the condition that zk[n] = −a′

k for all −Q ≤
n < 0. Therefore, given that zk[n] = zk[n − 1] when n ≥ 0
and n 	= Jm for any m = 1, 2, . . ., provided the inductive
step is true, it follows from induction that (32) and (33) hold
for all integers m ≥ 1. Furthermore, recursively applying (33)
when n = Jm and zk[n] = zk[n − 1] when n 	= Jm with
zk[J1 − 1] = −a′

k yields (31).
Hence, it remains to show that the inductive step is true.

This is done in the remainder of the proof.
For any m = 1, 2, 3, . . ., let n = Jm (to simplify the

notation). Then (25) reduces to

zk[n] = zk[n − 1] − K Hczk[n − Q] (34)

3By limiting the amount that ||zk [i]|| can decrease over each iteration,
(32) prevents the possibility of convergence with ringing, which is necessary
for (31) to hold.
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which can be rewritten as

zk[n] = zk[n − 1] − K Hczk[n − 1]
− K Hc (zk[n − Q] − zk[n − 1]) (35)

and further rewritten as

zk[n] = (I − K Hc) zk[n − 1]

−
Q−1∑
m=1

K Hc (zk[n − m − 1] − zk[n − m]). (36)

where I is the N × N identity matrix. Taking the L1 norm
of (36) and applying (28) multiple times yields

‖zk[n]‖ ≤ ‖(I − K Hc) zk[n − 1]‖

+
Q−1∑
m=1

‖K Hc (zk[n − m − 1] − zk[n − m])‖ (37)

and

‖zk[n]‖ ≥ ‖(I − K Hc) zk[n − 1]‖

−
Q−1∑
m=1

‖K Hc (zk[n − m − 1] − zk[n − m])‖. (38)

Let v be any real N-dimensional column vector. Then

‖(I − K Hc) v‖ = ‖(1 − hc [Q] K ) v+K (hc [Q] I−Hc) v‖ .

(39)

Applying (27) with A = hc[Q]I − Hc and (28) to (39) gives

‖(I − K Hc)v‖ ≤ (1−hc[Q]K )‖v‖+K‖hc[Q]I − Hc‖1‖v‖
(40)

and

‖(I − K Hc)v‖ ≥ (1−hc[Q]K )‖v‖−K‖hc[Q]I − Hc‖1‖v‖.
(41)

The requirement that 0 ≤ r < 1 and (29) imply that hc[Q]
is positive. This, (23), (26), and (29) imply that ||hc[Q]I −
Hc||1 ≤ hc[Q]r , so (40) and (41) imply

‖(I − K Hc) v‖ ≤ (1 − hc [Q] K (1 − r)) ‖v‖ (42)

and

‖(I − K Hc) v‖ ≥ (1 − hc [Q] K (1 + r)) ‖v‖ . (43)

Substituting v = zk[n − 1] into (42) and (43), and the results
into (37) and (38) yields

‖zk[n]‖ ≤ (1 − hc [Q] K (1 − r)) ‖zk[n − 1]‖

+
Q−1∑
m=1

‖K Hc (zk[n − m − 1] − zk[n − m])‖ (44)

and

‖zk[n]‖ ≥ (1 − hc [Q] K (1 + r)) ‖zk[n − 1]‖

−
Q−1∑
m=1

‖K Hc (zk[n − m − 1] − zk[n − m])‖ (45)

Equation (25) for n ≥ 0 and the condition zk[n] = −a′
k for

−Q ≤ n < 0 imply that each zk[n−m −1]−zk[n−m] in (44)
and (45) is either K Hczk[n − m − Q] or 0. Consequently,

‖zk[n]‖ ≤ (1 − hc [Q] K (1 − r)) ‖zk[n − 1]‖

+
min{Q−1,n}∑

m=1

∥∥∥K 2H2
czk[n − m − Q]

∥∥∥ (46)

and

‖zk[n]‖ ≥ (1 − hc [Q] K (1 + r)) ‖zk[n − 1]‖

−
min{Q−1,n}∑

m=1

∥∥∥K 2H2
czk[n − m − Q]

∥∥∥. (47)

Applying (27) with A = K 2H2
c to (46) and (47) yields

‖zk[n]‖ ≤ (1 − hc [Q] K (1 − r)) ‖zk[n − 1]‖

+ K 2
∥∥∥H2

c

∥∥∥
1

min{Q−1,n}∑
m=1

‖zk[n − m − Q]‖ (48)

and

‖zk[n]‖ ≥ (1 − hc [Q] K (1 + r)) ‖zk[n − 1]‖

− K 2
∥∥∥H2

c

∥∥∥
1

min{Q−1,n}∑
m=1

‖zk[n − m − Q]‖. (49)

Recursively applying (32) to itself for i = 2, 3, 4, . . . n+ Q,
yields

‖zk[n − i ]‖ ≤ ‖zk[n − 1]‖ (1 − 2hc [Q] K )−i+1. (50)

Hence,

min{Q−1,n}∑
m=1

‖zk[n − m − Q]‖ ≤ ‖zk[n − 1]‖

×
Q−1∑
m=1

(1 − 2hc [Q] K )−m−Q+1. (51)

The right side of (51) can be expanded via the geometric series
formula as

1 − (1 − 2hc [Q] K )Q−1

2hc [Q] K (1 − 2hc [Q] K )2Q−2 . (52)

Substituting (52) into (51) and the result into (48) and (49)
yields

‖zk[n]‖
‖zk[n − 1]‖ ≤ 1 − hc [Q] K (1 − r)

+ K
∥∥∥H2

c

∥∥∥
1

1 − (1 − 2hc [Q] K )Q−1

2hc [Q] (1 − 2hc [Q] K )2Q−2

(53)

and

‖zk[n]‖
‖zk[n − 1]‖ ≥ 1 − hc [Q] K (1 + r)

− K
∥∥∥H2

c

∥∥∥
1

1 − (1 − 2hc [Q] K )Q−1

2hc [Q] (1 − 2hc [Q] K )2Q−2

(54)
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Given that n = Jm , substituting (30) into (53) results in (33)
and substituting (30) into (54) results in

‖zk[Jm]‖
‖zk[Jm − 1]‖ ≥ 1 − hc [Q] K (1 + r) − hc [Q] K (1 − r) g.

(55)

This finishes the proof because (55) implies that (32) with
i = n is satisfied provided g < 1. �

Theorem 2 extends the result of Theorem 1 to cover all
possible initial conditions. It shows that while the specific
form of zk[n] depends on the system’s initial conditions,
the convergence of ||zk[n]|| is still exponential for any K and
hc[n] that satisfy the hypothesis of Theorem 1 regardless of
the initial conditions.

Theorem 2: Provided 0 ≤ r < 1 and 0 < g < 1, zk[n] can
be written as

zk[n] =
Q∑

j=1

zk, j [n], (56)

where for every Jm ≥ Q − j ,
∥∥zk, j [Jm]∥∥ ≤ (1 − K (1 − r) (1 − g) hc [Q])

∥∥zk, j [Jm − 1]∥∥ ,

(57)

and for all non-negative n 	= Jm∥∥zk, j [n]∥∥ = ∥∥zk, j [n − 1]∥∥ . (58)

�
Proof: Let zk, j [−1], zk, j [−2], . . . , zk, j [−Q] for j =

1, 2, . . . , Q, be

zk, j [n]

=

⎧
⎪⎨
⎪⎩

zk[− j ] − zk[− j − 1], if j < Q, − j ≤ n < 0,

0, if j < Q, −Q ≤ n < − j

zk[−Q], if j = Q, −Q ≤ n < 0,

(59)

It can be verified by substituting (59) into (56) that (59) is a
solution of (56) for −Q ≤ n < 0. It follows from (25) that
zk[n] for all n ≥ 0 is uniquely determined by (25) and the
values of zk[n] for −Q ≤ n < 0. Consequently, zk[n] for all
n ≥ 0 is uniquely determined by (25), (56), and (59).

Equation (25) is a linear matrix difference equation, so,
as can be seen by substituting (56) into (25), zk, j [n] for n ≥ 0
can be defined as

zk, j [n]

=
{

zk, j [n − 1], if sk[n + P − Q] = 0,

zk, j [n − 1] − K Hczk, j [n − Q], otherwise.

(60)

This with (59) completely specifies zk, j [n] for n ≥ −Q.
It follows from (60) and the definition of Jm that (58) holds

for all non-negative n 	= Jm , so it remains to show that (57)
holds for all Jm ≥ Q − j . This is done below by induction.

For all n ≥ 0, (60) implies that zk, j [n] = 0 if
zk, j [−1], zk, j [−2], . . . , zk, j [−Q] are all zero. In this case,
(57) holds for all Jm ≥ Q − j , and (58) holds for all

non-negative n 	= Jm . All other cases are considered in the
remainder of the proof.

As can be seen from (59), the first j values of
zk, j [−1], zk, j [−2], . . . , zk, j [−Q] are non-zero and equal, and
the remaining Q − j values are 0. This and (60) imply that all
Q values of zk, j [n+ Q− j ] for n = −Q,−Q+1, . . . ,−2,−1
are non-zero and equal. Therefore, by exactly the same reason-
ing used for the induction base step in the proof of Theorem 1,

∥∥zk, j [i ]
∥∥

∥∥zk, j [i − 1]∥∥ ≥ 1 − 2hc [Q] K , (61)

for all − j + 1 ≤ i < Jp . where p is the smallest integer for
which Jp ≥ Q − j . This is the induction base step.

By exactly the same reasoning used in the proof of The-
orem 1, the following inductive step holds for each zk, j [n]:
for any m = p, p + 1, p + 2, p + 3, . . ., if (61) holds for
all − j + 1 ≤ i < Jm then the conditions of the theorem’s
hypothesis are sufficient to ensure that (61) holds for i = Jm

and (57) holds.
It follows from induction that (57) holds for all

Jm ≥ Q − j . �
Theorems 1 and 2 provide conditions for which the conver-

gence of ||zk[n]|| is bounded from above by a decaying expo-
nential sequence. The following corollary shows that these
same conditions ensure that the convergence of ||zk[n]|| is also
bounded from below by a decaying exponential sequence.

Corollary: Provided 0 ≤ r < 1 and 0 < g < 1,

‖zk, j [Jm]‖ ≥ (1−K (2−(1−r)(1−g))hc[Q])‖zk, j [Jm −1]‖,
(62)

for every Jm ≥ Q − j .
Proof: The proof follows directly from that of Theorem 2.

E. Noise Versus Convergence Rate Tradeoff

As described in Section III-C, the MNC technique causes
the impulse responses of the adaptive filters shown in Fig. 6,
i.e., hk [m] = ak,m [n] for m = 0, 1, . . . , N − 1 and k =
1, 2, . . . , 35, to converge toward their ideal values as n → ∞.
As shown in Section III-D, the ak,m [n] coefficients are well-
modelled as random variables with means that converge to
their ideal values as n → ∞. Thus, once the convergence
transient has died out, each ak,m [n] is equal to its ideal value
plus zero-mean noise.

As with most adaptive filter analyses, the analysis of
Section III-D does not provide insight into the variance of
the noise component in each ak,m [n] sequence. It does not
even rule out the possibility that the variance could diverge
as n → ∞, which, of course, would be catastrophic for
the MNC technique. Fortunately, intuitive reasoning and
extensive simulations run by the authors, some of which are
presented in Section IV, indicate that the variance of the noise
can be made arbitrarily small by reducing the feedback loop
gain, K . Specifically, it is reasonable to expect from (17)
that reducing K reduces the sample-to-sample variability, and
therefore the variance, of the noise component of ak,m [n].
Simulation results presented in the next section bear this out.
This and the results of Section III-D imply the usual tradeoff



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

between convergence rate and accuracy in adaptive systems.
Reducing K reduces the convergence error variance, but it
also reduces the convergence rate.

At first glance it might also appear that there is a tradeoff
between the convergence rate and how frequently non-zero
values of each sk[n] sequence occur. As described in [16],
the values of n for which sk [n] = 0 are partly dependent on
the DEM DAC’s input sequence, so it follows from the results
of Section III-D that the convergence rate of ak,m[n] has a
dependency on the DEM DAC’s input sequence. For example,
if the input sequence were such that sk[n] = 0 for all n, then
ak,m [n] would remain constant. On the other hand, it can be
seen from (8) that the error term in eD AC [n] corresponding to
sk[n] would be zero for this case, so the lack of convergence
would not be a problem. More generally, the less frequently
non-zero values of each sk[n] sequence occur, the slower the
convergence rate with n but the lower the noise introduced by
the corresponding term in eD AC [n]. These two effects tend to
cancel each other out in practice.

It can be seen from Figures 4 and 5 that a change in the
ADC gain is mathematically equivalent to a change in K .
Therefore, any variations in the ADC gain simply change
the tradeoff between the convergence error variance and the
convergence rate. This suggests that the system is not highly
sensitive to ADC gain variations such as might be caused by
temperature variations during background calibration. Indeed,
simulation results performed by the authors during which
the ADC gain was varied by up to 50% during background
calibration showed negligible effect on MNC accuracy.

F. Clock Jitter and Feedback Path Noise and Nonlinearity

It follows from the analysis in Section III-D that the
multiplication of the decimation filter output, r [n], by sk [n +
P − Q − m] in Fig. 5 causes ūk,m [n] to be the signal of
interest and uk,m [n]− ūk,m[n] to be noise from the perspective
of estimating ak,m [n]. It can be verified by subtracting (19)
from (16) that the signal to noise ratio associated with each
ak,m [n] estimation is low even in the absence of any noise
from the ADC. This is because r [n] = rideal [n]+re[n]+rc[n],
where rideal [n] and all but small portions of re[n] and rc[n]
contribute only noise terms to uk,m [n]−ūk,m [n] given that they
are uncorrelated with sk[n + P − Q − m]. For example, error
introduced anywhere in the system by clock jitter is generally
uncorrelated with sk[n + P − Q − m], so it is simply another
noise term in uk,m [n] − ūk,m [n], and it only needs to be on
the order of 6 dB lower than the variance of the other terms
in uk,m [n] − ūk,m [n] to have a negligible effect on the error
variance of ak,m [n].

The same is true of ADC noise provided it is uncorrelated
with sk[n + P − Q − m]. Consequently, an ADC with a low
SNR can be tolerated as demonstrated in the next section.
In the design example a VCO-based ADC is used because the
noise it introduces is essentially uncorrelated with its input
signal, which ensures that it is uncorrelated with sk [n + P −
Q − m]. Most other types of �� ADCs have this property
too, so they could be used in place of the VCO-based ADC,
although in most such cases a high-impedance input buffer

would be necessary to prevent the ADC’s input network from
disturbing the main DAC’s output waveform.

It is also demonstrated in the next section that an
ADC with relatively high nonlinearity can be tolerated by the
MNC technique. The reasons for this nonlinearity tolerance
are explained in the remainder of this section.

As described in Section III, the additive terms in the
ADC’s input signal which are proportional to sk [n] for
k = 1, 2, . . . , 35 are the terms that the MNC technique
measures. In this sense they can be viewed as the desired terms
from the perspective of the MNC technique’s measurement
process. Each desired term consists of two additive parts:
one that comes from eD AC [n] so it has the form sk [n]dk(t),
and the other that comes from the correction DAC. The first
part is very small relative to the ADC’s input range because
dk(t) arises from component mismatches. The second part is
similarly small by design because it is intended to cancel the
first part over the first Nyquist band.

It follows that nonlinear distortion from the ADC causes
the decimation filter output to contain numerous additive
terms that are each proportional to the products of multiple
values of (si [ j ])p for different integer values of i , j , and p.
From the perspective of estimating ak,m [n], most of these
terms contribute noise to uk,m [n] − ūk,m [n] because they get
multiplied by sk[n+P−Q−m]. Only the terms from nonlinear
distortion that are proportional to (sk[n + P − Q −m])p where
p is 1, 3, 5, 7, …, and not also proportional to si [ j ] for any
i 	= k or j 	= n + P − Q − m contribute an error bias to
the estimate of ak,m[n]. Not only are there relatively few such
terms, but the terms are much smaller than the corresponding
desired terms even when the ADC is fairly nonlinear. Each
such error term is proportional to one of the ADC’s second-
or-higher-order Taylor coefficients, which is much less than
unity, as well as one of the desired terms raised to the pth
power. For p = 3, 5, 7, . . ., the terms are particularly small
because the desired terms are small to begin with.

Furthermore, the estimate of eD AC [n] need not be highly
accurate to significantly improve the system’s overall SNR.
For example, suppose that eD AC [n] degrades the main DEM
DAC’s peak SNR in the absence of the MNC technique by
more than 6 dB. Then, even if the MNC technique were
applied for a case where the error terms described above are
so severe that they cause the estimate of eD AC [n] to deviate
from the actual eD AC [n] by 50%, the MNC technique would
still improve the overall SNR by as much as 6 dB.

IV. SIMULATION RESULTS

The system shown in Fig. 4 and described above was
simulated in the Cadence Virtuoso environment with the
STMicroelectronics FDSOI 28 nm CMOS process design kit.
Relevant additional design details and two sets of simulation
results are presented in this Section. The first set of simulation
results demonstrates the performance of the MNC technique
after convergence. The second set demonstrates the conver-
gence behavior of the MNC technique.

Both the main and correction DACs incorporate RZ 1-bit
DACs similar to the type described in [20] with an RZ duration
of 25% of the clock period. All operate from a 1.8 V supply
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and their combined differential outputs are loaded with a 15 �
resistor and 14 pF capacitor to ground on each side. The main
DAC has a differential minimum step-size of � = 2.44 μA.
It has 36 1-bit DACs, 16 of which have a weight of 1024, and
20 of which have respective weights of 1, 1, 2, 2, 4, 4, 8, 8,
…, 512, 512. The correction DAC has a differential minimum
step-size of �c = �/4 = 0.61 μA. It has 14 1-bit DACs, 7 of
which have a weight of 64, 3 of which have a weight of 16,
and 4 of which have respective weights of 1, 2, 4, 8.

The static mismatch of each of the smallest 1-bit DACs in
the main DAC was chosen as a Gaussian random variable with
a standard deviation of 3.2% of the 1-bit DAC’s step-size, �.
That of each larger 1-bit DAC in the main DAC was chosen
the same way except with a standard deviation of 3.2% divided
by the square root of the 1-bit DAC’s weight, e.g., the standard
deviation of the largest 1-bit DACs is 0.1% of their 1024 �
step-size. The static mismatches in the correction DAC were
chosen in the same fashion except starting from minimum-
size 1-bit DACs with a standard deviation of 6.4% of their
step-size, �c.

The dynamic mismatches of the 1-bit DACs were imple-
mented in two ways. A random Gaussian time skew with
a standard deviation of 1.8 ps was applied to each 1 bit
DAC switch driver. Additionally, for the 1-bit DAC of lower
weights, the sizes of their current steering switches were
not scaled in proportion due to minimal width limitation of
technology, which introduces systematic dynamic mismatches.

The VCO-based ADC is similar to that presented in [17]
except without the digital calibration circuitry. As in [17], each
VCO consists of an open-loop voltage-to-current (V/I) con-
verter followed by a current-controlled ring oscillator (ICRO).
The V/I converter is a source degenerated differential pair,
and the ICRO is a pseudo-differential ring of current-starved
inverters. Accordingly, the VCO, and, thus, the VCO-based
ADC, are highly nonlinear. For example, simulations indicate
that for a full-scale sinusoidal input signal the ADC’s 2nd, 3rd,
and 4th harmonics are −26 dBc, −47 dBc, and −64 dBc,
respectively. As demonstrated below, and for the reasons
described in Section III-F, this nonlinearity does not limit the
simulated system’s performance.

The decimation filter is implemented as a 33-tap polyphase
FIR filter for low hardware complexity [21]. As described in
Section III, hc[n] is defined as the impulse response from the
input of the correction DAC to the output of the decimation fil-
ter. The values of hc[n] were extracted from circuit simulation
of the correction DAC, ADC, and decimation filter operating
together, and the gain of the decimation filter was normalized
such that hc[Q] = 1. The extracted values were found to
depend only weakly on the behavior of the correction DAC
and ADC so they do not change significantly over process
and temperature variations. Substituting the extracted values
of hc[n] into (23), (29), and (30) results in g = 0.0018 and
r = 0.25, which easily satisfy the hypotheses of the theorems
in Section III-D.

In the first set of simulations (shown in Figures 7, 8, and 9)
all the 1-bit DAC current sources and switches and the ADC’s
V/I converters were simulated at the transistor level. The
remaining analog circuitry, e.g., the 1-bit DAC switch drivers

Fig. 7. Representative simulated output Spectra without/with MNC for
a −1 dB full scale signal. The SNDR bandwidth is 0 to 0.42 fs .

Fig. 8. Representative simulated output Spectra without/with MNC
with −4dBFS input tone.

Fig. 9. Representative simulated output Spectra without/with MNC with
−7dBFS input tone.

and the ADC’s ICROs, as well as all the digital logic was
simulated at the behavioral level using Verilog-AMS to reduce
simulation time. The transistor-level portions of the simula-
tions enhance realism, but significantly increase simulation
time, so the simulations were run with the MNC technique
implemented in foreground mode to minimize convergence
time and, therefore, simulation time.

The DEM DAC was driven by a digital sequence that
toggles back and fourth between −2389.5� and −2388.5�
at the clock rate. This input sequence was chosen because it
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Fig. 10. Simulated coefficient convergence without ADC noise (left plot)
and with ADC noise (right plot).

is both simple and ensures that each sk[n] sequence is non-
zero at least 30% of the time. Two minor enhancements were
applied to reduce convergence time. The first enhancement is
the use of a few extra 1-bit DACs to cancel most of the signal
component of the main DACs output prior to the ADC. This
allowed the loop gain, K , to be increased without a significant
noise penalty. The extra 1-bit DACs were simulated at the
transistor-level with mismatches chosen as described above.
The second enhancement is to use a 4× larger value of K
for the first 100 μs of convergence time than used for the
remaining convergence time. With these enhancements the
total convergence time was 250 μs, which corresponds to
approximately three weeks of simulation time.

Representative simulated output spectra are shown
in Fig. 7 for a −1 dB full-scale sinusoidal input without and
with the MNC technique enabled. In each case the 14-bit
input signal was generated by adding a dither sequence that
is white and uniformly distributed between −�/2 and �/2 to
a floating point sinusoidal signal and quantizing the result
to 14 bits. Output spectra of the main DAC for the ideal
case of no unit element mismatches are also shown in Fig. 7
to provide a comparison baseline. The decimation filter’s
relatively short length resulted in aliasing that limits MNC
performance in the top 16% of the first Nyquist band.4 This
was considered a reasonable design tradeoff, so the signal
band is taken to range from zero to 0.42 fs = 168 MHz.

The simulation results indicate that the MNC technique
increased the signal-to-noise-and-distortion ratio (SNDR) from
66.4 dB (10.8 bits) to 81.9 dB (13.4 bits). Separate simulations
suggest that the static mismatch error and dynamic mismatch
error for this case contribute roughly equal SNR degradation
over the first Nyquist band.

Additional simulated output spectra are shown
in Figures 8 and 9 for different input signal amplitudes
without and with the MNC technique enabled. In each case
the results show the expected SNDR improvement when
the MNC technique is enabled. Other simulations that have
been run by the authors for many different input signals and
random number seeds yield comparable results.

The second set of simulations model the system with
the same parameters and non-ideal behavior described
above except that K was set to its final value from the
start, and all components were simulated at the behavioral

4This percentage can be arbitrarily reduced at the costs of greater hardware
complexity and power consumption by increasing the decimation filter length.

level to avoid excessive simulation time. The left plot
in Fig. 10 shows the convergence of the elements of
[ak,0[n], ak,1[n + 1], . . . , ak,N−1[n + N − 1]]T − a′

k , for a
representative value of k and the artificial case of no ADC
quantization noise. It also shows the upper and lower bounds
of the means of these trajectories predicted by Theorem 1,
i.e., ±||zk[n]||. As expected, all coefficients converge to their
ideal values within the bounds predicted by Theorem 1. The
right plot in Fig. 10 shows the corresponding results with ADC
quantization noise included. The results suggest that the means
of the trajectories are still within the predicted bounds even
though the noise causes the instantaneous values to exceed the
bounds from time to time. These results as well as those from
all of many other such simulations run by the authors are in
agreement with the theoretical results of Section III-D.
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