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ABSTRACT OF THE DISSERTATION

Enabling Techniques for Wide Bandwidth Delta-Sigma Fractional-N Phase

Locked Loops

by

Sudhakar Pamarti
Doctor of Philosophy in Electrical and Computer Engineering
(Electronic Circuits and Systems)
University of California, San Diego, 2003

Professor Ian Galton, Chair

Delta-sigma fractional-N phase locked loops are widely used for frequency
synthesis in electronic communication systems. A wide bandwidth makes it possible
for the delta-sigma fractional-N phase locked loop to perform digitally-controlled
frequency modulation at high bit-rates, thereby simplifying transceiver circuitry. Wide
bandwidth delta-sigma fractional-N phase locked loops offer a multitude of other
benefits that contribute to lower costs and a reduced power consumption in the
electronic communication products which use these phase locked loops. In spite of the
benefits, wide bandwidth delta-sigma fractional-N phase locked loops have not gained
general acceptance because of their poor phase noise and spurious tone performance,

particularly when they are implemented in integrated circuit (IC) form.

xii
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This dissertation presents two signal processing techniques — a phase noise
cancellation technique and a charge pump linearization technique — that significantly
reduce phase noise and spurious tones in a wide bandwidth delta-sigma fractional-N
phase locked loop. Chapter 1 presents a prototype CMOS IC that demonstrates the
efficacy of the two techniques — reduction of the phase noise by at least 16 dB, and
reduction of spurious tones by at least 8 dB — in a 2.4 GHz delta-sigma fractional-N
phase locked loop with 460 kHz wide bandwidth. Chapter 2 presents a theoretical
basis for the phase noise cancellation technique and suggests design guidelines to
tailor the technique to meet the target requirements of a general wide bandwidth delta-
sigma fractional-N phase locked loop. The effectiveness of the phase noise
cancellation technique hinges on eliminating limit cycles in the digital delta-sigma
modulators, which the technique employs. Chapter 3 presents conditions to
theoretically guarantee that one-bit dither eliminates limit cycles in a large class of
digital delta-sigma modulators. It also extends the theory to suppress spurious tones in

a large class of delta-sigma modulator based digital-to-analog conversion systems.

xiii
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Chapter 1

A Wideband 2.4 GHz Delta-Sigma Fractional-/NV PLL
With 1 Mb/s In-Loop Modulation

Sudhakar Pamarti, Lars Jansson, and lan Galton

Abstract—A phase noise cancellation technique and a charge pump linearization technique, both
of which are insensitive to component errors, are presented and demonstrated as enabling
components in a wideband CMOS AX fractional-N PLL. The PLL has a loop bandwidth of 460
kHz and is capable of 1 Mb/s in-loop FSK modulation at center frequencies of 2402 + k MHz for k
=0,1,2,..78. For each frequency, measured results indicate that the peak spot phase noise
reduction achieved by the phase noise cancellation technique is 16 dB or better, and the minimum
suppression of factional spurious tones achieved by the charge pump linearization technique is 8
dB or better. With both techniques enabled, the PLL achieves a worst-case phase noise of —121
dBc¢/Hz at 3 MHz offsets, and a worst-case in-band noise floor of —-96 dBc/Hz. The PLL circuitry
consumes 34.4 mA from 1.8-2.2V supplies. The IC is realized in a 0.18 pm mixed-signal CMOS

process, and has a die size of 2.72mm X 2.47mm.

I. INTRODUCTION

This paper presents a phase noise cancellation technique that relaxes the
fundamental tradeoff between phase noise and bandwidth in conventional delta-sigma
(AY) fractional-N phase-locked loops (PLLs), and a charge pump linearization
technique that improves the spurious performance of wideband fractional-N PLLs.
Together, the techniques make it practical to significantly increase the bandwidth of AX
fractional-N PLLs without degrading phase noise and spurious performance. They are

demonstrated in a CMOS AZX fractional-N PLL that can be configured as a Bluetooth-
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compliant wireless LAN transmitter and a local oscillator for a direct-conversion
Bluetooth-compliant receiver. The techniques enable the PLL to achieve the required
phase noise and spurious performance specifications with a bandwidth of 460 kHz,
which is sufficiently wide to allow in-loop modulation of the required 1 Mb/s transmit
signal. Moreover, the wide bandwidth significantly reduces the susceptibility of the
voltage-controlled oscillator (VCO) to pulling, and causes the PLL phase noise arising
from 1/fnoise and 1/f> noise in the VCO to be largely attenuated [1, 2]. Unlike other
methods of in-loop modulation for wireless transmitters, the phase noise cancellation
technique is not sensitive to analog component errors, does not require calibration, and
does not require a Type-1 PLL and the associated phase detector complications [3, 4,
5, 6, 7]. The benefit of the charge pump linearization technique is that it does not
require dynamic bias adjustment so its bandwidth is not limited by an analog feedback
circuit [8]. Although the two techniques complement each other in that they both
enhance performance in wideband AX fractional-N PLLs, they are independent and

each can be applied in the absence of the other.
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Fig. 1.1: High-level functional diagram of the implemented AX fractional-NV PLL.

A high-level block diagram of the implemented PLL is shown in Fig. 1.1. It
differs from a conventional AX fractional-N PLL in that the dark gray blocks have been
added to implement the phase noise cancellation technique, and the charge pump and
phase-frequency detector (PFD) blocks have been modified from their conventional
forms to implement the charge pump linearization technique. The details of the PLL
are described throughout the remainder of the paper. Sections II and III describe the
signal processing details of the phase noise cancellation technique and the charge
pump linearization technique, respectively. Section IV presents circuit details, and

Section V presents measurement results.
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Fig. 1.2: The “core” of a typical fractional-N PLL.

II. THE PHASE NOISE CANCELLATION TECHNIQUE

A. Problems with Conventional Fractional-N PLLs

The core of a typical fractional-N PLL is shown in Fig. 1.2. It consists of a
PFD, a charge pump, a loop filter, a VCO, and a frequency divider. The divider
output, vg(f), is a two level signal in which the nth and (n+1)th rising edges are
separated by N + y[n] periods of the VCO output, for n =1, 2, 3, ..., where N is a
constant integer, and y[n] is a sequence of integers generated by digital logic not
shown in the figure. As indicated in the figure for the case where the PLL is locked, if
the nth rising edge of the reference signal, v,.Af), occurs before that of v(¢), the
charge pump generates a current pulse of nominal amplitude /cp and a duration equal
to the time difference between the two edges. Otherwise, the situation is similar

except the polarity of the current pulse is reversed.
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If y[n] could be set to any desired value between —1 and 1, say a, then the
output frequency of the PLL would settle to (N + a) f.s, so it would be possible to
achieve any output frequency between (N — 1) fier and (N + 1) fr,r. Unfortunately, y[n]
is restricted to integer values because the divider simply counts rising VCO edges.
However, y[n] can be a sequence of integer values that average to a. Such a sequence
can be written as y[n] = a + ey[n], where e,,[n] is zero-mean quantization noise caused
by using integer values in place of the ideal fractional value. In this case, the PLL
output frequency settles to (N + a) fr.r as desired, although a price is paid in terms of
added phase noise.

As shown in [9], in terms of the effect it has on the PLL phase noise, the

quantization noise can be modeled as a sequence of additive charge samples, O, [n],

that get injected into the loop filter once every reference period. Neglecting a constant
offset associated with the initial conditions of the loop filter, it can be shown that
Q, [n] is well modeled as
n-1
Q.1 =Ticolcr 2, €lH1; M

where Tyco is the period of the VCO output, and ny < n is an arbitrary initial time
index. The PLL acts on this sequence as a lowpass filter in the process of converting it
to output phase noise. Therefore, spectral components of e,[n] outside the bandwidth
of the PLL are suppressed, but those inside the bandwidth of the PLL are amplified
through the discrete-time integration in (1) and can add significantly to the overall

phase noise of the PLL.
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In early fractional-N PLLs the problem of suppressing the PLL phase noise that
would otherwise result from e,[n] has been addressed using a DAC cancellation path
to suppress Q, [n] [10, 11]. Because y[n] is generated digitally, —Q, [n] can be
calculated by digital circuitry, converted by a DAC to an analog current, and added to
the output of the charge pump. If the DAC has sufficient precision and the correct

gain, the added signal nearly cancels the component of the charge pump output

corresponding to Q, [#]. In most fractional-N PLLs of this type, y[n] is generated

using one or two digital error-accumulator structures designed to ensure that the sum

of ey[n] in (1) is bounded. The resulting O, [n] sequence tends to have a large

dynamic range, a high spurious tone content, and significant spectral power within the

PLL bandwidth. Therefore, excellent cancellation accuracy is required; if Q, [n] is

only partially cancelled because of gain errors, distortion, or insufficient dynamic

range in the DAC cancellation path, the remaining portion of (), [»] contains in-band

noise and spurious tones which can contribute significant phase noise [12, 13].
Consequently, the approach has been used mainly in high-cost applications such as test
and measurement equipment wherein component trimming and calibration are
practical.

A more recent technique that circumvents the DAC precision and gain
matching problems uses a digital AX modulator with at least second-order quantization

noise shaping to generate y[n] such that Q, [n] has at least one zero at dc with most of

its power concentrated at high frequencies, outside the passband of the PLL [14, 15,
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16]. Provided the bandwidth of the PLL is sufficiently narrow, most of the
quantization noise is suppressed by the PLL so a DAC cancellation path is not
necessary. Such PLLs have come to be known as AX fractional-N PLLs, and have
become widely used in consumer-oriented communication devices over the last
decade. Nevertheless, the need to suppress out-of-band quantization noise imposes a
fundamental bandwidth versus phase noise tradeoff in AX fractional-N PLLs that
causes problems in many applications.

One such problem is VCO pulling. For example, when a narrowband PLL is
used to provide the RF local oscillator for a direct conversion transmitter, even a small
amount of parasitic coupling of the transmitted signal to the VCO circuitry tends to
corrupt or pull the VCO output which, in turn, causes the up-converted transmit signal
to be distorted. However, if the bandwidth of the PLL is at least comparable to the
modulation bandwidth, the PLL is much less susceptible to this problem because the
feedback within the PLL tends to fight the corrupting effects of the modulated transmit
signal.

Another problem with narrowband fractional-N PLLs is that they often
preclude in-loop VCO modulation for direct synthesis of frequency modulated
transmit signals. In principle such signals can be generated directly by a AX fractional-
N PLL thereby eliminating the need for conventional upconversion stages and much of
the attendant analog circuitry. Specifically, if a in the discussion above is replaced by
a + x,[n], where x,[n] is a zero-mean modulation sequence, the resulting PLL output
has a center frequency of (N + a) fr.s but is frequency modulated by a lowpass filtered

version of x,[n]f,r. The PLL must have a sufficiently narrow bandwidth to suppress
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Fig. 1.3: Illustration of increase of the useable PLL bandwidth due to phase noise cancellation.

the phase noise, yet must have a sufficiently wide bandwidth to accommodate the
VCO modulation. In many applications, such as the Bluetooth transmitter application
used as a demonstration vehicle in this work, it is not possible to simultaneously

satisfy both of these requirements using conventional techniques.

B. Phase Noise Cancellation Technique Overview

As shown in Fig. 1.1, the phase noise cancellation technique combines the two
fractional-N PLL approaches described above. A second-order digital AX modulator
generates y[n] as in a conventional AX fractional-N PLL, and a DAC cancellation path

attenuates (J, [n]. As explained below, the combination of the two approaches in

conjunction with quantization noise-shaping, mismatch noise-shaping, and 1-bit dither,
greatly reduces the respective limitations suffered by each approach in isolation.

Fig. 1.3 illustrates that combining the two approaches makes it possible to
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widen the PLL bandwidth relative to that of a conventional AX fractional-N PLL
without increasing the peak spot phase noise. The top curve in the figure represents a

power spectral density (PSD) plot of Q, [#] scaled by the dc value of the PLL phase
transfer function between Q, [n] and the PLL output, so its units are dBc/Hz referred

to the PLL output. The bottom curve represents the PSD, also in units of dBc/Hz

referred to the PLL output, of the portion of Q, [#] that remains after cancellation

where the DAC cancellation path has a 10% gain error but is otherwise ideal.
Suppose, as an example, that the peak spot phase noise resulting from quantization
noise is to be limited to —120 dBc/Hz. Without the DAC cancellation path, i.e., in the
case of a conventional AY fractional-N PLL, it can be seen from the top curve in the
figure that the bandwidth of the PLL would have to be limited to 48 kHz. In contrast,
it can be seen from the bottom curve in the figure that with the DAC cancellation path
the bandwidth of the PLL can be set to 480 kHz. Thus, even with a 10% gain error in
the DAC cancellation path, the bandwidth of the PLL can be increased by a factor of
10 without increasing the peak spot phase noise of the PLL.

While combining the two fractional-N PLL approaches relaxes both the
bandwidth versus phase noise tradeoff and the required gain-accuracy in the DAC
cancellation path relative to the two approaches, respectively, in isolation, it does not
reduce the dynamic range and linearity requirements of the DAC cancellation path.

Furthermore, (), [n] must be nearly free of spurious tones, or else high gain-accuracy

would again be required in the DAC cancellation path to properly cancel the spurious

tones. These problems are addressed in the implemented PLL by several means. As
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10

described in detail below, delta-sigma re-quantization and a segmented, mismatch-
shaping, current pulse DAC are used to obtain high DAC cancellation path dynamic

range and linearity, and 1-bit dithering is used to eliminate spurious tones.
C. Phase Noise Cancellation Technique Signal Processing Details

As shown in Fig. 1.1, the architecture consists of a 48 MHz crystal reference
source, the PLL core described above, a 48 MHz digital section, a bank of 16 coarse 1-
bit current pulse DACs, and a bank of 16 fine 1-bit current pulse DACs. The 48 MHz
digital section consists of digital logic in which all registers are clocked on the rising
edges of the divider output. It generates y[n] and 32 1-bit sequences that control the
two banks of 1-bit current pulse DACs. During each reference period, each 1-bit
current pulse DAC generates a positive or negative pulse of current depending upon
whether its input bit is high or low. Each pulse has a duration of 4 VCO periods. The
nominal magnitudes of the current pulses are /¢p/16 and I¢p/128 for the coarse and fine
1-bit current pulse DACs, respectively.

The input to the second-order AX modulator, x[#], is a 16 bit two’s complement
number in the range —1 to 1 of the form x[n] = a + x,[n] + d[n], where a = (k — 46)/48
selects the desired Bluetooth channel frequency for £ =0, 1, ..., 78, x,,[n] is optional
FSK or GFSK modulation, and d[n] is a 1-bit pseudo-random dither sequence. The
dither sequence is generated by an on-chip length-22 linear feedback shift register and
is scaled such that it represents the least significant bit (LSB) of x[n]. The details of
the second-order AYX modulator are shown in Fig. 1.4(a). It has unity gain and a

quantization step-size of unity, so its output has the form y[n] = x[n — 2] + e,[n], and
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Fig. 1.4: Details of employed digital AX modulators — (a) The second-order AZ modulator. (b) The
third-order AX modulator.

takes on values in the range: -2, -1, 0, 1, and 2. As proven in [17] and [18], the dither
sequence completely eliminates spurious tones in e,[n], so e,[n] has the same PSD as

white noise passed through a discrete-time filter with two zeros at dc. The discrete-

time integration in (1) cancels one of the zeros, so Q, [#] has the first-order shaped

PSD represented by the top curve in Fig. 1.3. Although the dither behaves as white
noise, its magnitude is sufficiently small that its contribution to the PLL phase noise is
negligible in the band of interest.

Ideally, the DAC cancellation path would digitally integrate e,[n] to obtain

Q, [n] as in (1), and, for each n, inject a current pulse into the loop filter with a width

equal to that of the corresponding current pulse from the charge pump and an

amplitude chosen such that the total charge carried by the pulse is precisely O, [n].
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Unfortunately, this is difficult to accomplish in practice because the precise width of

the charge pump pulse is not known a priori, and the pulse can be very narrow.

Instead, a fixed-width current pulse can be used. In this case @, [»] is not cancelled

immediately as it is added, so the cancellation process introduces a voltage transient
each period at the VCO input. Most of the power associated with the voltage transient
is outside of the PLL bandwidth so its contribution to the PLL phase noise tends to be
small. In most conventional PLLs with DAC cancellation paths, the pulse width is
equal to the reference period [19]. However, in the current work the pulse width is set
to four VCO periods to better match the charge pump pulse width thereby reducing the

transient at the VCO and decreasing the resulting PLL phase noise contribution.

If Q, [n] were calculated directly using ex[n] in (1), a 15-bit current DAC with
a step size of 0.5-Icp27", e.g., 19.5 nA for the implemented PLL, would be required to
generate the necessary current pulses. Such a DAC would be very difficult to
implement. Instead, as indicated in Fig. 1.1, e,[n] is re-quantized from 16 bits to 8

bits by a third-order digital AX modulator, the details of which are shown in Fig.
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1.4(b), and the result is digitally integrated and converted to current pulses. The output

of the integrator is a 7-bit sequence proportional to Q, [n—1]+ ey[n], where ey[n] 1s

second-order shaped re-quantization noise resulting from digitally integrating the re-
quantization noise from the third-order digital AX modulator. Because of its second-
order high-pass shape and small magnitude, e,,[n] does not result in a significant
increase in the PLL phase noise. Thus, re-quantization reduces the problem of
designing a 15-bit DAC with a minimum step-size of 19.5 nA to that of designing a 7-
bit DAC with a minimum step-size of 10 pA. The DAC is implemented by the two
banks of 1-bit current pulse DACs. During the nth reference period the input bits to
the 1-bit DACs are chosen such that
16 16
v[n] = {8;(\) [n]—%)+kz=1:(vﬁ [n]—%)]Av )

where v[n] is the output of the digital integrator, v, [n] and v, [n] are 0 or 1 input
values to the kth 1-bit DACs in the coarse and fine DAC banks, respectively, and A, is
the LSB weight of v[n].

For most values of v[n], there are several combinations of v, [#] and v, [n]

that satisfy (2). For example, when v[n] = —63A,, any one of the 16 1-bit DAC inputs
in each DAC bank can be set to 1 with the rest set to 0. To the extent that the 1-bit
DACs in each DAC bank are perfectly matched and the ratio between coarse and fine
1-bit DACs is exactly eight, it does not matter which of the possible input selections is
made. In conventional segmented DACs good matching is assumed, so for each value

of v[n] only one of the combinations of v, [n] and v, [n] that satisfy (2) is ever used.
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Unfortunately, if the conventional approach had been used in this work, even
mismatches of less than 1% among the unit current sources that make up the 1-bit
DACs would give rise to harmonic distortion severe enough to prevent the PLL from
meeting the target specifications, and reducing the mismatches to much less than 1%
in present CMOS technology can be difficult. To circumvent this problem, a
segmented mismatch-shaping DAC encoder is used prior to the banks of 1-bit DACs
[20, 21, 22].

During the nth reference period, the encoder selects one of the combinations of

v, [n] and v [n] that satisfy (2) as a function of v[n] such that the error from

mismatches introduced by the DAC, referred to as mismatch-noise, has first-order
highpass spectral shaping with no spurious tones. Consequently, much of the
mismatch-ﬁoise power is outside the PLL bandwidth. For the implemented PLL,
simulations indicate that the target specifications can be met provided the matching of
the unit current sources has a standard deviation of no more than 5% which is not
difficult to achieve in practice. As shown in Fig. 1.5, the encoder consists of a first-
order digital AY modulator and two 17-level tree-structured mismatch-shaping
encoders of the type presented in [23]. The AX modulator quantizes v[r] to a 17-level
sequence which drives the 17-level mismatch-shaping encoder associated with the
coarse DAC bank. The quantization noise from the AX modulator drives the 17-level

mismatch-shaping encoder associated with the fine DAC bank.
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Fig. 1.6: Simulated output phase noise PSD plots of the implemented PLL (a) without the phase
Fig. 1.6 shows simulated output phase noise PSD plots corresponding to

noise cancellation technique, (b)-(f) with the phase noise cancellation technique, 5% unit current
source errors in the 1-bit DACs, and 12%, 10%, 4%, 2%, and 0% gain mismatches, respectively,

and (g) with ideal phase noise cancellation.
quantization noise and mismatch-noise for the implemented PLL with various DAC

simulator that accurately models both the discrete-time and continuous-time portions
of the system. The unit current source values in the 1-bit current pulse DACs were
chosen with random errors such that they havé a 5% standard deviation from their
nominal value. As indicated in the figure, even with a 12% DAC cancellation path
gain error and the relatively poor current source matching (curve “b” in the figure), the

cancellation path gain error levels.
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Fig. 1.7: A conventional charge pump and the associated timing diagram.

phase noise cancellation technique reduces the peak spot phase noise by 20 dB, and
the spot phase noise at a 3 MHz offset from the carrier is well below the —120 dBc/Hz

value required by the Bluetooth specification.

I1I. THE CHARGE PUMP LINEARIZATION TECHNIQUE

A. The Problem

A conventional charge pump and the associated timing diagram are shown in
Fig. 1.7. The. rising edges of the PFD outputs, U and D, are triggered by those of v,.A?)
and vgu(?), respectively. The falling edges of U and D both occur after a delay of T
following the later of the rising edges of v,.A?) and v4,(f). The delay ensures that each
current source in the charge pump is turned on for a minimum duration of 7p every
reference period to solve the charge pump dead-zone problem [24].

The positive and negative current sources in the charge pump are on when U

and D, respectively, are high and are off otherwise. Therefore, neglecting a constant,
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the charge carried by icp(¢) during the nth reference period is

1
Ocpln]=AT, 1y +'2'|ATn Aley, (3)

where AT, is the time difference between the nth rising edges of vg,(f) and v,.A?), and
Icp and Alcp are the average of and difference between the positive and negative
current source values, i.e., Icp+ and Icp_, respectively. Ideally, Icp+ and Icp- are equal,
but in practice they differ because of component mismatches and the different voltages
across the respective current source transistors. The result is the second term in (3)
which is non-linear with respect to AT,.

Unfortunately, the non-linearity induces spurious tones at multiples of afr in
the PLL phase noise. The problem becomes increasingly severe as the bandwidth of
the PLL is increased, because spurious tones that are well out of band and, thus, highly
attenuated in a narrowband PLL are less out of band, and, thus, less attenuated in a
wideband PLL. A conventional solution is to use analog feedback to equalize /cp+ and
Icp_ [8]. However, in a wideband PLL the charge pump output voltage variations tend

to be very abrupt which makes the design of an effective analog compensation circuit

difficult.
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Fig. 1.8: The modified charge pump and the associated timing diagram.

B. The Proposed Technique

The charge pump linearization technique involves modifications to both the
PFD and the charge pump. The modified PFD generates U and D signals as in the
conventional case, but also generates two new signals, Uyes and Dpeq. As shown in Fig.
1.8, each reference period the rising edges of Up.q and D,.q are aligned with those of U
and D, respectively, but their falling edges both occur after a delay of T, following
the earlier of the rising edges of v,(f) and v4,(f). The charge pump is modified in that
the Icp+ and Icp_ current sources are each split into two nominally identical half-sized
current sources. The two halves corresponding to Icp+ are switched by U and Up.q, and
the two halves corresponding to Icp_ are switched by D and Dj.q. The duration, T4, is
referred to as the pedestal time and is designed to be longer than the maximum value
of AT, + Tp when the PLL is locked. This maximum value is three VCO periods plus

Tp for the implemented PLL, so Ty can be made sufficiently small that its effect on
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the noise introduced by the charge pump is negligible.

It can be shown that, neglecting a constant,
1
Qcrln) = AT, lp +|AT (AL, AL, ), @)

where A, and Al, are differences, arising from component mismatches, between the
values of the two positive and the two negative current source halves, respectively. As
in the conventional charge pump, the differences give rise to a non-linear term in
Ocp[n]. However, in contrast to the conventional case, the non-linear term is a result
of mismatches between like current courses with identical voltages across their
respective transistors. Therefore, the non-linearity introduced by the proposed
technique is much less than that introduced by a conventional charge pump and PFD.
Although it was not necessary in this project, the non-linearity can be further
suppressed by randomly interchanging the signals U and Upeq, and D and D,,q using a

pseudo-random bit sequence.
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Table 1.1: Simulated phase noise contributions of the various circuit blocks and the relevant PLL
parameters.

 Fractional-N' phase locked loop paramets

Reference frequency 48 MHz
Loop bandwidth 460 kHz
Zero location 92 kHz

Pole location 2.3 MHz
Charge pump current 1.28 mA
Minimum PFD pulse duration, Tp 0.5ns—1ns

Pedestal duration, Tpeq 3ns—-6ns

mulated worst se contributions at 3 MHz offset:
Voltage controlled oscillator and buffers

127 dBc/Hz

Modified phase frequency detector -132 dBc/Hz
Charge pump and DACs -134 dBc/Hz
Crystal reference oscillator -134 dBc/Hz
1.8 Volt - 2.7 Volt converters -139 dBc/Hz
Loop filter resistor -147 dBc/Hz
Multi-modulus frequency divider -153 dBc/Hz

IV. CIRCUIT ISSUES

Overview

The circuit is implemented in the TSMC 0.18 um 1P6M mixed-signal CMOS
process with the thin top-metal option, and installed in a Smm TQFP 32 pin package.
All pads include ESD protection circuitry. The PFD, charge pump, DAC banks, and
VCO are designed for a 2.7 V supply. The remaining components are designed for a
1.8 V supply. All the blocks shown in Fig. 1.1 except the crystal and the loop filter
capacitors and resistor are implemented on-chip. A VCO output buffer, a VCO divider
buffer, a 1.8 V to 2.7 V logic converter block, and a three-wire digital interface are

also included on the chip. Separate deep N-wells under the digital logic and critical
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Fig. 1.9: The frequency divider circuit.

analog circuitry, and separate supply domains help prevent digital interference from
disturbing analog circuit behavior. A summary of the designed loop parameters and

simulated phase noise contributions of the various circuits are shown in Table 1.1.
Frequency Divider

As shown in Fig. 1.9, the core of the divider consists of five divide-by-two,
pulse swallowing blocks [25]. The three highest frequency pulse swallowing blocks
consist of current-mode-logic (CML), and the other two blocks consist of static CMOS
logic. The four synchronization flip-flops ensure that the rising edges of vy.(f) are
aligned to the appropriate rising edges of the first pulse-swallowing block. Two
additional flip-flops are used to derive a DAC pulse termination signal that goes high 4
VCO periods after each rising edge of v4(¢).

The reason for sypchronizing the rising edges of v4,(¢) to edges of the first
pulse-swallowing block is to reduce modulus-dependent delay mismatches, i.c.,

systematic timing errors in v4,(¢) that depend upon y[r]. Such errors have an effect
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Fig. 1.10: The modified PFD circuit.

similar to charge pump non-linearity in that they induce spurious tones in the PLL
phase noise at multiples of af,,. Simulations of the implemented PLL indicate that
modulus-dependent delay mismatches must be restricted to less than 1% of the VCO
period, i.e., to less than 4 ps, to suppress the spurious tones to less than —60 dBc. This
is achieved by the synchronization flip-flops which successively align the edges of the
signal from the last pulse swallowing block to those of the previous pulse swallowing
blocks. In principle, only the final flip-flop is necessary, but the other three are

included to avoid race conditions.
PFD, Charge Pump, and 1-bit Current Pulse DACs

The PFD is shown in Fig. 1.10. Flip-flops 1 and 2 and the associated AND gate

generate the U and D signals as in a conventional PFD, and the remaining circuitry
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generates the Upes and D)., signals. The circuit is configured such that the rising edges
of Upeq coincide with those of U, and the rising edges of Dp.q coincide with those of D.
The AND gate and OR gate driven by U and D have built-in delays of Tp and Ty,
respectively. Therefore, during the nth reference period, flip-flops 1 and 2 are reset
after a delay of AT, + Tp following the earlier of the times at which U and D go high,
whereas flip-flops 5 and 6 are reset after a delay of the maximum of AT, + Tp and Tpeq
following the earlier of the times at which U and D go high.

As described in the previous section, 7pes is chosen to be longer than the
maximum value of AT, + T expected to occur when the PLL is locked, in which case
the PFD output signals are as illustrated in Fig. 1.8. When the PLL is in the process of
acquiring lock, AT, + T is usually longer than Tps. In this case U coincides with Upeq
and D coincides with D4, so the current from the charge pump is the same as in the
conventional case. Therefore, the charge pump linearization technique does not affect

the behavior of the PLL during acquisition.
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As shown in Fig. 1.11, and explained in the previous section, the charge pump
consists of two halves, one controlled by U and D, and the other controlled by U,es and
Dyp.q. Each half consists of positive and negative 640 pA cascode current sources with
triode MOS switches near the supply rails [26]. The pMOS transistors that make up
the switches and cascode current sources have twice the width and half the length of
the corresponding nMOS transistors so as to approximately match the loading on the
PFD output lines and the switching speeds of the positive and negative current
sources. The chains of inverters are scaled to have a common propagation delay so the
inverted copies of U and U, presented to the pMOS switches are properly aligned

with the non-inverted copies of D and D, presented to the nMOS switches [24].
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Fig. 1.12: The DAC pulse generator and the kth coarse 1-bit current pulse DAC circuits.

Figure 1.12 shows a simplified circuit diagram of the kth coarse 1-bit current
pulse DAC and the pulse generator shared by all the 1-bit current pulse DACs. The
switched current sources in the coarse and fine 1-bit current pulse DACs, respectively,
are 40 pA and 5 pA scaled down versions of the those in the charge pump. The pulse
generator contains a copy of the conventional portion of the PFD described above and
four chains of scaled inverters similar to those that drive the charge pump switches.
The PFD is driven by the two divider output signals, so each reference period its top
output goes high for a duration of 4 VCO periods plus Tp, and its bottom output goes
high for a duration of only 7p. Inverted and non-inverted copies of these signals are
presented to each 1-bit current pulse DAC to drive the pMOS and nMOS switches,
respectively. In each case, the 1-bit DAC input causes one of these signals to be

presented to the MOS switch and the other to be presented to a dummy MOS switch.
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The purpose of the dummy MOS switches is to maintain data-invariant loads on the

pulse generator output lines.

Voltage Controlled Oscillator

The on-chip VCO is a negative-g, CMOS LC oscillator designed to have a
center frequency of 2.448 GHz. It incorporates a differential inductor implemented as
a square spiral of metal layers 5 and 6 sandwiched together. A MOS varactor provides
200 MHz/V tuning over a 1 V range. The differential VCO outputs are ac-coupled to
two resistively loaded differential source-coupled buffers: one to drive the divider and
one to drive 50 Q loads off the chip. A configuration option allows for the use of an
off-chip VCO in place of the on-chip VCO; the on-chip VCO can be disaBled and a

direct connection is provided from a pin to the input of the divider buffer.
Loop Filter

The loop filter components are: R = 641 Q, C; = 100 pF, and C; = 2.4 nF, of
which R, C;, and 60 pF of C; are off-chip. The remaining 40 pF of C; is on-chip to
help reduce the voltage variations caused by fast charge pump current switching
through the inductive bond wires. Given that the divider modulus is approximately
51, the VCO gain is 200 MHz/V, and the nominal charge pump current magnitude is
2x640 pA, these component values give rise to a PLL bandwidth of approximately 460

kHz.

48 MHz Digital Logic

The 48 MHz digital logic was implemented using a standard cell library
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available to the authors in which the transistors have a minimum gate length of 0.25
pm. While a more compact and lower power design would have been possible with a
standard cell library optimized for the 0.18 pum process, the project schedule did not

permit such optimization.

V. MEASUREMENT RESULTS

Three copies of the IC were tested on separate circuit boards. The performance
of each part was verified for all 79 Bluetooth channels with the phase noise
cancellation and charge pump linearization techniques individually and simultaneously
enabled and disabled with and without FSK modulation. On each Bluetooth channel
and each part, the phase noise cancellation technique was found to reduce the spot
phase noise by 16 dB or better, and the charge pump linearization technique was found
to reduce the spurious tone floor by 8 dB or better. With both techniques enabled, each
part was found to achieve a worst-case phase noise of —121 dBc/Hz at 3 MHz offsets,
a worst-case spurious tone level of —54 dBc, and a worst-case in-band noise floor of —
96 dBc/Hz. The measured results are summarized in Table 1.2, and a die photograph

is shown in Fig. 1.13.
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Techniques Disabléd;/,
Effect of charge pump linearization
technique on phase noise

Design Details:
Technology TSMC 0.18um 1P6M CMOS
Package 5 x 5 mm?, 32 pin TQFP
T

Die Area 123:0%(3;120?1;/ mm” (includes pads and ESD
Frequency Range 2402 +kMHz, £=0,1,2,...,78
Crystal Reference 48 MHz
Loop Bandwidth 460 kHz
Meaéﬁred;@;urrent Consumption, Vpp, and Area by Block:
VCO 30mA@19V 0.4 mm’
PFD, CP & DAC 103mA@1.9V | 0.04 mm’
Divider 67TmA@ 18V 0.4mm> | 67mW
Digital Logic 88mA@22V 0.68 mm’
Internal VCO Buffer 56mA@1.8V 0.013 mm?®
Crystal Oscillator Buffer 41mA@22V 0.04 mm* 21 mW
External VCO Buffer 69mA@18V | 0.015mm® | ©

- Measured Perf : .

M\Vi th Bgt\ly%f:hilasﬁezeg:ﬁzgce i On-chip VCO: l Off-chip VCO:
Phase Noise @ 50 kHz -96 dBc/Hz —96 dBc/Hz
Phase Noise @ 3 MHz —121 dBc/Hz -127 dBc/Hz
Largest Fractional Spur @ <2 MHz -54 dBc @ 1 MHz —45 dBc @ 1 MHz
Largest Fractional Spur @ >2 MHz -56 dBc @ 2 MHz -58 dBc @ 2 MHz
Largest Fractional Spur @ > 3 MHz -57 dBc @ 3 MHz —62 dBc @ 3 MHz
Reference Spur —65 dBc —66 dBc

e = : — et
Phase Noise @ 50 kHz -96 dBc/Hz —96 dBc/Hz
Phase Noise @ 3 MHz —107 dBc/Hz -107 dBc/Hz
Largest Fractional Spur @ <2 MHz —40 dBc @ 1 MHz -35dBc @ 1 MHz
Largest Fractional Spur @ >2 MHz —44 dBc @ 2 MHz —46 dBc @ 2 MHz
Largest Fractional Spur @ > 3 MHz —49 dBc @ 3 MHz -52 dBc @ 3 MHz
Measured Performance With Both On-chip VCO: Off-chip VCO:

None observed

None observed

Effect of AX noise cancellation
technique on fractional spur level

None observed

2-9 dB spur reduction
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Fig. 1.13: Die photograph.

Figs. 1.14 and 1.15 show representative PSD plots measured with the PLL set
to the 2.431 GHz Bluetooth channel and the phase noise cancellation and charge pump
linearization techniques both enabled and both disabled. Fig. 1.14 shows PSD plots of
the PLL output signal and phase noise with the PLL operating without modulation.
Fig. 1.15 shows PSD plots of the PLL output signal for the PLL operating with 1 Mb/s
FSK modulation. In both cases the phase noise improvement resulting from the
techniques is evident. Similar results are seen for each part on every Bluetooth

channel.
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Fig. 1.14: Measured PSD plots of the output signal and phase noise of the PLL tuned to 2.431
GHz without modulation.
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Fig. 1.15: Measured PSD plot of the output signal of the PLL tuned to 2.431 GHz with 1 Mb/s
FSK modulation.

Fig. 1.16 shows an eye pattern from the PLL with 1 Mb/s FSK transmit
modulation and both techniques enabled measured by down-converting the PLL output
signal to an intermediate frequency through a spectrum analyzer and frequency
demodulating the result using a vector analyzer. The minimum frequency deviation is
approximately 120 kHz and the zero-crossing error is less than one-eighth of the
symbol period as required by the application. Again, almost identical results were
observed for each part on every Bluetooth channel.

The spurious tone reduction achieved by the charge pump linearization

technique is most easily observed when the PLL is tuned to Bluetooth channels that are
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Fig. 1.16: Measured eye pattern corresponding to the output signal shown in Fig. 1.17.

close to integer multiples of the 48 MHz reference frequency. In such cases a is small,
so the spurious tones in the PLL phase noise resulting from non-linearity, which occur
at multiples of af,.;, are not highly attenuated by the lowpass transfer function of the
PLL. Fig. 1.17 shows PSD plots of the PLL output signal with and without the charge
pump linearization technique enabled for such a case, i.e., for the VCO tuned to 2.453
GHz so that af,,;= 5 MHz. The overlaid plots are intentionally displaced in frequency
to make the spurious tone reduction visible.

As mentioned in the previous section, the VCO and charge pump were
designed to operate from a 2.7 V supply with a VCO center frequency of 2.448 GHz,

but the measured VCO center frequency turned out to be 2.25 GHz. To force the VCO
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Fig. 1.17: Measured PSD plots of the PLL tuned to 2.453 GHz with the charge pump linearization
technique enabled and disabled.

into the Bluetooth frequency range the VCO and charge pump, which share the same
power supply lines, had to be run from a 1.9 V supply during testing. It is likely that
this increased the phase noise by at least 3 dB and increased distortion because several
critical transistors were forced into their triode regions. Nevertheless, as described
above and summarized in Table 1.2 the IC performed well.

Each of the tested parts met the Bluetooth phase noise and eye pattern
specifications on all channels. They also met the Bluetooth spurious tone
specifications except for a small number of channels on which the spurious tones were

at most 3 dB above the specification. The slightly elevated spurious tone level is a
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result of having to run the VCO and charge pump from a 1.9 V supply instead of the
2.7 V supply for which it was designed. In support of this assertion, the PLL
configured with an off-chip VCO and the charge pump operating from a 2.7 V supply
was found to meet all required speciﬁc’ations on all channels (see Table 1.2).

The circuitry was designed conservatively to help ensure first-silicon success
and clearly demonstrate the phase noise cancellation and charge pump linearization
techniques. In particular, as tabulated in Table 1.1, large noise margins were used in
the designing the circuits to ensure that the phase noise below 5 MHz would be
dominated by residual AX quantization noise and spurious tones resulting from non-
linearities.  Consequently, the measured in-band phase noise is much lower than
required to meet the Bluetooth specifications. While this design strategy has served
the purpose of demonstrating the phase noise cancellation and charge pump
linearization techniques, the current consumption of the PLL could be reduced
significantly by optimizing the analog circuitry so that its in-band noise contribution is

closer to the Bluetooth specification.

VI. CONCLUSION

A phase noise cancellation technique and a charge pump linearization
technique have been proposed and demonstrated as enabling components in a
wideband CMOS AX fractional-N PLL configured as a Bluetooth wireless LAN
transmitter. The phase noise cancellation technique relaxes the fundamental tradeoff
between phase noise and bandwidth in conventional AX fractional-N PLLs and does

not require tight component matching or calibration. Theoretical and experimental
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results have been presented that indicate the technique enables a ten-fold increase in
PLL bandwidth without an increase in spot phase noise. The charge pump
linearization technique provides a simple means of improving the spurious
performance of wideband fractional-N PLLs that avoids the bandwidth limitations of

previously presented techniques involving analog feedback circuits.
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Chapter 2

Phase Noise Cancellation Design Tradeoffs in Delta-
Sigma Fractional-V PLLs

Sudhakar Pamarti and Ian Galton

Abstract— A theoretical analysis of a recently proposed phase noise cancellation technique that
relaxes the fundamental tradeoff between phase noise and bandwidth in AX fractional-/V PLLs is
presented. The limits imposed by circuit errors and PLL dynamics on the phase noise and loop
bandwidth that can be achieved by PLLs incerporating the technique are quantified. Design
guidelines are derived that enable customization of the technique in terms of PLL target

specifications.

I. INTRODUCTION

A phase noise cancellation technique is presented in [1] that employs a digital-
to-analog converter (DAC) cancellation path to suppress the phase noise arising from
quantization error in a delta-sigma (AX) fractional-N phase locked loop (PLL). The
technique has been shown to allow a ten-fold increase in the PLL bandwidth without
increasing the spot phase noise arising from AX modulator quantization noise for a
specific PLL architecture and application: a 2.4 GHz second-order AX fractional-N
PLL with a 460 kHz minimum bandwidth and 1 Mb/s in-loop FSK modulation for a
Bluetooth wireless LAN compliant direct conversion transceiver. This paper presents
a theoretical analysis of the phase noise cancellation technique with the goal of
facilitating its application to realize other wide bandwidth, low noise AX fractional-NV

PLLs.

38
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Fig. 2.1: A high level functional diagram of the AX FNPLL presented in {1].

Circuit errors and the dynamics of the PLL impose limits on the phase noise
and bandwidth achievable using the phase noise cancellation technique. The technique
employs quantization noise shaping, mismatch noise shaping, and one-bit dithering to
significantly reduce these limits compared to prior art [2, 3, 4, 5, 6]. The paper
quantifies the effects of noise shaping and dithering on the PLL phase noise, presents
guidelines to customize the phase noise cancellation technique as a function of the
PLL target specifications, and presents guidelines to reduce the hardware complexity
of the technique without adversely effecting the PLL phase noise.

Section II presents an overview of the phase noise cancellation technique and
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describes the various ways in which it can be customized. Sections III and IV analyze
the limits imposed on the effectiveness of the phase noise cancellation technique by
circuit gain errors and PLL dynamics, respectively. Sections V and VI present methods

for reducing the hardware complexity of the technique.

II. OVERVIEW OF PHASE NOISE CANCELLATION TECHNIQUE

A high level functional diagram of the integrated circuit (IC) presented in [1] is
reproduced in Fig. 2.1. It includes all the components of a conventional second-order
AX fractional-N PLL and some additional components which constitute the phase noise
cancellation technique. These additional components are indicated by the shaded
blocks in the figure. The segmented mismatch shaping DAC encoder and the two
banks of 1-bit current DACs together constitute a DAC, which is henceforth referred
to as the cancellation DAC. In the absence of the phase noise cancellation technique,
the quantization noise, eg[n], from the second-order digital AX modulator effectively
injects a charge sample, Qp[n], into the loop filter each reference period, thereby
perturbing the VCO and causing phase noise. The cancellation technique suppresses
this phase noise by nominally injecting —Qp[n] into the loop filter. Aside from a

constant offset, the sequence of charge samples i1s well modeled as

Ooln] =TTy S eolK) (1)

k=n,
where Icp 1s the nominal charge pump current, Tyco is the nominal period of the PLL

output, and n, <n is an arbitrary starting time index. The phase noise cancellation

technique generates an estimate of —Qp[n] by digitally computing eg[n], reducing its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

bit-width using the third-order digital AYX modulator, accumulating the result, and
using the cancellation DAC to generate proportional analog charge samples. The
cancellation DAC generates charge samples by injecting appropriately scaled current
pulses which are four VCO periods wide. The combination of the third-order digital
AY modulator, the integrator, and the cancellation DAC is referred to as the DAC
cancellation path. Note that while the pseudo-random bit generator is a part of some
conventional AX fractional-N PLLs, it is shaded in the figure to emphasize its essential
role in the phase noise cancellatioﬁ technique. Later sections of the paper describe the
role in detail.

The goal of the phase noise cancellation technique is to remove all of Qg[n]
without introducing other sources of error. However, gain mismatches between the
charge pump and cancellation DAC cause a portion of Qp[#] to be left behind in the
loop filter every reference period. Similarly, requantization of ep[n] in the cancellation
path, mismatches among the 1-bit current DACs, and 1-bit dithering contribute
additional error charge along with that left behind by imperfect cancellation of Qp[#].
In spite of these imperfections, the system in Fig. 2.1 achieves a low phase noise!
while maintaining a minimum bandwidth of 460 kHz. In order to achieve the same
peak spot phase noise without the phase noise cancellation technique, a PLL
bandwidth of no more than 50 kHz would be required. This bandwidth extension is

the principal benefit of the phase noise cancellation technique. The success of the

! For example, at 3 MHz from the PLL center frequency the phase noise is —127
dBc/Hz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

technique results from several architectural choices:
e use of a second-order digital AX modulator to choose the frequency division
ratios,
e use of cancellation DAC current pulses with durations of 4 VCO periods,
o use of a third-order digital AX modulator with which to requeantize eg[n] to 8
bits,
e use of a segmented mismatch shaping DAC encoder, and
s use of one-bit dither.
As is shown in the remainder of the paper, the first two choices determine the
bandwidth and phase noise performance limits of the cancellation technique. The other
choices reduce the hardware complexity of the DAC cancellation path while ensuring
that phase noise due to the requantization error, dither, and mismatches among the 1-
bit DACs is free of spurious tones and otherwise negligible.

The analysis offers design guidelines for how to customize the phase noise
cancellation technique to AX fractional-N PLLs of other specifications. For instance,
one might use a second-order digital AL modulator to requantize eg[n] instead of a
third-order AZ modulator, or requantize eg[n] to 4-bits instead of 8-bits. The analysis
is performed in the context of a system that uses the same general architecture as
shown in Fig. 2.1 but possibly differs in the parameters of the PLL and the above
mentioned choices. Expressions are derived that predict the power spectral density
(PSD) of the PLL phase noise caused by errors in the DAC cancellation path. These

expressions are explicit functions of most of the above mentioned choices. For
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example, one of the expressions is a function of the duration of DAC current pulses. A
designer can use the expressions to pick values for the above choices that ensure that
the PLL phase noise is small enough to meet specific requirements. To avoid
burdening the designer with too many equations, qualitative recommendations are
presented to serve as design guidelines in customizing the phase noise cancellation
technique.

For ease of reference, the digital AX modulator used to choose the sequence of
division ratios is henceforth called a fractional modulator, and the digital AX

modulator which requantizes eg[#] is called the requantization modulator.

III. FRACTIONAL MODULATOR ORDER

Any mismatch between the charge pump current and the cancellation DAC
current causes phase noise in the PLL output. This phase noise tends to dominate the
contributions of other errors in the cancellation path such as requantization and
mismatches among the 1-bit DACs. This section studies the impact of the order of the
fractional modulator, L, on the phase noise caused by the mismatch. The
requantization of ep[n] is ignored to simplify analysis.

Suppose that Ip4c in Amperes is the nominal gain of the cancellation DAC, and

Xp4cln] is its (unitless) input sequence. Then, the cancellation DAC generates current
pulses which have nominal current values i,,.[n]=~I,,xp,[n]. Since the
requantization of eg[n] is ignored, it follows from Fig. 2.1 that x,,.[#] is just the sum

of all the past values of eg[n]:
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Fig. 2.2: A model for the cancellation technique including a gain error in the cancellation path.

Xpacln] = 'i € [k].

Suppose that Tpyc is the nominal duration of the cancellation DAC current pulses.

Therefore, the charge added to the loop filter by the cancellation path is

n-1
OQancalP1=ipsc[n] Tpye =—IpscTpac Z eQ[k]’

k=n,
It follows from (1) that to cancel Qp[n], Tpsc and Ipsc must satisfy IpscTpsc =

IcpTyco. Suppose that there is a normalized mismatch, £, between the charge pump

current and Ipyc i.e., the cancellation DAC has a gain of (1 + f)Ipc instead of Ipyc.

Then,

Ouealn] =~ (14 B) I Tyeo 3 K] @)

k=ny

Therefore, Qcancei[n] = —Qp[n], and a portion of Qp[r] remains in the loop filter and

causes phase noise. The order of the fractional modulator, L, determines the severity

of this effect.
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Phase noise contribution

Fig. 2.2 presents a signal processing model that predicts the phase noise as a
function of B. Note that except for the shaded portion, the model is well known [7,
8]. The shaded portion represents the DAC cancellation path when requantization of
eg[n] is ignored, as given by equation (2). The model output is the PLL phase noise.

The lowpass filter in the model represents the response of the PLL to charge samples

added to its loop filter. It is expressed as (277/1.,T;c0 ) 4, () where Ay(s) is the well

known, closed-loop transfer function from the reference to the output in a PLL,
normalized to unity gain in the pass band [7, 9]. It is determined by the parameters of
the PLL, and its —3dB cut off frequency is the bandwidth of the PLL. For instance, the
PLL core in Fig. 2.1 results in

1 1..RK.. C
A (s)~ , where K=—L ¥ and p=1+—2.
o(5) 1+5/K +5*/bK? 27 (N +a) C,

The effect of adding a sequence of charge samples to the loop filter is modeled by
converting the sequence into a continuous-time signal and applying the result to the
input of the low pass filter. Since Qp[n] and the cancellation charge samples,
Ocancel{n], are both added to the loop filter, they are converted into continuous-time
charge signals, summed and applied to the input of the low pass filter. The relation
between Qp[n] and the quantization noise from the fractional modulator, eg[#], which
is given by (1), is explicitly shown in the model. The quantization noise, eg[n], is

modeled as an additive error source, e;[n], passing through L discrete differentiators.

As suggested in [10], in non-overloading AZ modulators of order L > 2, a one-
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bit dither signal added to the least significant bit (LSB) of the input ensures that e;[n]
is white, and uniformly distributed over the range —0.5 to 0.5 with a variance of 1/12.
The pseudo-random bit generator shown in Fig. 2.1 provides this one-bit dither?. For
er[n] to have these properties, it is essential that the fractional modulator has enough
output levels such that its internal quantizer never overloads. For instance, in [1] a
fractional modulator of order L = 2 with a five-level quantizer is used to achieve an
input no-overload range of —0.5 to 0.5.

The PSD of the PLL phase noise due to the gain mismatch follows from the

2 sin( 2 j
fref

where f.r is the reference frequency and f'is the frequency offset relative to the PLL

model:

2(1-1)

7 |4, (jorf ) rad®/Hz, 3)

Srer

Sf(jz;zf)=ﬂ23

center frequency. Note that with f = 1, equation (3) reduces to the well known
expression for the PSD of the phase noise due to quantization noise in a conventional
Lth order AY fractional-N PLL [7, 8]. Equation (3) can be used to determine the value
of L that satisfies the phase noise and bandwidth specifications for an expected 4. For
example, in the system in Fig. 2.1, f..,r= 48 MHz, the normalized mismatch is expected
to be 10% i.e., f = 0.1, and the required bandwidth is 460 kHz [1]. The target
specifications require that the PLL phase noise is less than —127 dBc/Hz at a 3 MHz

offset from the PLL center frequency. The poles and zeros of A4s) were chosen to

2 The one-bit dither also causes phase noise, which is usually negligible and is
considered in a later section.
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Fig. 2.3: Illustration of bandwidth extension made possible by the phase noise cancellation
technique.

ensure that the PLL has a 67 degree phase margin. Consequently, |44j27f)| is about —
19 dB at f= 3 MHz. Substituting these values? into (3) indicates that while L = 2
meets the phase noise specification, L = 1 does not. Appendix C presents a convenient
set of equations for the design of a L™ order AY. fractional-N PLL with a required loop

bandwidth, phase margin, and acceptable quantization induced phase noise.
Recommended fractional modulator order

Often, the above calculation has to be repeated for a number of offset

frequencies, f, to choose an acceptable value for L. Moreover, many of the PLL
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parameters which effect the above calculation (e.g., the poles and zeros of 44s), and
the reference frequency) are also choices available to the designer, necessitating many
iterations of the above calculation to complete the design. Therefore, choosing a value
for L is not always as straightforward as in the above example. This section simplifies
the problem by showing that L = 2 or 3 are the best choices for many AX fractional-N
PLLs.

It follows from (3) that the phase noise cancellation technique reduces the spot

phase noise caused by eg[n] in a AX fractional-N PLL by —20log,, |ﬂ| dB. The

reduced phase noise can be traded off to increase the PLL bandwidth. Fig. 2.3
illustrates the tradeoff for the system depicted in Fig. 2.1. The PLL parameters are
chosen such that 4 4s) effectively has two poles—one at its passband edge and the other

at roughly five times the bandwidth. The top and bottom curves in Fig. 2.3(a) are plots

of Sf (j27rf) where Ays) has a 48 kHz bandwidth, L = 2, and # =1 and 0.1,

respectively. In other words, they respectively represent phase noise PSDs* in a
second-order AX fractional-N PLL without the DAC cancellation path and with a 90%
accurate DAC cancellation path. The 20 dB reduction implies that the 4 4s) can now
have a 10-fold wider bandwidth, namely 480 kHz, and still maintain the same peak
spot phase noise, as indicated by the middle curve in the figure. A similar bandwidth
extension is possible for a third-order AZX fractional-N PLL, as illustrated by Fig.

2.3(b). However, note that the bandwidth extension in this case is only 3-fold.

3 Note that the PSD expression must be divided by 2x to convert to dBc/Hz values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

Similarly going to a higher order than L = 3 further reduces the bandwidth extension
offered by the technique. Since a wide bandwidth is desirable for a variety of reasons,
the achievable bandwidth extension is considered to be the principal benefit of the
phase noise cancellation technique [1]. Choices L = 2 or 3 offer the greatest
bandwidth extension without complicating the requirements of other components of
the PLL.

Suppose that without the cancellation technique, 44s) has a bandwidth BW;,,
and achieves a certain peak spot phase noise. Suppose that the phase noise reduction
allows As) to have a wider bandwidth BW,., while maintaining the same peak spot

phase noise. The achievable bandwidth extension is then defined as A = BW,,, /BW,, .

The achievable bandwidth extension is expected to depend on L, and the locations of
the poles and zeros of 44s). However, as shown in Appendix A, an approximate but

reasonable estimate for the achievable bandwidth extension is

A~ i, 4)
which is independent of As). For instance, for § = 0.1, 10-fold, 3-fold and 2-fold
bandwidth extension is possible for AX fractional-N PLLs with L = 2, 3 and 4
respectively. This is illustrated by the plots shown in Fig. 2.3. It follows from (4) that
only a small bandwidth extension is achieved for orders L > 3.

Fractional modulators of order L > 3 are undesirable for other reasons as well.

It can be shown [11] that they need more output levels than lower order modulators to

4 The PSD plots in all the figures in this paper are scaled to dBc/Hz values.
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ensure that e;[n], and, hence, the PLL phase noise have no spurious tones. This
complicates the design of the frequency divider because more output levels imply a
wider range of frequency division ratios. The resulting charge pump current pulses are
also wider and contribute more charge pump noise. Another problem arises because
charge pump current pulses do not occur uniformly in time-the start of a charge pump
pulse sometimes coincides with a rising edge transition of the reference signal, while
at other times it coincides with the rising edge transition of the divider output signal.
This time-variant behavior has the effect of applying a non-linearity to the quantization
noise, eg[n]. Consequently, high frequency components of eg[n] fold to lower
frequencies and increase close-in phase noise. The effect is aggravated for L > 3
because the spectrum of eg[#] is such that it has more power in the higher frequencies.

Fractional modulators of order L = 1 are not recommended either since they

cause a lot of phase noise close to the PLL center frequency. This is evident from the
absence of any zeros at dc in the expression for Sf ( j2rf ) in equation (3) when L =

1. The reason is that when L = 1, the phase noise caused by eg[n], even after
cancellation, does not have the familiar high-pass spectral shape. The example
calculation at the end of previous subsection, which picked L =2 over L = 1, illustrates

this claim.

IV. DAC CURRENT PULSE DURATION

The duration of the DAC current pulse, Tp4c, affects the PLL phase noise in

two ways. First, any static error in the DAC current pulse duration causes incomplete
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removal of Qg[n], just like the gain mismatch, f3, considered in the previous section.

Second, the non-zero width of the DAC current pulses allows Qg[n] to disturb the
VCO before being removed by the DAC current pulses. This phenomenon is
described in detail later. First, the error in Tpc is considered. Requantization error is

ignored in the following discussion.
Gain errors due to imperfect pulse timing

Suppose that the AX fractional-N PLL changes from one center frequency to a

new center frequency such that the nominal period of the VCO changes from 7, to

*

T,., - In this case, the charge effectively added to the loop filter by eg[n] is:

QQ["] = ICPTV*CO "Z eQ[k]'

k=n,

As described previously, to remove Qp[n] it is necessary to ensure that
IpT0 =IpicTosc- If Toac does not change with Tyco, this does not happen.
Consequently, a portion of Qg[n] is left in the loop filter, similar to the effect of a
normalized gain mismatch, . The recommended solution is to make Tp4c equal an
integer number of VCO periods, i.e., Tpsc = MpacTvco where Mpyc 1s an integer.
Then, as Tyco varies so does Tpac and 1,7y, =1, Tpsc 18 satisfied. The frequency

divider, which operates by counting an integer number of VCO periods, can be easily

modified to generate a pulse whose duration is equal to a specified integer number of

VCO periods.

Even so, inevitable timing errors in the circuitry that generates the cancellation
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DAC current pulse cause its duration to be (7). +AT,,.) resulting in a normalized
gain error of AT),./T,,. in the cancellation path. The PLL phase noise contributed
by this gain error can be predicted by adding AT, /Ty, to fin (3):

By =B+ ATpuc .

TDAC
Usually, these timing errors do not scale with Tp4c. For example, suppose the circuitry
that generates the cancellation pulse has a timing error of at least 20 ps3, and that the
DAC current pulse is four VCO periods wide. At 2.4 GHz, this results in a normalized
gain error of 1.2%. A simple way to ensure that these timing errors do not limit the

PLL phase noise is to choose a wide cancellation DAC current pulse to ensure that

ATy, [The < B, but as described below this causes other problems.

5 This is not a pessimistic estimate considering that a typical inverter delay in 1.8 Volt,
0.18um CMOS technology is about 60ps.
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Fig. 2.4: Mechanism of imperfect phase noise cancellation.

Non-zero DAC current pulse width

Wide cancellation pulses are not very effective in canceling the phase noise
contributions of narrow charge pump pulses. Even if they remove Qp[r] completely,
they disturb the VCO in doing so and cause phase noise. This phenomenon is
illustrated in Fig. 2.4, where, for the sake of simplicity, dither and modulation signals
are ignored, it is assumed that the loop filter comprises just one capacitor i.e., R=C,; =
0 in Fig. 2.1, and the PLL is assumed to be in frequency and phase lock. The

waveforms labeled icp and ip4c in Fig. 2.4 represent the current pulses that are added
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Fig. 2.5: A model for the cancellation technique including the effect of finite DAC pulse width.

to the loop filter by the charge pump and the cancellation path respectively. The
waveforms labeled v,y and ¢, respectively, represent the input voltage of the VCO
and the PLL phase noise, ¢,,(f). Assuming that the cancellation path has no gain error,
the charge added by ip4c, i.e., Qcancel[n], exactly cancels out that added by icp, i.e.,
Qoln], as illustrated by ve, returning to its original value at the end of each
cancellation DAC pulse. However, the ramp-like voltage transients in v, disturb the
VCO. These disturbances are accumulated into a residual phase, as shown in the
figure.

If the charge pump and the cancellation DAC pulses were of the same width, or
better, if they were both impulses, the phase noise cancellation would have been
complete. While the very narrow charge pump pulses can be modeled as impulses, the
same is not true for the wide cancellation DAC pulses. As the figure suggests, the
wider the cancellation DAC pulses, the larger the voltage transients and the residual
phase. The effect of the non-zero width of the cancellation DAC pulses can be

incorporated into the model by adding a zero-order hold block in the cancellation path,
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as indicated by the shaded block in Fig. 2.5. Appendix B justifies this modification

and clarifies the inherent assumptions. Using the approximation® e™* ~1-x +x’ / 2,
the zero-order hold block can be reduced to a left plane zero, (1+s7),./2).

Consequently, an expression for the PSD of the residual PLL phase noise can be

2sin (ﬂ]
St

where it is assumed that || < 1. The effect of non-zero Tpc is represented by the

obtained from the model:

2(1-1)

s (1221) {7+ (T 4,727 rad’ bz, )

ref

7 fT,,~ term in the expression.

¢ The approximation is good for frequencies, f < 2/T},,. . For instance, in the system

in Fig. 2.1, in which T,,.=4T,,, the approximation is good for frequencies,

S < freol2.
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Fig. 2.6: Predicted and simulated phase noise PSD for the cancellation technique for DAC pulses
of duration (a) 32 (b) 16 (c) 8 and (d) 4 VCO periods.

The validity of equation (5) is demonstrated in Fig. 2.6 in which plots of
Sf Tac ( j2rf ) are compared to simulated phase noise PSDs. The simulations

correspond to a second-order AX fractional-N PLL with a 480 kHz bandwidth and an

ideal cancellation path (i.e., a DAC cancellation path without requantization or

component errors). The smooth curves are plots of S} (j27z f) for Tpsc =4, 8, 16

and 32 VCO periods, and the ragged curves are simulated phase noise PSDs for the
same set of values of Tpyc. For comparison, simulated and theoretical plots of phase

noise PSDs for the same PLL, but without the cancellation path, are included. The
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1/ /? phase noise deviations exhibited by the simulated PSDs at low frequency offsets
are due to the one-bit dither at the input of the fractional modulator in Fig. 2.1.

The small fractional spur visible in the simulated curves is not predicted by (5).
It is caused by the non-uniform occurrence of the charge pump pulses. The start of a
charge pump pulse varies from one reference period to another; while sometimes it
coincides with the rising edge transition of the reference waveform, at other times it
coincides with the rising edge transition of the divider output waveform. This time-
variant behavior is responsible for the spurious tone. The spurious tone occurs in the
conventional AX fractional-N PLL as well, but is masked by the phase noise caused by
ep[n]. When the phase noise cancellation technique removes most of eg[n], this
spurious tone is uncovered. The spurious tone is, however, so small that it is often
dominated by spurious tones caused by other non-linearities in the PLL.

Equation (5) can be used to choose a Tp4c which satisfies the phase noise and

bandwidth specifications for an expected normalized gain mismatch, £. Alternatively,
Tp4c may be chosen such that 7 f, T, ,. < f#, where f. is the critical frequency offset

at which it is most difficult to meet the phase noise requirements of a particular
AX fractional-N PLL. For instance, for the system in [1], fox = 3 MHz, and the

expected gain mismatch is 10% i.e., = 0.1. Therefore, the constraint implies that

Tpsc < 10 ns or about 26 VCO periods. The choice used in the system is Tpsc = 4

VCO periods. The corresponding phase noise is indicated by the bottom most curve in
Fig. 2.6 which is about 30 dB below the phase noise requirement of —127 dBc/Hz of

the system.
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Recommended cancellation DAC current pulse duration

Before recommending a choice for Tpyc, it is useful to enumerate the
inferences of the two preceding subsections:
e Tp,c must be an integer number of VCO periods, Tpac = Mpac*Tvco,

o Tp4c must be large enough so that AT,,./T},. < S

¢ Tpsc must be small enough that = f, . T, < B
The recommended duration is Tpc = Mpac* Tyco, where Mp,c 1s an integer chosen as
a compromise between the last two constraints. For instance, suppose that the
expected normalized mismatch is 10% i.e., §= 0.1, the timing error is ATpyc = 40 ps,
the nominal VCO period, Tyco, is approximately 400 ps, and the critical frequency

offset is fiy = 3 MHz. Then the last two constraints, respectively, require that

Mpyc>1 and Mpyc < 26. In[1] a good compromise was found to be Mp,c = 4.

V. REQUANTIZATION

The purpose of requantizing eg[#n] is to reduce the required performance of the
cancellation DAC. For instance, in Fig. 2.1, if ep[n] were not requantized, the
cancellation DAC would have to be a 15-bit DAC. Moreover, its LSB would
correspond to a current on the order of a few nA. Requantization allows the use of
only a 7-bit DAC with an LSB corresponding to 10 pA. The penalty is an increase in
the PLL phase noise.

Suppose that a unity gain, Mth order digital AX modulator requantizes ep[n]
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Fig. 2.7: A model for the cancellation technique including the requantization AX modulator.

and that the requantized sequence, €,[n], has a least significant bit (LSB) of A,, . For
instance, in Fig. 2.1, é,[n] is an 8-bit number taking on values in the range -2 to 2
corresponding to an LSB of 1/64. The requantization error, &,[n]-e¢,[n], causes an

error charge to be added to the loop filter every reference period. The amount of the

phase noise contributed by requantization is determined by M and A,,. The

relationship is derived below ignoring the effects of non-zero cancellation pulse widths

to simplify the analysis.
Phase noise contribution

The effect of requantization on the PLL phase noise is incorporated into the
model in Fig. 2.7 by adding a requantization error term as indicated by the shaded
portion in Fig. 2.7. The requantization error is modeled as an additive source, epn],
passing through M discrete differentiators. Using analyses similar to those presented
in [10], it can be shown that one-bit dither added to the input of the fractional

modulator ensures that ep[n] is white, uncorrelated with e;[n] and its delayed versions,
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is uniformly distributed from —0.5A,, to 0.5A,,, and has a variance of AfeQ / 12. For

this to be true, it is essential for the Mth order AX modulator to have enough output

levels such that its internal quantizer never overloads. An expression for the PSD of

the phase noise contributed by the requantization error follows from the model:

Zsin{ﬂf]
Jrs

where it has been assumed that S is much less than unity. Equation (6) can be used to

y 2(M-1)

AT
S;Q (j2nf)= 3RQ
ref

2
H

‘A¢(j27zf)

(6)

determine values of M and A,, which satisfy the phase noise and bandwidth

specifications.

Recommended M and A,

The recommended choices are M = L or L + 1, where L is the order of the
fractional modulator, and the requantization LSB satisfy A,, <. As shown below,
these choices ensure that the phase noise caused by requantization error is negligible
compared to that caused by DAC cancellation path gain mismatch. This in turn
ensures that requantization does not limit the phase noise performance of the
AX fractional-N PLL.

In the absence of requantization, non-zero cancellation pulse width effects,

and other DAC errors, the lowest phase noise which the cancellation technique can

guarantee is Sf ( jrf ) given in (3). Therefore, choosing M and A,, such that

S8 (j2nf) < SJ(j2xf), ensures that requantization error does not limit phase

noise performance. In this respect, it is useful to compare the two quantities:
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One choice that ensures that the S, (j27f) < Sy (j27f) isM =L and Ay, < 5.

However, by using M > L, it might be possible to requantize more coarsely so as to
further reduce the required performance of the cancellation DAC.

The possibility is illustrated in Fig. 2.8 which corresponds to a 480 kHz
bandwidth, second-order AZX fractional-N PLL with the phase noise cancellation

technique. The top curve is the expected PLL phase noise due to a 2% gain etror and

no requantization in the cancellation path. Requantization will not noticeably increase
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Fig. 2.9: A model for the cancellation technique including the segmentation of the DAC.

the PLL phase noise if S;°(j27f) is restricted to the shaded region, which starts
about 3 dB below the top curve. Plots of S;°(j27f) fororders M=L, L+ 1and L +
2 (i.e.,, M=2,3 and 4), and for specific values of A,, are included. In each case, the

largest Ap, was chosen that ensures that S;° (27 /) lies mostly within the shaded

region. The choices M > L allow coarser quantization, but for high frequencies the

requantization contributions are larger than those due to the gain error alone. At least

for M = L + 1, this is not particularly worrisome since S, (27 /) is still much less

than the peak spot phase noise.

VI. MISCELLANEOUS FACTORS

Segmented mismatch shaping DAC encoder

The combined output of the two DAC banks can be modeled using an offset, a
gain error, and a normalized additive error source, epsc{n], as shown by the shaded

blocks in Fig. 2.9. The DAC error, epyc[n], is caused by mismatches among the 1-bit
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DAC elements. It causes phase noise. The constant offset has no noticeable effect on
the PLL phase noise, the gain error has already been considered in Section III.

The segmented mismatch shaping encoder controls the operation of the DAC
banks such that epsc[n] is uncorrelated with the input to the DAC, spurious-free and
has a zero at dc. It follows from the model that the contribution of ep4c[r] to the PLL
phase noise PSD is

S;MC (j27zf) = LSDAC e "A¢ (j277f)\2 > 3
/.

ref
where Spac (ejw) is the PSD of epsc[n]. The zero at dc ensures that S, (ejw) and
hence SfAC ( j2rn f ) has very little power in frequencies close to the PLL center

frequency.
The segmented mismatch shaping encoder exploits redundancy in the DAC
banks to guarantee that epsc[n] has the aforementioned properties. While multiple

methods of realizing the encoder have been reported [12, 13, 14, 15], none of them
offer closed form expressions for S, ,. (e’w ) Therefore, simulations are relied upon to
determine the degree of mismatch among the DAC elements that can be tolerated. As
reported in [16], it may be possible to derive closed form expressions for S, (e"w) if

detailed statistics of the quantization noise are available. Another alternative is to use
reported bounds on the power in low frequency bands [17] to make some approximate

quantitative predictions about tolerable mismatches.
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Fig. 2.10: A model of the cancellation technique including dither.

Number of input bits in the fractional modulator

The digital hardware complexity of the cancellation path can be reduced by
allocating only a few bits to the input of the fractional modulator. The reason is that
both the fractional and requantization modulator have data paths which are at least as
wide as the input of the fractional modulator. However, a lower limit is imposed on the
number of input bits by one-bit dither employed by the cancellation technique.

Suppose that K bits are allocated to the input of the fractional modulator.

Therefore, one-bit dither added to the LSB of the input of the fractional modulator

contributes undesirable FM modulation of * f,

ref

/2% . The models presented so far

have neglected the effect of dither in comparison with other sources of error. However,
if K is small, the undesired FM modulation could degrade the signal-to-noise ratio of

the transmitted frequency modulation signal. Even in the absence of frequency
modulation, it causes f~> noise in the PLL output phase. While these effects are well

understood by prior art, they are usually dominated by the other sources of noise in the
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AX fractional-N PLL.

Note that the one-bit dither can not be altogether eliminated since its absence
would cause strong fractional spurs in the PLL phase. It is however tempting to modify
Ocancel[1] to cancel contributions from dither as well. This promises to allow the use of
as few bits, K, as possible. The possibility becomes evident by considering Fig. 2.10,
which includes one-bit dither in the signal processing model. The dither can be added
to eg[n] before requantization by the Mth order AX modulator. Rather surprisingly,
including the dither in the cancellation path causes spurious tones to reappear in the
PLL phase noise. It negates the claims made in previous sections about the spurious-
free nature of eyn] and epsc[n]. Simulations corroborate this counter-intuitive
phenomenon and it can be proved following analyses similar to those in [10].

However, the proof is not included in this paper.

VII. CONCLUSION

A theoretical analysis of the phase noise cancellation technique applied to a AX
fractional-N PLL has been presented. The influence of circuit errors on the
effectiveness of the phase noise cancellation technique has been analyzed and
quantified. A fundamental lower limit on the phase noise imposed by the use of a
current DAC for the phase noise cancellation has been derived. Recommendations
have been made that enable customization of the phase noise cancellation technique in

response to specific PLL target specifications.
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APPENDIX A

The achievable bandwidth extension depends on L and the location of the poles
and zeros of A4s). Suppose that in a conventional Lth order AX fractional-N PLL,
AQs) = Aoia(s) where Ayq(s) is a low pass filter of bandwidth BW,,;. It can be

approximately’ represented as

R

1
A (s)= HW’

k=1
where f is the k-th pole frequency, R is the number of poles, and f; = BWy,. It is

assumed for now that A,,(s) has no complex poles. Suppose that when the phase noise

cancellation technique is applied, then 4 {s) = Anen(s) Where A,.u(s) is a low pass filter

of bandwidth BW,.,,. Define the achievable bandwidth extension as A £ BW, /BW,,, .

It is also assumed that the poles of A,..(s) are all scaled by A. This is a reasonable
assumption since it would impart the same phase margin to the core PLL. Therefore, it

can be represented as

Now, the phase noise contributed by eg[n] without cancellation technique is

2sin (-7—[—1]
Jes

It has two parts — A,(j27f) and un-filtered phase noise, which increases at the rate of

2(1-1)
7l

S3 (727 f) =5 Ay (7271

ref

20*(L—1) dB/decade till 0.5%f,,. To prevent the spot phase noise for f'< 0.5%f, from
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becoming too large, the Lth order AX fractional-N PLL has at least (L — 1) poles in
Aoia(s). Then, S5 (j27 f) reaches its maximum value when /= f; 1, or in other words,

it peaks when (L—1) poles of A,(s) “kick in”. Assuming that f;.2 # f1.1, |4oa(j27f)| can

be approximated as:

Je
f

-1
old J27Tf |NH V> fi.
k=1

Using the above approximation and using sin(x) = x for small x ie., for f < f ., it

follows that the peak spot phase noise is approximately,

7 | 27 D
R ey R R 3

Proceeding similarly it can be shown that the peak spot phase noise for the system

with the phase noise cancellation technique is approximately,

, 2(i-1) |
max{S;ew (j27rf)} ~ B 3; (;—7[] H(/lfk )2
ref ref k=1

The achievable bandwidth extension is obtained by equating the above two peak spot

phase noise values. Equating them results in 1~ ,82/12([‘"1) from which it follows that

the achievable bandwidth extension is A ~|l/ ,B|]/ ¢ Note that the argument can be

extended to include complex poles in 4 s) provided that the (Z-1)th pole is itself not a

complex pole.

7 Type-II PLLs have an in-band pole-zero doublet, which is ignored in this argument.
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APPENDIX B

In the system in Fig. 2.1, once every reference period, the phase noise
cancellation technique generates a pulse of current, ipsc{n], which has a duration of
Tpac seconds, starting from the rising edge transition of the divider output waveform.

The resulting waveform can be denoted as

Q. oncer (t) = iiDAc[”] {” (t - tdiv[n]) —u (t - tdiv[n] —Thuc )}’

where u(?) is the unit step function, the PLL is assumed to start at n = 0, and #4,[n] 1s
the time when the frequency divider finishes its division cycle and produces a rising
edge transition. The rising edge transitions of the divider output waveform are not

uniformly spaced in time. However, for the purposes of this model, it can be

approximated as #4,[n] ~ nT,.r and the above equation can be modified to:

Qcancel (t) = p(t) * Qcancel (t)
) _ 1

()T,

and Qcancel (t) = ZiDAC[n] : TDAC : 5(t - nz:'ef )
n=0

where p(t

The impulse train QAmnce, (t) is the same as the output of the discrete-time to

continuous-time converter acting on Q.acel[n] in Fig. 2.5. Its convolution with p(#) 1s
represented by a multiplication in the Laplace domain by the Laplace transform of p(¢):

1 — e—STnA('

$Thuc

This is the transfer function of the well known zeroth-order hold block.
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APPENDIX C

The most important requirements of a L™ order AS fractional-N PLL are a
certain loop bandwidth, fzy in Hz, a minimum phase margin, PM degrees, and an

upper limit on the phase noise within the loop bandwidth, S, ( f ), and at critical

frequencies in the stop band, S, (f), both in dBc/Hz. Standard techniques and

design equations are well known in prior art to guarantee that phase noise caused by
circuit noise in the PLL is less than S, (f) and S, (f) respectively inside and
outside the loop bandwidth [8, 18]. Owing to the high-pass shaping of the phase noise
caused by the digital AX quantization, it is necessary to ensure that outside the loop
bandwidth, quantization induced phase noise is less than S, (/). This appendix
presents a convenient set of equations which can be used to choose the various
nominal parameters of the PLL — the gain of the VCO, Kyco in Hz/Volt, the charge

pump current, Icp in Amperes, and the loop filter component values, R, Ci, and C; in

Ohms and Farads — such that the PLL has the requisite bandwidth, phase margin and
that the quantization induced phase noise is less than S, ( f ) .

As shown in [7] and [9], the closed-loop transfer function from the reference to

the output in the PLL, normalized to unity gain in the pass band is:

4, (s) I(s)

T14T(s)

where T(s) is the loop transmission of the phase locked loop, and is given by:
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T(s)= 2K(1+sr2) ’
s rz<1+srp)

b "1] ICPKVCOR

b N+a

where K=( , 7,=7,/b, 7,=RC,.

It follows from the above two equations that,

1+s7
A4 = 2 .
+(5) l+s7,+s57,/K+s7,7, /K

A design equation for the loop bandwidth can be derived by approximating the
denominator of 4s) as a product of three real poles. As shown below, the zero and
the pole of the loop filter are chosen to be sufficiently apart in frequency (b > 10) and

so that 1/7, <K < 1/ 7, , to ensure that the PLL has good phase margin. Since

1 3 TZTp

(1+57,)(1+5/K)(1+57, ) =1+s7, (1+715—+%]+s E(l+—\/1—g—+gj+s ,

K

and for b > 10, the RHS of the above equation approximates the denominator of 44(s),

A [s) reduces to

1
A¢(s):(l+s/K)(1+srp)' ©)

Therefore, the bandwidth of the PLL is approximately,

f =£=b_1. ICPKVCOR '
" 2z b 27(N+a)

(10)

The phase margin of the PLL follows from the expression for I(s):
PM=tan™'(Q,7,)—tan™' (Q,7,/b),
where Q_ ~ K rad/s is the unity gain frequency of 7(s). This equation can be used to

choose the zero of the loop filter, 7,, and b to guarantee a required minimum phase
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margin. However, multiple choices of 7z, and b are capable of ensuring the same

phase margin value, complicating the design process. An optimum choice is obtained

since for a given b, the most phase margin is obtained when

o(PM) Jb 1

:O:}-—-:K: ,
oK T, \/372

i.e., when the zero of the loop filter, the PLL loop bandwidth, and the non-dc pole of

the loop filter are in geometric mean with a progression factor Jb. Under this

condition, the phase margin is,

(11)

pu (B2

Therefore, equation (11) can be used to determine the appropriate value of 5 which
ensures the required phase margin. Note that as claimed earlier, b > 10 results in good
phase margin. Equations (10), and (11), along with the definitions of 7z, and b provide

a convenient set of design equations to choose the components of the PLL:

b _

RC, = ,
K 2nf,,

(12)

The explicit expression for 44s) given in (9) can be used in conjunction with (3) to

determine if the quantization induces phase noise is less than the allowable limit,

S..(f). The allowable phase noise limits, S, (), are often the toughest for offset
frequencies, f > 1/ 2rz, . Therefore, the design process is simplified by

approximating the magnitude response of 4 s) for frequencies f > 1/ 2nz,
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fow _NBLp 1
2 - 2 v

2nT

e 7 p<f.

\A¢ (j2z f)\ =

It follows from (3) and the above approximation that the phase noise caused by AZ

quantization for offset frequencies, f > 1/ 27z, , 18

2sin[”f]
Jrer

Suppose that the PLL output is represented as

, T°b

Sy (j2xf)=p 3

2L-1) 4
|/ BWI rad®[Hz. (13)

|/

ref

x(r) = ASin(zﬂfPLLt+ G+ s (t)),

where 4 and ¢, are arbitrary constants determining the amplitude of the PLL output
and an initial phase, and ¢(r) is the PLL phase noise whose one-sided power spectral

density is given by (13). It follows that the one-sided power spectrum of the PLL

output is,
. 1 .
Sxx(]27rf)=A27z-5(f—prL)+ZA2 Sy (27 f),

where 5(f) is the Dirac-delta function. Therefore, the PLL phase noise expressed

relative to the carrier power in units of dBc/Hz is:

S(j27f)=10-log,, "

=10-log,, ﬂbﬂz (fB—W) -sinz(H) (ﬂ]
for \ S

(14)

dBc/Hz.

ref

This expression can be compared with S

Jfar

( f ) to determine the bandwidth, the order,

L, and the reference frequency to meet the phase noise requirements of the PLL.
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Chapter 3

One-bit Dithering in Digital Delta-Sigma Modulators

Sudhakar Pamarti, Jared Welz, and Ian Galton

Abstract— Theoretical sufficient conditions which ensure that one-bit least significant bit dither
eliminates limit cycles and resultant spurious tones in general single stage and multi-stage digital
delta-sigma (AZ) modulators are presented. A large class of popular AY modulators in which one-
bit dither eliminates limit cycles are identified by applying the sufficient conditions. Means of

imparting spectral shape to the dither while eliminating limit cycles are presented.

I. INTRODUCTION

Digital delta-sigma (AX) modulators are widely used in high precision over-
sampled digital-to-analog (D/A) converters and fractional-N phase locked loops. They
are however susceptible to periodic limit cycles, causing significant spurious tones in
the power spectra of the outputs of such systems. As observed in [1], spurious tones in
some digital AX modulators may be suppressed at the expense of a simple linear
feedback shift register and little extra digital logic by adding one-bit dither to the least
significant bit (LSB) of the AX modulator input.

This paper presents theoretical conditions which help determine if one-bit
dither eliminates limit cycles in a given digital AX modulator. These conditions
promise to be of immense value to the designer who had so far only two options to

suppress spurious tones in a digital AX modulator:

75
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e Adding large amounts of dither to span the quantization step size [2] or,
¢ Relying on simulations to choose AL modulators that might result in low
spurious tones.

As illustrated in this paper, armed with the presented conditions, the designer would be
able to pick either a single stage or a multi-stage digital AX modulator suitable to the
target application, add one-bit dither to it and be assured of the suppression of spurious
tones in the digital AZ modulator output. This paper applies the sufficient conditions
to determine if one-bit dither suppresses spurious tones in many of the popular digital
AT modulators. It also suggests means to spectrally shape the one-bit dither so that it

does not interfere with the signal that is being converted into the analog domain.
Structure of the paper

Section I derives the aforementioned sufficient conditions in the form of a
single theorem in the context of a generic AZ modulator with a single requantizer.
Section II illustrates the application of the sufficient conditions to some popular AX
modulators which are special cases of the generic delta-sigma modulator. Section III
suggests how to impart frequency domain shaping to the dither signal while
eliminating spurious tones. Section IV extends the results to present sufficient
conditions to use dither to remove spurious tones in Multi-stAge noise SHaping

(MASH) architectures. Appendices A and B prove the theorem in Section I in a

general context such that the results can be reused in Sections III and IV. Appendix C
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e F(z) A, J_,{'J > yin]

G(z) |-

Fig. 3.1: A generic single stage digital AZ modulator.

provides proofs for assorted theorems in Sections I and IV.

I. DITHER IN SINGLE STAGE DELTA-SIGMA MODULATORS

A. Need for dither

Fig. 3.1 shows a generic digital AX modulator, which emphasizes the negative
feedback nature of digital AX modulation. The system consists of a causal forward
transmission filter, F(z), followed by a non-overloading digital requantizer, and a
feedback filter, G(z), which filters the output of the requantizer and feeds it back. The
impulse responses of F(z), and G(z), denoted f[n] and g[n] respectively, are integer
valued. The requantizer is a mid-tread requantizer! of step size N. The non-

overloading mid-tread requantization operation is defined as:

y[n]=N[15\’;—]+%J,

! The results presented in this paper are applicable to mid-rise requantization with
minor modifications; hence, they are not discussed here.
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Fig. 3.2: Sample mid-tread requantization of a binary, 2’s complement sequence.

where 7[n] and y[n] are respectively the input and output of the requantizer shown in
Fig. 3.1. Fig. 3.2 illustrates mid-tread requantization of binary 2’s-complement

representations of integers for N =8. Traditionally, the requantization operation is

modeled without any approximation using an additive source of error, e[n]:

e[n]éy[n]—r[n]=§—<%”]+§>, (1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

a)

-
xfn] > _—I— lfz‘l > JJIFI - (1]
b)
=
= g > »y[n]
Hr] N - S =7 ]
<)
-] Z = 7 .
x[n] N 1-z1 \ 1_/5—1 \ 1-z71 » J__]I (1]

Fig. 3.3: Example digital AZ modulators — (a) The first-order AZ modulator (b) The second-order
dual-loop AZ modulator (c) The third-order AZ modulator.

where <x> = x—|_x_|. Consequently, the Z-transform of the output of the delta sigma

modulator can be related to the Z-transforms of the signal, and the additive error

source, e[n], as:

3 F(z2) 1
YO =X roee T PP roa0 @)
STF(2) NTF(z)

The second term in (2) is referred to in published literature as the quantization noise of
the digital AZ modulator. The filters, F(z) and G(z), are usually chosen such that the

noise transfer function, NTF(z), in (2) de-emphasizes the quantization noise power in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Table 3.1: Details of the example AZ modulators in Fig. 3.3.

L

mple Multi-bit Single Quantizer Digital Delta-Sigma Modulators

Nar;le o} Fieu
AT gure Forward transmission filter Feedback filter
reference
modulator
Transfer Transfer Impulse
. Impulse response, .
function, f[n] function, response,
F(z) G(2) gin]
Z-l
1 Order | 2(a) — uln—1] 1 S[n]
-z
-tV 28[n+1]
ond 2 z ~uln-2 -
Order | 2(b) (1 — J (n—1)u[n-2] 2z-1 _5[n]
LN 5 . 30[n+2]
3" Order | 2(c) ( z _1] (n— )(n— )u[n—3] 3z2=3z+1 | =36[n+1]
-z 2
-6[n]

certain band of frequencies occupied by the AX modulator input. Many of the digital
AY modulators reported in literature are special cases of the generic form of Fig. 3.1.
Fig. 3.3 shows some popular AX modulators (1%, 2" and 3" order multi-bit low pass

delta-sigma modulators) and Table 3.1 shows that the corresponding forward
transmission and feedback filters are integer valued as described above. The filters,
F(z) and G(z), in each of these example digital AX modulators are such that
quantization noise is high-pass shaped.

The nature of the quantization noise — whether it has spurious tones or not efc.,
— depends on the statistics of e[n]. It is often assumed that e[#] is white, independent

of the AY modulator input, x[n], and uniformly distributed over

{~N/2+1,...,0,...,N/2}. Such assumptions enable the designer to use equation (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

and make quantitative predictions crucial to D/A system design e.g., the shape and
magnitude of the power spectral density of the output of the delta-sigma modulator,
signal-to-noise ratio in a given frequency band efc. However, as shown below, e[n]
depends strongly on the AZ modulator input, x[r], and often has significant spurious
tones rendering the above assumptions baseless and flawed.
Since the input to the requantizer in Fig. 3.1 can be expressed as
r[n]=x[n]* f{n]- y[n]* gln]* f[n],

where “*” is the convolution operator, it follows from equation (1) that

() STl = ylnl* fln)*glr] l> 3)
N 2/

N
e[n]l=—-N
[~] > <
Owing to the digital nature of the system, the input and output of the AT modulator,
x[n] and y[n], can be assumed to take on integer values only. Moreover, note that the

mid-tread requantization implies that y[n] takes on only integer multiples? of N. Since

fn], g[n] are also integer valued by assumption, (3) can be simplified as:

e[n]=%—N<in—]-;#+%>. @

The above equation supports the earlier claim that e[#] is a non-linear function of the
AZ modulator input. It has significant spurious content as well. For example, if the
input of the 2" order AT modulator were a small constant, the two accumulators,

represented by f[n] in (4), cause e[n] to repeat at a certain period determined by the

2 Note: Consider the example where r[n] = 25 is truncated by a mid-tread quantizer of

step size N = 8. In some published work, the output of the quantizer is implied to be
...footnote continued on next page
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s[n] xi F(z) Anl | 'j > y[n]
N\

d[n] G(z) |-
/\

Fig. 3.4: A generic dithered digital AZ modulator.

constant input. These repetitions are called limit cycles and cause spurious tones in
the power spectral densities of the quantization noise and the AX modulator output. If
the input were a periodic signal, similar periodicities are exhibited.

If a one-bit random sequence, d[n], were added to the AX modulator input as
shown in Fig. 3.4, e[n] may no longer repeat periodically, thereby suppressing spurious
tones. The sequence s[n] represents the desired signal that needs to be requantized
using the AZ modulator. The sequence d[n] comprises one-bit samples which are
independent of themselves and the desired signal. The sequence d[n] is called dither
and its addition to the input of the AZ modulator is called dithering. Fig. 3.5 illustrates
the effects of one-bit dither on the quantization noise of digital AX modulators. Fig.
3.5(a) shows simulated power spectral densities of the quantization noise of the 2"
order digital AZ modulator shown in Fig. 3.3(b) without and with one-bit dither, for
radian frequencies from 0 to &. The elimination of spurious tones when one-bit dither

is used is evident from the figure. Fig. 3.5(b) shows similar plots for the 3™ order AX

the value y[n] = 3 instead of y[n] = 24 = 3*8. For purposes of simplicity, this paper

...footnote continued on next page
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modulator shown in Fig. 3.3(c).

Additive dither, d[r], can annul the statistical dependence of e[n] on the AX
modulator input, and validate the assumptions of uniformity and whiteness of e[n] for
a large class of AZ modulators. The rest of the section analyzes requantization within
the digital AZ modulator in the presence of the one-bit dither. The analysis is in the
context of the generic dithered digital AX modulator shown in Fig. 3.4.

Before proceeding further, it would be useful to clarify some nomenclature.
This paper refers to the additive error source e[n] as requantization error. This is not

to be confused with quantization noise.

uses the latter convention.
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a) 2nd order AT modulator b) 3rd order AZ modulator
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Fig. 3.5: Elimination of spurious tones using one-bit dither in digital AZ modulators.

B. Dithered Requantization

Suppose that the dither, d[n], is a sequence of independent identically
distributed (iid) random variables. Suppose that d[»] is independent of the desired
signal as well. Assume that each sample of this iid dither takes on one of two
consecutive integer values with equal probability:

0.5, m=0,

5
0.5, m=1. ®)

P(d[n]=m)= {

Such dither (henceforth referred to as LSB dither) can be readily implemented using a
long binary, maximal length pseudo-random sequence using a simple linear feedback

shift register.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

Let ng be the sample time when the system is “turned on” i.e. all the signals in

the system are assumed to be zero for n<n,,neZ It follows from Fig. 3.4 and by
substituting x[n] = s[n] + d[n] in (4) that for each n>ny,neZ, the requantization

error can now be written as:

(6)

n

where z[n]= Y s[m]f{n—m]+ Z d[m]f[n—-m]

The second term in the expression for z{#] in (6) is a linear combination of a numiaer
of iid random variables. As time progresses, this term includes an increasingly large
number of iid random variables. Intuitively, this very random term gives z[n] the
desired properties of uniformity, whiteness and independence from all s[n]. This
section derives sufficient conditions under which, as more time elapses since the
“start-up” of the system, the requantization error e[n] converges in distribution to a
sequence, é[n], with the following properties:
o Uniformity: For any finite integer n, &[n] is uniformly distributed over the
range of values {-N/2 + 1,...,0,...,N/2}
e Signal-independence: €[n] is independent of s[/] for any n,/€Z and (n - I)
finite.
e Dither-independence: é[n] is independent of d[/] for any n,/eZ and (n - )
finite.
e Pair-wise independence: é&[n] is independent of é[n— p] for all integers

p#0.
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o Whiteness: &[n] is wide sense stationary and uncorrelated with é[n— p] for all
integers p#0.
Note: Henceforth, “the requantization error e[n] has a property x” will mean “as
n, — —, e[n] converges in distribution to é[n] which satisfies property x” where x is
one of the above five properties. Moreover, all these above properties are together
referred to as desired properties.
Once it is proved that e[n] has the desired properties for a particular dithered
AY. modulator, expressions for the power spectral density (PSD) of y[n], SNR etc., can
be derived from (2). To illustrate, the output of the 2" order digital A modulator
shown in Fig. 3.3(b) is
y[n]=s[n-2]+d[n-2]+e[n]-2e[n—1]+e[n—2].
If the requantization error, e[n], has the desired properties then, the terms in the RHS
of the above expression are independent of each other. Therefore, not only does the

PSD of y[r] have no spurious tones, it can also be analytically shown to be

. . 4
8, (e) =5, (") o he ] o2,

where Si(¢’*) is the PSD of the desired signal’, and o,, o, are respectively the mean
square values of the LSB dither and the requantization error. Note that the 2" order
high pass shaping of the requantization error is evident from the above equation.

Similarly, the PSD of the output of a general digital AX modulator, y[x], can be shown

using (2) to be:

3 Tt is assumed that the desired signal is wide sense stationary.
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S, (e")= ‘STF(efW ) ’ o2 4 \NTF(e-’W ) ‘o2 (7

ee

S, (efw ) + \STF(e"W )

S8

where ¢, =1/4 and o, = (N 2 —1) /12. Theorem 1 presents conditions on f{x] which

are sufficient for the properties of uniformity, signal independence, dither
independence, pair-wise independence and whiteness. It also derives expressions for

the time-averaged mean, auto-covariance of the requantization error and shows that
ol =(N-1)/12.
Theorem 1: Suppose that for every integer p > 0, and any integers ki, kz, such that k; +

ky = 0, and 0 < ky, k; < N — 1, at least one of the following is true:

1. The sequence (k, f[r]+k,f[r+ p])mod N does not converge to zero as » —

2. Anon-negative integer 7, # p exists such that

(klf[’i,z] +k, fln, + p])mOdN = N/2
3. Anon-negative integer r, < p exists such that (k, f[r,])mod N = N/2

Suppose also that for at least one p > 0, the first condition is true for all integers ki, ka,
such that k +k, #0, and 0<k,k, <N-1. Then, requantization error, e[n], has the
properties of uniformity, signal-independence, dither-independence, pair-wise
independence and whiteness. Moreover, e[n] has time-averaged mean and auto-

covariance of
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Me =£1_1;]E}OZ ’; e[n]z—a
” 1L+n0—1 N2 _1 (8)
Colp) Elim— 3 (eln] =M. )(eln-pl-M.)=—>—3lp],
n=n, —

where 6[k] is the Kronecker* delta function.

Proof: Setting A(z) = H(z) = F(z), and applying Theorem Al and corollary 1 of
Theorem Al for every p > 0, and then applying Theorem A2 proves that in terms of
ensemble statistics, e[n] has the properties of uniformity, signal-independence, dither-
independence, pair-wise independence and whiteness. The application of Theorem A3
proves that e[n] has these properties in a time-averaged sense as well, with mean and

auto-covariance as given by (8).

While seemingly cumbersome, the conditions imposed on f{n] by Theorem 1
can often be easily verified. The next section illustrates how this can be achieved for a

few popular delta-sigma modulators.

II. APPLICATION OF RESULTS TO POPULAR DELTA-SIGMA
MODULATORS

All the AY modulators considered in this section are assumed to have enough

output levels to ensure that their requantizers do not overload. Moreover, the

requantization step size is assumed to be a power of 2, N = 2™ where M is a positive
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integer. This assumption is not in the least restrictive as it is a particularly popular
choice for binary, two’s-complement implementations of the digital AX modulators.

To apply the results from the previous section to determine if LSB dither can
ensure that the requantization error in a particular delta-sigma modulator has the
desired properties, the following needs to verified:

o the delta-sigma modulator meets the constraints of the presented generic form,
and
o the forward transmission filter’s impulse response, f{#], satisfies the conditions

of Theorem 1.

This procedure shall be illustrated in detail for a 3™ order, multi-bit, digital AZ
modulator. Results for other popular AZ modulators will be quoted with the respective

proofs pushed to Appendix C.
A. Multi-bit Third Order Delta-Sigma Modulator

The forward transmission filter, F(z), the feedback filter, G(z), and their
impulse responses are given in Table 3.1 and both f[r] and g[r] are clearly integer
valued. If the requantizer has enough output levels to avoid overload, then this delta-
sigma modulator satisfies the constraints of the generic form.

Claim: Sequence f[r] satisfies condition 1 of Theorem 1 for all p > 0.

Proof: Suppose to the contrary that condition 1 is not satisfied for some p > 0. Then

1, k=0,keZ;

4 5lk]=
0, k#20,keZ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

for that particular p and some rg € Z,

r——2][r—1]+ r+p-=2][r+p-1]

kL ;

kL

=mN, meZ, Vrr,23. 9)

The set of equations, (9), in the three “unknowns” ki, k, and p can be reduced by
considering equations, (9), for any three consecutive values of r greater than or equal
to ro. This results in the following set of solutions for ki, k, and p:

k,+k,=mN,

k,p=m,N,
2p m2 (10)

p=1+2m,,
where m,,m,,m, € Z.

However since k, < N=2", and p = 1 + 2mj is odd, the equations, (10), can not all be

simultaneously true. So the claim is proved by contradiction.

|
Since the conditions of Theorem 1 are satisfied, the one-bit LSB dither

guarantees that e[n] has properties of wuniformity, signal independence, dither
independence, pair-wise independence and whiteness. Moreover, its time-averaged
mean and auto-covariance are given by equation (8). It should be noted that this result
is not restricted to the 3™ order AS modulator shown in Fig. 3.3(c). It is applicable to
any AYX modulator with the same F(z), G(z) and a non-overloading mid-tread

requantizer whose step-size is a power of 2.

B. Multi-bit 2 Order Delta-Sigma Modulator

The forward transmission filter, F(z) and the feedback filter, G(z) of the L"

order delta-sigma modulator can be shown to be
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FL(z)=[T—_{Zi_—1J .G, (2) = (1-2)" -2~ (11)

The corresponding impulse responses, f1[r] and g;[r] are integer valued. If the delta-
sigma modulator has enough output levels to avoid overload, it satisfies the constraints
of the generic delta-sigma modulator.

Theorem C1 proves that fi[7] does not satisfy the conditions of Theorem 1.
Therefore, one-bit LSB dither does not guarantee that the requantization etror in a
non-overloading, 1% order delta-sigma modulator has the desired properties. On the
other hand, Theorem C2 proves that f;[r] satisfies all the conditions of Theorem 1.
Similarly, Theorem C3 proves that f;[r] satisfies the conditions of Theorem 1 for
L>3. Therefore, one-bit LSB dither does guarantee that the requantization error,
e[n], in a non-overloading, L™ order digital A modulator (L >2) has the desired
properties. Moreover, its time-averaged mean and auto-covariance are given by
equation (8).

The above results suggest that if the one-bit iid dither undergoes two or more
integrations on the way to the requantizer, then the error e[n] has the desired
properties. By considering successive samples of z[x] in equation (6), an interesting

insight into this result can be obtained. It follows from (6) that,

Z(z)=F(z)-[S(z)+D(z)],
where Z(z), S(z), and D(z) are the Z-transforms of z{n], s[n], and d[n] respectively.

Multiplying the above expression with (1 —z™') results in:

(l—z_l)Z(z) = (I—Z"I)F(z)[S(z)+D(z)],

o(z)
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The relation between the samples of z[»] at two consecutive time indices, n. -1, and
n., can be obtained by computing the inverse Z-transform of the above equation and
substituting n=n,:

z[n] = z[n —1]+ Zn: d[m]q[n—m] + s[n]* q[n]|n=n* ,

p— _—
where g[n] is the impulse response of Q(z). If the filtering undergone in the forward
path of the AZ modulator by the one-bit dither i.e., F(z), is only one (delayed)
integration, then g[n] = §[n], and therefore, z[n.] and z[n, —1] are “separated” by only
one new random variable, d[n.], which has the range of only an LSB —
z[n,] = z[n. —1]+d[n.]+(signal dependent terms).

Since the requantization error at any time index # is a non-linear function of z[n],

¢e[n.] and e[n, —1] may not be independent even an infinite time after the system’s
“start-up”. However, if the dither undergoes two or more integrations on its way to the
requantizer, as more elapses since “start-up”, e[n.] and e[n, —1] are separated by an

increasing number of random variables. For instance, if dither undergoes two

integrations,

z[n]=z[n. —1]+ z d[m]+ (terms dependent on s[n]).

m=n,
The increasing number of random variables influencing the requantization operation

imparts the desired properties to AX modulators of order L >2. This insight inspires
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the exploration of dithered AX modulator architectures, which impart frequency

domain shaping to the dither signal.

III. SHAPED DITHER ARCHITECTURES

While the previous sections suggest that iid dither can be used to remove
spurious tones in many AY modulators, the dither is present in the output of the delta-
sigma modulator along with the desired signal; it undergoes the same overall filtering
as the desired signal, as shown in (7). This limits the in-band SNR, particularly when
the number of bits in the input signal is small. For instance, consider the ond order,
non-overloading AT modulator shown in Fig. 3.3(b) with an over-sampling ratio of 8
and a 10-bit wide input signal s[n]. As mentioned before, the output of the 2" order

AY modulator can be shown to be

yin]=s[n-2]+d[n—-2]+e[n]—2e[n—1]+e[n—2].
H_/ - J

~—
dither filtered requantization error

With the LSB being unity, the amplitude of the largest sine-wave input that can be

handled by this AZ modulator is approximately 2192 = 512, corresponding to a power
of 0.5*512% = 131072. On the other hand, the total dither power is o, =1/4 spread

uniformly over the whole spectrum. The over-sampling ratio of 8 implies that dither

limits the in-band SNR to approximately
1/4
1010g(131072)—1010g(—(é—)] ~ 66 dB.

Increasing the number of input bits to 14 implies that the in-band SNR 1is limited by

dither to 78 dB instead. The amount of undesirable dither power can be made
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Fig. 3.6: A scheme to introduce shaped dither into the generic AZ modulator.

arbitrarily small by increasing the number of bits representing the input of the delta-
sigma modulator. However this could be wasteful in terms of the additional digital
circuitry needed. Moreover, digital AX modulators are employed in fractional-N phase
locked loops where the modulator error undergoes integration [3]. In such situations,
the integrated iid dither could severely degrade the phase noise of the phase locked
loop output.

An attractive alternative to increasing the number of input bits is to force most
of the dither power out of the frequency band of interest. For instance, in a low-pass
delta-sigma modulator, if a high-pass spectral shape could be imparted to the dither in
the output, the degradation of the in-band SNR due to the dither would be less severe.
In general, desired shaping could be imparted to the dither in the output of the delta-
sigma modulator by filtering LSB dither before adding the result to the desired signal

as shown in Fig. 3.6. The resultant delta-sigma modulator output is

Y(z)=STF(z)S(z)+V (z)STF (z) D(z)+ NTF (z) E(2) (12)
\desired signal output/ ) shaped ditl;;iu output s:mped quan‘gzation errgr
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Fig. 3.7: Illustration of increase of the in-band SNR using shaped dither.

where V(2)STF(z) is the net shaping imparted to the dither. Such systems shall be

referred to as shaped dither systems. For instance, a simple discrete differentiator

V(z)= (1 —z'l) can impart high-pass shaping to the dither. The filtered dither spans

only 3 LSBs and barely increases the required digital circuitry making it a very
attractive choice. In the case of the aforementioned examples, 1% order shaping
implies that dither limits the in-band SNR to 79 dB instead of 66 dB with a 10-bit
wide input, and limits the in-band SNR to 91 dB instead of 78 dB with a 14-bit wide
input. Fig. 3.7 illustrates the effect of shaping the dither on a 3 order digital AT
modulator shown in Fig. 3.3(c). The figure shows simulated power spectral densities

of the output of the 3 order digital AS modulator for the cases of V(z) = 1 and
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V(z) = (1 - z'l) respectively, for radian frequencies from 0 to ©. The noise floor due

to the dither is imparted a high pass shape with ¥ (z)= (l—z'l), while no spurious

tones are introduced.

The relevant question is whether the requantization error still has the properties
of uniformity, signal independence, dither independence, pair-wise independence and
whiteness and if so, for which delta-sigma modulators. If e[n] were to indeed have the

desired properties, the PSD of y[n] can be derived from (12) to be

’ ‘V(e"w)

where o2, =1/4 and o’ =(N’-1)/12 represent the variance of the iid dither

S,y (") =|s7F (™) “ol+|NTF(e) 02 (3)

S, (™) + ‘STF(ejw)

sequence and the requantization error respectively.
To determine if e[n] has the desired properties, we need to proceed just as in

Section II. Equation (6) can be rewritten as

e[n]:ﬁ_N<_ZM+l>

2 N 2 (14)
where z[n]= Zn: s[m)fIn—m]+ i d[m)h[n—m},

where A[n] is the impulse response of the fictitious filter H(z)£V (z)F(z). The

following theorem presents sufficient conditions on #[n] that ensure that the

requantization error has the desired properties and has a time-averaged variance
2 2

ol =(N*-1/12.

Theorem 2: Suppose the impulse response, 4[n], satisfies the conditions imposed on

fln] by Theorem 1. Then the requantization error, e[n], of the shaped dither system has
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the properties of uniformity, signal independence, dither independence, pair-wise
independence and whiteness. Moreover, e[n] has time-averaged mean and auto-
covariance given by equation (8).

Proof: Setting A(z) = F(z), and H(z) = V(z)F(z), and applying Theorems Al and
corollary 1 of Theorem Al for every p > 0, then applying Theorem A2, and finally

Theorem A3 proves the result.

|
The results derived in Section II can be readily extended to determine if a given

shaped dither system i.e. H(z), satisfies the conditions of Theorem 2. The following
corollary presents a class of shaped dither systems that have requantization error with

the desired properties.
Corollary: If H(z)=z"" (1 -z )_L for some integer L>2, and N =2, where M is

a positive integer then, the requantization error, efn], has the properties of uniformity,
signal-independence, dither independence, pair-wise independence and whiteness.
Moreover, its time-averaged mean and auto-covariance are given by equation (8).

Proof: It has been proved in Section II that the impulse response of H(z) satisfies the
conditions of Theorem 1 for L >2. Consequently, Theorem 2 becomes applicable and

the result follows.

||
For instance, since V(z)=(1-z') and F(z)=z"(1-z')" satisfy the

conditions of Theorem 2, it follows that the requantization error of a 3 order A

modulator (STF(z) = z7) has the desired properties and that the dither has a 1** order
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high-pass shape in the modulator output. Since 3" order AS modulators are popular

choices with AY fractional-N PLLs, this particular shaped dither system would prove
very useful as it simultaneously removes spurious tones and ensures that the in-band
phase noise is small.

The results presented here are tabulated in Table 3.2 along with other results
from the succeeding sections. The numbers in the “maximum dither shaping” column
indicate the most shaping that can be imparted to iid dither before adding the result to
the signal and still ensure that the requantization error has the desired properties. For
instance, Table 3.2 suggests that a 4™ order AY modulator can have a maximum of 2™
order shaped dither i.e., the iid dither can be filtered by at most two differentiators and

it would still ensure that e[#] is white.
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Fig. 3.8: An example 2-1-1 MASH AY modulator.

IV. DITHERED MASH ARCHITECTURES

A large class of digital AX modulators not covered by the generic form of
Section I is the MASH (Multi-stAge noise SHaping) architecture [4, 5]. High order
digital AX modulators are often realized by cascading multiple lower order digital AX
modulators e.g., the 2-1-1 MASH architecture shown in Fig. 3.8. Such modulators
requantize the input signal in steps - coarse quantization of the input, then finer
quantization of the error of the first quantization efc., — the outputs of the individual

lower order AX modulators are then combined to form the final output signal. This
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section will show that one-bit LSB dither (even shaped dither as illustrated in Fig. 3.6)
can ensure that the requantization errors from such a cascaded structure also have the
desired properties of uniformity, signal-independence, pair-wise independence and
whiteness.

Fig. 3.9 shows a generic MASH architecture, which is a cascade of K
individual AT modulator stages. One-bit iid dither is filtered by a shaping filter, V(z),
and added to the desired signal s[x] to form the input of the MASH system. The i AT
modulator comprises of forward transmission and feedback filters, Fi(z) and Gi(z), and
a mid-tread requantizer of step size N;, where N; is a positive integer. The mid-tread

requantizer internal to the i" AY modulator is henceforth referred to as the i™

requantizer. Consequently, the output of the i™ AT modulator, y;[n], only takes on
values that are integer multiples of ;. The requantization error from the i
requantizer, efn], is computed by subtracting its input #;[r], from its output y,[n], and
fed as an input to the succeeding i.e., the (i + 1) AZ modulator as shown in Fig. 3.9.
The outputs, y;[n], are combined using a bank of post-processing filters Dy(z), i =
1,2,...,K to produce a single output y,,[n]. The Z-transforms of the requantizer

outputs and of y,,[n] are related as follows:

Vot (2) =2 0(2)D,(2) 15)

=1
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Fig. 3.9: A generic MASH AX modulator with K stages.

The post-processing filters are chosen such that equation (15) reduces to
K K K
Y. (2)=T1STF.(z)-S(2)+ [ [ STF,(2) -V (2)-D(z)+ [ [ NTF,(2)- E( () ~ (16)
= STF,,(2) " = NIF,(2)
where STF(z) and NTF{z) are defined as in equation (2) for the i™ delta-sigma

modulator respectively. Such systems are henceforth referred to as dithered MASH

systems. The generic form is constrained to satisfy the following conditions:

¢ None of the requantizers overload.
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o The requantizer step sizes are such that N; = m;;*N;, where my; is a positive
integer for every 1< j<i<K
e The impulse response of every forward transmission filter and every feedback
filter, fi{n] and g[n] respectively, is integer valued.
¢ The impulse response of the dither shaping filter, v[n], is integer valued.
o The impulse response of every post-processing filter Di(z), i.e., difn], is integer
valued.
For instance, the 2-1-1 MASH shown in Fig. 3.8 fits into this description with K = 3,
F(2)=2z2,(1-27")?,G(2)=2z-1, F,(z)=F\(2)= z'(1-z"), G,(2)=G,(2)=1,
D(z)=z2, D,(z)=-z"'(1~z"')’, and D,(z)=(1-z"')’, where the respective

impulse responses are all clearly integer valued. It follows that the Z-transform of the

output is
4
Y, (2)=278(2)+(1-2") E(z).
Digital Reconstruction

Often, the post-processing of the requantizer outputs depicted in equation (15)
is performed in the digital domain itself and the result is then sent to a D/A converter.
If the K™ requantization error, ex[n], has the desired properties then, linear system

theory can be applied to (16) and the PSD of y,.{n] can be shown to be

2 ‘V(ejw)

where o, =(Ng-1) /12 is the variance of the K™ requantization error ex[n]. The

S, () =Is7E, (e

yy

i o+ ‘NTFeq (e-’w ) ’

S (e-fW)+]ST1~;q (e)

88

or. (17)

e
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following theorem presents sufficient conditions which, when satisfied by the filters in
the dithered MASH system, ensure that ex[n] has the desired properties.

Theorem 3: Define T, (z) = (-1)*"'F(2)- F,(2)...F¢_,(2)- Fx(z)-V(2) . If the impulse
response of Tk(z), i.e., tx[n], satisfies the conditions imposed on f[n] by Theorem 1,
then the K™ requantization error, ex[n], has the properties of uniformity, signal-
independence, dither independence, pair-wise independence and whiteness.

Proof: See Appendix C.

|
The results derived in Section II can be readily extended to determine which

Tx(z) satisfy the conditions of Theorem 3. The following corollary presents a class of
dithered MASH systems that has requantization ex[n] error with the desired properties.

Corollary: Suppose T, (z)=z" (l—z"1 )_L for some integer L>2 then the

requantization error, ex[n], has the properties of uniformity, signal-independence, pair-
wise independence and whiteness.

Proof: Same as the proof of corollary to Theorem 2.
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Table 3.2: Guidelines for dithering common digital AZ modulators — “Maximum dither shaping”
means the highest order of high-pass shaped dither in the modulator input which still ensures

g

tone-less requantization error.

'Forward

‘Allowed high-

Name of AT Figure .. Feedback .
Transmission : pass shaping
modulator Reference Filter, F(z) Filter, G(z) on dither
-1
1** Order 2(a) z 1 1 None
1-z-
IR
nd z
2" Order 2(b) - 2z-1 0
1-z
R
3" Order 20 || 322 -3z+41 |1
-z
g\ .
L™ Order, L>3 - z — (1 — z'l) -zt | L=-2
1-z

Allowed high-passvv:shapin”g oﬁ
dither

0

1

For instance LSB dither with ¥(z) = 1 in a multi-bit, 1-1 MASH system with
mid-tread requantizer step sizes of N, =2" and N, = 2M> where M, > M, are all

positive integers ensures that the 2" requantization error has the aforementioned
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desired properties. Table 3.2 tabulates some of these results for ready reference.

Analog Reconstruction

In some special cases, the filtered requantizer outputs in (15) are sent to
individual D/A converters whose outputs are then added t6 produce the overall analog
output ye.[n]. In such circumstances, gain mismatches between the otherwise ideal
individual D/A converters would imply that the overall analog output contains a linear

combination of the K requantizer outputs

Y,.(z)=STF, (z)-S(z)+V (2)-STF, (z)-D(z)+gBi(z)Ei(z) (18)

where STF,,(z) and B(z), i = 1,2,...,K are some arbitrary filters determined by the
particular MASH system and gain mismatches. Suppose the following are true:

o Each of the requantization errors, €;[n], has the properties of uniformity, signal-

independence, dither independence, pair-wise independence and whiteness and,

e As n,—>—o sequences e[n] converge to sequences ¢&[n] such that &[n] is

independent of &,[n+ p] foralli # jand p € Z.

Then, the overall analog output, | Youn], has no spurious tones. Furthermore, linear

system theory can be applied and the PSD of y,.[#] can be shown to be

(e o+ 2[5 ()
i=1

where o-fl_ei =(N?-1) / 12,i=1,...,K is the variance of the i™ requantization error. Note

o’ (19)

¢i¢

8, (e")=ls7E (e*)f

S, (efw ) + ‘STch (ejw )

that even if one of the requantization errors, e;n], were to not have the desired

properties, then the last term in (18), and hence y,u[n], could exhibit spurious tones.
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The following theorem presents sufficient conditions (on the filters in the MASH
system), which ensure that all e;[n] have the aforementioned properties.

Theorem 4: Define T,(z) = (1) F(2)- F,(2)...- F(2)- Fi(2) -V (2).

Part (i): If the impulse response of T(z) i.e., t[n] satisfies the conditions imposed on
f[n] by Theorem 1 then, the i requantization error, e;[n], has the properties of
uniformity, signal independence, dither independence, pair-wise independence and

whiteness.

Part (ii): For all integers p, and ki, k; such that ky + k, = 0, 0<k <N,-1, and

0<k, <N,-1, suppose that the sequence (kt[r]+kyt;[r+ p))mod N does not
converge to zero as ¥ —>o. Then as n, & —© sequences e[n], ¢n] converge to
sequences &[n], &;[n] such that &[n] is independent of ¢[n+ p].

Proof: See Appendix C.

For instance, it can be shown using the corollary to Theorem 3 that LSB dither
with V(z)=(1-z"") in a 3-1-1 MASH system with mid-tread requantizer step sizes of
N, =2"", N,=2" and N,=2"" where M,2M,2M, are all positive integers
ensures that all the requantization errors have the desired properties. On the contrary,
LSB dither with ¥(z) = 1 in a 1-1 MASH system with mid-tread requantizer step sizes
of N,=2"" and N, = 22 where M, > M,, can only ensure that e[n] (and not e;[n])

has the desired properties.
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Fig. 3.10: Framework for the theoretical analysis of dithered quantization.

V. CONCLUSION

Theoretical sufficient conditions which ensure that one-bit least significant bit

dither eliminates limit cycles and resultant spurious tones in general single stage and
MASH digital delta-sigma (AX) modulators were presented. A large class of popular
AY modulators in which one-bit dither eliminates limit cycles are identified by

applying the sufficient conditions. Means of imparting spectral shape to the dither

while eliminating limit cycles were presented.

APPENDIX A

The theorems and results in this section apply to the system shown in Fig. 3.10.
The impulse responses of the filters A(z), and H(z) i.e., a[n], and A[n], are integer
valued. The samples of the dither sequence, d[n], are independent of all samples of the
desired signal, s[n], of each other, and are identically distributed, with a probability
distribution given by equation (5). The desired signal, s[#] takes on values in the range
{812 + 1,...,0,...,5/2}, where S is an even, positive integer. The requantization errors

are given by:
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n

where z[n]= z s[mla[n —m]+ i d[m)h[n—m]

m=n, m=ny
.

(20)

e

Saln]

Theorem Al: For any given integer p > 0, suppose that for any integers ki, k2 such that

ki +ky = 0,and 0<k,,k, <N -1, at least one of the following is true:

1. The sequence (kA[r]+k,h[r+ p])mod N does not converge to zero as r —> 0.

2. Anon-negative integer r; » = p exists such that

(kA7 1+ kohlr , + pl)mod N = N/2.
3. Anon-negative integer r, < p exists such that (k,[r,])mod N = N/2.

Then, as n, - —, the requantization error samples at finite time indices #n, n — p > ny,
namely e[n] and e[n—p], converge in distribution respectively to uniformly distributed
random variables, é[n] and é[n-— p], such that &[n] is independent of s[n—p],
d[n-p], and e[rn— p].

Explanation: The properties of é[n] and é[n— p] mentioned in the theorem are

mathematically formulated as follows:

Uniformity
&[n),e[n—ple{-N/2+1,..,0,..,N/2},
" P(é[n]=m,)=P(é[n-p]j=m,)=1/N, @)
Signal independence
P(s{n—pl=m,.éln]=m,)=P(sin-pl=m,) P(eln]=m,), (22)
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Dither independence

P(d[n~ p)=m,elnl=m,) = P(dln~pl=m,)-P(elnl=m,), (23)
Puair-wise independence

P(eln-p)=m,,.&[n)=m,)= P(en-pl=m,)-P(éln]=m,), (24)

where, me, me, € {-N/2+1,...,0,..,NI2}, ms € {-8/2 + 1,...,0,...,8/2}, and my€ {0, 1}.

The theorem states that if at least one of the conditions 1-3 are satisfied, then e[x] and

e[n— p] respectively converge in distribution to é[n] and é[n— p] which have the

above properties i.e. the following equations are satisfied:

Convergence to uniformity

P(e[n]=m,)—2=2= P(é[n]=m,),

(25)
P(eln—pl=m,)—22=2> P(é[n-p]= m,),
Convergence to signal independence
P(sln— pl=m,,eln]=m,)—22"— P(s[n— p]=m,,é[n]= m,), (26)
Convergence to dither independence
P(d[n-p]=my,eln]=m,)—2>=- P(d[n-pl=m,,é[n)=m,), (27)
Convergence to pair-wise independence
P(e[n- p]=m,,,e[n]=m,)—"== P(&[n- p]=m,,.eln]=m,), (28)

where, me, mg, € {~N/2+1,...,0,...,N/2}, mg € {0, 1}, and m; € {-S/2 + 1,...,0,...,5/2}.

Proof: The goal is to prove that given (20)—(24), if at least one of the conditions 1-3 is

satisfied then, equations (25)—(28) are true. Note that (26), and (22) together imply that
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P(s[n—pl=m,, e[n]=m,)—"2="— P(s[n— p)=m,)- P(&[n]=m,).
Summing the above equation over all values of m, proves the first equation in (25).
Since the conditions of the theorem are independent of n, if e[n] converges in
distribution to a uniform random variable, so does e[n-p], thereby proving the second
equation of (25) as well. Therefore, it is sufficient to prove that equations (26)—(28)
are true. As shown below, it is accomplished by considering the convergence of the
two-dimensional joint characteristic functions of e[n] and s[rn—p], d[n—p], e[n-p] as
n, — —o. The proofs of the three equations are similar except for a few details. The
common aspects of the three proofs are first presented, followed by the specific details
which differentiate the proofs.

Common aspects
Equations (26)—(28) are particular cases of the following generalized equation:
P(4=i,B=j)—==>P(C=i,D=j), (29)

where 4 = S[I’l——p], d[l’l—p], or e["‘P], B = e[n], C= S[”‘P]: d[l’l—p], or é[l’l—p], D=
é[n]; while the index j € {~-N /2 + 1,...,0,...,N/2}, the index i€ {-L/2 + 1,...,0,...,L/2},
where L = S, 2, or N corresponding to whether 4 = s[n-p], d[n—-p], or e[n-p]. For

instance, 4 = s[n—p], L = § reduces (29) to the equation (26). It follows from Lemma

B1 that to prove (29), it is sufficient to prove that:

2wk, 2nk P 27k, 27k
(DA’B( LL, NNJ >®C,D( LL’_FV_NJ’ VO<k, <L0<ky,<N, (30)

where @, ,(w;,w,) and @ ,(w;,w,) are the joint characteristic functions of the
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random variables 4, B and C, D respectively. The RHS of (30) is readily derived from

the properties of é[n] listed in equations (21)—(24):

2rk 2rk
CI)é[n] [_ﬁl) = q)é[n—p] (_ﬁN_J = 5[kN ]a

2wk, 2k 2k
d)(,,é[n](TL-,—TN-)=CDC( LLJ-5[kN] VO<k, <L,0<k, <N.

@31

Further, since B = e[n] is related to z[n] through the fractional operator, (x)=x~|x |,

as shown in (20), it follows from Lemma B2 that,
(DA,e[n] (wlﬂg%@) = q)A,z[n] (wl’:—zjffﬁ) V0 < kN < N>w1 € [Oa 2”) (32)

Substituting equations (31), (32) into (30) implies that, to prove (29) true, it is

sufficient to prove that:

2wk, 27k o 27k
CDA,Z[,,]( LL’ NN) o >CDC( LLj-é‘[kN], VO<k, <L,0<k,<N. (33)

The LHS of (33), which represents samples of the joint characteristic function of 4 and
z[n] is then expressed in terms of the characteristic functions of the dither samples and
the impulse response of H(z), namely A[7]. Once an expression for the LHS of (33) is
obtained in terms of A[r], conditions 1-3 listed in the theorem statement are
substituted and equations (26)—(28) are proved. The expressions for the LHS of (33)
depend on whether 4 = s[n—p], d[n—p), or e[n—p]. These specific details are presented
next.

Convergence to signal independence

Substituting 4 = C = s[n—p), B = ¢[n}, D = &[n], and L = § in (29) reduces it to

equation (26). It follows from (33) that it is sufficient to prove that:
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27k, 27k g0 2rky
CDS[,,_p]’Z[n]( SS N N) >(Ds[n_p]( S j Olky], VO<ks<S,0<k, <N.(34)

Substituting w, =27k, /S , and w, =27k, /N in Lemma B3, it follows that

2wk, 2rk 27k, —27zk - -2k
cDS["—P]J["] (T’ N r j = (Ds[n—ﬂl,sn[n]( S j H(D ( N h[r]ja (35)

VO<ky, <N,0<k <S,

where @, . ,,(W,w,) is the joint characteristic function of s,[n], s[n—p], and

®4(w) is the characteristic function of each of the iid random variables d[n].
Substituting (35) in equation (34) implies that to prove (26) true, it is sufficient to

prove that

2k, 27k, \ T 27k N 27k
(Ds[n—p],s,,[n] (—S—S_’TN_j ' Hq)d ( N o h[ ]j_—_—)q)s[n—p] ( S J 5[ N] (36)

r=0
VO0<k, <N,0<kg <S.
This equation can be proved true for ky = 0 by noting that

D, iy (,0) =Dy, (w). The following equation is sufficient to prove (36) for

ky = 0, and hence (26):

n—ny

H(D ( 27k h[r]) 2 50,  VO0<k, <N, (37)

Now conditions 1-3 are substituted to prove (37). First, consider those ky for which
the pair (ky, 0) satisfies condition 1 listed in the theorem statement. It follows from
setting g[r]=k,h[r] and invoking Lemma B6 that (37) is true for all such ky. Then,
consider those ky for which the pair (ky, 0) satisfies condition 2. Therefore, for each of

these ky, a positive integer 7, , exists such that kyh[r, ,Jmod N =N /2. Tt follows
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from setting g[r]= kAl ,] and invoking Lemma B7 that at least one of the terms in

the LHS of (37) is zero, and hence (37) is true for all such ky. The above two cases
cover all ky such that 0 < ky < N, because by hypothesis at least one of conditions 1-3
is satisfied for every pair (k1, k) and (ky, 0) does not satisfy condition 3. Hence
equation (26) is proved.

Convergence to dither independence

Substituting 4 = C = d[n—p), B = ¢[n], D = &[n], and L = 2 in (29) reduces it to

equation (27). It follows from (33) that it is sufficient to prove that:

2rk, —27rkN) ry o

2rk
d)d[n_p],z[n]( > TN >d)d[n_p](-2—2j-5[k,v], V0<k,<2,0<k, <N.(38)

Substituting w, =27k, /2, and w, = 27k, /N in Lemma B4, it follows that

2k, 2wk 2k 2k 2k
D - pin) ("2_2= ~ = j =@, 1 (—_A/—N_)(Dd( N X nlpl+ 5 2)

T %("ZJ’\’,"N h[r]} (39)

r#Ep

V0<k, <N,k, €{0,1}.

Substituting (39) in (38) implies that, to prove (27) it is sufficient to prove that

-2k 2xk 2k, ) = 2k
()} Nl.d N Al pl+ N B Ko ¥ h
()b, 2) o (220

rep (40)
2 >®d(27;k2)-5[k]v], YO<k, <N,0<k, <2.

This equation can be proved true for kv = 0 by noting that @, |, (0)=®,(0)=1. The

following equation is sufficient to prove (40) for ky = 0, and hence (27):
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[To. (—2}7\:}@ h[r]j 2 0 YO0<k, <N. (41)
r=0

rEp
Now conditions 1-3 are substituted to prove (41). The proof is identical to the proof
of (37) except for one detail. Consider those ky for which either (ky, 0) satisfies

condition 2. Just as in the proof of (37), for each of these ky, a positive integer r, ,
exists such that kyh[r, ,JmodN =N/2. Unlike before, proving (41) by setting

g[r]=kyhlry,] and invoking Lemma B7 requires that r,, # p, which is guaranteed

by condition 2. Hence (41) and (27) are proved.
Convergence to pair-wise independence
Substituting 4 = e[n—p), B = ¢e[n], C = é[n— p], D = é[n], and L = N in (29) reduces it

to equation (28). It follows from (33) that it is sufficient to prove that:

27Z.kN _271-k 1y —>—o0 2ﬂ.kN
@e[n_p],z[n][ e 2 NJ D, (Tp SThy 1LYO < ky Ky < N. (42)

Since e[n—p] is related to z[n—p] through the fractional operator, <x>=x—|_x_|, as

given by (20), it follows from Lemma B2 that,

2rck,, 27k —2rky, —2rmk
q)e[n—p],e[n}( N =, ~ = ) = (Dz[n—P],Z["][ N =, N | VO<ky,.ky<N. (43)
Substituting equation (43), and the first equation of (31) into equation (42) implies that

to prove (28), it is sufficient to prove that:

2k, 2rk o
@z[n_p],z[n{ v M ~ N] 12 5 STk, 1 SThy 1, VO < ky,, ky < N. (44)

Substituting 41(z) = A@z), 42z) = 0, Hi(z) = H(z), Hxz) = 0, Ny = N, = N,
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w, = 27ky, [N, and w, =27k, /N in Lemma B5, results in the following:

o —2rky, 27k, _o —2rky, 27k,
z[n—pl,z[n] N ’ N Sqln=pl.saln] N ’ N

n—ny

ch ( { ky, WP+ ey lr + p]}j (45)

p-1

T]® (———k H ]j, VO <ky,ky, <N.

r=0

where @\, .10 (wl,wz) is the joint characteristic function of s,[n — p] and s.[n].

Since @, ;. 1y (0,0) =1, substituting (45) in (44) implies that, to prove (28) true it

is sufficient to prove that:

HO ®, (‘%”{kwh[r] M+ p]}j - 1‘! ®, (‘27” th[r])

ny—>—0

—12=50, VO0<ky,ky, <N,ky+ky, #0.

(40)

Now conditions 1-3 are substituted to prove (46). First, consider those pairs
(ky,»ky) # (0,0) which satisfy condition 1 listed in the theorem statement. It follows
from setting g[r]= k,,h[r]+k,h[r+ p] and invoking Lemma B6 that the first product

term in the LHS of (46) converges to zero, and hence (46) is true for all such pairs.
Then, consider those pairs which satisfy condition 2. Therefore, for each of these
pairs, a positive integer 1 exists such that (ky,h[r,]+kyhlr, + p)mod N =N/2. It
follows from setting g[r]=k,, A% ,]1+kyh[r, + p] and invoking Lemma B7 that the

first product term in the LHS of (46) is zero, and hence (46) is true for all such pairs.
The remaining pairs satisfy condition 3. Therefore, for each of these remaining pairs,

a positive integer r, exists such that k,A[r,]Jmod N =N/2. It follows from setting
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glr1=k,kr,] and invoking Lemma B7 that the second product term in the LHS of
(46) is zero, and hence (46) is true for all the remaining pairs. Hence equation (28) is
proved.

Corollary 1: For any given p > 0, suppose that the first condition of Theorem Al is
true for all integers ki, k» such that k +k,#0, and 0<k ,k, <N~-1. Then, e[n]
converges in distribution to én] which is also independent of s[#] and d[n].

Proof: By hypothesis, condition 1 is true for integers ky = ky, k; = 0. It follows
thatk, A[rJmod N does not converge to zero as r — co. The result follows by setting

p =0 in equations (34)—~(37) and (38)—(41) in the proof of Theorem Al.

Corollary 2: Suppose that the starting time index, no, is fixed and the conditions of
Theorem A1l are satisfied for a given p > 0. Then, as n — o, e[n] and e[n—p] converge
in distribution respectively to uniformly distributed random variables, X, and X}, such
that X is independent of s[n—p], d[n—p], and X,,.

Proof: The proof is identical to the proof of Theorem Al except that the convergence
is in terms of n— o instead of n, — —, and X, and X, replace é[n] and é[n— p]
respectively. By proceeding just as in the derivation of equations (37), (41), and (46)
but with n, — —o replaced with n — o, and é[n] and é[n— p] replaced with X; and
X,, it follows that to prove the required convergence of e[n] and e[rn—p] it is sufficient

to prove that equations (37), (41), and (46) are true as n — o instead of n, — —o0. It
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1s also evident from these equations that the conditions of Theorem Al imply these
three equations as long as n—n, —> . Since, fixing ny and letting n — o achieves

this purpose, the corollary is proved.

Theorem A2: Suppose that the conditions of Theorem Al are satisfied for all positive
integers p. Then, the requantizer error e[n] has the property of whiteness with

statistical mean and auto-covariance,

M, =1,
2

2
C.(p)=

-1
o olpl-

Proof: If the conditions of Theorem Al are satisfied for all p > 0, then &[n] is
independent of é[n— p] for all p > 0. Since Theorem Al assumes nothing about the
index n except that n > ngy, we can replace n by n + p. As n, - —0, this can be done
for all p > 0. Consequently, é[n+ p] is independent of é[n] and vice versa. Hence,
é[n] is independent of (and hence, uncorrelated with) e[n+ p] forall p#0.

The mean and auto-covariance of the requantization error sequence are defined
as:
M,[n]& lim E[e[n]],

ng—>=—c0

Cometn-pln: P12 Jim £ [(e[”] ~M,,,)(eln-pl-M,, ,, )]

Since ¢[n] converges in distribution to é[n] and since ¢[n] is bounded and has finite
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support M,[n] is equal to E[&[n]] and hence is independent of # [6]%. Consequently,

the index n can be dropped and it follows that,

N2 oomo
Me = Z N = '2— .
m=—N/2+1

By analogous reasoning it follows that

C.[n,p]=E[(2ln]- M,)(e[n~ p]-M,)]
and hence is independent of n. Consequently, the index » can be dropped and it

follows that,

N/2 2 2 _
z e _Mez = l 19 p=0
Cee[p]': m=-N/2+1 N 12 .

0, p#0
The independence of M, and C,[p] from n along with the uncorrelated-ness proves
the result.

Corollary: Suppose that the starting time index, no, is fixed and the conditions of

Theorem A1l are satisfied for all positive integers p > 0. Then,
E [e[n]]ﬂ—) M,,
E[(e[n)-M,)(eln= p]-M,) |—==>C,[ p].
Proof: The proof is similar to the proof of Theorem A2 except that Corollary 2 of
Theorem Al is used instead of Theorem Al, and random variables X, and X, are used

instead of é[n] and e[n— p].

5 See Corollary 8.3.1, pg. 261.
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The theorems presented so far are concerned with the ensemble statistics of the
requantization error i.e., the average behavior of e[n] over numerous realizations of the
random dither sequences. However, these results would be of practical use only if e[#]
is proven to exhibit identical average behavior over time for any arbitrary realization
of the dither sequence.

Theorem A3: Suppose that the conditions of Theorem Al are satisfied. Then, the

following are true:

1. The ensemble averages M,, C,[p] are equal to the cotresponding time

averages i.e.,

L+nyg-1
LY dnl—,
| irgepei @7)
- > (enl-M,)(eln-pl-M,)—=2>C,[p], VYp20,

n=ng+p

where the convergence is in probability.

2. There is no average time correlation between e[#n], and the desired signal, s[/],

for any n,/€Z and (n—/) finite i.e.,

L+ny—1
2 (eln]- M, )s[1]—=2=—0. (48)
where the convergence is in probability.

Proof: Convergence in probability means “the probability that the LHS of one of the

equations in (47) or (48) is unequal to its RHS i.e., P(LHS # RHS) , converges to zero
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as L — oo ”. The proofs for all three cases are similar. Only the second equation in (47)

is proved here. Define the random process,

X, & (elk]-M,)(elk~ p]-M,)-C,[P].
It follows from the corollary to Theorem A2 that

E{X,}—=2>0. (49)

By setting no = 0, and defining 7, = d[k] and 2 £ s[k] equation (20) can be rewritten

as:

Consequently, for each keZ®, X, is a bounded, measurable function

X, = f(1ys-sTi» Ho» s 14, ) - Therefore, it follows from (49) that

E{Xk |770,...,nj,yo,...,,uj,...} -0

in probability as k— j — 0 with k> > 0. It follows from Lemma A2 in [7] that:

1 L+p-1
= > X, 0.
L

Hence the theorem is proved.
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dpn] ———{ H(2) >l
I\
X[ 7] | 4,(2) —Fﬁ"')ll;r > y,[n]
2 z
X[1)] | 4,(2) - - ifud >y [n]
A T

d[n] ——— H,(2)
/\

¢ [n]

Fig. 3.11: Framework for the theoretical analysis of multi-stage dithered quantization.

The following theorem refers to the system shown in Fig. 3.11.
Theorem A4: Suppose that for a given positive integer p and any ki, &, both not zero,
0<k <N,-1,and 0<k, <N, —1, at least one of the following is true:

1. The following sequence does not converge to zero as » —> ©

(klhl[r] + %kzhz[r + p]] mod N,

2

2. Anon-negative integer r|» = p exists such that

(klhl[’i,z]"‘%kzh:[’ﬁ,z +p]] mod N, = Nl/2

2

3. Anon-negative integer r, < p exists such that (k,i,[r,])mod N, = N, /2

Then for i = 1, 2, the requantization error e[n] converges to ¢[n] such that ¢[n] is
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independent of e,[n+ p].
Proof: The proof is analogous to that of pair-wise independence (equation (28)) in

Theorem Al using @, , .. 1. (k,k,) instead of @, ;... (k. k,).

APPENDIX B
Lemma B1: Suppose 4, B, C, D are discrete random variables, which are functions of
an arbitrary integer ng, such that 4,Ce{-L/2+1,..,0,..,L/2}, and
B,De{-N/2+1,..,0,..,N/2}, where L, N are even positive integers. Suppose

@, (w1, wy), @cp(wy, wy) are the joint characteristic functions of 4 and B, and C and
D, respectively. Then to prove that
P(A=i,B=j)—2=2=5P(C=i,D=j), V-L/2<i<L[2,-N[2<j<N/2,

it is sufficient to prove that

D, (2’2"1 ,2’]”;‘”) LR >¢C’D(2’2’% %} VO<k, <L,0<k, <N.
Proof: The result follows if P(4=i,B=/) and P(C=i,D=j) are uniquely
determined by the samples of @4 z(w1, wz), Dc,p(wi, w2) used in the above expression.
The uniqueness is proved by expressing P(4=i,B=j), P(C=i,D = j) respectively
as functions of the L*N samples of @4 g(w1, wo) and @ p(wy, wa).

Consider Q(A =i,B= j) defined for integers 7, j such that —L/2<i<L/2, and

~N/2< j<N/2:
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1 -1 N-i 2mk, 27r;kN 27Zk 27rk
Ad=i,B=j)2— e @ L=\
Q( J N kLZ-OkNZ—O 43\ T N

It is shown below that Q(4=i,B=j) = P(A=i,B=j), thereby proving that
P(4=i,B=j) is uniquely determined by the samples of @, (w1, w»). Substituting

the joint characteristic function of 4 and B, which is defined as
1/2 N2 o
@, ,(wow)= > > "M P(4d=m,B=m,), Yw,w, €[0,27),

my=—L{2+1 my=—N/2+1

in the definition of Q(4 = i, B =) results in the following:

1 -1 N-1 27r1kL B 27r1kN L/2 N/2 j27rkLmL I,27rkNmN
O(A=i,B=j)=— e’ e L e NV P(A=m,,B=m,).
NL o Y
k=0 ky =0 my=—L/2+1 my=~N/2+1

Interchanging the order of the summations and simplification results in the following:

L2 NJ2 L-1 27rkL( ) 1 Al 2k (my =)
0(4=i,B=j)= > > P(4d=m,B= mN) Ze FZe N
my=—Lj2+1 my=—N/2+1 k,=0 Ky =0

Using the relation
1 M j2”k1(ll_ml)
— = ol —m ,
N k=0 r—z—w [ v
in the above expression for Q(4 =i, B = j) simplifies it to the following:

LR N/2

0(4=iB=j)= S S P(Ad=m,B=m,)> 3 6lm, —i-rL]-8lm, —j—sN]

my=—L{2+1 my=—N/2+1 F==w0 §=—0

For —~L/2<i<L/2,and —N/2< j < N/2 therefore Q(A=i,B=j)=P(4=i,B=j),
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thereby proving that the sample of the joint characteristic function uniquely determine
the joint probability distribution function. An analogous result is obtained for the

random variables C, D, which completes the proof.

Lemma B2: Suppose X, Y, and Z are discrete random variables and N is an even

positive integer such that

N Z 1
Y_?_N,<ﬁ+5>’ where (x)=x—|x].

Then, the following is true about their joint characteristic functions, @, , (w,,w,) and

O, (w,w,):
27k —2rk
(DX’Y(WI,T)=CDX,Z(WI,—N—j YO<k<N.

Proof: Random variable Y takes on a value je{-N/2+1,...,0,..,N/2} whenever
random variable Z =rN — j, where r is an integer. Therefore, the joint probability

distribution of X and Y is related to that of X and Z as follows:

P(X=i¥=j)=3 P(X=i,Z=rN-]) VieZ je{-N/2+1,.,0,..N/2}. (50)

r=-c0

The joint characteristic function of X and Z is defined as

D, (w,w,)= i i ™M™ P(X =m,Z =m,).

my=—0o0 ny=-0
The second summation in the above expression can be split into a summation over

blocks of length N,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

© 0 NJ2

CI)X,Z(WI’WZ): Z z Z ejwlmesz(rN—l)P(X:ml,Z=rN__l)’

my=—o0 r=—0/=—N/2+1

where the substitution m, = N — [ is made. On substituting w, = 27rk/ N, noting that

e’?™ =1 the above expression further simplifies to,

2rk ° & N2 R

D, , (wl,—)= XD D Me ¥ P(X=m,Z=rN-I)
’ N my=—o0 F=—0 I=—N/2+1

Substituting (50) reduces the above expression to

w N/ { 27k
q)x,z(wpﬂ): Z Z%‘ ejwlmle"( N JlP(X=m1,Y=l)

N my=—n l=—N/2+1

—2rk
0, (. 722),

Substituting k for —k implies the result.

Lemmas B3, and B4 suppose the following:

n

z[n]="> slmlaln—m]+ Z d[m]h[n—m]

m=ny m=ny
N Y

sa17)
where d[n] is a sequence of iid random variables each independent of s[n] for every

n 2 n,. All variables are assumed to be zero for n < ny. The characteristic function of

each of the identical random variables d[n] is denoted by @s(w).

Lemma B3: For any given finite, positive integer p,
(DS['I—P],Z["] (Wl’ WZ) = cI)s[n—p],sa[n] (wlﬂ' w, ) : H (Dd (th[r]) VWI W, € [0: 271')3
r=0

where @, ...(w,w,) is the joint characteristic function of z{n] and s[n-p] and
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@, 1.0 (Wi> W) i the joint characteristic function of s,[n] and s[n-p].

Proof: The joint characteristic function of z[n] and s[n-p] is,

()

s[a-plzin
m=ny

(W) =E { ejw[n—memz[n]} _E {ejwls[n—plemsﬂ[n]ﬁ ejwﬂ[m]h[n—m]}
Since the samples of d[n] are independent of themselves and s[/] for all [ > ny, the
p p

above expression reduces to,

n
j - J(wyd[m1h[n-m])
@ (w1, ,) = B{/tvirnmst) P pos |
s[n—pl,z{n] 1772

m=ny

Note that the expectations in the above expression are the characteristic functions,

D, oo im (WsW,), and @, (w), with the appropriate arguments. Therefore, the above

expression reduces to

D, pyzto (w,w,) = D, psyim (W, w,)- H @, (wyh[n—m]).

m=ny

Substituting » = n — m in the product proves the lemma.

Lemma B4: For any given finite, positive integer p,

O (Wv Wz) = (Ds,,[n] (Wz ) 0, (th[P] +w ) : H D, (th[r]) Yw, w, €[0,27),
r=0

rEp
where @, ., (w) is the characteristic function of s,[n].

Proof: The joint characteristic function of z[#] and d[n-p] is,
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n
o DT . i
D@y oW Wy) = E {e’W“”" ”]e"wzz["]} = E{ /trtlPMlnplgmsdtn) T g adimiinn

m=ny,
m#n—-p

Since the samples of d[n] are independent of themselves and s[/] for all / > ny, the

above expression reduces to,

n
d (w,, w,) = E { ejwm[n]}, E { e.i(W1+th[p])d[n—p]}_ H E {ejw2d[m1h[n—m1}
d[n=p).2(n}\ 1> W2 )

m=ny,
m#n—p

Note that the expectations in the above expression are the characteristic functions,
@, ,,(w), and ®,(w), with the appropriate arguments. Therefore, the above

expression reduces to

ch[n—p],z[n] (Wls Wz) = CI)s,,[n] (Wz ) @, (Wl + th[p])' H D, (th[n - m])

m=ny,
m#ER—p

Substituting » = n — m in the product proves the lemma.

Lemma BS5 supposes the following:

z[n}= Zn: s[mla,[n—m]+ i dmlh[n—m] Vi=1,2

m=ny, m=ng
N

sai["]
where d[n] is a sequence of iid random variables each independent of s[n] for every

n=n,. All variables are assumed to be zero for n < ny. The characteristic function of

each of the identical random variables d[#] is denoted by ®,(w). The sequences a;[n],

hi[n] are the impulse responses of the filters A,(z) and H{(z) respectively, fori =1 or 2
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m Fig. 3.11.

Lemma B5: For any given positive integer p, and 7, j = 1 or 2,

n-ny
(sz[n—p],:/[n] (Wl’ W2) = ®S,,,-[n—p],s”j[n] (Wl » Wy ) : H D, (Wlhi[r] +wyh[r+ p])
r=0
-1

D, (w2hj[r]) Vw,,w, €[0,27),

]

~
1l
(=1

where @, ..(w,w,) the joint characteristic function of z{n-p] and z{n], and

D, (el ] (w,w,) is the joint characteristic function of s, [n— p] and s, [n].

Proof: The joint characteristic function of z;[n] and z;{n + p] can be expressed as,

— Jwiz[n=p] iwyz;[n]
ch,-[n—p],z,-[n] (Wl,wz)—E{e i e’ }

_E { ei(Wnsai[n~p]+w2s,4,-[n])ﬁ Ik tn=pmish (n-m) I"-[ e.fd[m]wzhj[n—m}

m=ny m=n—p+1

Since the samples of d[n] are independent of themselves and s[/] for all / > no, the

above expression reduces to,

n—p

(WS L ; Jd[m)(wihy[n=p-m]+wyh,[n-m])
o (W w,) = E { o Onsals p1+w2sq,[n1)}_H £ { o : }
z[n-plz;In] \ 1> V2

m=n,

' ﬁ E { ejd[m]w;h,[n—m]}

m=n—p+1

=

n-p
=D, tu oyt (Mo W) [T @, (whin—p—m]+w,hln—m])

m=ng

T @, (w,hln—m))

m=n-p+1
Substituting » = n — p — m in the first product, and » = n — m in the second product

reduces the above expression to
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. Hn-p~ny p-1
®Zi[n_p]17‘j[n] (Wl’ WZ) = (Ds,,i[n—p],sa_,-[n] (Wl’ W, ) ) I_l ch (Wlh[r] + th[l" + p]) ’ I:O[(Dd (th[r])-

Lemma B6: Suppose that d is an integer random variable with a probability
distribution,

0.5, m=0,

P(d[n]=m)={05 1

and its characteristic function is @ (w). Also suppose that N is a positive integer and
that g[r] is an integer sequence. If the sequence g[r]mod N does not converge to zero

as r = o then

}i_tgﬁd)d (Q”Tg[r]}a (51)

Proof: The characteristic function of the random variable under question is
@, (w)=O.5(1+ejw)=e-"w/2 cos(w/2). (52)
Consequently,

|d)d(—w)|<1 Yw #2mr,me L.

So, if (k- f[r])mod N does not converge to zero as r —> o then

o, (—2ﬂg[r])
N

for an infinite number of values of ». Since the characteristic function is bounded by

<]

unity, the infinite product in the LHS of (51) equals zero. This proves the lemma.
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Lemma B7: Suppose that d is an integer random variable taking on consecutive
integers 0 and 1 with equal probability and its characteristic function is ®4(w). Also

suppose that N is a positive integer and g is any integer. If g mod N = N/2 then

cpd(_z’rgj:o.
N

Proof: As shown in (52), the characteristic function of the random variable under

question is
@, (w)=e""cos(w/2). (53)
Consequently,
D,(—w)=0 Yw=_2m+N)r,meZ.

So, if gmod N = N/2 then

This proves the lemma.

APPENDIX C

Theorem C1: Suppose H(z)=z"'(1-z"")"". Then none of the conditions of Theorem

1 are satisfied for one or more positive values of p.

Proof: The impulse response of H(z) is A[r]=u[r—1]. Suppose k1 = k = N/2 and k;
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= N —k. Then,

(kh[r]+ k,h[r + p])mod N = (ku[r —1]+ (N —k)u[r + p—1])mod N
_J(N-k) Vr=0
0 vr21

This implies that there exist values of p for which conditions 1 and 2 of Theorem A2
are not satisfied. Moreover, for these values of p, (k,A4[r))mod N =k = N/2 Vr20.
So, condition 3 of Theorem A2 is not satisfied either.

Theorem C2: Suppose H(z)=z7(1-z"")". Then at least one of the three conditions

of Theorem 1 are satisfied for all p > 0. Furthermore, there exists at least one value of

p > 0 for which condition 1 of Theorem 1 is satisfied for all integers ki, &, such that &,

+k2:c0,and0<k1,k2<N—l.

Proof: As proved below, for most positive values of p, condition 1 is satisfied.
Therefore, this proof identifies situations in which condition 1 is not satisfied. Then it
is proved that in such situations, either condition 2 or condition 3 is satisfied.

The impulse response of H(z) is h[r] = (r — Du[r — 2]. Substituting this in the
expression for condition 1 of Theorem 1 results in,

0 Vr<2-p
(ka[r]+ kyh[r + p])mod N = (k,[r+ p-1])mod N V2-p<r<2. (54)
(k + k][ ~1]+k,p)mod N V2<r

Condition 1 of Theorem 1 is not satisfied only if

[k, +k,][r-1+k,p=mN, meZ, rzr,22. (55)

0 =
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To determine the cases where condition 1 is not satisfied, suppose that (55) is true.

Then, there exist two consecutive integers #,# +1> r,, which satisfy (55):

[k + k&, 1% —1]+k,p=mN,

(56)
Ik, + &, [n]+k,p=m,N, m,m,eZ.
By subtracting the first of the two equations in (56) from the second we get,
k +k, =m,N, 57)

k,p=m,N, m,,m,cl.
So, condition 1 of Theorem 2 is true for all triplets (k1, k2, p) except those specified by
(57). As shown below, most of these triplets satisfy condition 3. The ones that do not
are shown to satisfy condition 2.
Since 0 < ky < N =2", k, can be expressed as k, = 2°(2¢ + 1) where s, ¢ are non-

negative integers such that s < M. Therefore, the integer values of p which satisfy the

second equation of (57) are p=2""* (2t+1)m5 , where ms is a positive integer. The
choice 7, =1+ N/2*" results in k,h[r,]mod N= N/2 since,

k,hlr,Jmod N =k, (r, -1)mod N = (2t+1)—‘gimodN = %
Except for the case where s =M — 1, p =2 i.e., (ky = N/2, p =2), it is readily shown
that , < p:

N 2M—:

r =1+2S+1 =1+

<27 (21 +1) my.

Hence condition 3 of the theorem is satisfied for all triplets of (57) except (N/2, N/2,
2). For p = 2, choosing 7, =0+ p in equation (54) implies that condition 2 of the

theorem is satisfied for this triplet. Hence, for all p > 0, at least one of conditions 1-3
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is satisfied.

Moreover, choosing p < N to be relatively prime to N ensures that no integer &,
such that 0<k, <N -1 satisfies the second equation in (57). For example, if p = 3,
and 3k, = msN is not satisfied for any 0 <k, <N -1 and integer m4. This proves the
second part of the theorem.

Theorem C3: Suppose H(z)=z"(1-z"')"* and L>3. Then the conditions of

Theorem 1 are satisfied for all p > 0.

Proof: Define H (z)2z °(1-z")"° for positive integers S and suppose hg[7] is its

impulse response. This results in a difference equation between As[r] and hs_ 7],
h[r]1—hy[r—1]=h_[r] (58)

Then it needs to be shown that A[r] = h[r] satisfies conditions of Theorem 1 for all p

> 0. The theorem will be proved by the principle of mathematical induction.

Part (i): It has already been shown in Section III that /3[7] satisfies condition 1 of

Theorem 1 for all p > 0.

Part (ii): It needs to be shown that if Ag[r] satisfies condition 1 of Theorem 1 for a

given p > 0, so does kg4 1[7].

To prove by contradiction, for a given p > 0, and some 0 < ky, k2 < N— 1 such

that k, +k, # 0, suppose that 4g[r] satisfies condition 1 of Theorem 1, but f+1[7] does

not. Then (k kg, [r]+k,hg,,[r + p])mod N does not converge to zero as r — oo but,
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khg, [r1+ kg, [r+pl=mN, meZ, Vr=y,. (59)
For all pairs of consecutive integers #, +1 and r, +2 where 7, 2r,, (59) implies the

following:

kohg, (5 +1]+ kb, [+ 1+ pl=mN,

(60)
kth+1[r* + 2] + kth+1[h +2+ p] = mzN.

Subtracting the first of the two equations in (60) from the seconds results in
ky (Mgl +11= g, [11) + &y (Bgy[n + p+1] = by, [1 + p]) = (my —m)N. (61)
Substituting (58) in (61) results in
khrn]+kh[rn+pl=mN, melZ, r,2r,. (62)
This contradicts the hypothesis and hence proves the theorem.

Proof of Theorem 3: Since gfn] is integer valued by assumption and yj{n] is an
integer multiple of N, just as in equation (6), the i™ requantizer error can be shown to

be

e,-[n]=ﬂ—]\/, <M+L>

2 N, 2 (63)
where e [n] = (s[n] +v[n]* d[n]) * fin].
In other words,
e [n]* f[nl=m,N,—e[n] where m, eZ.
Similarly,
e [nl* f,_[n]=m,_ N, —e_[n] where m_ €Z. (64)

Substituting (64) in (63) results in
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eln]= N _ N, <mi_1N’;\1]* filn] 4% [n]* ]]pi\;l [n]* filn] + %>
| i (65)
=£ﬁ—4%<_QJDﬂ*ﬁ*D”*ﬁM]+l>
2 Ni 2

since N, /N, is a positive integer by assumption. By proceeding recursively it is

readily shown that
o] =Dy, (AL LY
2 N, 2
(66)
z[n]=Y simlgin—-ml+ Y dlml[n—m] VI<i<K
where ¢;[n] is the impulse response of the fictitious filter
0.(2)2(-) " []F(2) Visi<K (67)
=1
and A;[n] is the impulse response of the fictitious filter
zzé-f*'Fz.Vz
@2 TIAE () -

=0,(z)-V(z) Vi<i<K.
Consequently the behavior of the K™ requantization error, ex[n], is governed by the
filter Tx(z) defined in the Theorem statement. Setting A41(z) = Ox(z), 42(z) = 0, Hi(z) =
Tx(z) and Hy(z) = 0 in Theorems A2, A4 and A5 in succession with i = 1 proves the

result.

Proof of Theorem 4: Equations (66)-(68) derived in the proof of Theorem 3 in
Appendix A can be readily used in proving Theorem 4.

Part (i): Setting A(z) = Q{(z), and H(z) = Ti(z) and applying Theorem A1 and Corollary
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1 of Theorem Al for every p > 0, and then applying Theorem A2 proves that in terms
of ensemble statistics, ej[n] has the properties of uniformity, signal-independence,
dither-independence, and pair-wise independence. The application of Theorem A3
proves that the ej[n] has these properties in a time-averaged sense as well, along with

the property of whiteness, with mean and auto-covariance as given by (8), with N

replaced by N; for a given ;. Repeating for all 1<j<K proves the resuit.

Part (ii): For any given p >0, setting 4,(z) = Q(z), 42(z) = Qfz), Hi(z) = Ti(z) and
H(z) = T{(z) in Theorem A4 proves the result for a given i, j where i # j. This can be
repeated for all p>0 and all i, j where 1<i, j <K,i# j. An ergodicity proof similar

to Theorem A3 can be readily provided for this situation as well, but is not included
for sake of brevity. The result can be proved for all p < 0 by interchanging the roles of

A1(z) and H,(z) with those of 4,(z) and H,(z).
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