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The first chapter of this dissertation discusses the tree-structured dynamic el-

ement matching (DEM) technique for unity-weighted, multi-bit digital to analog con-

verters (DACs). In general, mismatches in nominally identical components of a unity-

weighted multi-bit DAC introduce non-linear distortion at the output of the DAC. For 

this reason, a DEM encoder is usually employed in the implementation of unity-

weighted multi-bit DACs, which objective is to permute the inputs to the nominally 
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identical components of the DAC, so that the non-linear distortion at the output is 

avoided or at least minimized. The best among such DEM techniques is the tree-

structured DEM technique. However, prior to the work presented in Chapter 1, this 

technique could not be applied to unity-weighted multi-bit DACs with a number of 

components that is not a power of two.  

The second chapter of this dissertation focuses on the topic of digital calibra-

tion of residue amplifiers in pipelined analog to digital converters (ADCs). Pipelined 

ADCs provide a high resolution digital representation of analog input signals.  In re-

cent years, many digital calibration techniques have been developed that enable the 

design of pipelined ADCs with low-power analog components that behave non-

ideally. One such digital calibration technique is Harmonic Distortion Correction 

(HDC) which compensates for the non-ideal residue amplifier behavior. This tech-

nique is the best digital calibration technique known to the authors that addresses the 

problem of residue amplifiers. Nevertheless, the HDC technique, when implemented 

in the pipelined ADC, cannot accurately eliminate errors introduced by residue ampli-

fiers under all pipelined ADC’s input conditions. In particular, the problem in the im-

plementation of the HDC technique arises due to the leakage of quantization error 

from the stages subsequent to the calibration stage. Chapter 2 presents an analysis of 

this problem and an all-digital solution which enables the HDC technique to properly 

operate regardless of the input signal level. 

The third chapter of this dissertation analyzes the number of samples that need 

to be averaged by the HDC algorithm in order to reliably estimate, and therefore 
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eliminate, the residue amplifier errors from the pipelined ADC’s output.  
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Chapter 1  

Tree-Structured DEM DACs with Arbitrary Numbers of Levels  

Abstract—Unity-weighted tree-structured dynamic element matching (DEM) DACs 

are widely used in delta-sigma (ΔΣ) data converters to ensure that mismatches among 

nominally identical analog components give rise to shaped noise instead of nonlinear 

distortion. Tree-structured DEM DACs offer an advantage over other published DEM 

DACs in that the shaped noise from component mismatches can be made free of spu-

rious tones. However, previously published unity-weighted tree-structured DEM 

DACs have the disadvantage that they require a power-of-two number of nominally 

identical 1-bit DACs. When applied to a ΔΣ data converter with a non-power-of-two 

number of quantization steps, this requires the DEM DAC to have a larger input 

range than needed by the ΔΣ data converter which wastes power and circuit area. This 

paper presents a generalized tree-structured DEM encoder applicable to DEM DACs 

with any number of 1-bit DACs, thereby avoiding this limitation. 

I.   INTRODUCTION 

A typical unity-weighted dynamic element matching (DEM) digital-to-analog 

                                                 
Manuscript received January 13, 2009. First published June 02, 2009; current version published Febru-
ary 10, 2010. This work was supported by the National Science Foundation under Award 0515286, by 
the UCSD Center for Wireless Communications and by the University of California Discovery Pro-
gram. This paper was recommended by Associate Editor G. Manganaro. The authors are with the De-
partment of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 
92093-0407 USA (e-mail:galton@ece.ucsd.edu). 
Digital Object Identifier 10.1109/TCSI.2009.2023931 
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converter (DAC) consists of a DEM encoder followed by a bank of N nominally iden-

tical 1-bit DACs, the outputs of which are summed to form the output of the DEM 

DAC. The DEM encoder maps the input sequence into N 1-bit sequences, each of 

which drives one of the 1-bit DACs. As described in the next section, the DEM en-

coder exploits flexibility in its choice of output bits each sample period to cause the 

error arising from mismatches among the 1-bit DACs to have a noise-like structure 

that is free of nonlinear distortion and spectrally shaped as appropriate for the appli-

cation. 

Unity-weighted DEM DACs are widely used in oversampling ΔΣ data con-

verters, i.e., ΔΣ ADCs and ΔΣ DACs, to prevent component mismatches from degrad-

ing data converter precision [1] − [30]. The DACs within a typical ΔΣ data converter 

need only convert digital signals with a small number of levels, but they must not add 

significant error within the ΔΣ data converter’s relatively narrow signal band.  

Therefore, DEM is used to spectrally shape the error introduced by the DACs so as to 

suppress the error within the signal band.  

Many types of unity-weighted DEM encoders have been published to date, 

one of which is the tree-structured DEM encoder [5], [9] − [12], [31], [32]. To the 

knowledge of the authors the tree-structured DEM encoder is the only of these in 

which the error caused by 1-bit DAC mismatches has been made spectrally shaped 

and free of spurious tones. This is a significant advantage in high-performance ΔΣ 

data converters, which tend to be used in applications which are highly sensitive to 

spurious tones. However, previously published tree structured DEM DACs have the 
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disadvantage that they require a power-of-two number of 1-bit DACs. When applied 

to a ΔΣ data converter with a non-power-of-two number of quantization steps, this 

requires the DEM DAC to have a larger input range than needed by the ΔΣ data con-

verter which wastes power and circuit area. This paper presents a generalized tree-

structured DEM encoder applicable to DEM DACs with any number of 1-bit DACs, 

thereby avoiding this limitation. 

II.   UNITY-WEIGHTED DEM DAC OVERVIEW 

The purpose of a DAC is to convert a sequence of input values, x[n], n = 0, 1, 

2, …, represented as a sequence of digital codewords updated at times nT, where T is 

the duration of each sample period, into an analog waveform. In this paper, for a 

DAC with N+1 levels each codeword is interpreted by design convention to have a 

numerical value in the range 

 , 1 , 2 , ,
2 2 2 2
N N N N⎧ ⎫⎛ ⎞ ⎛ ⎞− Δ − − Δ − − Δ Δ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
…  (1) 

where Δ is the minimum step-size of x[n]. Ideally, the output of the DAC during the 

nth sample period, i.e. during the time interval nT  ≤  t  <  (n + 1)T, is an analog pulse 

given by 

 ( ) ( ) [ ]y t a t nT x n= −  (2) 

where a(t) is called the unit output pulse and is zero outside of  0 ≤ t < T.  

A general architecture for such a DAC is shown in Figure 1. It consists of an 

all-digital encoder followed by a bank of N 1-bit DACs, the outputs of which are 
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summed to form the DAC output waveform, y(t). The encoder maps the sequence of 

input codewords into N 1-bit sequences denoted as ci[n], i = 1, 2, …, N, each of which 

takes on a value of 0 or 1 for each n. The encoder chooses its N output bits once per 

sample period under the constraint 

 ( )1
2

1
[ ] [ ]

N

i
i

x n c n
=

= Δ −∑ . (3) 

The output of the ith 1-bit DAC during the nth sample period is given by 

 

( )

( )

( )       if [ ] 1
2( )

( )      if [ ] 0
2

hi i

i

li i

a t nT e t nT c n
y t

a t nT e t nT c n

Δ⎧ − + − =⎪⎪= ⎨ Δ⎪− − + − =
⎪⎩

 (4) 

where ehi(t) and eli(t) are mismatch error pulses that result from inadvertent process 

variations during IC fabrication. The only assumption made about ehi(t) and eli(t) in 

this paper is that they are zero outside of 0 ≤ t < T. The output of the overall DAC is 

given by 

 ( ) ( )
1

N

i
i

y t y t
=

= ∑ . (5) 

The output of the ith 1-bit DAC during the nth sample period as given by (4) 

can equivalently be written as 

 ( )( )1
2( ) [ ] ( )i i i iy t t nT c n t nTα β= − − Δ + −  (6) 

where 

 
( ) ( )( ) ( ) hi li

i
e t e tt a tα −

= +
Δ  and 

( ) ( )( ) .
2

hi li
i

e t e ttβ +
=  (7) 

This can be verified by substituting (7) into (6) to obtain (4).  
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Substituting (6) and (7) into (5) yields  

 ( ) ( ) ( ) ( )[ ]y t a t nT x n t nT tβ ε= − + − +  (8) 

during the nth sample period, where  

 ( ) ( )
1

N

i
i

t tβ β
=

= ∑  and (9) 

 ( ) ( ) ( ) ( )( )1
2

1
[ ]

N

i hi li
i

t c n e t nT e t nTε
=

= − − − −∑ . (10) 

The mismatch error pulses are responsible for the terms β(t − nT) and ε(t) in (8). The 

first of these terms is a fixed pulse that repeats each sample period, independent of 

x[n]. Consequently, it results only in spurious tones at multiples of the sample fre-

quency which do not degrade the signal-to-noise ratio (SNR) or the in-band spurious-

free-dynamic-range (SFDR) of the DAC. In sampled DACs such as those imple-

mented with switched capacitor circuits, it aliases down to a fixed offset, in which 

case it does not introduce any tones. In contrast, the ε(t) term represents the dynamic 

error caused by the mismatch error pulses so it has the potential to degrade both the 

SNR and SFDR of the DAC.  

Unfortunately, short of eliminating the mismatch error pulses, it is not possi-

ble to make ε(t) zero. However, the encoder does have some control over the structure 

of ε(t) because for each DAC input value except x[n] = −NΔ/2 and x[n] = NΔ/2 the 

encoder can choose among multiple sets of bits {c1[n], c2[n], …, cN[n]} that satisfy 

(3). For example, for any value of n at which x[n] = −(N/2−1)Δ the encoder can sat-

isfy (3) by setting ci[n] = 1 for any single value of i in the set {1, 2, …, N } and set-
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ting cj[n] = 0 for all j ≠ i. Encoders that dynamically exploit this flexibility to impart 

desirable properties to ε(t) are called DEM encoders. 

Since ε(t) cannot be eliminated, its presence would be most tolerable if a DEM 

encoder could cause it to be a random process that is uncorrelated with x[n], free of 

spurious tones, and spectrally shaped as appropriate for the application at all times 

regardless of x[n] and the mismatch error pulses. A necessary condition for ε(t) to 

have these properties is that its expectation during each sample period must be inde-

pendent of x[n]. If this necessary condition were not satisfied, the expectation of ε(t) 

would be a deterministic function of x[n]. 

Unfortunately, ε(t) does not satisfy this necessary condition. To see this, sup-

pose that x[n] = −NΔ/2 or x[n] = NΔ/2 at some sample time n. Then to satisfy (3), the 

DEM encoder must set ci[n] = 0 or ci[n] = 1, respectively, for all i = 1, 2, …, N. It fol-

lows from (3) and (10) that for either of these cases ε(t) is deterministic, so it is equal 

to its expectation and is given by 

 ( )( ) [ ]t p t nT x nε = −  (11) 

during the nth sample interval where  

 ( ) ( ) ( )
1

1 N

hi li
i

p t e t e t
N =

= −⎡ ⎤⎣ ⎦Δ ∑ . (12) 

Thus, the expectation of ε(t) depends on x[n] for any mismatch error pulses that do 

not cause p(t) to be zero. 

The above reasoning implies that at least a component of ε(t) must be a deter-

ministic function of x[n]. If the deterministic function were nonlinear, then the effect 
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of the mismatch error pulses would be to cause the DAC to introduce nonlinear dis-

tortion, which is unacceptable in most applications. Hence, the best possible outcome 

would be for the deterministic function to be linear. Given that (11)  holds for the 

minimum and maximum values of x[n], the only possible form for ε(t) in which the 

deterministic function is linear is 

 ( ) ( ) ( )[ ] DACt p t nT x n e tε = − +  (13) 

during the nth sample period, where p(t) is given by (12), and eDAC(t) is a random 

process whose expectation is zero regardless of x[n] and the mismatch error pulses. 

By definition eDAC(t) = 0 during any sample interval in which x[n] = −NΔ/2 or x[n] = 

NΔ/2. Therefore, if the expectation of eDAC(t) were not zero over all sample intervals 

it would have the form of a nonlinear deterministic function of x[n] plus a zero-mean 

random process. 

It follows from (7) and (12) that p(t) = α(t) − a(t), where 

 ( ) ( )
1

1 N

i
i

t t
N

α α
=

= ∑ . (14) 

Therefore, the analysis presented above implies that a necessary condition for a DEM 

DAC to avoid introducing nonlinear distortion is that its output during the nth sample 

interval is  

 ( ) ( ) ( ) ( )[ ] DACy t t nT x n t nT e tα β= − + − +  (15) 

for each n, where α(t) is given by (14), β(t) is given by (9), and eDAC(t) is a random 

process whose expectation is zero regardless of x[n] and the mismatch error pulses. 

This is also a sufficient condition for eDAC(t) to be uncorrelated with x[n]. The objec-
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tives of DEM are to achieve this condition and, as described above, to further ensure 

that eDAC(t) is free of spurious tones, and spectrally shaped as appropriate for the ap-

plication regardless of x[n] and the mismatch error pulses. 

The three components of the DAC’s output signal in (15) are referred to as the 

signal pulse sequence, the offset pulse sequence, and the DAC noise, respectively 

[33]. The mismatch error pulses cause α(t) to deviate somewhat from the ideal unit 

output pulse, a(t), but in most applications this is not a serious problem because it has 

little effect on the SNR or SFDR of the overall DAC. As described above, the offset 

pulse sequence does not degrade the SNR or the in-band SFDR of the overall DAC, 

and the objective of DEM is to render the DAC noise tolerable for the given applica-

tion. 

III.   DECOMPOSITION OF ARBITRARY DEM ENCODERS INTO TREE STRUC-

TURE 

A.  Preliminary Definitions  

When considering the behavior of a DAC in the context of a signal processing 

system such as a ΔΣ data converter, it is convenient to interpret the sequence of input 

codewords to have values given by (1) as described above. However, when consider-

ing the operation of the DEM encoder, it is convenient to consider each codeword to 

represent the number of 1-bit DACs whose input bits must be set high during that 

sample interval, i.e. 
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[ ][ ]

2
x n Nc n = +
Δ

. (16) 

Therefore (3) is equivalent to 

 1
[ ] [ ]

N

i
i

c n c n
=

= ∑ . (17) 

and (15) can be written as 

 ( ) ( ) ( ) ( )[ ] c DACy t t nT c n t nT e tα β= − Δ + − +  (18) 

during the nth sample period, where 

 ( ) ( ) ( )
2c
Nt t tβ β α= − Δ . (19) 

In order to simplify the subsequent analysis, the following definition from 

[34] is used. 

DAC(u,w) Definition: For any integers u and w that satisfy 1 ≤ u ≤ w ≤ N, DAC(u,w) 

consists of an encoder followed by the uth through wth 1-bit DACs of the DAC 

shown in Figure 1. The encoder maps a digital input sequence given by 

 
( , )[ ] [ ]

w
u w

i
i u

c n c n
=

= ∑  (20) 

to the same 1-bit sequences cu[n], cu+1[n], …, cw[n] generated by the encoder shown 

in Figure 1. The output of DAC(u,w) during the nth sample period is 

 
( ) ( ) ( ),

w
u w

i
i u

y t y t
=

= ∑ . (21) 

Following an analysis almost identical to that presented in the previous sec-

tion (6) and (21) imply that 
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( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ), , , , ,+u w u w u w u w u w

c DACy t t nT c n t nT e tα β= − Δ − +  (22) 

where 

 
( ) ( ) ( ), 1

1

w
u w

i
i u

t t
w u

α α
=

=
− + ∑  and (23) 

 
( ) ( ) ( ) ( ) ( ) ( ), ,1

2

w
u w u w

c i
i u

t w u t tβ α β
=

Δ
= − − + + ∑ . (24) 

Note that for the special case of u = w, DAC(u,u) denotes the uth 1-bit DAC, and that 

c(u,u)[n] = cu[n]. Furthermore, a comparison of (6) and (22) implies that 

 
( ) ( ), 0u u
DACe t = . (25) 

This is reasonable given that a 1-bit DAC has only two input levels; the mismatch 

error pulses give rise to a pulse shape error and an offset pulse, but no DAC noise as 

defined in the previous section. 

B. Decomposition Analysis  

It follows from (5), (16), (17), (20), and (21) that any DAC of the form shown 

in Figure 1 can be redrawn in the equivalent form shown in Figure 2 for any g ∈ {1, 

2, …, N−1}. The equivalent form consists of a digital block labeled S(1,g,N), called a 

switching block, and two sub-DACs, DAC(1,g) and DAC(g+1,N), the outputs of which 

are summed to form the overall DAC output. 

The S(1,g,N) switching block converts the c[n] sequence into the input se-

quences to DAC(1,g) and DAC(g+1,N), i.e., c(1,g)[n] and c(g+1,N)[n], respectively. It follows 

from (20) that the bottom and top output sequences from the S(1,g,N) switching block 
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must be 

 
( ) ( )1, 1,

1 1

[ ] [ ], and [ ] [ ],
g N

g g N
i i

i i g

c n c n c n c n+

= = +

= =∑ ∑  (26) 

respectively. Equivalently, these sequences can be rewritten as 

 
( ) ( ) ( ) ( )1, 1, , 1, 1, ,[ ] [ ] [ ], and   [ ] [ ] [ ],g g N g N g Ng N gc n c n s n c n c n s n

N N
+ −

= + = −  (27) 

respectively, where s(1,g,N)[n] is called a switching sequence and is given by 

 
( )1, ,

1 1
[ ] [ ] [ ]

g N
g N

i i
i i g

N g gs n c n c n
N N= = +

−
= −∑ ∑ . (28) 

This can be verified by substituting (28) into (27) to obtain (26). It follows that the 

S(1,g,N) switching block can be viewed as a device that somehow generates s(1,g,N)[n] 

and uses it with (27) to obtain the switching block’s two output sequences as func-

tions of its input sequence. 

 It is next shown that the s(1,g,N)[n] switching sequence plays a key role in de-

termining the behavior of the DAC noise. Given that  

 ( ) ( ) ( ) ( ) ( )1, 1,g g Ny t y t y t+= + , (29) 

(22) implies that during the nth sample period 

 
( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )

1, 1, 1, 1,

1, 1, 1, 1,

+

          + + .

g g g g
c DAC

g N g N g N g N
c DAC

y t t nT c n t nT e t

t nT c n t nT e t

α β

α β+ + + +

= − Δ − +

− Δ − +  (30) 

With (23), (24), and (27) this can be rewritten as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1, , 1, , 1, 1,

[ ]

                                    + [ ]
c

g N g N g g N
DAC DAC

y t t nT c n t nT

s n t nT e t e t

α β
+

= − Δ + −

Δ − + +  (31) 

where 
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 ( ) ( ) ( ) ( ) ( )1, 1,(1, , ) g g Ng N t t tα α +⎡ ⎤Δ = − Δ⎣ ⎦ . (32) 

Comparison to (18) indicates that 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , 1, , 1, 1,[ ]g N g N g g N
DAC DAC DACe t s n t nT e t e t+= Δ − + +  (33) 

during the nth sample period. 

The above analysis trivially can be generalized to any DAC(u,w), where 1 ≤ u < 

w ≤ N. Specifically, as illustrated in Figure 3, DAC(u,w) can be decomposed into an 

S(u,v,w) switching block and two sub-DACs, DAC(u,v) and DAC(v+1,w), for any v ∈ {u, 

u+1, …, w−1}. It follows from almost identical reasoning as used to obtain (27), (28), 

and (33) that the bottom and top outputs of the S(u,v,w) switching block are 

 

( ) ( ) ( )

( ) ( ) ( )

, , , ,

1, , , ,

1[ ] [ ] [ ], and
1

[ ] [ ] [ ],
1

u v u w u v w

v w u w u v w

v uc n c n s n
w u

w vc n c n s n
w u

+

− +
= +

− +
−

= −
− +

 (34) 

respectively, where s(u,v,w)[n] is a switching sequence and is given by 

 
( ), ,

1

1[ ] [ ] [ ]
1 1

v w
u v w

i i
i u i v

w v v us n c n c n
w u w u= = +

− − +
= −

− + − +∑ ∑ . (35) 

During the nth sample period (22) holds with 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , 1,[ ]u w u v w u v w u v v w
DAC DAC DACe t s n t nT e t e t+= Δ − + +  (36) 

where 

 
( ) ( ) ( ) ( ) ( ) ( ), , , 1,u v w u v v wt t tα α +⎡ ⎤Δ = − Δ⎣ ⎦ . (37) 

Figure 4 shows the signal processing performed by switching block S(u,v,w), where 

 
( , , )

1
u v w w vG

w u
−

=
− +

.  
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The above analysis shows that i) any DAC of the form shown in Figure 1 can 

be decomposed as shown in Figure 2, ii) if g ≥ 2 then DAC(1,g) can be decomposed as 

shown in Figure 3 for u = 1, w = g, and any v = v1 where v1 ∈ {1, 2, …, g−1}, and iii) 

if g ≤ N−1 then DAC(g+1,N) can be decomposed as shown in Figure 3 for u = g+1, w = 

N, and any v = v2 where v2 ∈ {g+1, g+2, …, N−1}. Using results (ii) and (iii) above, 

the last two terms in (33) can each be expanded via (36) to obtain 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 2 2 2 2

1, , 1, , 1, , 1, , 1,

1, 1, , 1, , 1, 1,

[ ] + [ ] +

+ [ ] + .

g N g N v g v g v
DAC DAC

v g g v N g v N g v v N
DAC DAC DAC

e t s n t nT s n t nT e t

e t s n t nT e t e t+ + + + +

= Δ − Δ −

+ Δ − +  (38) 

This decomposition process can be continued recursively, each time replacing 

a sub-DAC of the form DAC(u,w) in which w ≥ u + 1 by a new switching block S(u,v,w) 

and two new sub-DACs, DAC(u,v) and DAC(v+1,w). The recursive decomposition can be 

continued until the DAC of Figure 1 has been transformed into a tree of switching 

blocks that drives N sub-DACs of the form DAC(u,u) for u = 1, 2, …, N. By definition 

DAC(u,u) is just the uth 1-bit DAC, so the above analysis indicates that any encoder 

(DEM or otherwise) which satisfies (17) is equivalent to a tree of switching blocks 

with switching sequences given by (35). Furthermore, since each recursion allows 

one of the ( ) ( ),u w
DACe t  terms in the eDAC(t) expression obtained from the previous recur-

sion step to be expanded via (36), and ( ) ( ), 0u u
DACe t =  for all u, it follows that 

 ( ) ( ) ( ) ( ), , , ,

, ,

[ ]u v w u v w
DAC

u v w

e t s n t nT= Δ −∑  (39) 

during the nth sample period where the sum in (39) is taken over all values of u, v, 

and w used during the recursive decomposition process. By definition, Δ(u,v,w)(t) for 
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each u, v, and w is a fixed pulse that is zero outside of 0 ≤ t < T, so (39) implies that 

the statistical properties of eDAC(t) are determined by the switching sequences. 

At each step in the decomposition process, whenever w − u ≥ 2 more than one 

choice exists for v. Therefore, a given encoder can be decomposed into several equiv-

alent trees of switching blocks. Each such tree of switching blocks is called a tree-

structured encoder. Figures 5a and 5b show examples of tree-structured encoders ob-

tained by decomposing DACs of the form shown in Figure 1 with N = 12 and N = 9 

1-bit DACs, respectively. 

The tree-structured encoders shown in Figure 5 each contain N−1 switching 

blocks, and the following argument indicates that this result holds in general, i.e., that 

all tree-structured encoders contain exactly N−1 switching blocks. As described 

above, each of the recursion steps used to generate a given tree-structured encoder 

replaces a DAC of the form DAC(u,w) where 1 ≤ u < w ≤ N by a switching block and 

two new sub-DACs, DAC(u,v) and DAC(v+1,w). This places a dividing line between the 

vth and (v+1)th 1-bit DACs, and assigns all of the 1-bit DACs in DAC(u,w) below this 

dividing line to DAC(u,v) and all those above the dividing line to DAC(v+1,w). The re-

cursion process ends when all sub-DACs are of the form DAC(u,u) for 1 ≤ u ≤ N, i.e., 

when a dividing line has been placed between every pair of 1-bit DACs. A bank of N 

1-bit DACs can contain up to N−1 such dividing lines, so exactly N−1 recursion steps 

are required to transform the encoder shown in Figure 1 into a tree-structured en-

coder. Hence, the tree-structured encoder contains N−1 switching blocks. 

The analysis presented above starts with an arbitrary encoder that satisfies 
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(17) and shows that there exist multiple equivalent tree-structured encoders with 

switching sequences specified in terms of the 1-bit output sequences from the original 

encoder. Therefore, it implies that each tree-structured encoder is completely general 

in that with the appropriate choice of switching sequences it can mimic any given en-

coder that satisfies (17). Furthermore, (39) implies that the switching sequences spec-

ify the dynamics of the DAC noise. Hence, the derivation uses the tree-structured en-

coder as an analysis tool. 

IV.  SYNTHESIS OF UNITY-WEIGHTED TREE-STRUCTURED DEM ENCOD-

ERS  

 The results of the previous section are extended in this section to provide a 

method with which to synthesize tree-structured DEM encoders that have desired 

DAC noise properties. The synthesis method involves choosing one of the possible 

trees of switching blocks derived in the previous section, and then designing switch-

ing sequences that result in DAC noise with desired properties under the constraint 

that (17) is satisfied. 

As in the previous section, first consider the S(1,g,N) switching block. It follows 

from (27) that the outputs of the switching block satisfy 

 
( ) ( )1, 1,[ ] [ ] [ ]g g Nc n c n c n++ =  (40) 

and that for each n the value of s(1,g,N)[n] determines how c[n] is distributed between 

c(1,g)[n] and c(g+1,N)[n]. Given that ci[n] ∈ {0, 1} for each n, (26) implies that 
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 { } { }(1, ) ( 1, )[ ] 0,1, , and [ ] 0,1, ,g g Nc n g c n N g+∈ ∈ −… … . (41) 

Therefore, for any value of n at which c[n] = 0 the only way to satisfy (40) and (41) is 

to have c(1,g)[n] = 0 and c(g+1,N)[n] = 0, which implies that s(1,g,N)[n] must be zero. Simi-

larly, for any value of n at which c[n] = N the only way to satisfy (40) and (41) is to 

have c(1,g)[n] = g and c(g+1,N)[n] = N−g, which implies that s(1,g,N)[n] must be zero. 

For each other possible value of c[n], i.e., each value in the set {1, 2, …, 

N−1}, there exist at least two valid choices of s(1,g,N)[n] because there are at least two 

different choices of c(1,g)[n] and c(g+1,N)[n] that satisfy (40) and (41). These two valid 

choices of s(1,g,N)[n] are 

 
( ) ( )1, , 1, ,[ ] [ ] and [ ] [ ] 1g N g NN g N gs n c n s n c n

N N
− −

= = −  (42) 

where b b b= − ⎢ ⎥⎣ ⎦  denotes the fractional part of b and b⎢ ⎥⎣ ⎦  denotes the largest integer 

less than or equal to b. This can be verified by substituting the left and right equations 

of (42) into (27). Substituting the left equation of (42) into (27) yields 

 
( ) ( )1, 1,[ ] [ ] [ ] , and   [ ] [ ] .g g NN g N gc n c n c n c n c n

N N
+− −⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (43) 

and substituting the right equation of (42) into (27) yields  

 
( ) ( )1, 1,[ ] [ ] [ ] 1, and   [ ] [ ] 1.g g NN g N gc n c n c n c n c n

N N
+− −⎢ ⎥ ⎢ ⎥= − − = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (44) 

In both cases (41) is satisfied whenever c[n] ∈ {1, 2, …, N−1} as required. Thus for 

each n at which c[n] ∈ {1, 2, …, N−1} there must be sets of bits {c1[n], c2[n], …, 

cN[n]} that cause (28) to take on the values implied by (42). 
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The above analysis trivially can be generalized to any switching block S(u,v,w), 

where 1 ≤ u < w ≤ N with only changes in the notation. Specifically, following identi-

cal reasoning as above indicates that valid choices of s(u,v,w)[n] are 

 

( ) { },
( , , ) 0, if  [ ] 0, 1 ,[ ]

 or 1, otherwise

u w
u v w c n w us n

m m

⎧ ∈ − +⎪= ⎨
−⎪⎩  (45) 

where  

 
( ), [ ]

1
u ww vm c n

w u
−

=
− + .  

Thus for each n there must be sets of bits {cu[n], cu+1[n], …, cw[n]} that cause (35) to 

take on the values implied by (45). Conversely, if a tree-structured encoder is de-

signed in which all the switching sequences satisfy (45), then the N 1-bit output se-

quences from the encoder will satisfy (17) and the DAC noise will satisfy (39). 

Note that (45) is not a general expression because it does not represent all pos-

sible values that can be assumed by (35). This implies that tree-structured encoders 

with switching sequences that satisfy (45) are not capable of mimicking any conceiv-

able encoder that satisfies (17). Nevertheless, as shown below and demonstrated in 

the next section, the switching sequence values implied by (45) are sufficient to 

achieve desirable DAC noise properties. 

 As shown in Section II, a necessary condition for a DEM DAC to avoid in-

troducing nonlinear distortion is for the expectation of eDAC(t) to be zero for all t, re-

gardless of the mismatch error pulses and x[n]. A tree-structured DAC with switching 

sequences that satisfy (45) can achieve this necessary condition because for each n, 
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regardless of the value of c[n], every switching sequence that satisfies (45) has a val-

ue that is zero or is either of two known non-zero values, one of which is positive and 

the other negative. Therefore each switching block can exercise its choice of possible 

switching sequence values to ensure that the expectation of each switching sequence 

is zero. In this case, (39) implies that eDAC(t) satisfies the necessary condition. 

Furthermore, for each n at which (45) allows the switching block to have a 

choice of two non-zero values with opposite signs, the choice can be made without 

regard to the switching block’s input sequence, and therefore without regard to c[n]. 

This makes it possible to use switching sequences that are spectrally shaped random 

processes which are uncorrelated with c[n]. An example of such a DEM DAC is pre-

sented in the next section. 

V.  A DESIGN EXAMPLE 

The design of a 13-level DEM DAC with a tree-structured DEM encoder for 

use in a second-order ΔΣ ADC is described in this section. The objective of the DEM 

DAC for this application is to cause the DAC noise to be a random process with an 

expectation of zero, to be uncorrelated with c[n], to be free of spurious tones, and to 

be highpass shaped, all regardless of the mismatch error pulses. The tree-structured 

DEM encoder described in Section III and shown in Figure 5a with switching blocks 

that perform the signal processing operations shown in Figure 4 is used as the starting 

point for the design. The design tasks are to choose appropriate switching sequences 

and devise digital logic that generates the switching sequences. 
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The PSD of a DAC waveform can be estimated in the laboratory using a spec-

trum analyzer, or, analogously, in simulation using periodogram analysis [35]. There-

fore, the spectral properties of the switching sequences are derived below in terms of 

their periodograms. The length-L periodogram of s(u,v,w)[n] is given by 

 ( , , )

21
( , , )

,
0

1( ) [ ]u v w

L
u v w j n

s L
n

I s n e
L

ωω
−

−

=

= ∑ , (46) 

which can be written equivalently as 

 ( , , )

1 1
( , , ) ( , , ) ( )

,
0 0

1( ) [ ] [ ]u v w

L L
u v w u v w j n m

s L
n m

I s n s m e
L

ωω
− −

− −

= =

= ∑∑ . (47) 

It is well known that in certain cases the expectation of the periodogram converges to 

the true PSD function in the limit as L→∞, but in a DAC application this is not a re-

quirement, or even relevant to the measured performance. 

First consider the s(1,4,12)[n] switching sequence. Evaluation of (45) for all pos-

sible values of c[n] yields 

 
( )

{ }
{ }

{ }

{ }

1,4,12

0                                if [ ] 0,12

0  or  1                   if [ ] 3,6,9
1 2[ ] or                    if [ ] 2,5,8,11
3 3
2 1or                    if [ ] 1, 4,7,10
3 3

c n

c n

s n c n

c n

∈⎧
⎪

− ∈⎪
⎪

= ⎨ − ∈
⎪
⎪
⎪ − ∈
⎩

. (48) 

It follows from (48) that for the expectation of s(1,4,12)[n] to be zero regardless 

of c[n] (and therefore to be uncorrelated with c[n]), the probability distribution of 

s(1,4,12)[n] must satisfy 

 
( )( )1,4,12P [ ] 0 1s n = = and 

( )( )1,4,12P [ ] 1 0s n = − =   
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when c[n] ∈ {0, 3, 6, 9, 12}, 

 
( )1,4,12 1 2P [ ]

3 3
s n⎛ ⎞= =⎜ ⎟

⎝ ⎠  and 
( )1,4,12 2 1P [ ]

3 3
s n⎛ ⎞= − =⎜ ⎟

⎝ ⎠   

when c[n] ∈ {2, 5, 8, 11}, and 

 
( )1,4,12 2 1P [ ]

3 3
s n⎛ ⎞= =⎜ ⎟

⎝ ⎠  and 
( )1,4,12 1 2P [ ]

3 3
s n⎛ ⎞= − =⎜ ⎟

⎝ ⎠  (49) 

when c[n] ∈ {1, 4, 7, 10}, where P(s(1,4,12)[n] = λ) denotes the probability that 

s(1,4,12)[n] is equal to λ. 

As a special case, first suppose that c[n] ∈ {2, 5, 8, 11} for all n. Then one 

way to satisfy (49) is to let (s(1,4,12)[3k], s(1,4,12)[3k+1] , s(1,4,12)[3k+2]) be an independ-

ent sequence of random variable triples that take on values of (1/3, 1/3, −2/3), (1/3, 

−2/3, 1/3) and (−2/3, 1/3,  1/3) with equal probability. The sum of terms in each triple 

is zero, so it follows from (46) that ( , , ) ,
(0)u v ws L

I  < 1/L which implies that the expecta-

tion of ( , , ) ,
( )u v ws L

I ω  goes to zero at ω = 0 as L → ∞. Although the expectation of 

( , , ) ,
( )u v ws L

I ω  does not go to zero as L → ∞ when ω ≠ 0, (47) and the independence of 

the triples imply that the expectation of ( , , ) ,
( )u v ws L

I ω  is uniformly bounded for all L and 

ω. Hence, the sequence is highpass shaped and is free of spurious tones as desired. 

A digital logic block that generates s(1,4,12)[n] for this special case is shown in 

Figure 6. Three flip-flops preloaded with bit values of 1, 1, and 0, respectively, are 

configured as a re-circulating shift register clocked once per DAC sample interval. 

Thus, the Q output of the left-most flip-flop is the periodic sequence 1, 1, 0, 1, 1, 0, 

…, and the Q outputs of the middle and right-most flip flops are the same sequence 
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except delayed by one and two DAC sample intervals, respectively. A three-to-one 

MUX selects as its output one of the three flip-flop outputs based on a pseudo-

random number that is updated once every three DAC sample intervals. Each pseudo-

random number is chosen independently and takes on values of 0, 1, and 2 with equal 

probability. A value of 2/3 is subtracted from the output of the multiplexer to cause 

the final sequence to take on values of 1/3, 1/3, and −2/3, as required. 

The other special cases can be handled similarly. If c[n] ∈ {1, 4, 7, 10} for all 

n, the same strategy can be used except with triples that take on values of (−1/3, −1/3, 

2/3), (−1/3, 2/3, −1/3) and (2/3, −1/3, −1/3) with equal probability. It is straightfor-

ward to verify that the digital logic block shown in Figure 6 with its output multiplied 

by −1 can be used to generate s(1,4,12)[n] for this special case. Alternatively, if c[n] ∈ 

{0, 3, 6, 9, 12} for all n, then s(1,4,12)[n] = 0 can be used. This satisfies (49) and has the 

benefit that it does not contribute at all to the DAC noise. 

In general, any c[n] sequence can be constructed by interlacing subsequences 

corresponding to the three special cases described above, and the s(1,4,12)[n] switching 

sequence can be formed by correspondingly interlacing the switching sequences de-

scribed above for each subsequence. Since each of the interlaced switching sequences 

is dc-free, highpass shaped, and free of spurious tones, s(1,4,12)[n] inherits these prop-

erties. 

A digital logic block that generates the s(1,4,12)[n] is shown in Figure 7. It gen-

erates switching sequences for the three special cases described above and combines 

them to implement the interlacing operation. Therefore, the structure of Figure 4 with 
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G(1,4,12) = 2/3 and the logic block shown in Figure 6 and Figure 7 make up the S(1,4,12) 

switching block. 

Applying the same procedure to design the remaining switching sequences 

yields 

 
( )

( )

( )

,
, ,

,( , , )

0, if [ ] is even,
[ ]

[ ], if [ ] is odd,

u w
u v w

u wu v w

c n
s n

n c nλ

⎧⎪= ⎨
⎪⎩

 (50) 

for each (u, v, w) ≠ (1, 4, 12), where  λ(u,v,w)[n] is a highpass shaped random sequence 

each sample of which takes on values of ±1/2 with equal probability. A digital block 

that implements (50) is shown in Figure 8. Each of the corresponding switching 

blocks consists of the structure of Figure 4 with G(u,v,w) = 1/2 and the digital block 

shown in Figure 8. Although the notation is slightly different to allow for the gener-

alizations presented in this paper, it is straightforward to verify that for this special 

case the switching block is equivalent to that presented in [36] for unity-weighted 

DACs with a power-of-two number of 1-bit DACs. 

 When used in a ΔΣ ADC, any input-output latency imposed by the DEM en-

coder adds to the delay around the feedback paths within the ΔΣ ADC so it must be 

considered when designing the ΔΣ ADC. Although a tree-structured DEM encoder 

contains clocked components (e.g., the components shown in Figures 7 and 8), these 

components are not in the data path; they are only used to generate the switching se-

quences, so they only need to be fast enough to generate switching sequence samples 

at the sample-rate of the DEM DAC. In contrast, the latency of the DEM encoder is 

determined by how fast the operations shown in Figure 4 occur within each switching 
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block, and the largest number of cascaded switching blocks within the DEM encoder.   

In general, the largest number of cascaded switching blocks within a tree-

structured DEM encoder for a given number, N, of 1-bit DACs depends on the choic-

es made during the recursion process described in Section III. It is straightforward to 

verify that the minimum value of this number is the smallest integer greater than or 

equal to log2N and that this minimum value is achieved by at least one of the possible 

tree-structures. The DEM encoders shown in Figure 5 are such examples. 

If necessary, the latency of the DEM encoder can be reduced at the expense of 

increased complexity. One approach is to represent c[n] as a thermometer code and 

flatten the tree structure into an equivalent single layer of transmission gates as de-

scribed in [37]. Other approaches involve modifying the binary number formats used 

by the individual switching blocks to reduce latency as described in [36]. 

Figure 9 shows the block diagram of a second order ΔΣ ADC that contains 

two 13-level DEM DACs of the type designed above. As is common practice in such 

ADCs, both DEM DACs share the same DEM encoder to save circuit area [13]. Fig-

ure 10a and Figure 10b show output spectra from a computer simulation of the ΔΣ 

ADC with ideal components except for 1-bit DAC mismatches. The simulated 1-bit 

DAC mismatches were chosen from a Gaussian distribution with a standard deviation 

of 1%. The simulated input sequence is the sum of a full-scale sinusoid and a small 

amount of white noise to act as dither [38]. Figure 10a shows the output spectrum 

from the ΔΣ ADC simulated without the DEM encoder. As expected, the 1-bit DAC 

mismatches introduce significant distortion in this case. Figure 10b shows the output 
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spectrum from the ΔΣ ADC simulated with the DEM encoder described above. As 

expected, the 1-bit DAC mismatches give rise to highpass shaped DAC noise free of 

spurious tones. 

VI. CONCLUSION 

A generalized tree-structured DEM encoder that can drive any number of 1-bit 

DACs is presented in this paper. It removes the limitation of prior work which re-

quires the number of 1-bit DACs to be a power of two. The analysis section of the 

paper proves that tree-structured encoders with appropriately chosen switching se-

quences can mimic the behavior of any DAC encoder. The synthesis section presents 

a way to design switching sequences for any tree-structured DEM encoder such that 

the DAC noise arising from mismatches is uncorrelated with the DAC’s input se-

quence, spectrally shaped, and free of spurious tones. The last section of the paper 

demonstrates the key points of the paper in the context of a second order ΔΣ ADC. 
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VIII. FIGURES 

 

 

Figure 1  General DAC Architecture. 

 
 
 
 
 

 
Figure 2  Equivalent form of DAC in Figure 1. 
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Figure 3  Equivalent form of DAC(u,w). 

 
 
 
 
 

 

Figure 4  Signal processing performed by S(u,v,w). 
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Figure 5a  A type of tree-structured DEM encoder for a 13-level DAC. 

 
 
 
 
 
 

 
Figure 5b  A type of tree-structured DEM encoder for a 13-level DAC. 
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Figure 6  Register transfer level circuitry that generates s(1,4,12) for c[n]∈{2, 5, 8, 11}. 

 
 
 
 
 
 
 

 
LUT a1[n] a2[n]

[ ] {2,5,8,11}c n ∈  1 0 
[ ] {1,4,7,10}c n ∈  0 1 

 

 
Figure 7  Register transfer level circuitry that generates s(u,v,w) for (u,v,w) = (1,4,12). 
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LUT a1[n] 

if [ ]c n is even 0 
if [ ]c n is odd 1 

 

 
Figure 8  Register transfer level circuitry that generates s(u,v,w) for (u,v,w) ≠ (1,4,12). 

 
 
 
 
 

 

Figure 9  Block diagram of the second order ΔΣ ADC. 
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Figure 10a  Power spectral density at the output of  the second order ΔΣ ADC in Fig-
ure 9 without the DEM Encoder. 

 
 
 
 

 

Figure 10b  Power spectral density at the output of  the second order ΔΣ ADC in Fig-
ure 9 with the tree-structured DEM Encoder shown in Figure 5. 
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Chapter 2  

 Suppression of Quantization-Induced Convergence Error in Pipe-

lined ADCs With Harmonic Distortion Correction  

Abstract—Harmonic Distortion Correction (HDC) is one of two published digital 

background calibration techniques that compensate for residue amplifier nonlinearity 

in pipelined ADCs. The techniques make it possible to reduce the gains and band-

widths, and therefore the power dissipations, of the op-amps that make up the residue 

amplifiers without sacrificing pipelined ADC accuracy. Unfortunately, the previously 

published techniques fail to operate properly when they measure residue amplifier 

distortion for certain pipelined ADC input signals, most notably input signals with 

small peak-to-peak variations about certain constant values. This paper identifies the 

cause of the problem, quantifies its effects, and provides an all-digital solution appli-

cable to the HDC technique. 

I. INTRODUCTION 

Pipelined analog-to-digital converters (ADCs) are widely used in applications 

that require greater accuracy than can be achieved practically by flash ADCs, and 

greater signal bandwidth than can be achieved practically by oversampling or succes-

                                                 
Copyright © 2012 IEEE. Personal use of this material is permitted. However, permission to use this 
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permissions@ieee.org.  
N. Rakuljic and I. Galton are with the Department of Electrical and Computer Engineering, University 
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sive approximation ADCs. With present IC technology, they are most commonly used 

in applications that require greater than 50 dB of signal to noise and distortion ratio 

(SNDR) and greater than 50 MHz of signal bandwidth. 

The residue amplifiers in the first few stages of a pipelined ADC must have 

high linearity for the ADC to achieve a high SNDR. In a conventional pipelined ADC, 

this necessitates op-amps with high open-loop gains, high bandwidths, and relatively 

low output swings. Consequently, the op-amps tend to dominate the overall power 

dissipation in conventional pipelined ADCs. 

Recently, digital background calibration techniques have been proposed that 

make it possible to reduce the performance and, hence, the power dissipation of the 

op-amps without sacrificing pipelined ADC accuracy [39 − 43]. The techniques use 

digital correlation algorithms to measure the residue amplifier distortion coefficients 

during normal ADC operation, and they use the measured coefficient values to digi-

tally cancel much of the residue amplifier distortion. This allows higher-distortion op-

amps to be tolerated without significantly degrading the overall pipelined ADC accu-

racy. The calibration circuitry is mostly digital and tends to dissipate relatively little 

power, so the net reduction in pipelined ADC power dissipation offered by the tech-

niques can be significant. 

Unfortunately, all of the previously published digital background calibration 

techniques fail to measure the residue amplifier distortion coefficients properly for 

certain pipelined ADC input signals. As explained in [42] and [43], the most robust of 

the techniques in this respect is the Harmonic Distortion Correction (HDC) technique. 
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Nevertheless, for certain input signals, most notably those with small peak-to-peak 

variations about certain constant values, it too fails to accurately measure the residue 

amplifier distortion coefficients. Although it operates properly for the majority of 

pipelined ADC input signals, its failure to work properly even for a small class of in-

put signals presents a problem in practice. 

This paper identifies and quantifies the failure mechanism, and proposes a 

simple all-digital modification of the HDC technique that solves the problem. As ex-

plained in the paper, the problem arises because the small amount of quantization er-

ror introduced by the pipelined ADC corrupts the coefficient measurement process 

under certain conditions. The problem is subtle because the corruption occurs even 

when the variance of the quantization noise is much smaller than the dominant error 

sources in the pipelined ADC. Although the paper describes the problem in the con-

text of the HDC technique, the problem also affects the other previously published 

digital calibration techniques, because the quantization error is always present during 

the coefficient measurement process regardless of the technique used. 

The paper consists of three main sections. Section II reviews the HDC tech-

nique in the context of an example pipelined ADC architecture. Section III identifies 

and quantifies the HDC failure mechanism, and Section IV presents the proposed so-

lution. 
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II. BACKGROUND INFORMATION 

A. Pipelined ADC and HDC Overview 

Figure 11 shows a six-stage, 14-b pipelined ADC example. The input to the 

pipelined ADC is a sequence of sampled analog voltages, vin,1(nTs), where Ts is the 

sample interval. In practice each stage in a pipelined ADC contains delay elements, 

but the delay elements have been omitted in the pipelined ADC example of Figure 11. 

This reduces the complexity of the notation presented in the paper without signifi-

cantly affecting the results of the paper. 

All but the last pipelined ADC stage in Figure 11 have the form shown in Fig-

ure 12. Each consists of an 8-level flash ADC with a nominal quantization step-size 

of Δ, an 8-level dynamic element matching (DEM) DAC, and a residue amplifier. The 

last stage of the pipelined ADC consists only of a 16-level flash ADC with a nominal 

quantization step-size of Δ/2.  

The output of the kth stage’s flash ADC (flash ADCk) is  

 ( ), ,[ ] [ ]k in k s ADC kx n v nT e n= +  (51) 

where vin,k(nTs) is the input sequence to flash ADCk, and eADC,k[n] is error introduced 

by flash ADCk. This error is the output minus the input of flash ADCk, with the least 

significant bit of the output taken to have a weight equal to the nominal quantization 

step-size of flash ADCk. In the absence of non-ideal circuit behavior, eADC,k[n] is just 

quantization error, and is bounded in magnitude by half of its nominal quantization 

step size.  
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The 8-level DAC in the kth stage (DACk) for k = 1, 2, ..., 5 converts xk[n] into 

analog format. The difference between the stage’s input sequence and the DAC’s out-

put sequence, vk(nTs), is called the stage’s residue. It follows from (51) that in the ab-

sence of non-ideal circuit behavior the stage’s residue is given by 

 ( ) , [ ]k s ADC kv nT e n= − , (52) 

and is bounded in magnitude by Δ/2. Ideally, the kth stage’s residue amplifier (RAk) 

scales the residue linearly by a factor of 4, i.e.,  

 ( ) ( ), 4out k s k sv nT v nT= . (53) 

Therefore, the analog output of the kth pipeline stage is ideally bounded in 

magnitude by 2Δ, which is less than half the input range of the flash ADC in the sub-

sequent pipeline stage. The extra input range, called over-range margin, is used to 

accommodate flash ADC errors that arise from non-ideal circuit behavior such as 

comparator offset voltages and resistor ladder component mismatches. These errors 

subsequently cancel in the digital path of the pipelined ADC assuming ideal circuit 

behavior except for flash ADC errors [44, 45, 46].  

It follows from (51) and Figure 12 that the digital output of the kth stage, for k 

= 1, 2, …, 5, is given by 

 ( ), , ,[ ] [ ] [ ]out k in k s ADC k kx n v nT e n r n= + +  (54) 

where 

 ( )1 1
1[ ] [ ] [ ] .
4k k kr n x n r n+ += +  (55) 

is called the digitized residue of the kth stage. Recursively applying (51)−(55) with 



40 

 
 

 , 1 ,( ) ( )in k s out k sv nT v nT+ =  (56) 

indicates that the output of the pipelined ADC ideally is 

 ( ),1 ,1 ,65

1[ ] [ ]
4out in s ADCx n v nT e n= + . (57) 

Therefore, in the absence of non-ideal circuit behavior the quantization error from all 

the flash ADCs except that in the last pipeline stage cancel, so the only quantization 

error that propagates to the pipelined ADC output is a scaled version of the last 

stage’s quantization error. The pipelined ADC input range is bounded in magnitude 

by 4Δ and the scaled version of quantization error is bounded in magnitude by 

(Δ/4)/45, so the pipelined ADC ideally performs 14-bit quantization. 

 Equations (52)−(57) describe the ideal pipelined ADC behavior. In practice, 

the output deviates from (57) because of non-ideal circuit behavior. In particular, 

practical residue amplifiers introduce gain error and nonlinear distortion. An often-

realistic model of the kth residue amplifier that includes this non-ideal behavior is 

 ( ) ( ) ( ) ( )3
, 1, 3,4 1out k s k k s k k sv nT v nT v nTα α⎡ ⎤= + +⎣ ⎦  (58) 

where α1,k is a gain error coefficient, and α3,k is a third-order nonlinear distortion co-

efficient [43]. If the pipelined ADC in Figure 11 is ideal except with residue amplifi-

ers that are well-modeled by (58), it follows from (51), (52), (54)-(57), and (58) that  

 ( ) ( )
5

1 3
,1 ,1 ideal 1, 3,

1

Distortion Terms

[ ] [ ] | 4 k
out out k k s k k s

k
x n x n v nT v nTα α−

=

⎡ ⎤= + +⎣ ⎦∑
�������	������


 (59) 

where xout,1[n]|ideal is xout,1[n] as given by (57). The distortion terms in (59) are unde-

sirable because typically they decrease both the SNDR and the spurious-free dynamic 
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range (SFDR) of the pipelined ADC. 

HDC can be applied to each stage of a pipelined ADC to digitally estimate and 

cancel the distortion terms [42, 43]. As indicated by (59) the distortion terms contrib-

uted by the residue amplifier in the kth pipeline stage are scaled by 41−k, so the residue 

amplifiers in the first few pipeline stages usually are the dominant sources of residue 

amplifier distortion in the pipelined ADC. Thus, in practice HDC usually is applied 

only to the first few pipeline stages. 

Figure 13 shows an example of the 14-b pipelined ADC with HDC applied to 

the first four stages and Figure 14 shows the kth of these stages in more detail. The 

implementation of HDC in the kth stage consists of the addition of a calibration se-

quence, ck[n], to the output of flash ADCk, an increase in the resolution of DACk to 

accommodate the added sequence, and the addition of a digital logic block, labeled 

HDCk in the figure. The kth stage’s calibration sequence has the form 

 ,
1

[ ] [ ]
N

k i k
i

c n t n
=

= ∑  (60)   

where the ti,k[n] sequences are independent, 2-level, zero-mean, pseudorandom se-

quences that take on values of ±A. In this paper A = Δ/16 as in [43] and, for a reason 

explained shortly, N = 4, so DACk must have at least 61 output levels with a mini-

mum step-size of Δ/8 to accommodate ck[n]. 

The calibration sequence increases the maximum signal swing at the output of 

the residue amplifier, so it effectively decreases the over-range margin of the stage. 

Therefore, a design consideration is that A and N must be small enough that the re-
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maining over-range margin is sufficient to accommodate the largest expected stage 

offset and flash ADCk errors. In the example design, half the over-range margin is 

used to accommodate the calibration sequence. 

Ideally, each HDCk block cancels error arising from α1,k and α3,k in the kth 

stage’s residue amplifier. It follows from (52), (54), (57), and (59) that 

 ( ) ( ) ( ) ( )( )3
1, 3, ,6 15

1[ ] 1 [ ]
4k k k s k k ADC k k sr n v nT v nTs e n g v nTα α += + + + +  (61) 

for k = 1, 2, 3, and 4, where the last term represents error caused by any non-ideal be-

havior of the stages subsequent to Stage k such as residue amplifier distortion in Stage 

5. Therefore, the objectives of HDC applied to the kth stage can be viewed as estimat-

ing and canceling the terms proportional to α1,k  and α3,k in (61). 

It follows from (51) and Figure 14 that  

 ( ) , [ ] [ ]k s ADC k kv nT e n c n= − − . (62) 

Figure 15 with  

 
1, 1, 2, 3,

1, 3, 3

[ ] [ ] [ ] [ ]
[ ] and [ ]k k k k

k k

t n t n t n t n
c n c n

A A
= − = −  (63) 

shows the details of the HDCk block. To estimate the α1,k and α3,k coefficients, the 

HDCk block first computes the time averages 

 ( ) ( )
1 1

1, 1, 3, 3,3

1 1 1 1[ ] [ ] [ ],  [ ] [ ] [ ]
6

m P m P

k k k k k k k k
n m n m

r n c n c n r n c n c n
A P A P

γ γ
+ − + −

= =

= + = +∑ ∑� �  (64) 

and 

 ( )
1

2
2, 1,

1 1 [ ] [ ] [ ] [ ],
m P

k k k k k
n m

r n c n c n c n
A P

η
+ −

=

= +∑�  (65) 



43 

 
 

where m is the starting time index of the time averaging operations, and P is the num-

ber of averaged samples (e.g., P = 232 in [43])2. To the extent that the correlations of 

c1,k[n] and c3,k[n] with the last term in (61) can be neglected, it follows from (60)-(64), 

the statistical properties of the ti,k[n] sequences, and the Law of Large Numbers, that 

for N = 4 

 ( )
2,2

1, 1, 3,2

1,

3
10 ,

1
k

k k k

k

A
η

γ α α
α

⎛ ⎞
⎜ ⎟≅ + −
⎜ ⎟+⎝ ⎠

�
� � �

�  (66) 

and 

 3, 3, ,k kγ α=� �  (67) 

where 

 1, 1, 3, 3,andk k k kα α α α≅ ≅� �  (68) 

to a high degree of accuracy provided P is large. 

Combining (66) and (67) results in   

 ( )
2,2

1, 1, 3,2

1,

3
10

1
k

k k k

k

A
η

γ α γ
α

⎛ ⎞
⎜ ⎟≅ + −
⎜ ⎟+⎝ ⎠

�
� � �

�  (69)  

which is a cubic equation that can be solved to find 1,kα�  in terms of 1,kγ� , 3,kγ�  and 

2,kη� . A closed form solution exists, but it is complicated. An approximate but simpler 

solution can be obtained by viewing 1,kα�  as a function of 1,kγ� , 3,kγ�  and 2,kη�  and using 

                                                 
2Note that 2,kη� in (65) is different than the corresponding quantity in [42] and [43].  It can be verified 

that this version of 2,kη� avoids an approximation made in [42] and [43] and therefore yields slightly 
more accurate results than those obtained in [42] and [43]. 
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a Taylor series expansion around 3,kγ� , i.e., 

( ) ( ) ( )
3

1,
1, 1, 3, 2, 1, 1, 2, 1, 2, 3,

1 3,

1, , ,0, ,0,
!

i
k i

k k k k k k k k k ki
i kk

α
α γ γ η α γ η γ η γ

γ=

∂
≅ +

∂∑
�

� � � � � � � � � �
�  (70) 

It follows from (69) that 

 ( )1, 1, 2, 1,, 0,k k k kα γ η γ=� � � � . (71) 

Differentiating (69) with respect to 3,kγ�  and substituting (71) into the result yields 

 ( )
( )

1, 2, 2
1, 2, 2

3, 1,

3
,0, 10

1
k k

k k
k k

A
α η

γ η
γ γ

∂
= −

∂ +

� �
� �

� �
, (72) 

and continuing this process recursively yields the remaining two terms on the right 

side of (70). Substituting these results into (70) yields 

 
( ) ( )

( )
( )

2, 2,2 2
1, 1, 3, 3,2 3

1, 1,

22 2
2, 2, 1, 3

3,6

1,

3 6
+ 10

1 1

63 90 1
.

1

k k
k k k k

k k

k k k
k

k

A

A

η η
α γ γ γ

γ γ

η η γ
γ

γ

⎛ ⎞⎛
⎜ ⎟⎜≅ − −
⎜ ⎟⎜+ +⎝ ⎠⎝

⎞− +
⎟+
⎟+ ⎠

� �
� � � �

� �

� � �
�

�

 (73) 

The HDCk block uses the estimates of α1,k and α3,k given by (73) and (67), re-

spectively, to calculate the corrected digitized residue: 

 ( )
3, 3

4
1, 1,

1[ ] [ ] [ ]
1 1

k
k k kcorrected

k k

r n r n r n
α

α α
= −

+ +

�
� �

. (74) 

It can be verified that this causes xout,k[n] ≅ xout,k[n]|ideal [42]. 

The accuracy with which each HDC block estimates its nonlinearity coeffi-

cients depends, in part, on how well the subsequent HDC blocks have corrected the 

nonlinearity introduced by the residue amplifiers in their respective stages. Therefore, 
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the HDCk blocks for k = 1, 2, 3, and 4 perform their measurements of 1,kα�  and 3,kα�  

sequentially and periodically, first for k = 4, then for k = 3, then for k = 2, and then for 

k = 1, after which the process repeats [43]. Each HDC block continually implements 

(74) with the most recent 1,kα�  and 3,kα�  values it measured. 

III. EFFECT OF QUANTIZATION ERROR ON HDC COEFFICIENT ESTIMATION 

The goal of HDC in each stage is to perfectly cancel the distortion terms in-

troduced by that stage’s residue amplifier. Unfortunately, the cancellation is never 

perfect in practice because the operations that the HDCk blocks perform to estimate 

α1,k and α3,k, and to cancel the nonlinear distortion terms involve approximations. 

For example, suppose that the pipelined ADC of Figure 13 is ideal except that 

the flash ADCs have threshold errors and the α1,1, α3,1, and α1,2 coefficients are non-

zero. If the HDC blocks correctly measure 3,kα� = 0 for k = 2, 3, and 4, and 1,kα� = 0 for 

k = 3, and 4, then the only significant contribution to the last term in (61) with k = 1 

occurs because of the HDC2 block’s imperfect estimation of α1,2. In this case it fol-

lows from (51),  (55), (56), (58), (74) and Figure 14, that (61) becomes 

 ( ) ( ) ( )3
1 1,1 1 3,1 1 ,6 ,25

1[ ] 1 [ ] [ ]
4s s ADC HDCr n v nT v nT e n e nα α= + + + +  (75) 

where 

 ( ) ( )1,2 2
,2 ,6 ,2 25

1,2

[ ] [ ] [ ] [ ] ,
44 1HDC ADC ADCe n e n e n c n

α λ
α

= − + +
+

�
�  (76) 

and 
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( )

( )
1,2 1,2

2
1,21

α α
λ

α
−

=
+

�
�

. (77) 

The eHDC,2[n] term represents the error in r1[n] caused by the HDC2 block’s 

imperfect estimation of α1,2. It adds directly to the pipelined ADC output, but even if 

its mean squared value is below the noise floor of the pipelined ADC, it still can 

sometimes degrade the performance of the pipelined ADC by corrupting the HDC1 

block’s estimates of α1,1 and α3,1. This happens because for some pipelined ADC in-

put signals eADC,2[n] is very strongly correlated with both c1,1[n] and c3,1[n].  

For example, consider a special case of the above example wherein α1,1 = 0, 

α3,1 = 0, flash ADC2 has just a single threshold error, λ2 = 0.001 (which is consistent 

with the measured results presented in [43]), and the pipelined ADC’s input sequence 

is Vin(nTs) = Δ for all n. Given that α1,1 = 0 and α3,1 = 0, the ideal operation of the 

HDC1 block would be to calculate 1,1α� = 0 and 3,1α� = 0 in which case it would have no 

effect on r1[n] and the only effect of the eHDC,2[n] term would be to decrease the pipe-

lined ADC’s SNDR by about 1.5 dB relative to its ideal (quantization noise only) val-

ue. 

Unfortunately, the eHDC,2[n] term causes the HDC1 block not to operate ideally 

for this example. The input to flash ADC2 is 2Δ – 4c1[n], so eADC,2[n] for each n takes 

on one of the five points shown in Figure 16(a) (one of which is affected by the 

threshold error). The resulting correlations of eADC,2[n] with c1,1[n] and c3,1[n] are both 

–Δ/16 which causes the HDC1 block to incorrectly calculate 1,1 0.0082α ≅�  and 
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3,1 0.17α ≅ −�  (via (64) and (73)). By implementing (74) with these incorrect estimates 

of α1,1 and α3,1, the HDC1 block introduces significant nonlinear distortion in this 

case such that the pipelined ADC’s SNDR is reduced by about 23 dB relative to its 

ideal value. 

This problem is highly dependent upon the pipelined ADC’s input sequence. 

For example, suppose that the example above is changed only in that Vin(nTs) = 0.5Δ 

for all n. Then, the input to flash ADC2 is −4c1[n], and the possible values of eADC,2[n] 

are the five points shown in Figure 16(b). The resulting correlations of eADC,2[n] with 

c1,1[n] and c3,1[n] are both zero, so the HDC1 block correctly measures 1,1 0α =�  and 

3,1 0α =� in this case. Thus, for this input sequence, the leakage of eADC,2[n] into r1[n] 

does not lead to incorrect estimates of α1,1 and α3,1, so the pipelined ADC’s SNDR is 

only degraded by approximately 1.5 dB from the presence of eHDC,2[n] in the output 

sequence. 

Returning to the more general situation in which α1,1, α3,1, and α1,2 are non-

zero, it is straightforward to verify that (66), (75), and (76) imply that the errors in the 

HDC1 block’s estimates of γ1,1 and γ3,1 caused by correlations of eADC,2[n] with c1,1[n] 

and c3,1[n] have magnitudes that are bounded by 

 
2 , 2 ,

3, and ,
4 24
ADC max ADC maxe e

A A
λ λ

 (78) 

respectively, where eADC,max is the largest possible magnitude of eADC,k[n] for all n and 

k. While the bounds given by (78) are not tight, specific pipelined ADC input values 

are known to the authors for which the errors in the HDC1 block’s estimates of γ1,1 
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and γ3,1 have magnitudes that are larger than half those in (78). 

Therefore, in the worst-case scenarios the HDC1 block’s estimates of α1,1 and 

α3,1 are corrupted by error terms that depend on A−1 and A−3. If these error terms have 

magnitudes that are significant relative to the magnitudes of α1,1 and α3,1, then the 

HDC1 block at best will not cancel distortion from the first stage’s residue amplifier 

accurately, and at worst can actually introduce extra distortion (as in the example de-

scribed above). The error terms can be reduced by increasing A, but, as described in 

the previous section, increasing A uses up more of the over-range margin of the sub-

sequent stage. This places a practical upper bound on A, so it is not always possible to 

make A large enough that the errors caused by correlations of eADC,2[n] with c1,1[n] 

and c3,1[n] are negligible for all pipelined ADC input signals. 

Similar results hold for the other HDC blocks. In general, for the worst-case 

input signals the estimation process in each HDC block is highly sensitive to quanti-

zation error terms from subsequent stages that leak into its stage’s digitized residue. 

For some ADC input sequences the error terms corrupt the HDC block’s αi,k coeffi-

cient estimates even when their average power is negligible compared to those of the 

other error sources in the pipelined ADC. In such cases the error terms do not signifi-

cantly reduce the pipelined ADC SNDR directly, but rather they cause HDC blocks to 

introduce error that reduces the SNDR as result of the inaccurate estimates of the αi,k 

coefficients. 

A pipelined ADC converts each sample of its input sequence to a digital num-

ber independently of all prior input samples, and each sample of the correlation se-
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quence is statistically independent of all prior correlation sequence samples by de-

sign, so the statistical expectation of the HDC estimation error caused by quantization 

error leakage at time n has no dependence on prior pipelined ADC input samples. 

Furthermore, a pipelined ADC implements a time-invariant discrete-time system and 

the calibration sequence is a stationary random process by design, so any dependence 

of the expectation of the estimation error on each pipelined ADC input sequence val-

ue must be independent of the sample time n. It follows that there is at least one input 

value that maximizes this estimation error expectation at any time n, so keeping the 

input signal constant at this worst-case value for all sample times maximizes the ef-

fect of the problem. This is why the set of worst-case pipelined ADC input sequences 

includes one or more constant sequences. 

It follows that the full extent of the problem can be evaluated by considering 

the HDC coefficient estimation process for all constant input sequences. Furthermore, 

if the HDC technique is modified such that the HDC coefficients are estimated accu-

rately for every constant pipelined ADC input sequence, it follows that the modifica-

tion will also cause the coefficients to be estimated accurately for every non-constant 

pipelined ADC input sequence. Consequently, the simulation results presented in the 

remainder of this paper only consider cases in which the HDC blocks estimate their 

coefficients for constant pipelined ADC input sequences. 

As explained in [43], the problem can be mitigated by using N = 5 ti,k[n] se-

quences in (60) instead of N = 3 as originally proposed in [42]. The two extra ti,k[n] 

sequences act as dither which tends to reduce the correlations of eADC,2[n] with c1,1[n] 
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and c3,1[n]. Unfortunately, even with N = 5 the problem still occurs for pipelined ADC 

input signals that have small peak-to-peak variations about certain constant values. 

Figure 17 shows simulation results that illustrate the problem for the example 

pipelined ADC shown in Figure 13 using calibration sequences given by (60) with N 

= 5. The simulated pipelined ADC includes DEM DACs and the DAC noise cancella-

tion (DNC) technique as described in [43] with capacitor mismatches chosen such 

that the pipelined ADC’s SNR would be limited to about 67 dB in the absence of oth-

er errors if DNC were disabled (DNC is not shown in Figure 13). The flash ADC 

threshold errors were chosen randomly with a standard deviation of Δ/25. The distor-

tion coefficients of the first stage were chosen to be α1,1 = −0.085 and α3,1 = −0.3, and 

the remaining stages’ distortion coefficients are similar and are consistent with the 

measured results reported in [43]. 

 The SNDR and SFDR values shown in Figure 17 correspond to a 0 dBFS si-

nusoidal input signal with a frequency of 0.39fs where fs is the input sample-rate of 

the pipelined ADC. Each pair of SNDR and SFDR values were obtained by simulat-

ing the pipelined ADC with the sinusoidal input sequence but with the HDC blocks 

using nonlinearity coefficients that were obtained from a previous simulation with a 

constant pipelined ADC input sequence. Each SNDR and SFDR value is plotted ver-

sus the amplitude of the constant input sequence for which the corresponding nonlin-

earity coefficients were estimated. As expected from the problem explanation above, 

there are significant reductions (of approximately 16 dB) in SNDR and SFDR when 

the HDC coefficients are measured for certain constant input signals.  
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As demonstrated by the examples described above, the extent to which the 

quantization error in each pipeline stage is correlated with c1,k[n] and c3,k[n] depends 

on the pipelined ADC’s input sequence. Therefore, it makes sense that the accuracy of 

the HDC coefficient estimation process depends on the pipelined ADC’s input se-

quence. This effect is exacerbated when the pipelined ADC’s input sequence is such 

that the mean squared value of eADC,k[n] is large during the coefficient estimation pro-

cess, particularly for k = 1. In these cases 2,kη� is so large that the second term in the 

factor of 3,kγ�  in (69) is dominant and effectively amplifies any error in 3,kγ� . The au-

thors have verified that the large dips in SNDR and SFDR shown in Figure 17 corre-

spond to these cases. 

IV. SOLUTION TO THE QUANTIZATION ERROR PROBLEM  

As described in Section II the HDC blocks estimate their nonlinearity coeffi-

cients sequentially, so only one HDC block in the pipelined ADC is in the process of 

estimating its stage’s nonlinearity coefficients at any given time. Therefore, whenever 

the HDCj block is in the process of estimating the α1,j and α3,j coefficients, the cali-

bration sequences in the subsequent pipeline stages are not necessary, i.e., calibration 

sequence ck[n] need not be added to the output of flash ADCk for any k > j. 

 The proposed solution to the problem described in the previous section is to 

replace the ck[n] sequences for k = j+1, j+2, …, 5, where j is the number of the stage 

in which the nonlinearity coefficients are currently being estimated, by new se-
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quences, dk[n], designed to cancel the unwanted correlations. In the example de-

scribed in the previous section, the problem is that the HDC1 block estimates α1,1 and 

α3,1 poorly when the pipelined ADC input signal is such that eADC,2[n] in (76) is corre-

lated with either c1,1[n] or c3,1[n]. In general the problem is that the HDCj block esti-

mates α1,j and α3,j poorly when the pipelined ADC input signal is such that eADC,k[n] is 

correlated with either c1,j[n] or c3,j[n] for any k > j. This problem can be avoided if the 

dk[n] sequences satisfy 

 ( )
1

, 3,
1 [ ] [ ] [ ] 0

m P

ADC k k j
n m

e n d n c n
P

+ −

=

+ →∑  (79) 

and 

 ( )
1

, 1,
1 [ ] [ ] [ ] 0

m P

ADC k k j
n m

e n d n c n
P

+ −

=

+ →∑ , (80) 

in probability as P → ∞ for k = j+1, j+2, …, 5. 

A. Implementation Details 

This sub-section describes the implementation details of the proposed solu-

tion. A detailed explanation of why it works, and, therefore, the motivation underlying 

its design, is deferred to Sub-Sections IV-B and IV-C. 

Figure 18 shows the example pipelined ADC described previously with HDC 

applied to the first four stages for the case in which the HDC1 block is in the process 

of estimating α1,1 and α3,1. The blocks labeled RDk, for k = 2, 3, 4, and 5, are called 

residue decorrelator (RD) blocks because they generate the above-mentioned dk[n] 

sequences. Whenever the HDCj block for j ≠ 1 is in the process of estimating α1,j and 
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α3,j, the block diagram changes from that shown in Figure 18 only in that ck[n] is add-

ed to the output of flash ADCk in place of dk[n] for k =  2, 3, …, j.†  

Figure 19 shows a block diagram of the RDk block configured for the case in 

which the HDCj block with j < k is in the process of estimating α1,j and α3,j. The func-

tion h shown in the figure is defined as 

 

1, if 0,
( ) 1, if 0,

0, if 0.

x
h x x

x

>⎧
⎪= − <⎨
⎪ =⎩

 (81) 

The HDC blocks are the same as described in Section II, except they use different 

correlation sequences than given by (63) as described below. The calibration se-

quences are as given by (60) with N = 4. 

The modified correlation sequences used in both the HDC and RD blocks are  

                  1, 1, 2,

[ ]1 , if [ ] 0,
4

[ ] [ ], if [ ] 0 and [ ] [ ],
[ ], otherwise,

j
j

j a j j j

b

c n
c n

A
c n c n c n t n t n

c n

⎧
− ≠⎪

⎪⎪= = =⎨
⎪
⎪
⎪⎩

 (82) 

and 

               

3

3, 1, 2,

[ ]1 if [ ] 0,
4

[ ] [ ], if [ ] 0 and [ ] [ ],
[ ], otherwise,

j
j

j a j j j

b

s n
c n

A
c n c n c n t n t n

c n

⎧
− ≠⎪

⎪⎪= = =⎨
⎪−⎪
⎪⎩

 (83) 

where 
                                                 
† While adding ck[n] to the output of flash ADCk for k < j is not absolutely necessary, it is done anyway 
to dither the flash ADCs. This reduces the unwanted correlations, thereby slightly improving the accu-
racy of the HDC correlations. 
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1, 2, 3, 1, 2, 4,

2, 3, 4, 1, 3, 4,

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ],
j j j j j j j

j j j j j j

s n t n t n t n t n t n t n

t n t n t n t n t n t n

= +

+ +  (84) 

and ca[n] and cb[n] are two-level zero-mean pseudo-random sequences that take on 

values of ±B and are independent from each other and from cj[n]. The constant B 

must satisfy: 

 
,4

1.ADC maxe
B ≥ −

Δ  (85) 

Therefore, when eADC,max = Δ/2 (i.e., in the absence of non-ideal circuit behavior), B = 

1 is acceptable, but in practice B must be somewhat greater than one to accommodate 

the maximum anticipated non-ideal flash ADC errors. Any value of B that satisfies 

(85) will work, but increasing B increases the HDC convergence time, so B should be 

chosen as small as possible subject to the constraint of (85). 

 The RD block solution described above involves only digital circuitry, and 

the expected area and power dissipation of the circuitry are small compared to those 

of the digital circuitry required by the HDC technique without the RD block solution. 

Therefore, the RD block solution is not expected to contribute significantly to the 

overall circuit area or power dissipation of typical pipelined ADCs to which it would 

be applied.  

B. Theory of Operation 

As depicted in Figure 18, each RDk block operates on the output of the HDCk 

block and generates the dk[n] sequence. As explained below, it forms a feedback loop 

which adaptively adjusts dk[n] such that the correlations of the HDCk block’s output 
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sequence with c1,j[n] and c3,j[n] converge to zero. The output of the HDCk block satis-

fies 

 ,[ ] [ ] [ ]k ADC k kcorrected
r n e n d n≅ − −  (86) 

to a high degree of accuracy, so this causes (79) and (80) to be satisfied with a high 

degree of accuracy. 

It follows from (86) and Figure 19 that the outputs of the top and bottom ac-

cumulators in the RDk block can be written as 

 ( )( ), 1, 3,
0

[ ] [ ] [ ] [ ] [ ]
n

k ADC k k j j
i

f n e i d i c i c i
=

≅ − + −∑  (87) 

and 

 ( )( ), 1, 3,
0

[ ] [ ] [ ] [ ] [ ]
n

k ADC k k j j
i

g n e i d i c i c i
=

≅ − + +∑ . (88) 

As explained below, the RDk block chooses the dk[n] sequence to ensure that both 

fk[n] and gk[n] are bounded in probability for all n. This implies that  

 ( )1 [ ] [ ] 0k kf n g n
n

− →  (89) 

and 

 ( )1 [ ] [ ] 0k kf n g n
n

+ →  (90) 

in probability as n → ∞, and therefore that both (79) and (80) hold. 

Table 1 shows the ti,j[n]/A values along with the corresponding values of 

cj[n]/A, c1,j[n], c3,j[n], and c1,j[n] ± c3,j[n], for each of the 16 possible sets values that 

t1,j[n], t2,j[n], t3,j[n], t4,j[n] can take on. By definition, each of the 16 possible sets oc-
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curs with a probability of 1/16. In the following, several observations are made from 

Table 1 to show that (89) and (90) hold in probability as n → ∞. 

Table 1 indicates that one or the other of c1,j[n] + c3,j[n] and c1,j[n] − c3,j[n] is 

guaranteed to be zero at each time index n, so it can be seen from Figure 19 that only 

one of fk[n] and gk[n] changes each time n is incremented. Consequently, for each 

value of n,  dk[n] influences fk[n] but has no effect on gk[n] if c1,j[n] − c3,j[n] is non-

zero, or vice versa if c1,j[n] + c3,j[n] is nonzero. This is why it is possible for dk[n] to 

keep both fk[n] and gk[n] bounded; each RD block implements two feedback loops 

that are interlaced with each other such that no crosstalk occurs between them. 

It follows from Figure 19, (81), and (86) that 

 ( ) { }, 1, 3, 1, 3,[ ] [ 1] [ ] [ ] [ ] sgn ( 1) [ ] [ ] ,
4k k ADC k j j k j jf n f n e n c n c n f n c n c nΔ

= − − − − − −  (91) 

and 

 ( ) { }, 1, 3, 1, 3,[ ] [ 1] [ ] [ ] [ ] sgn ( 1) [ ] [ ] ,
4k k ADC k j j k j jg n g n e n c n c n g n c n c nΔ

= − − + − − +  (92) 

where sgn{x} = 1 if x ≥ 0 and sgn{x} = −1 otherwise. The last terms in (91) and (92) 

correspond to dk[n](c1,j[n]−c3,j[n]) and dk[n](c1,j[n]+c3,j[n]), respectively. For each n, 

one of these terms is zero and the other has the opposite sign of the corresponding 

value of fk[n−1] or gk[n−1]. 

To show that this ensures fk[n] and gk[n] are bounded in probability for all n, it 

remains to show that in each of (91) and (92) the average magnitude of the last term 

is at least as large as that of the term proportional to eADC,k[n]. That is, for (91) it re-

mains to show that 
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 { }1, 3, 1, 3,E [ ] [ ] [ ] [ ] 0
4 j j j jc n c n c n c nΔ

− − ≠  (93) 

is at least as large as 

 ( ){ }, 1, 3, 1, 3,E [ ] [ ] [ ] [ ] [ ] 0ADC k j j j je n c n c n c n c n− − ≠  (94) 

and for (92) it remains to show that 

 { }1, 3, 1, 3,E [ ] [ ] [ ] [ ] 0
4 j j j jc n c n c n c nΔ

+ + ≠  (95) 

is at least as large as 

 ( ){ }, 1, 3, 1, 3,E [ ] [ ] [ ] [ ] [ ] 0ADC k j j j je n c n c n c n c n+ + ≠ . (96) 

As mentioned above each row of Table 1 corresponds to one of the 16 possi-

ble sets of values that t1,j[n], t2,j[n], t3,j[n], t4,j[n] can take on, so the rows correspond to 

mutually exclusive events that each occur with a probability of 1/16. Therefore Table 

1 implies that (93) evaluates to ⅔·Δ(1+B)/4 and (95) evaluates to Δ(1+B)/4.  

Table 1 indicates that the correlation sequences contain ca[n] and cb[n] only 

when the calibration sequence is zero. This implies that the input sequence to the 

flash ADC in the (j+1)th stage is statistically independent of ca[n] and cb[n], so 

eADC,j+1[n] is also statistically independent of ca[n] and cb[n]. Since ca[n] and cb[n] are 

both zero-mean sequences, it follows that the correlations of eADC,j+1[n] with the cor-

relation sequences are both zero. Therefore, Table 1 implies that (94) and (96) must 

be no larger than ⅔eADC,max and eADC,max, respectively. 

It follows that (93) and (95) are at least as large as both (94) and (96) if 

Δ(1+B)/4 ≥ eADC,max, which is equivalent to (85). Therefore, (79) and (80) are satisfied 
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in probability as P → ∞ for k = j+1, j+2, …, 5 by the solution described in Section 

IV-A. 

C. Calibration Sequence Choice 

As described in Section II, the number, N, of two-level sequences added to 

form the calibration sequence cj[n] must be at least as large as the highest order of 

nonlinear distortion to be cancelled by the HDC algorithm. Therefore, the minimum 

possible value of N is 3 when the residue amplifiers are well-modeled by (58). 

However, if N = 3 were used with the solution presented in Section IV-B, the 

magnitude of dk[n] would have had to be eADC,max to ensure full cancellation of the 

unwanted correlation terms for all pipelined ADC input signals. Since eADC,max is 

greater than Δ/2 in practice, such dk[n] sequences would exceed the over-range mar-

gin of the pipeline stages. 

The solution proposed in Section IV-B uses N = 4 to avoid this problem. With 

N = 4 the calibration sequence, cj[n], is zero 6/16 of the time (see Table 1), and when-

ever this happens eADC,j+1[n] is uncorrelated with the correlation sequences as ex-

plained in Section IV-B. However, as shown in Section IV-B, the dj+1[n] sequence is 

correlated with the correlation sequences regardless of whether the calibration se-

quence is zero, which makes it possible to operate properly with dk[n] sequences that 

have a magnitude of only Δ/4. Therefore, the dk[n] sequences use exactly the same 

portion of the over-range margin as the calibration sequences. 
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D. Simulation Results 

Figure 20 shows computer simulation results that are identical to those which 

produced the data shown in Figure 17, except that the simulated pipelined ADC was 

enhanced with the modified calibration sequences and RD blocks as described above. 

As in Figure 17, the SNDR and SFDR values shown in Figure 11 correspond to a 0 

dBFS sinusoidal input signal with frequency of 0.39fs. Each pair of SNDR and SFDR 

values were obtained by simulating the enhanced pipelined ADC with the sinusoidal 

input sequence but with the HDC blocks using α1,k and α3,k coefficients that were ob-

tained previously by simulating the pipelined ADC with a constant input. Each SNDR 

and SFDR value is plotted versus the input sequence for which α1,k and α3,k coeffi-

cients were estimated. 

A comparison of Figures 17 and 20 indicates that the proposed technique im-

proves the worst-case SNDR and SFDR values by 12.6 dB and 15.8 dB, respectively. 

Numerous other simulation experiments performed by the authors have yielded quan-

titatively similar results. The proposed technique involves several approximations as 

described above, so it does not completely eliminate the variability of the SNDR and 

SFDR with the input signal, but it greatly reduces the variability as intended. 

As explained in Section III, accurate nonlinearity coefficient estimation for all 

constant input sequences implies accurate coefficient convergence for all non-

constant input sequences too. Therefore, the results support the assertion that the solu-

tion to the quantization-induced convergence error problem presented in this paper 

enables correct operation of the HDCk blocks regardless of the pipelined ADC input 
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signal. 

V. ACKNOWLEDGEMENTS 

Chapter 2, in full, has been accepted for publication by the IEEE Transactions 

on Circuits and Systems I: Regular Papers. The dissertation author is the primary in-

vestigator and author of this paper.  Professor Ian Galton supervised the research 

which forms the basis of this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 
 

VI. FIGURES 

 

 

Figure 11  Example pipelined ADC. 

 
 
 
 

 

Figure 12  The kth pipelined ADC stage for k = 1, …, 5 with labels that indicate vari-
able names used throughout the paper. 
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Figure 13  The example pipelined ADC with HDC applied to the first four stages. 

 
 
 
 

 

Figure 14  The kth pipelined ADC stage with HDC for k = 1, 2, 3, 4, with labels that 
indicate variable names used throughout the paper. 

 
 
 
 
 



63 

 
 

 
 
 

1,kγ�

3,kγ�

2,kη�

1,

1
1 kα+ �

3,

1,1
k

k

α
α+
�
�

 
Figure 15  Details of the HDCk block. 
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Figure 16  The five values of eADC,2[n] that occur when the input to flash ADC2 is (a) 
2Δ − 4c1[n] and (b) − 4c1[n] superimposed on a plot of the input-output characteristic 
of flash ADC2 (which contains a single threshold error). 
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Figure 17  Simulation results for pipelined ADC shown in Figure 3 with fin = 0.39fs 
and 0 dBFS sinusoidal input signal. 

 
 
 

 

Figure 18  Pipelined ADC configuration during estimation of α1,1 and α3,1 with HDC 
in the first stage and RD applied to the remaining stages. 
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Figure 19  Details of the RDk block. 
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Figure 20  Simulation results for pipelined ADC shown in Figure 8 with fin = 0.39fs 
and 0 dBFS sinusoidal input signal and with representative Power Spectral Density 
plots of the output. 
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VII. TABLES 

Table 1  All possible sets of values that t1,j[n]/A, t2,j[n]/A, t3,j[n]/A, t4,j[n]/A can take on 
along with the corresponding values of cj[n]/A, c1,j[n], c3,j[n], and c1,j[n] ± c3,j[n]. 
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Chapter 3  

 Convergence Time Analysis for Harmonic Distortion Correction 

Used in Pipelined ADCs  

Abstract—The Harmonic Distortion Correction (HDC) algorithm is a digital calibra-

tion algorithm used to eliminate errors that arise at the output of pipelined ADCs due 

to weak nonlinearities in the residue amplifiers. In order to eliminate these errors, the 

HDC algorithm has to estimate some of the coefficients that model residue amplifi-

ers’ weakly-nonlinear behavior. These estimates are obtained by considering one resi-

due amplifier at the time and averaging many samples of the signal that correspond to 

its output. Prior to this work, the number of samples that needed to be averaged to 

obtain reliable coefficient estimates was determined ad-hoc, via few simulations. This 

paper provides a rigorous analysis of the relationship between the number of aver-

aged samples and the accuracy of the HDC algorithm’s estimates.  

I. INTRODUCTION 

Pipelined analog-to-digital converters (ADCs) are intended for applications 

requiring high-resolution (greater than 10 bit), high-speed (greater than 50Msps) 

ADCs, which can be found in communication receivers, ultrasound imaging systems 

and TV demodulators. As the power consumption of these systems is an ever-present 

concern, it is essential that pipelined ADCs consume minimal power while achieving 

desirable performance. If implemented in CMOS technology, the minimal power con-
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straint usually entails reduction of current consumption in the pipelined ADCs’ resi-

due amplifiers which can cause a change in the residue amplifier’s transfer function 

from linear to weakly-nonlinear [47]. This results in distortion terms at the amplifier’s 

output, which often lower the signal-to-noise-and-distortion ratio (SNDR) of the con-

verter.  

In recent years, much of the research in the area of pipelined ADCs has fo-

cused on mitigating the distortion due to the residue amplifier’s weakly nonlinear be-

havior. Instead of pursuing the traditional approach of optimizing the analog design, 

the focus has been on developing digital calibration techniques that successfully es-

timate and cancel the error due to residue amplifier’s nonlinear terms [48] – [51]. The 

best among these techniques are all-digital,  do not require additional or more precise 

analog components, fractionally contribute to overall power consumption, and have 

the ability to estimate and track the changes of the residue amplifier’s distortion re-

gardless of the pipelined ADC’s input.  

The most robust technique with these properties that is known to the authors 

is the harmonic distortion correction (HDC) algorithm [48, 51]. The basis of the HDC 

algorithm is a random sequence that is added to the calibration stage and which is 

used to estimate the coefficients describing the residue amplifier’s weak nonlinearity. 

The estimates are obtained by averaging the sum of the scaled digital values corre-

sponding to the residue amplifier’s output signal. This information, along with the 

scaled version of the residue amplifier’s output, is used to eliminate the residue am-

plifier’s nonlinear terms from the pipelined ADC output.  
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The estimation of the coefficients by the HDC algorithm is performed by av-

eraging many samples of the signal. The accuracy of the estimates, defined as the dif-

ference between the true value of the coefficient and its estimated value, depends on 

the number of samples used in the process. As previously mentioned, the HDC algo-

rithm is the most robust residue amplifier calibration technique, so it is of interest to 

investigate the number of samples that need to be averaged so that the obtained coef-

ficient estimates are reliable. This paper presents a rigorous analysis of how error in 

the estimation of residue amplifier’s coefficients decreases with the number of aver-

aged samples. 

The paper is organized as follows. Section II of the paper provides necessary 

background information on the theory of pipelined ADCs and the HDC algorithm, 

similar to what is published in [48, 51, 52]. In Section III, relationship between the 

number of averaged samples and the accuracy of the residue amplifier’s coefficient 

estimates is analyzed. Section IV contains simulation results which complement the 

analysis in Section III. 

II. BACKGROUND INFORMATION 

A. Pipelined ADC Overview 

A block diagram of an ideal 6-stage pipelined ADC is shown in Figure 21. 

The first 5 stages, denoted as Stage k for k = 1, .., 5, are structurally identical 3-bit 

stages, while the last, Stage 6, is a 4-bit stage. Each kth stage, shown in Figure 22, 

consists of an 8-level flash ADC (FADCk), an 8-level dynamic element matching 
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digital-to-analog converter (DEM DACk) and a residue amplifier with the gain of 4. 

The last stage is just a 16-level flash ADC.  

At each sampling time nTs, where Ts is the sampling period of the converter, 

the pipelined ADC converts its analog input sequence, vin,1(nTs), into a digital output, 

xout[n]. In the process of conversion, FADCk quantizes the input to the stage, vin,k(nTs), 

and represents it as 1 of 8 possible digital codes at its output. The FADCk output xk[n], 

shown in Figure 22, is given by  

 [ ] ( ) [ ], , ,k in k ADC kx n v nTs e n= +  (97) 

where eADC,k[n] is the flash ADC’s quantization error. Nominally, the magnitude of 

eADC,k[n] is at most Δ/2, where Δ is the step size of the flash ADC. Once xk[n] is avail-

able, DEM DACk converts it into analog format. The output of DEM DACk is sub-

tracted from the input to the stage, and from (97) and Figure 22 the difference, 

vk(nTs), is   

 ( ) [ ], .k s ADC kv nT e n= −  (98) 

The residue amplifier amplifies vk(nTs) by 4, and its output, vout,k(nTs), is an input to 

the following stage, i.e. 

 ( ) ( ) ( ), , 14out k s k s in k sv nT v nT v nT+= = . (99) 

The process repeats until the last stage where FADC6 quantizes vin,6(nTs) as in 

(97), but with eADC,6[n] bounded by Δ/4. From Figure 21, (97) − (99) it follows that 

all the digital codes xk-1[n] to x6[n] are combined together to form the digitized resi-

due of the kth stage rk[n]. In the case of the pipelined ADC in Figure 21, the digitized 
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residue is ideal and given by 

 [ ] [ ] ( ) [ ]6
64 .k

k k k s ADCideal
r n r n v nT e n−= = +  (100) 

From (100), it follows that the pipelined ADC output in Figure 21 can be written as 

 [ ] [ ] [ ] [ ]1 1 .out out ideal ideal
x n x n x n r n= = +  (101) 

Unfortunately, in practice, each component of the pipelined ADC behaves 

non-ideally and thus represents a source of error that causes xout[n] to deviate from 

(101). For the remainder of the discussion in this paper it is assumed that the only 

source of error in the kth stage is its residue amplifier. Such residue amplifier, de-

noted as RAk, does not amplify by 4, and its behavior cannot be accurately modeled 

with a linear transfer function. In this case, a more realistic description of RAk’s in-

put-output characteristic is given by 

 ( ) ( ) ( ) ( )( )3
, 1, 3,4 1out k s k k s k k sv nT v nT v nTα α≅ + +  (102) 

where α1,k and α3,k are the residue amplifier’s gain error and third order distortion co-

efficients, respectively. From (97), (99) and Figures 21 and 22, it follows that 

 ( )( )1 , , 1
1[ ] [ ] [ ] ,
4k k out k s ADC kr n r n v nT e n+ += + +  (103) 

and thus from (97) − (103), 

 ( ) ( )( )
5

3
1, 3,[ ] [ ] 4 .k l

k k l l l lideal
l k

r n r n v nTs v nTsα α−

=

= + +∑  (104) 

By replacing r1[n]|ideal in (101) with r1[n] given by (104), it follows from (101) that  

 [ ] [ ] ( ) ( )( )
5

1 3
1, 3,

1

4 .k
out out k k k kideal

k

x n x n v nTs v nTsα α−

=

= + +∑  (105) 
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Thus, the output of the pipelined ADC deviates from its ideal value due to the non-

ideal residue amplifiers, i.e. the non-zero values of α1,k and α3,k. 

The objective of each HDCk block is to estimate the α1,k and α3,k coefficients, 

and use these estimates to remove the terms which are proportional to α1,k and α3,k 

from (104) (and, as a consequence, also from (105)). A brief overview of the HDC 

algorithm, necessary for the derivations in the subsequent sections of the paper, is 

given next.  

B. HDC Algorithm Overview  

Figure 23 shows the pipelined ADC from Figure 21 which residue amplifiers 

are non-ideal and behave according to (102). The HDC algorithm is implemented in 

the first four stages, and the shown configuration corresponds to the state of the sys-

tem during estimation of α1,1 and α3,1. Each of the four stages contains a digital 

block, HDCk, which realizes all the necessary operations as determined by the algo-

rithm design in [48, 52]. Next, a description of the HDCk block’s operation is pre-

sented. In particular, the operation of the HDC1 block is described during estimation 

of α1,1 and α3,1. 

The estimation of the coefficients is performed sequentially, starting with the 

last calibration stage first. In Figure 23, estimates of α1,j and α3,j coefficients for j ∈ 

{2, 3, 4}, denoted as 1, jα� and 3, jα� respectively, are obtained prior to the HDC1 estima-

tion, and are used to correct rj[n] so that 



74 

 
 

 ( ) ( )
3, 3

4
1, 1,

[ ]
[ ] | [ ].

1 1
j j

j corrected j
j j

r n
r n r n

α
α α

= −
+ +

�
� �  (106) 

In order to enable the HDC1 estimation, the sequence c1[n] is added at the output of 

FADC1. The sequence c1[n] is the sum of 4 independent, identically distributed (i.i.d) 

2-level sequences ti,1[n], for i ∈ {1, 2, 3, 4}, such that 

 [ ] [ ]
4

1 ,1
1

i
i

c n t n
=

= ∑ . (107) 

The amplitude, A, of each ti,1[n], is Δ/16, which ensures that c1[n] fits within the over-

range margin of RA1 [48, 51]. The addition of c1[n] necessitates an increase in the 

resolution of DEM DAC1 from 8 to 61 levels as described in [48, 52], and results in 

the residue amplifier’s input 

 ( ) [ ] [ ]1 ,1 1 .s ADCv nT e n c n= − −  (108) 

The output of RA1 is given by (102), and it follows from (102) and (108) that 

vout,1(nTs) contains the terms [ ]1,1 1c nα  and [ ]3
3,1 1c nα . From Figures 22 and 23 it fol-

lows that these terms propagate into r1[n], and the HDC1 block estimates α1,1 and α3,1 

by multiplying r1[n] with the HDC sequences. The HDC sequences, c1,1[n] and 

c3,1[n], are equal to –c1[n]/(4A) and –s1[n]/(4A3), respectively, during the samples that 

c1[n] ≠ 0, where s1[n] is given by 

 1 1,1 2,1 3,1 1,1 2,1 4,1 2,1 3,1 4,1 1,1 3,1 4,1[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ].s n t n t n t n t n t n t n t n t n t n t n t n t n= + + + (109) 

The correct estimates of α1,1 and α3,1 can be obtained if vout,1(nTs) is the only 

term in r1[n] that is correlated with the HDC sequences. In general, however, a part of 

r2[n]|corrected that does not perfectly recombine with eADC,2[n] propagates into r1[n], 
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and is correlated with c1,1[n] and c3,1[n] [48, 52]. For this reason, the RDj blocks are 

added to all the stages subsequent to the calibration stage, as shown in Figure 23. The 

RDj blocks generate the sequences dj[n] which ensure that the leakage of the signals 

from the stages subsequent to Stage 1 does not affect the estimation of α1,1 and α3,1. 

The amplitude of dj[n] is 4A (i.e. Δ/4) and with dj[n] added to the system, from (103), 

and Figure 23 

 ( ) [ ]( )1 , 1 ,
1[ ] [ ] [ ] .
4j j out j s ADC j jcorrected

r n r n v nT e n d n− −= + + +  (110) 

The sequences dj[n] require that the HDC sequences are non-zero when c1[n] = 0, so 

that 

 

1
1

1,1 1 1,1 2,1

[ ]1 , if [ ] 0,
4

[ ] [ ], if [ ] 0 and [ ] [ ],
[ ], otherwise,

a

b

c n c n
A

c n c n c n t n t n
c n

⎧− ≠⎪
⎪

= = =⎨
⎪
⎪
⎩

 (111) 

and 

 

1
13

3,1 1 1,1 2,1

[ ]1 if [ ] 0,
4

[ ] [ ], if [ ] 0 and [ ] [ ],
[ ], otherwise,

a

b

s n c n
A

c n c n c n t n t n
c n

⎧− ≠⎪
⎪

= = =⎨
⎪−⎪
⎩

 (112) 

where ca[n] and cb[n] are 2-level, zero mean, i.i.d. sequences with amplitude B ≥ 1. 

The values that c1[n], c1,1[n] and c3,1[n] can take on are given in Table 2 for j = 1. For 

the details of the RDj block and dj[n] sequence the reader can refer to [52].  

All the results in (107) − (112) can be extended to any calibration stage q by 

replacing the subscript 1 with q in the equations. Generally speaking, in the process 
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of estimation of α1,q and α3,q coefficients, the HDCq block obtains 1,qγ� , 3,qγ�  and 2,qη�  

which are given by 

 ( )
1

1, 1,
1 1 [ ] [ ] [ ]

m P

q q q q
n m

r n c n c n
A P

γ
+ −

=

= +∑�  (113) 

 ( )
1

3, 3,3

1 1 [ ] [ ] [ ]
6

m P

q q q q
n m

r n c n c n
A P

γ
+ −

=

= +∑�  (114) 

 ( )
1 2

2, 1,
1 1 [ ] [ ] [ ] [ ]

m P

q q q q q
n m

r n c n c n c n
A P

η
+ −

=

= +∑� . (115) 

From the law of large numbers and the properties of cq[n], c1,q[n] and c3,q[n], it fol-

lows that as P → ∞, 

 ( )
2,2

1, 1, 3,2

1,

10 3
1

q
q q q

q

A
η

γ α γ
α

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟+⎝ ⎠

�
� �  (116) 

 3, 3,q qγ α=�  (117) 

 ( ) [ ] [ ] [ ]
1 2 2

2, 1, , 1,
1 1

m P

q q ADC q q q
n m

e n c n c n
P

η α
+ −

=

= − +∑� . (118) 

Thus, for sufficiently large P, the estimates of α1,q and α3,q are computed according to 

 3, 3,q qα γ=� �  (119) 

and  

 ( )
( )

( )
( )

2,
3,3

1,
2, 2

21, 1, 3, 2 2 2
2, 2, 1,1, 2

3,6

1,

6
1

13
10 .

63 90 11

1

q
q

q
q

q q q
q q qq

q

q

A
A

η
γ

γη
α γ γ

η η γγ
γ

γ

⎛ ⎞
−⎜ ⎟

+⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= + − ⋅
⎜ ⎟ ⎜ ⎟− ++⎝ ⎠ +⎜ ⎟

⎜ ⎟+⎝ ⎠

�
�

��
� � �

� � ��
�

�

 (120) 
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Note that in the limit of P → ∞, (120) does not converge to α1,q, and therefore (120) 

does not follow from (116), when solved for α1,q. Estimating α1,q by computing an 

inverse of (116) would be too computationally intensive and undesirable for imple-

mentation in a practical system. Instead, (120) provides a simpler expression for the 

estimate of α1,q. However, this simplification comes at the expense of error in α1,q 

estimation. More information on how (120) approximates the inverse of (116) can be 

found in [52]. 

Once 1,qα� and 3,qα�  are obtained, the HDCq block corrects the digitized residue 

according to (106) for j = q. The correction of the digitized residue is performed un-

der the assumption that the estimates of α1,q and α3,q are sufficiently accurate. If 1,qγ� , 

3,qγ� , and 2,qη�  differ from (116) and (118), then, in general, the estimates in (119) and 

(120) deviate from α3,q and α1,q, respectively. In this case, either the unwanted terms 

in the digitized residue are only partially removed during correction or the correction 

introduces additional error into the pipelined ADC output, as is shown next.  

III. HDC ALGORITHM CONVERGENCE TIME ANALYSIS 

Consider an example in which the pipelined ADC in Figure 23 is ideal. The 

residue amplifier coefficients of its 1st stage are α1,1 = 0, α3,1 = 0, and its digitized res-

idue is 1 1[ ] [ ]
ideal

r n r n= . Suppose that the HDC1 block computes 3,1γ�  according to 

(114) by using a single sample at time aTs during which r1[a] + c1[a] ≠ 0 and c3,1[a] ≠ 
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0. It follows from (106), (114) and (119) that 3,1 0α ≠�  and that the corrected digitized 

residue r1[n]|corrected contains a third order distortion term. This distortion term propa-

gates into xout[n] and, in this example, the correction of r1[n] by the HDC1 block de-

grades rather than improves the pipelined ADC’s performance. 

If, in the example above, more samples were averaged, the estimate of α3,1 

would be a more accurate one. This can be seen from (117), where 3,1γ�  is evaluated as 

P → ∞, in which case 3,1 3,1α α=�  (from (119)). The above example emphasizes the 

fact that 3,1γ� , and thus 3,1α� , is a reliable estimate only if enough samples are averaged, 

and only then it should be used for digitized residue correction. As in a practical sys-

tem only a finite number of samples is averaged, it is of interest to study the relation-

ship between the number of samples used to obtain 1,1γ� , 3,1γ�  and 2,1η�  and the accuracy 

of α1,1 and α3,1 estimates.  

The convergence time of the estimation corresponds to the minimum number 

of samples that need to be averaged by the HDCq block so that the errors due to 1,qγ� , 

3,qγ�  and 2,qη�  do not limit the desired accuracy of 1,qα�  and 3,qα� . In order to analyze 

how the properties of 1,qγ� , 3,qγ�  and 2,qη�  change with the number of averaged sam-

ples, and, thus, how the accuracy of α1,q and α3,q estimates changes, it is convenient 

to view 1,qγ� , 3,qγ�  and 2,qη�  as random variables at each sample instant n. In what fol-

lows, the relationship between the convergence time of the estimation and the statisti-

cal properties of 1,qγ� , 3,qγ�  and 2,qη�  is analyzed, as well as how these properties of 
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1,qγ� , 3,qγ�  and 2,qη�  affect α1,q and α3,q estimates. 

A. Convergence time Analysis 

From estimation theory [53], it is desirable for an estimator to have its mean 

converge to the parameter that is being estimated, and its variance go to zero, as the 

number of samples under consideration increases. The mean and the variance of 1,qγ� , 

3,qγ�  and 2,qη�  can change with each sample n, and it is of interest to evaluate how they 

change with the number of averaged samples, P. For example, if neither their mean 

nor variance are functions of P, averaging more than one sample in (113) − (115) 

would not lead to better behaved estimators. Intuitively, however, it should be ex-

pected that at least one of these properties changes as a function of P only, as (113) − 

(115) converge to (116) − (118), respectively, for P → ∞.  

The convergence time analysis is done for the system in Figure 23. In order to 

simplify the statistical analysis of 1,qγ� , 3,qγ�  and 2,qη� , certain assumptions are made 

regarding the pipelined ADC. The first one is that |α1,q| and |α3,q| are no bigger than 

0.2 and 0.6V-2, respectively. These values are about two times larger than what has 

been typically observed in practice. Moreover, any larger value of α1,q would have a 

serious impact on the resolution of the pipelined ADC, even with the HDC algorithm 

correction. The second assumption is that the leakages of eADC,j[n] and dj[n] (for 6 > j 

> q) into Stage q can be ignored, as they do not significantly change the convergence 

time. This is true for a system that has a well-behaved random number generator that 

generates the sequence cq[n] ensuring that in each set of 16 samples, all the combina-
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tions of the sequences in Table 2 occur once, and that the order in which they occur 

changes with each set of 16. Additionally, it is assumed that there is enough noise in 

the system so that eADC,6[n] can be modeled as a uniformly distributed, white se-

quence, uncorrelated from the sequences used for estimation in (113) − (115). 

From Figure 23, (102), (106), (110) and the above assumptions, for the pur-

pose of the derivations that follow, the digitized residue in (113) − (115) can be well 

approximated as 

 ( ) ( ) ( ) [ ]3 6
1, 3, ,6[ ] 1 4 ,q

q q q q q ADCr n v nTs v nTs e nα α −= + + +  (121) 

where vq(nTs) corresponds to (108) for q = 1. From (114), the expected value of 3,qγ� , 

is given by 

 ( )
1

3, 3,3

1 1 [ ] [ ] [ ]
6

m P

q q q q
n m

E E r n c n c n
A P

γ
+ −

=

⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎣ ⎦∑� . (122) 

Substituting (121) into (122), and using the assumptions above with the properties of 

the sequences in Table 2, it follows that  

 3, 3, .q qE γ α⎡ ⎤ =⎣ ⎦�  (123) 

Thus, the expected value of 3,qγ� is constant across all samples n, and as such it has no 

effect on the convergence time of the estimation. Applying the same reasoning as 

above to (113), (i.e. substituting (121) into (113), and using the stated assumptions 

together with the properties of the sequences in Table 2), it follows that 

 
1

2 2
1, 1, 3, ,

310 [ ]
m P

q q q ADC q
n m

E A E e n
P

γ α α
+ −

=

⎛ ⎞⎡ ⎤⎡ ⎤ = + +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∑� . (124) 
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Unlike 3,qE γ⎡ ⎤⎣ ⎦� , the expected value of 1,qγ�  is constant across all samples only for a 

stationary eADC,q[n] signal. In general, the value of 1,qE γ⎡ ⎤⎣ ⎦�  can change due to the 

1
2

,
1 [ ]

k

k

R P

ADC q
n R

E e n
P

+ −

=

⎡ ⎤⎣ ⎦∑   term, which is a necessary component in the estimation of α1,q. 

Changing the number of averaged samples, however, does not result in a more accu-

rate expected value of 1,qγ� estimator. For example, if the distribution of the input sig-

nal remains the same across all samples, the term 
1

2
,

1 [ ]
k

k

R P

ADC q
n R

E e n
P

+ −

=

⎡ ⎤⎣ ⎦∑  does not 

change as a function of P. Therefore, 1,qE γ⎡ ⎤⎣ ⎦�  does not determine the convergence 

time of the estimation. Using the same procedure as above to evaluate the mean of 

2,qη� , it follows that 

 ( ) [ ]
12 2

2, 1, ,
11 .

m P

q q ADC q
n m

E E e n Bias
P

η α
+ −

=

⎡ ⎤⎡ ⎤ = − + +⎣ ⎦ ⎣ ⎦∑�  (125) 

where Bias is bias given by 
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⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

∑  

As in the case of 1,qE γ⎡ ⎤⎣ ⎦� , the expected value of 2,qη�  varies, in general, with each 

sample n. Following the reasoning presented for 1,qγ�  estimator, the term 

( ) [ ]
12 2

1, ,
11

m P

q ADC q
n m

E e n
P

α
+ −

=

⎡ ⎤− + ⎣ ⎦∑  is a necessary component in the estimation of α1,q, 

and its accuracy does not improve as P increases. Furthermore, increasing the number 
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of averaged samples does not, in general, change the bias in (125) (if the distribution 

of the input signal is unchanged, the bias of (125) remains constant). Therefore, 

2,qE η⎡ ⎤⎣ ⎦�  does not determine the convergence time of the estimation. 

Based on the results above, and the intuitive argument stated in the beginning 

of this section, it is expected that the convergence time of the simulation depends on 

errors introduced due to variance of the estimators 1,qγ� , 3,qγ�  or 2,qη� . Furthermore, as 

the values of 1,qγ� , 3,qγ�  or 2,qη�  are obtained by averaging the same number of samples, 

the convergence time is determined by the largest error that propagates to 1,qα�  and/or 

3,qα�  due to one of these estimators.  

The variance of 1,qγ� , 3,qγ�  and 2,qη�  at each sample n can be computed in the 

standard way, i.e. by evaluating the second moment of the estimator and subtracting 

from it the squared value of its mean. As the properties of cq[n] are pre-determined by 

design and do not change with n, and the first two moments of eADC,6[n] are assumed 

to be unchanging across all n, from (108), (113) − (115) and (121) it follows that 

eADC,q[n] is the only term which properties are not pre-determined and which can af-

fect the variance calculation. Furthermore, as can be verified from the derivations in 

the appendix, the convergence time of the simulation is determined by variance eval-

uated for the worst-case scenario when |eADC,q[n]| = eADC,max, where eADCmax is the 

maximum value of the quantization error in the calibration stage. Nominally, eADC,max 

= Δ/2. 

From the derivations shown in the appendix, the variance of each of the esti-
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mators 1,qγ� , 3,qγ�  and 2,qη�  can be well-bounded by 

 

( )2 2 2
1, max

1, 2

6 21
16 3q ADC

q

e B
Var

A P

α
γ

⎛ ⎞+ +⎜ ⎟
⎝ ⎠⎡ ⎤ ≤⎣ ⎦�  (126) 
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α

+ −

=

⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟ −⎢ ⎥⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦ Δ⎡ ⎤ ≈ ≤⎣ ⎦ ⎛ ⎞⎡ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

∑�  (128) 

where A denotes the amplitude of the calibration sequences, and B is the magnitude 

of the sequences ca[n] and cb[n] in (111) and (112) (as defined in Section II). From 

(127) − (128) and the value A (that is Δ/16 and as such much smaller than 1), it fol-

lows that the variance of 3,qγ�  is larger than the variance in (126), while the variance 

in (128) is insignificant comparing to (127) and (126) (and as such it does not affect 

the convergence time). 

     From (119) it follows that 

 3, 3, 3, 3, 3, 3, .q q q q q qVar E E E E Varα α α γ γ γ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦� � � � � �  (129) 

Thus, the error due to the variance of 3,qγ�  directly propagates into 3,qα�  estimator and 

increasing the number of averaged samples P in (127) directly minimizes the maxi-

mum error due to the variance of α3,q estimate. In order to analyze how the variance 
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of α1,q changes due to the estimators 1,qγ� , 3,qγ�  and 2,qη�  consider the following. As 

determined by the expression in (128), the variance of 2,qη�  is negligible comparing to 

the variances of the other two estimators. Therefore, the error due to the variance of 

2,qη�  tends to be statistically far smaller than the errors in 1,qγ�  and 3,qγ� . For this rea-

son, consider the case in which K samples have been averaged so that the variance of 

2,qη� is negligible (from (128), for Δ = 0.25 V, after averaging ~220 samples this condi-

tion is satisfied, while the variance of the other two estimators is still significant). In 

this case, from (120), the variance of α1,q estimator can be approximated as 

 
( )

( ) ( )( )

22
1, 1, 1, 1, 3, 2,

2
2, 1, 1, 3, 3,

3 10

3 10

q q q q q q

q q q q q

Var E E Var Var A

A E E E

α α α γ γ η

η γ γ γ γ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ≈ + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦⎣ ⎦

� � � � � �

� � � � � . (130) 

As shown in the appendix, for the worst-case scenario, the term 

( )( )1, 1, 3, 3,q q q qE E Eγ γ γ γ⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎣ ⎦� � � �  is about 218 times smaller than the variance of 

3,qγ� , and the variance of 1,qγ� . Furthermore, as follows from (126), 1,qVar γ⎡ ⎤⎣ ⎦�  is about 

960 times smaller than ( )22
3, 2,3 10q qVar Aγ η⎡ ⎤ −⎣ ⎦� � , in the worst case scenario when 

( )2
2,

13 10
22q Aη − ≈� . Therefore, the estimator 3,qγ�  not only limits the accuracy of 3,qα�  

but also of 1,qα� . Thus, the convergence time of the simulation is determined by 3,qγ�  

estimator, and depending on the desired accuracy of 3,qα�  and 1,qα� , it can be found 

using the variance expression in (127). 
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IV.   SIMULATION RESULTS 

In order to verify the bound of 3,qγ�  given in (127), the system in Figure 23 is 

simulated during the calibration of Stage 1 with calibration sequences such that B = 

1.5 and a DC input such that eADC,q[n] = eADCmax = 0.625Δ, for Δ = 0.25V. Further-

more, the residue amplifier coefficients α1,1 and α3,1 are equal to -0.085 and -0.3V-2, 

respectively. All the stages following the calibration stage have residue amplifiers 

with gain-errors comparable to α1,1. These gain errors have been digitally estimated 

with accuracy typically seen after averaging 232 samples, and the estimates are used 

to correct the digitized residue prior to entering Stage 1. 

The solid line in Figure 24 corresponds to the theoretical standard deviation of 

3,qγ�  that follows from (127) for eADCmax = 0.625Δ, plotted as a function of the number 

of averaged samples P. The dotted line corresponds to the standard deviation of 3,qγ�  

that is estimated experimentally, using 48 Monte Carlo runs which are not shown. 

There is an excellent match between the upper bound given by (127) and the upper 

bound deduced from the simulation. Additionally, these results do not contradict the 

claim that for well-designed random number generators, the leakage of the signals 

eADC,st[n] and dst[n] into the calibration stage does not significantly affect the conver-

gence time of the simulation. 
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VI. FIGURES 

 

 
Figure 21  Example pipelined ADC. 

 
 
 
 
 

 
Figure 22  The kth pipelined ADC stage for k = 1, …, 5 with labels that indicate vari-
able names used throughout the paper. 
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Figure 23  Pipelined ADC configuration during estimation of α1,1 and α3,1 with HDC 
in the first stage and RD applied to the remaining stages 

 

 
Figure 24  A comparison plot of calculated standard deviation of 3,1γ�  estimate (bold) 
vs. simulated standard deviation of 3,1γ� , plotted as a function of the number of aver-
aged samples P. 
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VII. TABLES 

Table 2  All possible sets of values that t1,j[n]/A, t2,j[n]/A, t3,j[n]/A, t4,j[n]/A can take on 
along with the corresponding values of cj[n]/A, c1,j[n], c3,j[n], and c1,j[n] ± c3,j[n]. 
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VIII. APPENDIX 

The derivations for the equations (127) − (128) are shown in this section. 

Using the information in (114) and (121), the upper bound on the variance of 

3,qγ� can be computed as follows. First, the second moment of the estimator in (114) 

needs to be determined,  
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From the properties of the calibration sequences in (107), (111) and (112), and the 

fact that eADC,6[n] is independent from eADC,q[s] and c3,q[s] for n ≠ s, the expected val-

ue of the first and the second term above can be non-zero only when s = q. Thus, 
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 (131) 

The square of the expected value of 3,qγ� can be found as follows 
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Subtracting the above value from (131) and simplifying the resulting expression us-

ing the properties of eADC,q[n], assumptions in Section III regarding eADC,6[n], and the 

sequences c3,q[n] and cq[n] defined in (107) and (112),  
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It can be verified by inspection that each term is at its maximum value if |eADC,q[n]| = 

eADCmax. Therefore, maximum variance is achieved when  |eADC,q[n]| = eADCmax. Fur-

thermore, under this condition, the most dominant among the above terms is the first 

one, 
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 The second largest term is ( ) 4 2
3, 1, , 3,2 1 [ ] [ ]q q ADC q qE e n c nα α ⎡ ⎤+ ⎣ ⎦ , which is 

( ) 2
3, 1, ,max

1
2 1q q ADCeα α+

 times smaller than the most dominant one. For the pipelined 

ADC in Figure 23 implemented in a modern CMOS technology, this means that the 

second largest term is ~ 30 times smaller than (133). As such, it affects the maximum 

variance calculation by at most 2%, and thus, it can be considered negligible. Fur-

thermore, since  
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,  for 

1 ≥ B ≥ 1.5 (reasonable values of B that are needed in the system, refer to [52] for 

more information) is about 30 times smaller than ( ) 4 2
3, 1, , 3,2 1 [ ] [ ]q q ADC q qE e n c nα α ⎡ ⎤+ ⎣ ⎦  

when |eADC,q[n]| = eADCmax. In practice, eADC,6[n] is significantly dithered with the 

noise in the system, and it is not expected that its correlation is ever going to be as 

high as the set bound. Using the properties of the sequences in Table 2, it can be veri-

fied that all the other terms in (132) are significantly smaller that the first term when 

|eADC,q[n]| = eADCmax. Thus, the upper bound on the variance can be well approximated 

by the first term in (132). From the assumptions stated in Section III, eADC,6[n] is un-

correlated with c1,q[n]cq[n] and also from c3,q[n]2 (which is just a scaled version of 

c1,q[n]cq[n] when cq[n] ≠ 0), and the properties of the sequences in Table 2, it follows 

that the variance expression can be bounded as 

( )( )
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The correlation [ ] 2
, ,6 3,[ ] [ ]ADC q ADC qE e n e n c n⎡ ⎤⎣ ⎦  can be bounded by 

2
2max
3, [ ]

2
ADC

q
e E c n⎡ ⎤⎣ ⎦  

so that the term ( ) [ ]6 2
1, , ,6 3,2 4 1 [ ] [ ]q

q ADC q ADC qE e n e n c nα− ⎡ ⎤⋅ + ⎣ ⎦  is at least 16 times 

smaller than the first term when eADC,q[n] = eADCmax (in the worst case scenario for q = 

4). In practice, however, the correlation due to [ ] 2
, ,6 3,[ ] [ ]ADC q ADC qE e n e n c n⎡ ⎤⎣ ⎦  is ex-

pected to always be smaller than the bound 
2

2max
3, [ ]

2
ADC

q
e E c n⎡ ⎤⎣ ⎦ , as there are multiple 

noise sources prior to the Stage 6 (which signals are not correlated with eADC,q[n]) that 

help in minimizing the correlation of eADC,q[n] with eADC,6[n]. Additionally, as 

2 2 2
1, 3,[ ] [ ]q q qE c n c nα⎡ ⎤⎣ ⎦  is at least 150 times smaller than ( )2 2 2

1, max 3,1 [ ]q ADC qe E c nα ⎡ ⎤+ ⎣ ⎦ , 

from (134) it follows that the variance of  3,qγ�  can be well-bounded by 

( )2 2 2
1, max

3, 6

6 21
16 3

36

q ADC

q

e B
Var

A P

α
γ

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎡ ⎤ ≤⎣ ⎦� . 

 
The variance of 1,qγ� can be computed in a similar way as above. Substituting 

(121) into (113), 
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which can be expanded as 
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From the properties of the calibration sequences in (107), (111) and (112), and the 

fact that eADC,6[n] is independent from eADC,q[s] and c1,q[s] for n ≠ s, the expected val-

ue of the third and fourth terms above can be non-zero only when s = q. Thus, 
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∑
 

From the properties of the system, eADC,6[n] can be correlated with c1,q[n] only during 

the samples that cq[n] ≠ 0. Furthermore, from the assumptions stated in Section III, 
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eADC,6[n] is uncorrelated with c1,q[n]2 (as eADC,6[n] is uncorrelated with cq[n]c1,q[n], 

and c1,q[n]2 is just a scaled version of this sequence when cq[n] ≠ 0). Using this in-

formation together with the variance of eADC,6[n] given by  

 [ ]
2

2 6
,6 12ADCE e n

⎛ ⎞Δ⎡ ⎤ = ⎜ ⎟⎣ ⎦
⎝ ⎠ , (135) 

where Δ6 is the step size of FADC6, from (134) and (135), it follows that  
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Expanding the first term and using the properties of cq[n], c1,q[n], c3,q[n] and eADC,q[n],  
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and using the properties of the sequences given in Table 2, the equation above can be 

further simplified to 
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 (136) 

In order to find the variance of 1,qγ� , the expected value squared of this estimator 

needs to be determined,  
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Using (136), the squared mean value of 1,qγ�  obtained above, and the properties of 
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cq[n],  the variance of 1,qγ� is given by 
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 (137) 

For , ,max[ ]ADC q ADCe n e= , the variance above is maximum, considering that the only 

term that can reduce the variance in this case is ( )22 2 2
, 3,9 [ ]ADC q qA E e n α⎡ ⎤⎣ ⎦ , which is 

about 2⋅104 times smaller than the most dominant term, i.e. 
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( )
, max

2 2 2
1, , 1,

[ ]
1 [ ] [ ]

ADC q ADC

q ADC q q
e n e

E e n c nα
=

⎡ ⎤+⎢ ⎥⎣ ⎦
. Thus, the term ( )22 2 2

, 3,9 [ ]ADC q qA E e n α⎡ ⎤⎣ ⎦  

can be neglected. The next largest term in (137) when , ,max[ ]ADC q ADCe n e=  is  

( ) 4 2
1, 3, , 1,2 1 [ ] [ ]q q ADC q qE e n c nα α ⎡ ⎤+ ⎣ ⎦ , which is ( ) 2

3, 1, ,max

1
2 1q q ADCeα α+

 times smaller than 

the most dominant one. For the pipelined ADC in Figure 23 implemented in a modern 

CMOS technology, this term is about 30 times smaller than 

( )
,
max

2 2 2
1, , 1, [ ]

1 [ ] [ ]
ADC q
ADC

q ADC q q e n
e

E e n c nα
=

⎡ ⎤+⎢ ⎥⎣ ⎦
. As such, ( ) 4 2

1, 3, , 1,2 1 [ ] [ ]q q ADC q qE e n c nα α ⎡ ⎤+ ⎣ ⎦  af-

fects the maximum variance by at most 2%, and thus can be considered negligible. 

The next largest term is 

[ ] ( ) ( )( )36 2
,6 1, , 1, 3, , 1,2 4 1 [ ] [ ] [ ] [ ] [ ]q

ADC q ADC q q q q ADC q q qE e n e n c n e n c n c nα α α−⎡ ⎤+ + + +⎢ ⎥⎣ ⎦
, 

which magnitude is smaller than or equal to ~eADCmax
4 in the worst case scenario (q = 

4). This calculation assumes that the output of Stage 4 is entirely correlated with 

eADC,6[n], and as such it is about 30 times smaller than the most dominant term. How-

ever, in a practical system, eADC,6[n] is significantly dithered by noise (thermal, DAC 

noise, etc.), so  that its correlation with 

 ( ) ( )( )3

1, , 1, 3, ,1 [ ] [ ] [ ] [ ]q ADC q q q q ADC q qe n c n e n c nα α α+ + + +   

is expected to be far smaller than eADCmax
4.  It can be shown that all the other terms in 

(137) are also significantly smaller than ( )2 2 2
1, , 1,1 [ ] [ ]q ADC q qE e n c nα⎡ ⎤+⎢ ⎥⎣ ⎦

 for 

, ,max[ ]ADC q ADCe n e= , so from the above discussion and the properties of c1,q[n] se-
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quence, the variance of 1,qγ� can be well-bounded by 

 

( )2 2 2
1, max

1, 2

6 21
16 3q ADC

q

e B
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A P

α
γ

⎛ ⎞+ +⎜ ⎟
⎝ ⎠⎡ ⎤ ≤⎣ ⎦� . 

Following the same procedure as above, the variance of 2,qη�  can be found 

from (115) and (121),  
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Expanding this expression,  
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 (138) 

Using the properties of the calibration sequences in Table 2, the square of 2,qη�  mean 

value can be found as 

 ( )
21 22

2, 1,
1 1 [ ] [ ] [ ] [ ]

m P

q q q q q
n m

E E r n c n c n c n
A P

η
+ −

=

⎛ ⎞⎡ ⎤⎡ ⎤ = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
∑�  

Subtracting 
2

2,qE η⎡ ⎤⎣ ⎦� from 2
2,qE η⎡ ⎤⎣ ⎦� , 
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∑

 

By inspection it can be determined that the maximum variance of 2,qη� is negligible 

comparing the bounds established for  1,qγ�  and 3,qγ�  as, from the equation above, it 

follows that each term is multiplied by either 4[ ]qc n  (where 4 4[ ] 40qE c n A⎡ ⎤ =⎣ ⎦ ), 2[ ]qc n  

(which expected value is squared ( )22 4[ ] 16qE c n A⎡ ⎤ =⎣ ⎦ ), or higher powers of cq[n].  

Without much effort, an upper bound can be established by applying the inequalities 

below which use the information that input into residue amplifier (in order to avoid 
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clipping) should not be bigger than Δ,  
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As the upper bound for the first two terms in 2,qVar η⎡ ⎤⎣ ⎦�  is the largest (their magni-

tude is about 16 times bigger than the magnitude of the following two terms), the var-

iance of 2,qη�  can be well-bounded with 
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Using the definitions in (113),  (114) and (121), the correlation between 1,qγ�  

and 3,qγ� equals to 
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Neglecting the last term in the expression above (as this term goes very quickly to 
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zero, the difference between the mean of 1, 3,q qγ γ� �  and 1, 3,q qE Eγ γ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦� �  is well-

approximated by the term ( )
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where, in the worst case scenario when |eADC,q[n]| = eADC,max (when the correlation is 

the largest), this term can be well-bounded by ( ) 2
1, 3, ,max2

9 1 [ ]
6 q q ADCe n

A P
α α+ , which is 

approximately 218 times smaller than the variance of 3,qγ� . 
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