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Fractional-N phase locked loops (PLL) are widely used in modern communi-

cation systems to synthesize a highly pure frequency from a lower reference frequen-

cy. Stringent requirements are often placed on the spectral purity of the synthesized 

frequency so that overall system-level requirements are met. Unfortunately, spurious 

tones are inevitable in the output signals of fractional-N PLLs, and in conventional 

designs they can be attenuated only with design tradeoffs that degrade other aspects 



 

 

of performance.  

This dissertation presents a PLL that utilizes a successive requantizer in con-

junction with an offset current technique to suppress both the fractional and reference 

spurs. A passive, type-II, sampled loop filter (SLF) is also introduced to mitigate the 

increased reference spurs that result from the use of an offset current. 

Chapter 1 describes a phase-noise cancelling, fractional-N PLL utilizing the 

techniques mentioned above. It details the system level and circuit level design and 

presents measured results. 

Chapter 2 presents a discrete-time model for a PLL utilizing the passive SLF 

described in Chapter 1. A mathematical basis for the model is also presented. 

Chapter 3 describes an integer-N, realigning PLL utilizing a relaxation oscilla-

tor and a calibration scheme to suppress the realignment spur. Realignment can sup-

press the noise of the voltage controlled oscillator (VCO) and hence finds application 

in systems utilizing non-LC based VCOs. However, implementation challenges exist 

with regard to the VCO and many previously published designs suffer from a large 

realignment spur. The use of a relaxation oscillator and the calibration scheme ad-

dress these two challenges. 
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Chapter I: 

 Spurious Tone Suppression Techniques Applied to a Wide-Bandwidth 

2.4GHz Fractional-N PLL 

Abstract—This paper demonstrates that spurious tones in the output of a fractional-N 

PLL can be reduced by replacing the ΔΣ modulator with a new type of digital quantizer 

and adding a charge pump offset combined with a sampled loop filter.  It describes the 

underlying mechanisms of the spurious tones, proposes techniques that mitigate the ef-

fects of the mechanisms, and presents a phase noise cancelling 2.4GHz ISM-band CMOS 

PLL that demonstrates the techniques.  The PLL has a 975kHz loop bandwidth and a 

12MHz reference.  Its phase noise has a worst-case reference spur power of −70dBc and 

a worst-case in-band fractional spur power of −64dBc. 

I. INTRODUCTION 

Most wireless communication systems require local oscillators for up-conversion 

and down-conversion of their transmitted and received signals.  Usually, the spectral puri-

ty of the local oscillator is a critical factor in overall transceiver performance, so commu-

nication standards explicitly or implicitly stipulate stringent spectral purity requirements 

on the local oscillators [1-2].  In addition to dictating the maximum acceptable phase 

noise power in various frequency bands, most standards require that spurious tones in the 

local oscillator’s output be highly attenuated, particularly in critical frequency bands. 

Local oscillators in such applications are often implemented as fractional-N 
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phase-locked loops (PLLs).  Unfortunately, spurious tones are inevitable in the output 

signals of fractional-N PLLs, and in conventional designs they can be attenuated only 

with design tradeoffs that degrade other aspects of performance.  Generally, spurious tone 

power can be reduced by increasing the linearity of key circuit blocks such as the charge 

pump and divider, restricting the choice of reference frequencies, and reducing the loop 

bandwidth.  Unfortunately, increasing linearity tends to increase power consumption and 

circuit area, restricting the choice of reference frequencies reduces design flexibility, and 

reducing the loop bandwidth increases in-band phase noise, settling time, susceptibility to 

oscillator pulling, and loop filter size [1].  Furthermore, these methods of spurious tone 

reduction become less effective as CMOS circuit technology is scaled into the sub-100 

nanometer regime.  Therefore, the spurious tone problem negatively affects power con-

sumption, cost, and manufacturability of wireless transceivers, and the problem gets 

worse as CMOS circuit technology scales with Moore’s Law. 

This paper presents a 2.4 GHz ISM band fractional-N PLL that achieves state-of-

the-art spurious tone suppression enabled by techniques that avoid the tradeoffs men-

tioned above [3].  One of the techniques is the use of a new type of digital quantizer, 

called a successive requantizer, in place of the digital delta-sigma (ΔΣ) modulator used in 

conventional fractional-N PLLs [4].  The other technique involves the combination of a 

charge pump offset and a sampled loop filter. 

The paper consists of four main sections.  Section II describes the mechanisms by 

which the two types of spurious tones, reference spurs and fractional spurs, arise in frac-

tional-N PLLs.  Section III describes the successive requantizer.  Section IV describes the 

charge pump offset and sampled loop filter.  Section V presents additional circuit details 
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and measurement results. 

II. SPURIOUS TONES AND THEIR CAUSES IN FRACTIONAL-N PLLS 

A. Fractional-N PLL Overview 

The purpose of a fractional-N PLL is to generate a periodic output signal with fre-

quency fout = (N + α)fref, where N is an integer, α is a fractional value between 0 and 1, 

and fref is the frequency of a reference oscillator (e.g., the crystal frequency).  As shown in 

Figure 1, a typical fractional-N PLL consists of a phase-frequency detector (PFD), a 

charge pump, a loop filter, a voltage controlled oscillator (VCO), a frequency divider, and 

a digital ΔΣ modulator clocked by the divider output [5-7].  The divider output is a two-

level signal in which the nth and (n+1)th rising edges are separated by N + y[n] periods of 

the VCO output, where y[n] is an integer-valued sequence from the ΔΣ modulator.   As 

indicated in the figure for the case where the PLL is locked, if the nth rising edge of the 

reference signal, vref(t), occurs before that of divider output, vdiv(t), the charge pump gene-

rates a current pulse of nominal amplitude I and a duration equal to the time difference 

between the two edges.  Otherwise, the situation is similar except the polarity of the cur-

rent pulse is reversed.  The PLL’s feedback adjusts the output frequency so as to zero the 

DC component of the charge pump output.  This causes the output frequency to settle to 

fref times the sum of N and the average of y[n]. 
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Fig. 1: Block diagram of a typical fractional-N PLL. 
 

If y[n] could be set to α directly, then the output frequency of the PLL would set-

tle to (N + α)fref, thereby achieving the goal of the fractional-N PLL.  Unfortunately, this 

is not possible.   The divider can only count integer VCO cycles so y[n] is restricted to 

integer values whereas α is a fractional value.  To circumvent this problem y[n] is de-

signed to be a sequence of integers that average to α.  The input to the ΔΣ modulator is α 

plus pseudo-random least significant bit (LSB) dither, so its output has the form y[n] = α 

+ s[n], where s[n] is a zero-mean sequence consisting of spectrally shaped ΔΣ quantiza-

tion noise and LSB dither.  As proven in [8], the dither prevents s[n] from containing spu-

rious tones that would otherwise show up as spurious tones in the PLL’s output.  Hence, 

the output frequency settles to an average (N + α)fref, as desired, although s[n] introduces 

phase noise. 

The s[n] sequence causes an amount of charge equal to TVCO·I·t[n] to be added to 
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the nth charge pump pulse, where TVCO is the period of the VCO output (for a given value 

of α, TVCO is well-modeled as a constant) and 

 
0

[ ] [ ]
n

k

t n s k
=

= ∑  (1) 

is the running sum of s[n].  Hence, the PLL’s phase noise contains a lowpass filtered ver-

sion of t[n].  The bandwidth of the lowpass filtering operation is called the loop band-

width of the PLL.  Usually, the quantization noise transfer function of the ΔΣ modulator 

is highpass shaped with at least one zero at DC.  Therefore, t[n] is bounded and shaped 

with an order of one less than that of the ΔΣ modulator’s quantization noise transfer func-

tion.  Provided the loop bandwidth is sufficiently low, the resulting phase noise is sup-

pressed below that from other noise sources in the PLL.  Alternatively, a DAC can be 

used to cancel t[n] prior to the loop filter, thereby minimizing its contribution to the 

PLL’s phase noise so that a much larger loop bandwidth can be used [9-13].  Such frac-

tional-N PLL’s are called phase noise cancelling fractional-N PLLs. 

B. Reference Spurs 

Reference spurs are spurious tones in the PLL’s output that occur at multiples of 

fref from fout.  They result mainly from periodic disturbances of the loop filter voltage in-

troduced by the charge pump.  Therefore, the loop bandwidth and the reference frequency 

both affect the power of the reference spurs.  Widening the loop bandwidth for a given 

reference frequency or decreasing the reference frequency for a given loop bandwidth 

both have the effect of reducing the loop filter’s attenuation of the disturbances, thereby 

increasing the power of the reference spurs. 
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Mismatches between the positive and negative current sources in the charge pump 

are the primary causes of the disturbances that cause reference spurs.  A typical PFD turns 

on both current sources in the charge pump each reference period for a minimum dura-

tion, TD, where TD is large enough to ensure that both current sources fully settle before 

they are turned off.  Each reference period the PFD turns on the positive current source 

when the reference edge occurs and the negative current source when the divider edge 

occurs, and turns them both off simultaneously TD seconds after the later of the two 

edges.  The difference between the positive and negative current pulses is the charge 

pump output current pulse.  By ensuring that both current sources have time to settle, a 

major source of charge pump nonlinearity is avoided [14].  However, inevitable transient 

and amplitude mismatches between the two current sources give rise to an error compo-

nent in each charge pump pulse that is constant from period to period.  Although the 

PLL’s feedback nulls out the DC component of constant error pulse by adjusting the 

phase of the VCO, the result is a zero-mean periodic disturbance of the VCO’s control 

voltage which causes a reference spur. 

In theory, the disturbance and, therefore, the reference spur could be eliminated 

by performing an ideal sample-and-hold operation between the loop filter and the VCO 

once per reference period.  The sampled loop filter presented in Section IV provides a 

practical means of achieving this result to a high degree of accuracy. 

C. Fractional Spurs 

Fractional spurs are spurious tones in the PLL’s output that occur at multiples of 
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αfref from fout.†  Typically, the most significant fractional spurs are the result of distur-

bances on the loop filter voltage introduced through the charge pump.  Therefore, the 

power of a fractional spur usually depends on both its frequency and the loop bandwidth.  

In conventional fractional-N PLLs, fractional spurs within the loop bandwidth tend to be 

large, typically well above −60dBc, while fractional spurs at higher frequencies usually 

are attenuated by the loop filter.  Hence, the power of the fractional spur at αfref can be 

reduced by reducing the loop bandwidth for any given values of fref and α.  In conven-

tional fractional-N PLLs the application’s spurious tone suppression requirements typical-

ly dictate restrictions on the choice of reference frequency and loop bandwidth so as to 

ensure that αfref is sufficiently outside the loop bandwidth for every desired output fre-

quency. 

As described in the remainder of this section, fractional spurs arise from two dis-

tinct mechanisms.  The techniques presented in Sections III and IV respectively address 

each mechanism to reduce the power of the fractional spurs. 

Fractional Spur Mechanism 1 

It is well known that nonlinear parasitic coupling between the VCO output signal 

and harmonics of the reference signal result in fractional spurs.  For example, if the Nth 

harmonic of the reference signal intermodulates with the VCO output signal through a 

parasitic coupling path in the circuit, the intermodulation product is a spurious tone at 

αfref.  

                                                 
† A fractional spur in the the PLL output at a frequency of fout+ fspur is often said to occur at frequency fspur 
because it appears at frequency fspur in a phase noise plot.  This terminology is used in the remainder of the 
paper. 
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The potential for such coupling is greatest in the PFD and charge pump, as these 

blocks handle signals aligned with the reference signal as well as those aligned with the 

VCO output [10]. The hard-switching that occurs within these blocks induces distur-

bances on the local power supply lines because of the bond wire inductance. This mod-

ulates the switching threshold of the digital gates powered by these supplies.  As illu-

strated in Figure 2, the two flip-flops in the PFD capture the phase difference between the 

divider and reference edges. For small phase differences, the disturbance induced by the 

earlier edge does not have time to die out before the later edge arrives, so it can modulate 

the delay through the flip-flop of the later edge, thereby corrupting the phase difference 

measurement.  The resulting error contains intermodulation products of the VCO output 

and reference signal which are injected into the loop filter and cause fractional spurs.  

Similar coupling effects occur within the charge pump circuitry.  

 

 

Fig. 2: Example of a nonlinear coupling path in the PFD 
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Fractional Spur Mechanism 2 

Surprisingly, the digital ΔΣ modulator in a fractional-N PLL is a fundamental 

source of spurious tones in the PLL’s output [3, 4, 9, 15].  This is true even though dither 

is used to prevent spurious tones in the ΔΣ modulator’s output.  Regardless of how dither 

is applied, spurious tones are induced when the ΔΣ modulator’s quantization noise is sub-

jected to nonlinear distortion. This is particularly problematic in fractional-N PLLs 

wherein the output sequence from the ΔΣ modulator is converted to analog form and both 

s[n] and its running sum, t[n], are subjected to nonlinear operations because of non-ideal 

circuit behavior. 

 

-150

-50
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/H

z

104 106

-150

-50
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Fig. 3: (a) A second-order digital ΔΣ modulator, and (b) an example in which s[n] is free of spurious tones 
but a nonlinearly distorted version of s[n] contains spurious tones. 

 

 

A digital ΔΣ modulator often used in fractional-N PLLs is shown in Figure 3a as a 

demonstration vehicle.  It is an all-digital structure consisting of two accumulators, a 
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round-to-the-nearest-integer quantizer, and two negative feedback paths.  It is well known 

that if the ΔΣ modulator input is kept between 0 and 1, then the output is restricted to the 

integers: {−1, 0, 1, 2}, and s[n] = d[n−2] + eq[n] − 2eq[n−1] + eq[n−2], where eq[n] is ad-

ditive error from the round-to-the-nearest-integer operation of the quantizer.  Therefore, 

eq[n] is subjected to the equivalent of a three tap FIR filter with a pair of zero-frequency 

zeros. 

As shown in [8], if the dither sequence, d[n], is an equiprobable two-level, white, 

random sequence of any non-zero magnitude, then eq[n] is guaranteed to be asymptotical-

ly white and zero mean.  In this case, eq[n], and, hence, s[n], are guaranteed to be free of 

spurious tones.  Moreover, the three tap FIR filtering causes the power spectral density 

(PSD) of the quantization noise component of s[n] to increase at 12 dB per octave in fre-

quency.  For example, the simulated PSD of s[n] is shown in the left plot in Figure 3b for 

the case where α = 0.002, d[n] is a white pseudo-random sequence that takes on values of 

0 and 2−17 with equal probability, and the sample rate is 20 MHz.  In this case, the magni-

tude of the dither is sufficiently small that it is not visible in the PSD plot, yet its presence 

ensures that spurious tones are avoided in s[n].  However, as shown in the right plot of 

Figure 3b, spurious tones are clearly present in the PSD of (s[n])2.  Similar results occur 

for other types of nonlinear distortion and all other ΔΣ modulators and dither methods 

known to the authors.  For example, the problem occurs even if the dither sequence is 

white with a triangular probability density function that extends from −1 to 1 and is add-

ed directly to the input of the quantizer. 

If it seems counter-intuitive that spurious tones can occur when a spur-free se-

quence is subjected to nonlinear distortion, consider a random sequence given by 
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 { 1 (chosen randomly), if  is even,[ ] 0, if  is odd. 
nq n n

±=  (2) 

It is easy to verify that q[n] is white and, hence, free of spurious tones.  However, (q[n])2 

is 1 for even values of n and 0 for odd values of n, so (q[n])2 is nothing but a spurious 

tone at half the sample rate and a constant offset.  In this simple case, q[n] has “sufficient 

randomness” to avoid spurious tones in the absence of nonlinear distortion but not when 

subjected to even-order nonlinear distortion. 

 

( )1n α− ( ) ( )2 3n nα α− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )1n α−

 

Fig. 4: Structures that are both equivalent to that of Figure 3a. 
 

 

The situation is conceptually similar, but more complicated, for the case of a ΔΣ 

modulator.  The interaction of the constant input and the first accumulator gives rise to 

“hidden periodicities” as indicated in Figure 4.  Both structures in Figure 4 are equivalent 

to that of Figure 3a in that they generate the same y[n] sequence.  The structure of Figure 

4a differs from that of Figure 3a in that in Figure 4a the α input has been replaced by its 
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delayed running sum, (n − 1)α, added after the first accumulator.  This sequence can be 

written as 

 ( ) ( ) ( )1 1 1n n nα α α− = − + −⎢ ⎥⎣ ⎦  (3) 

where x⎢ ⎥⎣ ⎦  denotes the largest integer less than or equal to x, and x  denotes the frac-

tional part of x.  The round-to-the-nearest-integer quantizer has no effect on integer-

valued components of its input, and the transfer function from the input of the second ac-

cumulator to the output of the ΔΣ modulator is z−1(1−z−1) so the integer-valued compo-

nent of (3) can be moved after the feedback loops as shown in Figure 4b.  The signific-

ance is that both additive sequences in Figure 4b associated with α are periodic with a 

period that depends on α, so they are each made up entirely of spurious tones (i.e., their 

Fourier series components).  The dither provides sufficient randomness to avoid spurious 

tones in s[n] as proven in [8], but not to avoid spurious tones when s[n] is subjected to 

nonlinear distortion as demonstrated in Figure 3b. 

III. A DELTA-SIGMA MODULATOR REPLACEMENT 

The fractional-N PLL presented in this paper uses a successive requantizer in 

place of a ΔΣ modulator to circumvent fractional spur mechanism 2 [4].  The successive 

requantizer performs coarse quantization with spectrally shaped quantization noise like a 

ΔΣ modulator, but its quantization noise is less susceptible to nonlinearity-induced spu-

rious tones as described below. 
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Fig. 5: High-level diagram of an example successive requantizer. 

 

 

 A high-level view of successive requantizer is shown in Figure 5.  It quantizes a 

19-bit input sequence by 16 bits to generate a 3-bit output sequence [3-4].  By design 

convention, the input and output of the successive requantizer are integer-valued.  For the 

fractional-N PLL application, the goal is to quantize α, which is a fractional value be-

tween 0 and 1, and in this design α is taken to be a constant multiple of 2−16.  Therefore, α 

is scaled by 216 prior to the successive requantizer to convert it into an integer.  As ex-

plained below, the 3-bit integer-valued output of the successive requantizer is 

y[n]=α+s[n], where s[n] is quantization noise. 

As shown in Figure 5a the successive requantizer consists of 16 quantization 

blocks, each of which simultaneously halves its input and quantizes the result by one bit 

every sample period.  The general form of each quantization block is shown in Figure 5b 

wherein all variables are integer-valued two’s complement numbers. The output of the 

dth quantization block is xd+1[n]=(xd[n]+sd[n])/2, where sd[n] a sequence generated within 

the quantization block.  At each time n, sd[n] is chosen such that xd[n]+sd[n] does not ex-
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ceed the range of a (20−d)-bit two’s complement integer, and the parity of sd[n] is the 

same as that of xd[n].  The parity restriction ensures that xd[n]+sd[n] is an even number so 

its LSB is zero.  Discarding the LSB simultaneously halves the quantization block’s input 

value and quantizes the result by one bit.  The resulting quantization noise is sd[n]/2, so 

the successive requantizer’s overall quantization noise is 

 
16

17

1

[ ] 2 [ ]d
d

d

s n s n−

=

= ∑ . (4) 

Therefore, s[n] is a linear combination of the sd[n] sequences, so it inherits the properties 

of the sd[n] sequences.  

A key feature of the successive requantizer is that the properties of its quantiza-

tion noise can be engineered by appropriate design of the sd[n] sequences.  So far, the on-

ly restriction on the sd[n] sequences is that they must be chosen such that xd[n]+sd[n] is a 

(20−d)-bit two’s complement even integer for each n and d.  This leaves considerable 

flexibility in the design of the sd[n] sequences which is exploited to achieve the desired 

quantization noise properties. 

The successive requantizer partially exploits this flexibility to ensure that the run-

ning sum of each sd[n] sequence, i.e.,  

 
0

[ ] [ ]
n

d d
k

t n s k
=

= ∑ , (5) 

is bounded for all n, and each sd[n] has a smooth PSD that increases monotonically with 

frequency.  This implies that s[n] is highpass shaped quantization noise that is free of spu-

rious tones and the PSD of s[n] is zero at ω = 0. 

This still leaves flexibility in the design of the sd[n] sequences which is exploited 



15 
 

 
 

as described below to ensure that the sequences 

 ( ) ( )[ ] for 1,2,3,4,5, and [ ] for 1,2,3,p ps n p t n p= =  (6) 

are free of spurious tones, where t[n] is the running sum of s[n] given by (1).   The objec-

tive is to ensure that the successive requantizer’s quantization noise does not introduce 

significant spurious tones when subjected to the degree of nonlinear distortion expected 

from the analog circuits within the PLL.  Circuit simulations were used during the PLL’s 

design to verify that preventing spurious tones from occurring in the sequences given by 

(6) is sufficient to achieve this objective. 

LSB of xd[n] = 0 
td[n−1] rd[n] sd[n]

2 ≥ 0 and ≤ 3 0 
2 ≤ −1 or ≥ 4 −2 
1 ≤ −1 or ≥ 6 0 
1 ≥ 0 and ≤ 5 −2 
0 0 or 1 2 
0 ≤ −1 or ≥ 4 0 
0 2 or 3 −2 
−1 ≤ −1 or ≥ 6 0 
−1 ≥ 0 and ≤ 5 2 
−2 ≥ 0 and ≤ 3 0 
−2 ≤ −1 or ≥ 4 2 

 

LSB of xd[n] = 1 
td[n−1] rd[n] sd[n]

2 ≤ −1 or ≥ 4 −1 
2 ≥ 0 and ≤ 3 −3 
1 ≥ 1 and ≤ 3 1 
1 ≤ −1 or ≥ 4 −1 
1 0 −3 
0 ≥ 0 1 
0 ≤ −1 −1 
−1 ≥ 1 and ≤ 3 −1 
−1 ≤ −1 or ≥ 4 1 
−1 0 3 
−2 ≤ −1 or ≥ 4 1 
−2 ≥ 0 and ≤ 3 3 

 
 

Fig. 6: Implementation of each quantization block for a successive requantizer with sp[n], p = 1, 2, 3, 4, 5, 
and tp[n], p = 1, 2, 3, that are free of spurious tones. 

 

 

The register transfer level details of the dth quantization block are shown in Fig-

ure 6.  Each value of sd[n] is calculated via the combinatorial logic shown in the figure as 

a function the previous value of td[n], the parity of the current value of xd[n], and the cur-

rent value of a 4 bit pseudo-random sequence, rd[n], where {rd[n], d = 1, 2, …, 16, n = 0, 

1, 2, …} well-approximate independent identically distributed random variables.  For this 
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design the range of values taken on by sd[n] and td[n] are 

 { } { }[ ] 3, 2, 1, 0,1, 2, 3 , and [ ] 2, 1, 0,1, 2 ,d ds n t n∈ − − − ∈ − −  (7) 

It can be verified that td[n] is a discrete-valued Markov random sequence condi-

tioned on the parity of xd[n].  Whenever xd[n] is odd the one-step state transition matrix 

for td[n] is given by 

 { }
5 5

[ ] | [ 1] , [ ] 1d j d i dP t n T t n T o n
×

⎡ ⎤= = − = =⎣ ⎦oA  (8) 

and whenever xd[n] is even the one-step state transition matrix for td[n] is given by 

 { }
5 5

[ ] | [ 1] , [ ] 0d j d i dP t n T t n T o n
×

⎡ ⎤= = − = =⎣ ⎦eA  (9) 

where P{X | Y} denotes the conditional probability of event X given event Y, od[n] is the 

LSB of xd[n], and T1 = −2, T2 = −1, T3 = 0, T4 = 1, T5 = 2.   The specific state transition 

matrices corresponding to the quantization block shown in Figure 5 are  

 

0 3 4 0 1 4 0 1 4 0 3 4 0 0
3 16 0 3 4 0 1 16 0 5 8 0 3 8 0

and0 1 2 0 1 2 0 1 8 0 3 4 0 1 8
1 16 0 3 4 0 3 16 0 3 8 0 5 8 0

0 1 4 0 3 4 0 0 0 3 4 0 1 4

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

o eA A . (10) 

As derived in [4], these state transition matrices ensure that the sequences in (6) 

are free of spurious tones because each is a random process whose autocorrelation func-

tion converges to a constant as its time spread increases.  Furthermore, the PSD of sd[n] 

has a zero at ω = 0 and increases at 6 dB per octave as ω increases from zero.  In this re-

spect, the quantization noise shaping of this version of the successive requantizer is com-

parable to that of a first-order ΔΣ modulator. 

Successive requantizers with higher than first-order quantization noise shaping 
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can also be designed.  For example, second-order quantization noise shaping can be 

achieved by quantization blocks that calculate sd[n] as a function the running sum of td[n] 

in addition to td[n], a random sequence, and the parity of xd[n].  However, the fractional-N 

PLL in this work is a phase noise cancelling fractional-N PLL, so higher than first-order 

shaping is not necessary because most of the quantization noise is removed prior to the 

loop filter via a DAC. 

A drawback of the quantization block shown in Figure 6 is that its reduced sus-

ceptibility to nonlinearity-induced spurious tones comes at the expense of increased 

quantization noise power.  For example, if it is desired to have quantization noise with a 

first-order highpass spectral shape, but it is not necessary to prevent nonlinear distortion 

from inducing spurious tones in the quantization noise and its running sum, a quantiza-

tion block that implements 

 

0, if [ ] even
[ ], if [ ] odd and [ 1] 0,

[ ]
1, if [ ] odd and [ 1] 1,

1, if [ ] odd and [ 1] 1,

d

d d d
d

d d

d d

x n
p n x n t n

s n
x n t n
x n t n

=⎧
⎪ = − =⎪= ⎨ = − = −⎪
⎪− = − =⎩

 (11) 

can be used, where pd[n] is an independent random sequence that takes on the values 1 

and –1 with equal probability.  In this case sd[n] takes on values of –1, 0, and 1, whereas 

the sd[n] generated by the quantization block of Figure 6 takes on values of –3, –2, –1,…, 

3.  Consequently, the power of the quantization noise from a quantization block based on 

(11) is significantly lower than that from the quantization block of Figure 6. 

This example suggests what is likely to be a fundamental tradeoff: reduced sus-

ceptibility to nonlinearity-induced spurious tones comes at the expense of increased 

quantization noise power.  The tradeoff has yet to be proven theoretically, but it is exhi-
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bited by all variants of the successive requantizer developed to date by the authors.  In 

each case, generating sd[n] sequences with reduced susceptibility to nonlinearity-induced 

spurious tones has required choices to be made that increase the power of the sd[n] se-

quences.  This is not a significant problem in phase noise cancelling fractional-N PLLs, 

but it is likely to be an issue in fractional-N PLLs without phase noise cancellation.  Ana-

lytical quantification of the tradeoff and its effect on the performance of fractional-N 

PLLs without phase noise cancellation are ongoing subjects of research. 

IV. A CHARGE PUMP OFFSET AND SAMPLED LOOP FILTER 

The fractional-N PLL presented in this paper injects a constant current pulse into 

the loop filter each reference period as a means of mitigating fractional spur mechanism 1 

[10].  As shown in Figure 7, an offset pulse generator in parallel with the charge pump 

introduces a positive current pulse of amplitude I starting from the rising edge of the di-

vider output and extending for 8 VCO periods.  The offset current pulses cause a fixed 

VCO phase shift such that in each reference period the divider edge always occurs at 

least 6 VCO periods prior to the reference edge.  Separating the edges in this fashion 

gives the power supply disturbance described in Section III time to die out between the 

edges, thereby alleviating the coupling problem. 
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⎫⎪
⎬
⎪⎭

 
Fig. 7: The phase-frequency detector, charge pump, offset pulse generator and the associated timing dia-

gram. 
 

Unfortunately, the offset current pulse technique has a severe side-effect if used 

with a conventional loop filter: transient and amplitude mismatches between the current 

source in the offset pulse generator and the negative current source in the charge pump 

add significant power to the reference spur.  The effect is more severe than that caused by 

mismatches between the positive and negative charge pump current sources in a conven-

tional configuration because of the increased duration of the pulses. 
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⎫⎪
⎬
⎪⎭  

Fig. 8: The sampled loop filter and the associated timing diagram. 
 

The side-effect is avoided in this work by the sampled loop filter shown in Figure 

8.  It differs from the conventional loop filter shown in Figure 1 only in that the C1 capa-

citor has been split into two parallel half-sized capacitors separated by a CMOS transmis-

sion gate switch.  Thus, it reduces to a conventional loop filter when the switch is closed.  

As indicated in Figure 8, the switch is opened once per reference period for a duration of 

approximately 25 ns starting 4 VCO periods prior to the rising edge of the divider.  This 

ensures that it is open whenever the loop filter’s input current is non-zero.  Once the PLL 

has settled, the voltage across the switch just before it closes each reference period de-

pends only on circuit noise and quantization noise from the successive requantizer.  

Therefore, to the extent that the switch is ideal, closing the switch each period does not 

inject periodic disturbances at the reference frequency so reference spurs are avoided.  As 

with other sampled loop filter designs, this design also eliminates reference spurs caused 
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by mismatches between the current sources in the charge pump [11,16]. 

The switch is implemented as a transmission gate with half size dummy transmis-

sion gates on either side as shown in Figure 8.  The dummy transmission gates are short-

ed and driven in opposite polarity to the main transmission gate.  Their purpose is to can-

cel charge injection from the main transmission gate that would otherwise cause a refer-

ence spur. 

One way to ensure precise cancellation of the charge injection in such a switch 

configuration is to design the loop filter and surrounding circuitry so the impedances 

from the two switch terminals to ground are equal.  This could have been achieved by 

placing a series resistance of 2R and capacitance of C2/2 from each side of the switch to 

ground instead of the series resistance of R and capacitance of C2 on just the right side of 

the switch as shown in Figure 8.  However, doing so would have prevented the voltage on 

the left side of the switch from settling to a constant each reference period prior to closing 

the switch, thereby negating the reference frequency suppression property of the sam-

pling process. 

Fortunately, the charge injection is well cancelled despite the asymmetry from the 

series combination of R and C2.  The edges of the signals that control the transmission 

gates are sharp, so the charge injected by each MOS transistor is in the form of short-

duration, and, hence, high-bandwidth pulses of current.  For such a pulse, the impedance 

of the ½C1 capacitors is much lower than that of the resistor except over a small low-

frequency portion of its bandwidth.  Therefore, the resistor acts approximately like an 

open circuit with respect to charge injection pulses, so the series combination of R and C2 

has little effect with respect to charge injection. 
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V. ADDITIONAL CIRCUIT DETAILS AND MEASUREMENT RESULTS 

A simplified functional diagram of the phase noise cancelling fractional-N PLL IC 

prototype is shown in Figure 9 and a die photograph of the IC is shown in Figure 10.  Its 

reference frequency is 12 MHz, and its output frequency range covers the 2.4 GHz ISM 

band.  The phase noise cancellation enables a loop bandwidth of 975 kHz which is close 

to the fref /10 loop bandwidth upper limit for stability [17]. 
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Fig. 9: High-level diagram of the integrated circuit prototype. 
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Fig. 10: Die photograph. 
 

 

The IC is a modified version of that presented in [13].  The primary modifications 

are that the successive requantizer shown in Figures 5 and 6, the offset pulse generator 

shown in Figure 7, and the sampled loop filter shown in Figure 8 have been included.  

The other circuit blocks of the PLL described in [13] have been reused with relatively 

minor changes.  For comparison, the PLL includes the ΔΣ modulator shown in Fig. 2a 

which can optionally be used instead of the successive requantizer, the offset pulse gene-

rator can be enabled or disabled, and the loop filter’s sampling can be enabled or dis-
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abled.  With sampling disabled, the loop filter reduces to a conventional loop filter. 

The divider is similar to that presented in [13] except with minor changes to pro-

vide timing signals that control the offset current generator and open the loop filter switch 

each reference period.  As described in [13] the necessary timing signals are obtained by 

a chain of flip-flops clocked at half the VCO frequency.  The timing signal used to close 

the loop filter switch each reference period could similarly have been derived within the 

divider block, but an RC one-shot circuit with a nominal duration of 25 ns is used instead 

for simplicity because the length of time the switch is left open is not critical.  Provided 

the switch is open when the loop filter’s input current is non-zero, the PLL dynamics are 

relatively insensitive to the length of time it is open. 

A representative close-in PSD plot of the PLL’s output with the successive re-

quantizer, offset pulse generator, and sampled loop filter enabled and α chosen such that 

αfref = 50 kHz is shown in Figure 11.  As expected fractional spurs occur at multiples of 

50 kHz.  Although the fractional spurs are well inside the 975 kHz loop bandwidth, they 

are all below −70 dBc in power.  
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Fig. 11: Representative measured close-in output spectrum for the case of αfref = 50 kHz. 
 

To evaluate the fractional spur performance of the PLL comprehensively it is ne-

cessary to perform the measurement shown in Figure 11 for many values of α ranging 

between 0 and 1.  Figure 12 presents the results of such measurements for four cases: 1) 

the ΔΣ modulator enabled and the offset pulse generator disabled, 2) the successive re-

quantizer enabled and the offset pulse generator disabled, 3) the ΔΣ modulator enabled 

and the offset pulse generator enabled, and 4) the successive requantizer enabled and the 

offset pulse generator enabled.  For each case, the figure shows the measured power of 

the largest spurious tone in the PLL’s phase noise for each of 100 values of α ranging be-

tween 0 and 1. 



26 
 

 
 

10-3 10-2 10-1 100
-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

 

Fig. 12: Power levels of the largest measured fractional spurs with and without the enhancements enabled 
for 100 PLL frequency offsets in the range 0 < αfref < 12MHz. 

 

As shown in Figure 12, the fractional spur powers for the two cases in which the 

offset pulse generator is disabled are almost identical, and are much higher than the cor-

responding fractional spur powers for the two cases in which the offset pulse generator is 

enabled.  This suggests that fractional spur mechanism 1 is dominant over fractional spur 

mechanism 2.  With the ΔΣ modulator, enabling the offset pulse generator reduces the 

fractional spur powers by a maximum of 9 dB, and with the successive requantizer, 

enabling the offset pulse generator reduces the fractional spur powers by a maximum of 

27 dB.  This suggests that once fractional spur mechanism 1 is circumvented, fractional 

spur mechanism 2 becomes significant.  By circumventing fractional spur mechanism 2, 

the successive requantizer results in a maximum fractional spur power reduction of 18 dB 

relative to the ΔΣ modulator case.   
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As indicated in Figure 12, in each case the fractional spur powers are relatively 

constant for small values of α but decrease as α increases above about 0.055.  This is ex-

pected because the frequencies of the fractional spurs increase with α, so after a point 

they move outside the loop bandwidth and are attenuated.  An unusually large loop 

bandwidth has been used in this work to provide a worst-case scenario in which to dem-

onstrate the spurious tone suppression techniques presented in the paper.  The roll-offs 

shown in Figure 12 would start at smaller values of α if the loop bandwidth were de-

creased. 

 

 

Fig. 13: Representative measured spectra with the sampled loop filter enabled and disabled. 
 
Representative measured PSD plots of the PLL output over a 25 MHz span are 
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shown in Figure 13 for the PLL with the sampled loop filter and the PLL with the con-

ventional loop filter.  With the conventional loop filter the reference spur power is −40 

dBc, which is large because of the large loop bandwidth and low reference frequency.  

With the sampled loop filter, the reference spur drops to −70 dBc. 

Furthermore, it can be seen in Figure 13 that the phase noise away from the carri-

er is lower for the case of the sampled loop filter than for the case of the conventional 

loop filter.  This is expected [18].  As described in [9], practical circuit limitations dictate 

that the current pulses from the charge pump have a fixed amplitude but variable widths 

whereas those from the DAC have a fixed width but variable amplitudes.  Hence, even 

with perfect matching the component of the voltage corresponding to quantization noise 

at the node where the DAC and charge pump are connected can only be cancelled per-

fectly between the DAC and charge pump current pulses.  When the pulses are non-zero, 

imperfectly cancelled current associated with quantization noise disturbs the node.  With-

out sampling, the disturbance modulates the VCO, thereby increasing the phase noise.  

With sampling, the VCO is shielded from the disturbance. 
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Table 1: Performance table. Spur measurements represent the worst case results over the four ICs tested. 

Design Details 
Technology 0.18 um 1P6M CMOS 
Package and Die area 32 pin TQFN,  

2.2 mm × 2.2 mm 
Vdd 1.8 V 
Reference frequency 12 MHz 
Output frequency 2.4 – 2.5 GHz 
Measured loop bandwidth 975 kHz 

Measured Current Consumption 
VCO and Divider Buffer 5.9 mA 

Core 
27.1 mA 

Divider 7.3 mA 
Charge Pump, PFD, and Buffers 8.6 mA 
Offset Current  0.6 mA 
Digital 1.9 mA 
DAC 2.8 mA 
Bandgap Bias Generator 5.4 mA 

9.8 mA Crystal Buffer 2.7 mA 
External Buffer 1.7 mA 

Measured Integer-N Performance 
Phase Noise at 100 kHz -103 dBc/Hz 
Phase Noise at 3 MHz -125 dBc/Hz 
Reference spur without sampling enabled -58 dBc 
Reference spur with sampling enabled -70 dBc 

Measured Fractional-N Performance 
Phase Noise at 100 kHz -98 dBc/Hz 
Phase Noise at 3 MHz -121 dBc/Hz 
Worst case in-band fractional spur with ΔΣ modula-
tor 

-45 dBc 

Worst case in-band fractional spur with SR -64 dBc 
Reference spur without sampling enabled -40 dBc 
Reference spur with sampling enabled -70 dBc 

 

Four copies of the IC were tested. Table 1 shows the worst-case measurements 

taken from the four ICs.  The fractional spur results for one of the ICs are shown in Fig-

ure 12, and two other of the ICs exhibited very similar results.  However, one of the ICs 

exhibited a worst case fractional spur power of −64 dBc at a small number of frequencies 
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near the edge of the loop bandwidth.  At all other frequencies, it behaved similarly to the 

other three ICs. 

An IC wiring mistake disabled the DAC calibration circuitry described in [13], so 

the measurements described above were made after a one-time manual adjustment of the 

DAC gain. To confirm the diagnosis of the mistake, it was corrected in one copy of the IC 

by FIB microsurgery, but with the anticipated side effect of a coupling path that increased 

the measured in-band phase noise, 3MHz phase noise, and largest in-band fractional spur 

by 10dB, 3dB, and 3dB, respectively, above those shown in Table 1. 

Table 2: Comparison of reference spur performance to the previously published state-of-the-art. 

Reference 
frequency 

(MHz) 

Loop 
bandwidth 

(kHz) 

Reference spur 
magnitude 

(dBc) 

Normalized 
reference spur 

(dBc) 
Reference 

12 975 -70 -70 This work 
8 120 -81 -52 [19] 
50 1000 -74 -50 [11] 
12 730 -53 -48 [13] 
1 40 -62 -50 [16] 

 

 Table 2 compares the PLL’s reference spur performance to the previously pub-

lished state-of-the-art.  To a good approximation, the loop filter disturbance that causes 

reference spurs in a PLL is attenuated by −40dB per decade in frequency above the loop 

bandwidth. Therefore, to compare the reference spur powers of any two PLLs meaning-

fully, the difference between their reference-frequency-to-loop-bandwidth ratios must be 

considered.  For each PLL, Table 2 shows both the measured reference spur power as 

well as the normalized reference spur power, which is the power that the reference spur 

would have had had the reference frequency-to-loop-bandwidth ratio been 12 MHz/975 

kHz as in this paper.  As shown the in table, the reference spur performance of the PLL 
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presented in this paper exceeds the previous state-of-the-art by 18 dB.† 

Table 3: Comparison of fractional spur performance to the previously published state-of-the-art. 

Reference 
frequency 

(MHz) 

Loop 
bandwidth 

(kHz) 

Reported fractional 
spur 

Equivalent 
in-band 

fractional spur 
(dBc) 

Reference Frequency 
(kHz) 

Magnitude
(dBc) 

12 975 50 -70  This work 
50 1000 “In-band” -45 [11] 
35 700 8.5 -60 [10] 
50 500 400 -42 [20] 
50 390 98 -48 [21] 
12 730 1000 -47 -42 [13] 
25 1000 3125 -55 -36 [22] 
33 200 257 -40 -36 [23] 
26 35 2080 -100 -20 [15, 24, 25] 

 

Table 3 compares the PLL’s fractional spur performance to the previously pub-

lished state-of-the-art.  Unfortunately, comprehensive fractional spur measurement results 

such as shown in Figure 12 are rare in the previously published literature.  In most cases, 

fractional spur powers are only reported for a small number of frequencies, often above 

the loop bandwidth.  In cases where the power of a fractional spur within the loop band-

width has been reported, the value is shown in Table 3 and it is assumed to be representa-

tive of all fractional spurs within the loop bandwidth.  In cases for which the power of a 

fractional spur within the loop bandwidth is not reported, Table 2 provides an equivalent 

in-band fractional spur power obtained by adding the attenuation imposed by the PLL on 

the fractional spur given its position relative to the loop bandwidth.  As in the case of the 

reference spur, the attenuation is taken to be −40dB per decade in frequency above the 

                                                 
† A JSSC paper by A. Maxim reports a PLL with a normalized reference spur of −73dBc.  However, it has 
recently been determined by the Editor-in-Chief of the JSSC that this result is fraudulent, so it has not been 
included in the table. 
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loop bandwidth.  As shown in the table, the fractional spur performance of the PLL pre-

sented in this paper exceeds the previous state-of-the-art by 10 dB.  
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Chapter II: 
 
 

A Discrete-Time Model For the Design of Type-II PLLs with Passive 

Sampled Loop Filters 

Abstract—Type-II charge pump PLLs are used extensively in electronic systems for fre-

quency synthesis. Recently, a passive sampled loop filter (SLF) was shown to offer major 

benefits over the conventional continuous-time loop filter (CLF) traditionally used in 

such PLLs. These benefits include greatly enhanced reference spur suppression, elimina-

tion of charge pump pulse-position modulation nonlinearity, and, in the case of phase 

noise cancelling fractional-N PLLs, improved phase noise cancellation. The main disad-

vantage of the SLF to date has been the lack of a linear time-invariant (LTI) model with 

which to perform the system-level design of SLF-based PLLs. Without such a model, de-

signers are forced to rely on trial and error iteration supported by lengthy transient simu-

lations. This paper presents an accurate LTI model of SLF-based Type-II PLLs that eli-

minates this disadvantage.  

INTRODUCTION 

Integer-N and fractional-N phase locked loops (PLLs) are used extensively in electronic 

systems to synthesize higher frequency signals from lower-frequency references. The ma-

jority of these PLLs are charge pump based Type-II PLLs [1]. 

 Recently, sampled loop filters (SLFs) have been shown to offer advantages over 

continuous-time loop filters (CLFs) in PLLs. SLFs can greatly reduce reference spurs in 
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both integer-N and fractional-N PLLs, [2, 3]. They eliminate charge pump pulse-position 

modulation distortion in fractional-N PLLs [4, 5], and they improve phase noise cancella-

tion in phase noise cancelling fractional-N PLLs [5, 6]. Moreover, SLFs eliminate the 

large reference spur that would otherwise arise as a side effect of the charge pump offset 

current method for reducing fractional spurs in fractional-N PLLs [3, 7]. 

Several different types of SLFs for PLLs have been published. In [4] an active 

SLF is implemented by preceding a CLF with an op-amp based sample-and-hold circuit. 

In [2] a passive switched-capacitor SLF is implemented for a type-I PLL. In [3], a passive 

SLF is implemented with the addition of a transistor switch within an otherwise conven-

tional CLF. 

The SLF presented in [3] offers a major benefit over the other SLFs: it is the only 

published passive SLF applicable to Type-II PLLs. The sampling operation involves only 

a single switch, so it consumes very little power and circuit area beyond those of a com-

parable CLF. Its applicability to Type-II PLLs is important because such PLLs are by far 

the most widely used PLLs at present. Furthermore, the SLF has been demonstrated in a 

fractional-N PLL with record-setting reference and fractional spur performance.  

The main drawback to date of the SLF presented in [3] has been the lack of a li-

near, time-invariant (LTI) model with which to perform the system-level design of PLLs 

based on the SLF. Without such a model, designers are forced to rely on trial and error 

iteration and lengthy transient simulations as their primary design tools. 

Despite its implementation simplicity, the SLF presented in [3] is more difficult to 

analyze than the other published SLFs because it behaves as a time-varying continuous-

time filter. Therefore, it cannot be well-approximated as a continuous-time LTI system. 
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Nevertheless, as proven in this paper, PLLs based on the SLF can be modeled accurately 

as discrete-time LTI systems. The paper derives such an LTI model, and demonstrates 

how it enables the system-level design of PLLs without the need to resort to computer 

simulation. Hence, the results of the paper eliminate the drawback described above. 

The model yields equations which accurately predict the transfer functions, 

bandwidth, and phase margin of the PLL in terms of its component values. While the eq-

uations are not simple, they each have closed form. They can be implemented easily in a 

tool such as Matlab and used to rapidly generate results that heretofore required lengthy 

transient simulations. The PLL design process is inherently iterative, so not having to si-

mulate the PLL at each iteration step significantly speeds up the design process. 

The paper is organized such that all the information required to use the model to 

design PLLs is presented separately from the derivation of the model. This allows readers 

to use the model prior to understanding its derivation. The information required to use the 

model is presented in Sections II-III and Appendix A, and the detailed mathematical de-

rivation of the model is presented in Section IV and Appendix B. 

OVERVIEW OF THE SAMPLED LOOP FILTER PLL 

The block diagram of a typical charge-pump based integer-N PLL is shown in 

Fig. 14a [1]. Its purpose is to generate a spectrally pure periodic output signal with a fre-

quency of Nfref, where N is a positive integer, and fref is the frequency of the reference 

signal, Vref(t). It consists of a phase-frequency detector (PFD), a charge pump (CP), a 

lowpass loop filter (LF), a voltage controlled oscillator (VCO), and a digital divider. 
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Fig. 14: Block diagram of a typical (a) integer-N PLL and (b) fractional-N PLL. 
 

The divider output is a two-level signal in which the nth and (n+1)th rising edges, 

for n = 0, 1, 2, …, are separated by N periods of the VCO output. The PFD compares the 

positive-going edges of the reference signal to those of the divider’s output signal and 

causes the charge pump to drive the loop filter with current pulses whose widths are pro-

portional to the phase difference between the two signals. The pulses are lowpass filtered 

by the loop filter and the resulting waveform drives the VCO. 

Fig. 15a shows a continuous-time loop filter, and Fig. 15b shows the sampled loop 

filter addressed in this paper. The SLF differs from the continuous-time LF only in that it 

includes a switch which splits Cp into λCp and (1−λ)Cp, where 0 < λ < 1. For example, in 

[3], λ = 0.5. The switch is opened and closed once per reference period such that when 

the PLL is locked, λCp and (1−λ)Cp are disconnected whenever Icp(t) ≠ 0. As explained 

and experimentally demonstrated in [3], this significantly reduces the reference spur 

compared to the conventional LF. 
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Fig. 15: Circuit diagram of (a) a continuous time loop filter with the VCO and (b) a sampled loop filter with 
VCO and (c) the timing of Vswitch(t). 

 

The switch is controlled by the two-level signal Vswitch(t); it is closed when 

Vswitch(t) is high, and open when Vswitch(t) is low. A typical waveform for Vswitch(t) is 

shown in Fig. 15c. The nth reference period is defined as the time interval between the nth 

and (n + 1)th rising edges of the reference signal. In the case of a noise-free reference 

signal, these edges occur at times nTref and (n + 1)Tref, respectively, where Tref = 1/fref. As 

indicated in Fig. 15c, during each reference period, the switch is first open for a duration 

of top1, then closed for a duration of tcl, and then open for a duration of top2, where top1, tcl, 

and top2 are constants chosen by the designer. Together with the loop filter components, 

these constants define the behavior of the SLF. 

As described in Section III and suggested by the model equations in Appendix A, 

decreasing tcl has the effect of decreasing the phase margin of the PLL whereas the values 

of top1 and top2 for any given value of tcl have little effect on the dynamics of the PLL. 

Therefore, top1, tcl, and top2 should be chosen such that tcl is as large as possible subject to 
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the requirement that the switch be open whenever Icp(t) ≠ 0 once the PLL is locked. 

The block diagram of a typical charge-pump based fractional-N PLL is shown in 

Fig. 14b [1]. Its purpose is to generate a spectrally pure periodic output signal with a fre-

quency of (N + α)fref, where N is again a positive integer and α is a fractional value be-

tween 0 and 1. The fractional-N PLL differs from the integer-N PLL only in that the nth 

and (n+1)th rising edges of the divider output, for n = 0, 1, 2, …, are separated by N + 

y[n] periods of the VCO output, where y[n] is the integer-valued output sequence from a 

noise-shaping quantizer with input α. Typically, the noise-shaping quantizer is a digital 

delta-sigma modulator, but other types of quantizers such as a successive requantizer can 

also be used [3]. 

DESCRIPTION AND  APPLICATION OF THE PLL MODEL 

This section describes the proposed model of the PLLs shown in Fig. 14 with the 

SLF of Fig. 15b, and explains how the model can be used to analyze and design such 

PLLs. The mathematical derivations that underlie the models are deferred to Section IV 

and Appendix B. 

Model Description 

The phase of the fractional-N PLL’s output signal at time t can be written as 

 ( ) ( )2 ref pllN f t tπ α φ+ +  (12) 

where φpll(t) represents the PLL’s phase error, i.e., the difference between the actual 

phase and ideal phase of the PLL output signal at time t. 

The purpose of a PLL model is to provide a simple means of evaluating φpll(t) in 

terms of the PLL’s design parameters and error signals such as circuit noise, assuming 
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the PLL is already locked. PLLs are neither linear nor time-invariant, but when locked 

they can be approximated as linear time-invariant (LTI) systems. For example, the most 

commonly used model for PLLs with conventional loop filters is a continuous-time LTI 

system that accurately models the locked behavior of such PLLs [8, 9, 12]. Discrete-time 

LTI models have also been developed for such PLLs [8, 10, 11]. 

The model presented in this section is a discrete-time LTI system applicable to the 

SLF-PLL. As described in the next section, the sampling operation of the SLF would re-

sult in a time-varying continuous-time model which would be difficult to analyze, and 

this problem is avoided by using a discrete-time model.  

Two versions of the model are presented: a single-rate version and a multi-rate 

version. The single-rate version provides samples of φpll(t) at a sample-rate of fref. The 

multi-rate version provides samples of φpll(t) at a sample-rate of Lfref, where L ≥ 2 is a 

positive integer. 

The two versions of the model are identical in terms of how they represent the 

PLL’s feedback behavior, but the latter performs interpolation to obtain an extra L − 1 

output samples per reference period. When φpll(t) has most of its power concentrated at 

frequencies with magnitudes less than fref/2, the single-rate version of the model is suffi-

cient. The multi-rate version, although more complicated than the single-rate version, is 

useful in cases where φpll(t) has enough power at frequencies with magnitudes above fref/2 

that it is necessary to sample φpll(t) at a higher sample-rate than fref. 
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Fig. 16: Single rate discrete-time, linearized model of a SLF-PLL with noise sources. 
 

The single-rate version of the model is shown in Fig. 16, where ICP is the magni-

tude of current pulses sourced and sunk by the charge pump, in(nTref) is charge pump 

noise sampled at nTref, φref(nTref) is the reference signal’s phase noise sampled at nTref, 

φvco(nTref) is the open-loop VCO phase noise sampled at nTref, εq[n] = y[n] − α is the 

quantization noise from the noise-shaping quantizer, 

 ( )
( )( )( )
( )( )( )

1 1 1
1 2 3

1 1 1
2 3

1 1 1

1 1 1SLF

z z z
F z K

z z z

γ γ γ

β β

− − −

− − −

− − −
=

− − −
 (13) 

and βi, γj, and K are constants. Appendix A provides equations that yield the values of βi, 

γj, and K given the loop filter design values, i.e., the values of Cp, Cs, Cx, Rs, Rx, λ, top1, tcl, 

and top2. The model as drawn in Fig. 16 applies to the fractional-N PLL, but when mod-

ified to have α = 0 and εq[n] = 0 it also applies to the integer-N PLL. 

The PLL’s locked behavior can be analyzed by applying well-known LTI system 

techniques to the model of Fig. 16. Specifically, the model indicates that the loop gain is 

 ( ) ( ) ( )
1

1 .
2 1

CP ref vco
SLF

I T K zT z F z
N zπ α

−

−= −
+ −

 (14) 
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Therefore, the PLL’s phase margin (PM) is 

 ( )u refj TPM T e ω=  (15) 

where ωu is the unity-gain frequency of T(ejωTref), and the loop-bandwidth of the PLL is 

approximately equal to ωu. The noise transfer functions from φref(nTref), φvco(nTref), εq[n], 

and in(nTref) to φpll(nTref), respectively, are 

 ( ) ( ) ( )
( )1

pll

ref

T z
z N

T z
φ

α
φ

= +
+

 (16) 

 ( ) ( )
1

1
pll

vco

z
T z

φ
φ

=
+

 (17) 

 ( ) ( )
( )

1

12
11

pll

q

T zzz
T zz

φ
π

ε

−

−= −
+−

 (18) 

and 

 ( ) ( ) ( )
( )

2
1

pll

cp CP ref

N T z
z

i I T T z
φ π α+

=
+

. (19) 

The multi-rate version of the PLL model differs from the single-rate version 

shown in Fig. 16 only in its representation of the SLF and VCO. The components of the 

single-rate model that represent the SLF and VCO are drawn separately in Fig. 17a. The 

multi-rate version is obtained by removing these components in the single-rate model of 

Fig. 16 and replacing them with the components shown in Fig. 17b. The resulting multi-

rate model is shown in Fig. 18. 
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Fig. 17: Model of the SLF and VCO for the (a) single rate and (b) multi-rate cases. 
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Fig. 18: Multi-rate discrete-time, linearized model of a SLF-PLL with noise sources. 
 

Therefore the SLF and VCO in the multi-rate model are represented by the com-

ponents shown in Fig. 17b: an L-fold up-sampler, a discrete-time filter with sample-rate 

Lfref and transfer function 

 ( )
1

d L

vco SLF L

zK G z
z

−

−
, (20) 

the addition of the VCO phase noise sampled at a rate of Lfref, and an L-fold down-

sampler. The integer d is defined as 
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 2cl op

ref

t t
d L

T
⎢ ⎥+
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⎢ ⎥⎣ ⎦

 (21) 

where ⎣y⎦ is the largest integer less than or equal to y. The output of the L-fold up-

sampler is given by 

 [ / ], if  is an integer multiple of 
[ ]

0, otherwise
cp

cp

Q n L n L
R n ⎧

= ⎨
⎩

 (22) 

and the L-fold down-sampler discards all but every Lth sample of φpll(nTref/L) to obtain 

φpll(nTref). The transfer function GSLF(z) has the form 

 ( ) ( )
1

,
0

1 L
i L

SLF SLF i
i

G z z F z
L

−
−

=

= ∑  (23) 

where each FSLF,i(z) has the same three poles as (13), and can have either two or three ze-

ros. Appendix A provides equations that yield the full transfer function of each FSLF,i(z) 

given L and the loop filter design values, i.e., the values of Cp, Cs, Cx, Rs, Rx, λ, top1, tcl, 

and top2. 

Analysis Example 

The parameters that specify the system-level design of an SLF-PLL are N, fref, ICP, 

KVCO, and the loop filter design values, i.e., the values of Cp, Cs, Cx, Rs, Rx, λ, top1, tcl, and 

top2. Both versions of the model described in Section III-A describe the locked behavior 

of the PLL in terms of these parameters. An example is presented below for the case of 

an SLF-PLL with N = 200, fref = 10 MHz, ICP = 2 mA, Kvco = 2π·120·106 rad/(s·V), Cp = 

2.53 pF, Cs = 328 pF, Rs = 5408 Ω, Cx = 795 fF, Rx = 20 KΩ, λ = 0.5, top1 = 50 ns, top2 = 

10 ns, and tcl = 40 ns. 

To apply the single-rate version of the model, it is first necessary to calculate 
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FSLF(z), and to apply the multi-rate version of the model it is first necessary to calculate 

GSLF(z). Appendix A provides the equations required to calculate FSLF(z) and GSLF(z) 

starting from the loop filter design values. Executing Steps 1-6 in Appendix A with the 

loop filter design values listed above yields 

( )
( ) ( )( )

( ) ( )( )
1 1 1

1 1 1

1.06 4.74 67749
225

1 22.9 775SLF

z z z
F z

z z z

− − −

− − −

− − − − −
=

− − −
. (24) 

Additionally executing Steps 7-8 in Appendix A for L = 2 yields 

 ( ) ( ),0SLF SLFF z F z=  (25) 

where FSLF(z) is given by (24) and 

( )
( )( )

( ) ( ) ( )
1 1

,1 1 1 1

1.06 139
637335 .

1 22.9 775SLF

z z
F z

z z z

− −

− − −

− − −
= −

− − −
 (26) 

Substituting (25) and (26) into (23) yields GSLF(z) for L = 2. The same procedure can be 

used to obtain GSLF(z) for any positive integer L. 

 These FSLF(z) and GSLF(z) functions can be used in the versions of the model 

shown in Fig. 16 and Fig. 18, respectively, to analyze the locked behavior of the SLF-

PLL. As described above the model implies that the loop gain of the PLL is given by (14)

. Substituting  (24) into (14) and solving for the unity gain frequency indicates that the 

loop bandwidth of the PLL is 1 MHz and it follows from (15) that the phase margin of 

the PLL is 60 degrees. Figures 19-21 show various additional aspects of the behavior of 

the SLF-PLL as predicted by the two versions of the model. 
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Fig. 19: Comparison between the transfer function for the single-rate (L=1) and the transfer functions for 
the multi-rate (L=2, L=8) cases. 

 

Fig. 19 shows the phase noise transfer function from the reference signal input, 

i.e., the squared magnitude of (16) in dB with z = exp(j2πf/fref), as predicted by the single-

rate version of the model (L = 1), and the multi-rate version of the model for L = 2 and L 

= 8. As expected, there is little deviation among the predicted transfer functions for fre-

quencies below fref/4, and each transfer function is periodic with a period of Lfref. In gen-

eral, the larger the value of L, the higher the maximum frequency at which the transfer 

function predicted by the model accurately represents that of the actual SLF-PLL. The 

PLL bandwidth is relatively wide in this example, so the transfer function is not highly 

attenuated at fref/4. In such cases the multi-rate version of the model provides useful in-

formation. 
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Fig. 20: Comparison between the model and simulated results for various noise sources for a fractional-N 
PLL. (L=8) 

 

Fig. 20 shows plots of the squared magnitudes of (16), (17), and (18) in dB with z 

= exp(j2πf/fref) as predicted by the model with L = 8 and the corresponding transfer func-

tions as predicted by computer simulation. The plots suggest that model agrees well with 

the simulation. The one exception is that the transfer functions corresponding to (17) de-

viate somewhat at low frequencies, but this has been traced to limitations of the simula-

tor. 
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Fig. 21: Simulated VCO output phase of the SLF-PLL corresponding to a reference signal phase step, and 
the corresponding sample values predicted by the model. 

 

Fig. 21 shows a time-domain plot of the simulated VCO output phase correspond-

ing to a reference signal phase step, and the corresponding sample values predicted by the 

model. As expected, the sample values predicted by the model fall precisely on the simu-

lated curve. 

The Synthesis Problem 

As shown above, the proposed model allows for straightforward analysis of an 

SLF-PLL given the PLL design parameters, i.e. given N, fref, ICP, KVCO, Cp, Cs, Cx, Rs, Rx, 

λ, top1, tcl, and top2. However, designers are often faced with the synthesis problem of 

choosing the SLF component values, i.e., Cp, Cs, Cx, Rs, and Rx, such that the PLL has a 
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desired loop bandwidth and phase margin. Typically, N, fref, ICP, KVCO, λ, top1, tcl, and top2 

are known prior to choosing the SLF component values because they depend on circuit-

level considerations and application requirements. 

The model equations could be solved numerically to provide the SLF component 

values in terms of the other PLL design parameters and the desired loop bandwidth and 

phase margin, but it is simpler to use the following iterative approach. The first step is to 

choose the loop filter component values for a conventional CLF-PLL that approximately 

achieves the desired loop bandwidth and phase margin. Approximate equations that pro-

vide the values of Cp, Cs, and Rs for a conventional CLF-PLL in the absence of Cx and Rx 

are well-known [12]. Typically, designers use these equations to find Cp, Cs, and Rs and 

then choose Cx and Rx such that the extra pole they introduce has a high-enough frequen-

cy that it negligibly affects the loop bandwidth and phase margin. The second step is to 

iteratively adjust the values of Cp, Cs and Rs, to compensate for the sampling operation in 

the SLF using the proposed SLF-PLL model to guide the iteration process. 

As observed in [4], the sampling operation in a sampled loop filter decreases the 

phase margin of the PLL by approximately the product of the loop bandwidth and the du-

ration over which the switch is open each reference period, i.e., 

 ( )1 2SLF CLF LBW op opPM PM t tω= − + , (27) 

where ωLBW is the loop bandwidth. This loss in phase margin can be addressed by in-

creasing the ratio, Cs/Cp. Increasing Cs moves one of the filter zeros to a lower frequency, 

but Cs typically is large, so moving the zero significantly requires a significant increase in 

circuit area. Decreasing Cp moves one of the filter poles to a higher frequency, but this 

has the disadvantage of reducing the high frequency attenuation of the loop. Experimen-
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tally, a combination of these two adjustments yields the best tradeoff between area and 

high frequency attenuation. The approach is to iteratively adjust Cs and Cp and at each 

iteration step use the proposed SLF-PLL model to evaluate whether further adjustment of 

Cs and Cp is necessary. A similar iterative process can be used to optimize the choices of 

Cx and Rx if necessary. 

The amount by which the sampling operation affects the behavior of the SLF-PLL 

depends to a large extent on the loop bandwidth. If the loop bandwidth is sufficiently 

low, the loop filter components obtained in Step 1 above for the CLF-PLL can be used in 

the SLF-PLL with only a minor degradation of the phase margin. Nevertheless, in such 

cases the proposed SLF-PLL model is useful to verify that no further adjustment is neces-

sary. 

Synthesis Example 

Consider an integer-N SLF-PLL for which N  = 200, fref  = 10 MHz, ICP = 2 mA, 

Kvco = 2π·120·106 rad/(s·V), λ = 0.5, top1 = 50 ns, tcl = 40 ns and top2 = 10 ns. Suppose it is 

desired to choose Cp, Cs, Cx, Rs, and Rx, such that the loop bandwidth is 1 MHz and the 

phase margin is 60 degrees. 

The first step of the procedure described above is to choose Cp, Cs, Cx, Rs, and Rx 

for a corresponding conventional CLF-PLL. Applying the equations in [12] with Cx = 

795 fF, Rx = 20 kΩ, a loop bandwidth of 1.015 MHz, and a phase margin of 67 degrees 

yields 

 Cp = 6 pF, Cs = 139 pF, Rs = 5543 Ω.  (28) 

Note that the loop bandwidth and phase margin have both been increased relative to the 
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target values of 1 MHz and 60 degrees, respectively, to approximately account for the 

effects of Cx and Rx which are neglected by the equations in [12]. 

If the values in (28) are used without modification in the SLF-PLL, the resulting 

loop bandwidth and phase margin are  960kHz and 44 degrees, respectively. Iteratively 

adjusting Cp and Cs and, to a lesser extent, Rs, as described above indicates that the SLF-

PLL achieves the target loop bandwidth and phase margin with 

  Cp = 2.53 pF, Cs = 328 pF, Rs = 5408 Ω. (29) 

Fig. 22 shows the phase noise transfer functions from the reference signal and the 

VCO for both the CLF-PLL and the SLF-PLL in the above design example. Although the 

corresponding transfer functions of the two PLLs are similar, some differences are evi-

dent. The difference between the transfer functions from the reference signal occur be-

cause Cp in (29) is less than half of Cp in (28). The difference between the transfer func-

tions from the VCO occur because Cp+Cs in (29) is greater than that of (28). These dif-

ferences are exaggerated because of the high loop bandwidth in this example. A lower 

loop bandwidth would result in less significant differences between the two sets of 

curves. 
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Fig. 22: Reference and VCO phase noise transfer functions of the original CLF-PLL and the SLF-PLL ob-
tained via the synthesis procedure. 

 

Fig. 23 shows a comparison of  SLF-PLLs and CLF-PLLs using the same loop fil-

ter components. Two cases are examined: a low loop bandwidth (200kHz) design and a 

high loop bandwidth (1MHz) design. In each case, fref = 10Mhz, and for the SLF-PLL, 

{top1, top2, tcl} = {50 ns, 10 ns, 40 ns }. The results demonstrate that it is reasonable to use 

the component values derived for a CLF-PLL in a SLF-PLL when ωLBW(top1 + top2) is 

small. 
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Fig. 23: Reference phase noise transfer functions of the CLF-PLL and SLF-PLL for low and high loop-
bandwidth (LBW). 

 

DERIVATION OF THE PLL MODEL 

Background Results 

Once the PLL is locked, the output of the VCO can be modeled as vvco(t) = 

A(t)sin(ωpllt + φpll(t)), where A(t) is some non-zero positive waveform, and ωpll = 

2π(N+α)fref is the ideal output frequency of the PLL. The PLL’s total phase noise is given 

by 

 ( ) ( ) ( )pll ctrl vcot t tφ φ φ= +  (30) 
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where φctrl(t) is the phase noise caused by deviations of the VCO control voltage from its 

mean value, and φvco(t) is the open-loop VCO phase noise, i.e., the phase noise that would 

remain if the VCO control voltage were held constant. Therefore, 

 ( )
0

( ) ( ) ,
t

ctrl vco ctrl ctrlt K v v dφ τ τ= −∫  (31) 

where Kvco is the VCO gain, and ctrlv is the voltage for which the free-running frequency of 

the VCO would be exactly ωpll in the absence of φvco(t). 

Suppose the PLL is already locked at time t = 0. Let τn be the time of the nth ris-

ing edge of the reference signal, and let tn be the corresponding rising edge of the divider 

output for n = 0, 1, 2, …. As shown in [8], the net charge delivered to or removed from 

the loop filter by the charge pump during the nth reference period is 

0
2 [ ] ( ) ( )

[ ] ( )
2

n

q ctrl n vco n
CP ref k

cp ref n

k t tI T
Q n

N

π ε φ φ
φ τ

π α
=

⎡ ⎤− −⎢ ⎥
⎢ ⎥= +

+⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 (32) 

where ICP is the magnitude of current pulses sourced and sunk by the charge pump, and 

εq[k] = y[k] − α is the quantization noise from the noise-shaping quantizer, and φref(t) is 

the phase noise of the reference signal.  

Derivation of the  Single-Rate Version of the Model 

 The state of the SLF and φctrl(t) at time t can be represented together as a vector, 

x(t), given by 

 ( ) ( ) ( ) ( ) ( ) T
T s x ctrlt q t q t q t tφ= ⎡ ⎤⎣ ⎦x  (33) 

where qT(t) is the total charge on all the loop filter capacitors, qs(t) is the charge on Cs, 

and qx(t) is the charge on Cx, all at time t. Let x[n], for n = 0, 1, 2, …, be a sampled ver-
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sion of  x(t), defined as 

 ( )1[ ] ref opn nT t= +x x . (34) 

As proven in the next sub-section, 

 [ ] [ 1] [ ]cpn n Q n= − +x Ax B  (35) 

and 

 ( ) [ 1]ctrl refnT nφ = −Cx  (36) 

where B = [1 0 0 0]T, and A and C are a 4×4 matrix and a 1×4 vector, respectively. The 

elements of A and C are fixed numbers that depend only on the loop filter component 

values, top1, tcl, and top2. 

 In a practical PLL φctrl(t) has a bandwidth that is less than a tenth of the refer-

ence frequency and tn ≈ nTref for n = 0, 1, 2, …, so it follows that 

 ( ) ( )ctrl n ctrl reft nTφ φ≈  (37) 

to a good approximation [8]. Consequently, (35) and (36) provide an expression for 

φctrl(tn) in terms Qcp[n].  

Equations (35) and (36) are called state-space equations [13]. They indicate that 

φctrl(nTref) is the output of a linear time-invariant (LTI) discrete-time system with input 

Qcp[n]. Appendix A provides equations with which to obtain A, B, and C, and well-

known techniques are available to calculate the transfer function once A, B, and C are 

known. For example, the built-in Matlab command: ss2zp( A, B, C, 0, 1) can be used. 

The result is a four pole, three zero function which can be written as 

 ( )
1

11vco SLF
zK F z

z

−

−−
 (38) 
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where FSLF(z) has the form given by (13). 

The single-rate model shown in Fig. 17 follows directly from and is a graphical 

representation of (30), (32), (37), and (38). The derivation above applies to fractional-N 

PLLs. However, by setting α = 0 and εq[n] = 0, it also applies to integer-N PLLs. 

The only approximation made in the model’s derivation is (37). The standard 

model for conventional PLLs also relies on this approximation. However, in contrast to 

the model presented in this paper, the standard model for conventional PLLs relies on 

several additional approximations. 

Derivation of the Single-Rate State-Space Equations 

Without loss of generality vctrl(t) can be taken to have zero mean so that (31) re-

duces to 

 
0

( ) ( ) .
t

ctrl vco ctrlt K v dφ τ τ= ∫  (39) 

This simplifies the notation of the following derivation, yet it can be verified that it does 

not change the results of the derivation. 

The SLF is a time-varying circuit, but during any time interval over which the 

switch either remains closed or remains open, it reduces to an LTI system. Furthermore, 

it follows from (39) that φctrl(t) is an LTI function of the loop filter output. 

Suppose that the switch is closed for the time interval from t0 to t0+Δt. As de-

scribed in Section II, Icp(t) is zero when the switch is closed, so the total charge in the 

SLF remains unchanged during this time interval, i.e., 

 ( ) ( )0 0 .T Tq t t q t+ Δ =  (40) 

Given that the system is linear and time-invariant over the interval, well-known 
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linear systems theory results can be invoked (e.g., See Appendix B) to write the other 

elements of (33) at time t0+Δt in terms of their values at time t0 as 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
0 2,1 0 2,2 0

2,3 0 ,
s T s

x

q t t r t q t r t q t

r t q t

+ Δ = Δ + Δ

+ Δ
 (41) 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
0 3,1 0 3,2 0

3,3 0 ,
x T s

x

q t t r t q t r t q t

r t q t

+ Δ = Δ + Δ

+ Δ
 (42) 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 3,1 0 3,2 0

3,3 0 0 ,
ctrl T s

x ctrl

t t r t q t r t q t

r t q t t

φ

φ

+ Δ = Δ + Δ

+ Δ +
 (43) 

where each ri,j(t) is an LTI system impulse response. For instance, r3,2(t) is the charge on 

Cx as a function of t in response to a Dirac delta function current impulse, I(t) = δ(t), in-

jected across the terminals of Cs for the case in which the charge on each capacitor is zero 

for t < 0. In particular, the time-invariance property of (39) and the SLF over the time in-

terval implies that the ri,j(Δt) factors in (41)-(43) depend only on the duration of the inter-

val but not on the start time, t0, of the interval. 

 Equations (40)-(43) can be written more compactly as 

 ( ) ( ) ( )0 0t t t t+ Δ = Δclx H x , (44) 

where x(t) is given by (33), and 

 ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

1 0 0 0
0
0
1

r t r t r t
t

r t r t r t
r t r t r t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

clH . (45) 

Now suppose that the switch is open for the time interval from t1 to t1+Δτ. As de-

scribed in Section II, Icp(t) is not necessarily zero when the switch is open, so 

 ( ) ( ) ( )1

1
1 1

t

T T cpt
q t q t I t dt

τ
τ

+Δ
+ Δ = + ∫ . (46) 

However, it follows from Fig. 15b that when the switch is open, Icp(t) does not af-
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fect the other elements of (33). Therefore, equations for the other elements of (33) that 

apply to the case in which the switch is open can be obtained by exactly the same reason-

ing that led to Equations (41)-(43). These equations, along with (46) can be written as 

 ( ) ( ) ( ) ( )1

1
1 1

t

cpt
t t I t dt

τ
τ τ

+Δ
+ Δ = Δ + ∫opx H x B , (47) 

where B = [1 0 0 0]T,  

 ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

1 0 0 0
0
0
1

s t s t s t
t

s t s t s t
s t s t s t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

opH , (48) 

and each si,j(t) is an LTI system impulse response. Specifically, the expression for each 

si,j(t) is identical to that of the corresponding ri,j(t) except with Cp replaced by (1−λ)Cp. 

 These results can be combined to prove (35) and (36). It follows from Fig. 15c, 

(34), (44) and (47) that  

 ( ) ( )1 [ ]ref op cl clnT t t t n+ + = clx H x  (49) 

and 

 ( ) ( )1 2 1[ 1]

[ ].
op op ref op cl

cp

n t t nT t t

Q n

+ = + + +

+
opx H x

B
 (50) 

Substituting (49) into (50) yields (35) with 

 ( ) ( )1 2op op clt t t+op clA H H  (51) 

Similar reasoning leads to (36) with 

 [ ] ( ) ( )20 0 0 1 op clt top clC H H  (52) 

Extension to the Multi-Rate Version of the Model 

Nearly identical reasoning to that presented above which led to (36) and (52) also 
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implies that 

 ( )( ) [ ] ( )11 0 0 0 1 [ 1]ctrl ref opn T t t t nφ − + + Δ = Δ −D x  (53) 

for Δt in the range 0 < Δt ≤ Tref., where 

( ) ( )
( ) ( )

, if 0
, if 

cl

cl cl cl ref

t t t
t

t t t t t T
Δ < Δ ≤⎧⎪Δ = ⎨ Δ − < Δ ≤⎪⎩

cl

op cl

H
D

H H
 (54) 

Therefore, (53) and (54) can be used to obtain any sample of φctrl(t) in the range (n − 

1)Tref  + top1 < t ≤ nTref + top1. 

In particular,  

 [ 1],ctrl ref i
i dn T n

L
φ ⎛ − ⎞⎛ ⎞+ = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
C x  (55) 

for i = 0, 2, … L − 1, where 

 2i cl op ref
i dt t T

L
−⎛ ⎞= + +⎜ ⎟

⎝ ⎠
C D , (56) 

and d is given by (21). For each value of i, (55) defines an LTI filter with input Qcp[n] 

and output samples given by (55) for n = 0, 1, 2, …. The transfer function of the ith such 

filter has the form 

 ( )
1

, 11vco SLF i
zK F z

z

−

−−
 (57) 

where FSLF,i(z), is obtained in the same way that FSLF(z) is obtained from A, B, and C, as 

described in Section III-B, except with C replaced by Ci. Note, in particular, that Cd = C 

by definition, so FSLF,d(z) = FSLF(z).  

 It follows that the SLF and VCO can be modeled as shown Fig. 24a. With the 

Noble identity for up-sampling, this can be redrawn as shown in Fig. 24b which is equiva-

lent to the system shown in Fig. 17b, with GSLF(z) as given by (23). 
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[ ]cpQ n

1

11vco
zK

z

−

−−
( ),0SLFF z

1

11vco
zK

z

−

−−
( ), 1SLF LF z−

L↑

L↑

0z

( 1)Lz− −

[ ]cpQ n

( ),0
L

SLFF z

( ), 1
L

SLF LF z−

L↑

0z

( 1)Lz− −

( )SLFG z

( )pll refnT Lφ

1

L

vco L

zK
z

−

−−

( )vco refnT Lφ

( )pll refnT Lφ

( )vco refnT Lφ

 

Fig. 24: Model for the multi-rate SLF and transformation to GSLF(z). 
 

APPENDIX A 

This appendix describes all the calculations necessary to obtain FSLF(z) and 

GSLF(z) starting from the values of Tref, Cp, Cs, Cx, Rs, Rx, λ, top1, tcl, and top2. The calcula-

tions are most easily implemented via a computer calculation script executed by a soft-

ware tool such as Matlab. Therefore, the calculations are listed below in the form of spe-

cific steps that must be executed by such a calculation script. Steps 1-6 below specify the 

calculation details of FSLF(z) in (13). Steps 1-5 followed by Steps 7-8 below specify cal-

culation details of GSLF(z) in (23). 

 

1.  Define the following functions of the variables Cp, Cs, Rs, Cx, Rx, and Γ: 
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2 2

1, 1,

4 4
,

2 2
b b a c b b a c

p p
a a

Γ Γ Γ Γ Γ Γ Γ Γ
Γ Γ

Γ Γ

− + − − − −
= =  

where 

( )
( )( ) ( )( )

( )

1

1 1

1 .

p s x s x

p x s s p s x x

p s x

a C R R C C

b C C R C C C R C

c C C C

Γ

Γ

Γ

= − Γ

= − Γ + + − Γ +

= − Γ + +

 

 

2. Define the following functions of the variables Cu, Cv, Ru, Rv, Γ, and the functions de-

fined in Step 1: 

( ), , 1, 2,(1 )u v uE pC pΓ Γ Γ−−= Γ  

( ), , 2, 1,(1 ) 1u v u v vC pF p R CΓ Γ Γ−= Γ +  

( ), , 1, 2,) 1(1u v u v vG pC p R CΓ Γ Γ= − Γ +−  

( ), , 1, 2,u v uI pC pΓ Γ Γ= Γ −  

( ) ( )( )( ), , 2, 1, 1, 1,1 1u v u v v u vp uC p R CJ p p R C p R CΓ Γ Γ Γ Γ= + Γ + − Γ +

( ) ( )( )( ), , 1, 2, 2, 2,1 1u v u v v u p u vC p p R CL p pR C R CΓ Γ Γ Γ Γ= − + Γ + − Γ +

 ( )( ), , 2, 1, 1,1u v u v v v vP pC p p RR C CΓ Γ Γ Γ= Γ + −  
and 

 ( )( ), , 1, 2, 2,1 v vu v u v vQ pC p p R CR CΓ Γ Γ Γ= − Γ + − . 
 

3. Define the following 4×4 matrix function of the variable t and the functions defined in 

Steps 1 and 2: 

 ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2,1, 2,2, 2,3,

3,1, 3,2, 3,3,

4,1, 4,2, 4,3,

1 0 0 0

0
0

1

K
h t h t h t

t K
h t h t h t

h t h t h t K

Γ

Γ Γ Γ
Γ Γ

Γ Γ Γ

Γ Γ Γ
Γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H  (58) 

where  

 
( )( )( )1 2,,1

1

p s xC C C p p
K

Γ
Γ

Γ

= −
−− Γ + +

  

 ( ) 21, ,
2,1, , , , , , ,

t t
s x s x s x

p ph t E eGeF Γ Γ
Γ Γ Γ Γ= + +  
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 ( ) , 21 ,
2,2, , , , , , ,

t t
s x s x s x

p ph t I eLeJ Γ Γ
Γ Γ Γ Γ= + +   

 ( ) , 21 ,
2,3, , , , , , ,

t t
s x s x s x

p ph t I eQeP Γ Γ
Γ Γ Γ Γ= + +  

 ( ) , 21 ,
3,1, , , , , , ,

t t
x s x s x s

p ph t E eGeF Γ Γ
Γ Γ Γ Γ= + +  

 ( ) , 21 ,
3,2, , , , , , ,

t t
x s x s x s

p ph t I eQeP Γ Γ
Γ Γ Γ Γ= + +  

 ( ) , 21 ,
3,3, , , , , , ,

t t
x s x s x s

p ph t I eLeJ Γ Γ
Γ Γ Γ Γ= + +  

 ( ) ( ) ( ), ,1 2, , , ,
4,1, , ,

1, 2,

1 1 1p pt tx s x s
x s

x

F G
h t E t

C
e

p
e

p
Γ ΓΓ Γ

Γ Γ
Γ Γ

⎛ ⎞
= + − + −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 ( ) ( ) ( ), ,1 2, , , ,
4,2, , ,

1, 2,

1 1 1p pt tx s x s
x s

x

P Q
h t I t

C
e

p
e

p
Γ ΓΓ Γ

Γ Γ
Γ Γ

⎛ ⎞
= + − + −⎜ ⎟⎜ ⎟

⎝ ⎠
 

and 

 ( ) ( ) ( ), 2,1, , , ,
4,3, , ,

1, 2,

1 1 1 .t tx s s
s

p
x

p x

x

e e
J L

h t I t
C p p

Γ ΓΓ Γ
Γ Γ

Γ Γ

⎛ ⎞
= + − + −⎜ ⎟⎜ ⎟

⎝ ⎠
 

Therefore, with the functions defined in Steps 1 and 2 substituted into the func-

tions defined in Step 3, HΓ(t) is a matrix function of the variables Cp, Cs, Rs, Cx, Rx, Γ, 

and t. 

 

4. Define the following 4×4 matrix functions of Cp, Cs, Rs, Cx, Rx, and t using the matrix 

function defined in Step 4: 

 ( ) ( ) ( ) ( )
0

andt t t t
λΓ ΓΓ= Γ=

= =op clH H H H   

 

5. With numerical values for Cp, Cs, Cx, Rs, Rx, λ, top1, tcl, and top2 and the matrix functions 

from Step 4, calculate the following 4×4 matrix of numbers: 

 ( ) ( )1 2op op clt t t= +op clA H H  

and the following 1×4 vector of numbers: 

 [ ] ( ) ( )20 0 0 1 op clt t= op clC H H . 

 

6. Calculate the poles, zeros, and scale factor of FSLF(z) in (13) from its state-space repre-
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sentation as specified by the matrix A and vector C from Step 5 and B = [1 0 0 0]T. 

For example, this can be done using the Matlab function:  

ss2zp(A, B, C, 0, 1) 

 

7. With numerical values for Cp, Cs, Cx, Rs, Rx, λ, Tref, top2, and tcl, and the matrix func-

tions from Step 4, calculate the following 1×4 vectors of numbers for i = 0, 1, … L−1: 

 [ ] 20 0 0 1i cl op ref
i dt t T

L
−⎛ ⎞= + +⎜ ⎟

⎝ ⎠
C D  

where 

 ( ) ( )
( ) ( )

, if 0
, if 

cl

cl cl cl ref

t t t
t

t t t t t T
Δ < Δ ≤⎧⎪Δ = ⎨ Δ − < Δ ≤⎪⎩

cl

op cl

H
D

H H
 

and 

 2 .cl op

ref

t t
d L

T
⎢ ⎥+

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

8. For each i = 0, 1, … L−1, calculate the poles, zeros, and scale factor of each function 

FSLF,i(z) (which has the same form as (13)) from its state-space representation as speci-

fied by the matrix A from Step 5, the vector and vector Ci from Step 7, and B = [1 0 0 

0]T. For example, this can be done using the Matlab function:  

ss2zp(A, B, Ci, 0, 1) 

Substitute the L resulting FSLF,i(z) functions into (23) to obtain GSLF(z). 

APPENDIX B 

This appendix derives (42) and (43) to find expressions for the third and fourth 
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rows elements of Hcl(t) in (45). The derivation of (41) is not presented because it is al-

most identical to that of (42). 

Let CpA denote the capacitor to the left of the switch, and CpB denote the capacitor 

to the immediate right of the switch in Fig. 15b, and let their respective charges at t0 be 

qpA(t0) and qpB(t0). Then the charge on qx(t0+Δt) can be written as 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 1 0 2 0

3 0 4 0

A Bx p p

s x

q t t h t q t h t q t

h t q t h t q t

+ Δ = Δ + Δ

+ Δ + Δ
 (59) 

where h1(Δt) is the charge transfer function from capacitor CpA to capacitor Cx, h2(Δt) is 

the charge transfer function capacitor CpB to capacitor Cx, h3(Δt) is the charge transfer 

function from capacitor Cs to capacitor Cx, and h4(Δt) is the charge transfer function from 

capacitor Cx to capacitor Cx, all over a time interval of Δt. These charges can be ex-

pressed in terms of the elements of x(t0) as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0 1
A

B

p T s x

p T s x

q t q t q t q t

q t q t q t q t

λ

λ

= − −⎡ ⎤⎣ ⎦
= − − −⎡ ⎤⎣ ⎦

 (60) 

Substituting (60) into (59) leads to (42) with 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3,1 1 2

3,2 3 1 2

3,3 4 1 2

1

1

1

r t h t h t

r t h t h t h t

r t h t h t h t

λ λ

λ λ

λ λ

Δ = Δ + − Δ

Δ = Δ − Δ − − Δ

Δ = Δ − Δ − − Δ

. (61) 

The hi(Δt) functions can be found by computing the inverse Laplace transform of 

the s-domain charge transfer function from any one of the capacitors to any other and 

then evaluating the result at t = Δt. For example, suppose the switch is closed (λ=0) and 

consider h3(Δt). In the s-domain, the charge on capacitor Cx due to charge on capacitor Cs 

is given by 
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( ) ( ) ( )
( ) ( )

( )
( )

1 2

0
1 1

x
x x x x s

s

x
s

p s x

V s
Q s C V s C I s

I s
C

q
s sC C C s
p p

= =

=
⎛ ⎞⎛ ⎞

+ + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (62) 

where Vx and Ix are the s-domain voltage and current associated with capacitor Cx, and Vs 

and Is are those for capacitor Cs, p1 and p2 are the two non-DC poles of Vx(s)/Is(s), and 

qs(0) = Csvs(0) represents the initial charge on capacitor Cs. 

 Taking the inverse Laplace transform of (62) yields 

 
( ) ( ){ }

( ) ( )

1

3 0
x x

s

q t L Q s

h t q

−=

=
 (63) 

where 

 
( )( )1 2

1

p s x

K
C C C p p

=
+ + −

. (64) 

and 

 ( ) ( ) 1 2
3 1 2 2 1

p t p t
xh t KC p p p e p e⎡ ⎤= − + +⎣ ⎦  (65) 

Repeating this calculation for all the hi(Δt) functions and substituting the results into (61) 

leads to the third row of (45).  

Now consider the transfer functions associated with the state variable, φctrl(t). The 

VCO integrates the voltage on capacitor Cx. Thus,  

 ( ) ( )4, 3,0

1 .
t

i i
x

r t r d
C

τ τ
Δ

Δ = ∫  (66) 
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 Chapter III: 
 

A 2.5GHz Realigned PLL with Spur Calibration 

Abstract— This chapter discusses a 2.5GHz realigned PLL (RAPLL) in 65nm CMOS. 

The RAPLL utilizes a relaxation oscillator to avoid the timing issues associated with ring 

oscillator based RAPLLs. In addition, the RAPLL presented here includes a calibration 

loop to suppress the realignment spur. Simulations indicate that the spur can be reduced 

to -60dBc. The IC draws 6mA out of a 1V supply and has an active area of 0.2mm2.  

 

( )refV t ( )pllV t

 

Fig. 25: Block diagram of a conventional RAPLL. 

 

A block diagram of a conventional realigning PLL (RAPLL) is shown in Fig. 25. 

It consists of a phase-frequency detector (PFD), a charge pump (CP), a lowpass loop fil-

ter (LF), a voltage controlled oscillator (VCO), and an integer divider. Vref(t) is a refer-
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ence signal with a frequency of fref while Vpll(t) is an output signal with a frequency of fpll. 

The PFD compares the rising edges of the reference with that of the divider and together 

with the charge pump, injects a charge proportional to the time difference between these 

edges into the loop filter. This causes the VCO to oscillator either faster or slower. When 

locked, the net charge injected is zero, and fpll = Nfref. Finally, a feed-forward path allows 

the reference to periodically reset or realign the VCO. Since a reference edge is available 

at a rate of fref, the realignment frequency, fRA, is fref.  

The VCO integrates noise generated by its own circuitry and noise appearing at 

Vtune(t) and hence, its noise has a power spectral density (PSD) with a 1/f characteristic. 

Realigning resets the accumulated noise thereby flattening the PSD up to approximately 

fref [2]. One drawback is that while the noise of the VCO is suppressed, it is replaced with 

the noise in the realignment signal, namely reference noise. Moreover, since the realign-

ment path bypasses the loop filter, this noise is not filtered.  

Non-LC based VCOs such as ring oscillators typically exhibit very high phase 

noise relative to LC based VCOs. As a result, the suppression of the VCO noise, in ex-

change for unfiltered reference noise, is often a good tradeoff. Thus, the majority of the 

published RAPLLs utilize ring oscillators [1]-[4], though there is one published work uti-

lizing an LC based VCO [5].  

 

Fig. 26 shows the phase noise of a RAPLL compared with a non-realigning PLL 

(NRAPLL). Notice that the phase noise is suppressed for frequencies between 100KHz 

and 1MHz when compared to the non-realigning design. For  

Fig. 26, the jitter is 1.4psrms for the RAPLL and 5psrms for an equivalent NRAPLL.  
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Fig. 26: Comparison between the phase noise of a realigning PLL and a traditional non-realigning PLL. 

 

In [1]-[4], realignment is accomplished by periodically stopping the VCO and 

then using the reference edge to trigger its restart. The divider, which is predictive of the 

reference edge when the RAPLL is locked, triggers the stopping. The time marked by the 

stopping of the ring to the restarting of ring represents a window during which the rea-

lignment must take place. The timing of this window is critical. The window must be 

opened no sooner than half a VCO cycle before the realignment edge and closed no later 

than half a VCO cycle after; otherwise, the VCO will miss one oscillation cycle. For high 

frequency VCOs, this requires careful design [3][4]. Furthermore, the presence of the 
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window complicates the initial locking of the RAPLL during which time the divider is 

not predictive of the reference, and hence, realignment edge [3]. 

RAPLL’s also exhibit a realignment spur at fRA. Ideally, the realignment edge oc-

curs at the exact time at which the VCO edge would have occurred in the absence of 

noise. However, in the presence of circuit mismatches, this alignment is difficult to 

achieve. Since fRA = fref, the realignment spur occurs at the fref. Typically, the realignment 

spur is between -25 to -35dBc [2][3]. A method is given in [1] to address some, but not 

all of these issues.  

In this work, two techniques are introduced. One addresses the challenge of the 

realignment window by proposing an oscillator without a window; while the other is a 

calibration scheme to properly align the phase of the realignment edge with that of the 

VCO edge it is meant to replace. 

PROPOSED DESIGN 

Fig. 27 shows a block diagram of the proposed RAPLL.  It differs from Fig. 25 in 

two ways. First, a calibration loop is added. The calibration path monitors the output of 

the PFD and adjusts a variable delay element inserted prior to the reference input of the 

PFD. The variable delay is adjusted so that the realignment edge is aligned with that of 

the VCO edge it is to replace. This loop is discussed later. Secondly, the VCO is con-

trolled by two paths rather than one. This is a consequence of modifying the VCO to al-

low for windowless realignment and will be discussed below. 
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( )refV t ( )pllV t

 

Fig. 27: Block diagram of the proposed RAPLL. 

Relaxation oscillator as a VCO 

The relaxation oscillator shown in Fig. 28 is used as the VCO. 

( )outV t

( )cV t

max
cV

min
cV

( )cV t

0φ =

φ π=

2φ π=

 

Fig. 28: Schematic of a relaxation oscillator and the voltage across the timing capacitor. 

 

Unlike a traditional ring oscillator, a relaxation oscillator has only one timing 
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element, capacitor C, whose voltage, Vc, encodes the phase of the oscillator. Windowless 

realignment is achieved if Vc (or phase of the oscillator) can be reset to VRA regardless of 

what the voltage across C (or the phase of the oscillator) is prior to realignment. As illu-

strated in Fig. 29, the phase is either delayed or advanced depending on whether the rea-

lignment occurs when Vc < VRA or when Vc > VRA. The phase of the oscillator is not af-

fected if the realignment edge occurs when Vc = VRA. After resetting, the oscillation 

proceeds as usual.  

 

( )cV t

Realign

Realign

Edge is 
delayed

Edge is 
advanced

RAV

 

Fig. 29: Illustration of realignment in a relaxation oscillator. 

 

Optimally, VRA is chosen to be halfway between Vc
min and Vc

max, which in the de-

sign of Fig. 28 is zero. Given this choice, two stable phases exist within a single cycle, 

π/2 and 3π/2 where Vc = VRA = 0. Both are acceptable realignment points and under lock, 

the oscillator will settle to one of them. While it is possible for a locked oscillator to be 

kicked from one stable point to the other, it is unlikely, as it would require a disturbance 

in the oscillator greater than Tvco/4. 

The resetting is accomplished by slightly modifying the relaxation oscillator (Fig. 

30a). Here, the timing capacitor is duplicated and a shorting switch is added across each 
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capacitor. During normal operation, only one of the switches is closed. Realignment is 

achieved by toggling which switch is closed. When a switch is closed, its accompanying 

capacitor is shorted and hence the voltage across it is zero. Furthermore, it does not con-

tribute to the oscillation of the VCO. When the switch is then toggled, the previously 

shorted capacitor now becomes part of the oscillator; moreover, since this capacitor was 

previously shorted, the oscillation always proceeds from a specific phase, namely the one 

corresponding to Vc = 0. Hence, realignment is achieved. Note that realignment can, at 

most, change the VCO phase by π/2 or Tvco/4. As a result, realignment does not signifi-

cantly affect the locking dynamics of the RAPLL. 

 

( )outV t

, ( )tune mainV t

, ( )tune diffV t+

, ( )tune diffV t−

 

Fig. 30: Modified relaxation oscillator to support realignment. 

 

Using a relaxation oscillator in this manner, however, introduces a new problem, 

as there are now two oscillating modes. Due to mismatches between C1 and C2, for a giv-

en tuning voltage, there are now two oscillating frequencies, fosc,1 and fosc,2. The first oc-
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curs when capacitor C1 is used, while the other is when C2 is used.  

This is addressed by having two tuning voltages (Fig. 30b), one to control the 

common mode and one to control the differential mode values of C1 and C2. The main 

path provides a tuning voltage that adjusts a pair of varactors to (C1+C2)/2. The differen-

tial path provides a voltage that tunes another pair of varactors; in this case, one of them 

is tuned to (C1-C2)/2 while the other is tuned to -(C1-C2)/2. As a result, the oscillating fre-

quency of the two modes, fosc,1 and fosc,2 can be set independently. 

The main path, controlling the common mode, is a traditional design consisting of 

a charge pump and a loop filter; however, the differential path is new. A block diagram of 

this path is shown in Fig. 31. 

 

mode[ ]VCO n

, ( )tune diffV t+

, ( )tune diffV t−

 

Fig. 31: Block diagram of the differential control path for the VCO. 

 

The differential path consists of a local charge pump, a set of switches and an in-

tegrator; a common mode feedback circuit to stabilize the common mode input voltage of 

the amplifier is not shown. The switches direct the output of the local charge pump either 

to the positive or negative input terminal of the integrator, depending on whether the 
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VCO is oscillating with capacitor C1 or with C2. This information is conveyed in the digi-

tal signal, VCOmode[n]. Note that VCOmode[n] toggles whenever there is a realignment. 

If the differential loop is converged, then fosc,1 = fosc,2. As a result, the net charge 

delivered by the charge pump to the amplifier is the same regardless of which mode the 

VCO is oscillating in. Since the amplifier rejects common mode signals, the output of the 

amplifier will not be affected. However, if fosc,1 ≠ fosc,2, then a different amount of charge 

will be applied to the positive input terminal of the amplifier versus the negative, thereby 

causing an adjustment of Vtunediff+ and Vtunediff-. This adjustment continues until fosc,1 = 

fosc,2. 

Calibration loop for the realignment spur 

The second problem in conventional realigned PLLs is the phase alignment be-

tween the realignment edge and the VCO edge it is supposed to replace. A calibration 

loop is added to measure and adjust the alignment of these two edges. The details of this 

path are shown in Fig. 32; notice that this is identical to the differential path mentioned 

above, except that a new digital signal, sRA[n] is used rather than VCOmode[n]. Typically, 

realignment occurs once every reference period. In this design, occasionally, but random-

ly, one of these realignments is dropped. This occurs very infrequently so that the rea-

lignment frequency is still approximately fref. sRA[n] is high when a realignment has oc-

curred in the previous reference period and low when it has not. 
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[ ]RAs n

 

Fig. 32: Block diagram of the calibration path. 

 

The calibration loop measures the differences in timing between reference periods 

that have experienced realignment and those that have not. A variable delay in the path of 

the reference signal is adjusted until the timing difference is driven to zero.  

IMPLEMENTATION DETAILS 

Calibration using a charge pump and integrator 

 

 A detailed diagram of the CP and integrator described above is shown in Fig. 33. 

It consists of a charge pump, a set of switches, and an offset cancelling integrator; a 

common mode feedback circuit to set the common mode input voltage of the amplifier is 

not shown. The switches are controlled by a two-level logic signal wherein the switch is 

closed when the signal is one and open when the signal is zero. These switches can be 

divided into two groups. The first group steers the output of the charge pump either to the 

positive or negative input terminals of the integrator depending on a sequence s[n]. The 

second group control whether the amplifier is integrating or measuring its offset. Finally, 
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a signal, skip[n], is used to enable or disable the charge pump.  

( )outV tdi[ ]

[ ]

 

Fig. 33: Detailed diagram of the calibration circuit. 

 

During normal operation, the PLL will be configured in one of two states, denoted 

here as state “A” and state “B”. For example, state A could represent a configuration 

where realignment is occurring, while state B could represent a configuration where it is 

not. The combination of the charge pump and integrator measure the phase difference 

arising from the PLL being configured in state A and the phase difference arising from 

being in state B, and attempts to drive that difference to zero. When this is achieved, the 

system behaves identically regardless of the state. 

 The sequence, s[n], is 0 when the PLL is in state A, and 1 when it is in state B. It 

does not need to be random; however, it is beneficial it is as it ensures that disturbances 
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in the system do not result in a spur. Furthermore, to ensure that the output of the charge 

pump is not steered preferentially either to the positive or negative terminals of the inte-

grator, a sequence skip[n] is used. This sequence selectively suppresses the charge pump 

such that its output is steered either to the positive or negative input terminal of the op-

amp with equal probability and in a first-order shaped fashion. 

 Without offset-cancellation in the opamp, parasitic capacitances at nodes X, Y, 

and Z would cause charge to be transferred from one input terminal of the integrator to 

the other if s[n] ≠ s[n+1] and Vx ≠ Vy. The former condition is satisfied since s[n] is not 

constant valued, and the latter condition is satisfied if the op-amp has a non-zero, input 

referred voltage offset. The transfer of charge can be modeled by a differential current, id, 

as shown in Fig. 33. Notice that id is unipolar, going from the larger of Vx and Vy to the 

smaller. As a result, the calibration loop will misalign in the presence of id. To mitigate 

this, the op-amp shown in Fig. 33 employs offset cancellation. 

 

Calibration applied to the differential path and realignment delay path 

In the case of the differential path, the two states are the frequency of the VCO 

when C1 is used and the frequency of the VCO when C2 is used. Here, the output of the 

integrator is Vtune,diff+ and Vtune,diff- and, s[n] = VCOmode[n]. When the calibration loop is 

settled, the PLL oscillates at the same frequency regardless of whether C1 or C2 is used. 

In the case of the realignment calibration path, the two states are whether or not 

realignment has occurred. Here the output of the integrator adjusts a continuously tunable 

delay stage in series with the reference input of the PFD and s[n] = sRA[n]. When the cali-

bration loop is settled, the PLL does not see a difference between reference periods where 



 
81 

 

 
 

realignment has occurred and those where it has not. 

SYSTEM DIAGARM AND RESULTS 

The block diagram of the RAPLL is given in Fig. 34.  

 

Fig. 34: Block diagram of the IC 
 

The realigned PLL is designed in the TSMC 65nm/GP technology with a target 

output frequency of 2.5GHz. Here, it is simulated in a corner condition of 

Slow/125C/Vdd=1V. In this simulation, the charge pumps and calibration paths are 

modelled at the transistor level while the other blocks, such as the divider and PFD, are 

behavioral. Additionaly, to speed up the simulation, the VCO is also behavioral. Separate 

transistor level simulations have been done on the VCO to verify the range and 

realignment mechanism.  

 



F

ap

T

ca

sl

n

ap

 

 

Fig. 35: Transie

 

Fig. 

pproximately

The top curv

alibration lo

lowest to set

ot RA. Fig. 

pproximately

 

ent response sh

es whi

35 shows 

y 700us in t

ve shows the

oop. Due to

ttle. This can

36 show the

y -60dBc. 

howing the lock

le the bottom s

the PLL lo

this corner. 

e loop filter 

o the sparsit

n be address

e output spec

king of the RA

shows the outp

ocking from

More typica

voltages, w

ty of the no

sed by initial

ctrum of the 

APLL. The top 

put of the calibr

m an off s

ally, the loop

while the bot

on-RA case,

lly having eq

PLL. Notic

curve shows th

ration loop. 

state, a pro

ps are fully 

ttom show t

, the calibra

qual probabi

e that the re

he loop filter v

ocess that 

settled in 5

the output o

ation loop i

ilities for RA

ference spur

 
82 

 

oltag-

takes 

00us. 

of the 

is the 

A and 

r is at 



fo

fr

R
R
D
C
A
T
Y

 

 

Table 
 

Specificat

out  

ref  
Random jitter
RA spur 
Deterministic
Current 
Active area 
Technology 
Year of public

 
 

4 compares 

Tab

tion  

0
r 4

-
c jitter 2

2
0

0.3
cation 2

Fig. 36

this design 

ble 4: Comparis

[2]  [3

96 20
0.48 25
4.65 1.
-34 -3
293 1
2.2 6

0.22 0.
35um 0.18
2002 20

6: FFT of the V

with other p

son of this RAP

3]  [1]

000 176
50 8
64 5
32 -70
12 1.8
.6 8.8
05 0.5
8um 0.18u
002 200

VCO output. 

published wo

PLL with othe

]  [5] 

6 1600
50

0.68
0 -58
8 0.76
8 6.1 (e
5 Discre
um 0.13u
07 2008

orks. 

r works. 

 This 
work

0 2500
50 

8 1.3 
 -60 

6 0.4 
st) 5.3 
ete 0.21 

um 65nm
8 2010

k
 
 

Units

 MHz
MHz
psrms

dBc
pspeak-pe

mA
 mm

2

m CMOS
 

 
83 

 

s  

z 
z 

 

eak  

 
S 



 
84 

 

 
 

REFERENCES 

[1] P. Maulik and D. Mercer, “A DLL-Based Programmable Clock Multiplier in 0.18-μ m 
CMOS With −70 dBc Reference Spur,” Solid-State Circuits, IEEE Journal of, vol. 42, 
Aug. 2007, pp. 1642-1648. 

[2] S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO rea-
lignment to reduce phase noise,” Solid-State Circuits, IEEE Journal of, vol. 37, Dec. 
2002, pp. 1795-1803.   

[3] R. Farjad-Rad, W. Dally, H. Ng, R. Senthinathan, M. Lee, R. Rathi, and J. Poulton, 
“A low-power multiplying DLL for low-jitter multigigahertz clock generation in 
highly integrated digital chips,” Solid-State Circuits, IEEE Journal of, vol. 37, Dec. 
2002, pp. 1804-1812.   

[4] B. Helal, M. Straayer, G. Wei, and M. Perrott, “A Highly Digital MDLL-Based Clock 
Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve 
Subpicosecond Jitter Performance,” Solid-State Circuits, IEEE Journal of, vol. 43, 
Apr. 2008, pp. 855-863.   

[5] B. Helal, C. Hsu, K. Johnson, and M. Perrott, “A Low Jitter Programmable Clock 
Multiplier Based on a Pulse Injection-Locked Oscillator With a Highly-Digital Tun-
ing Loop,” Solid-State Circuits, IEEE Journal of, vol. 44, May. 2009, pp. 1391-1400. 


