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ABSTRACT OF DISSERTATION

The Analysis and Design of

Mismatch-Shaping Digital-to-Analog Converters
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Multi-bit digital-to-analog converters (DACs) are often constructed by combin-
ing several 1-bit DACs in parallel. In such a DAC. mismatches among the 1-bit
DACs cause its output to be a nonlinear function of its input. This error is mod-
eled as an additive noise source called the DAC noise. The DAC notse limits the
attainable resolution of the multi-bit DAC and. if not addressed. prohibits its use
in high-performance applications. Mismatch-shaping DACs mitigate this problem
by suppressing the DAC noise power in the data signal’s frequency band so that
most of it can be removed by frequency-selective filters. These DACs facilitate
multi-bit delta-sigma (AX) modulation and have thus become widely used in high-
perforinance AY data converters.
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However. the theoretical analyses of mismatch-shaping DACs have been limited.
For most architectures. the analysis is limited to proving that the DAC noise power
spectral density (PSD) is zero at some frequency. Typically. this analysis pertains
only to the specific architecture and does not provide a reasonable estimate of
the signal-band power of the DAC noise. Consequently. engineers usually rely on
simulations to predict their DAC’s performance. which can be misleading.

This dissertation provides a unifying theory for mismatch-shaping DACs and
furthers the development and analysis of an architecture called the tree-structured
DAC. The unifving theory. which is given in Chapter 1. is in the form of necessary
and sufficient conditions for a multi-bit DAC to be a mismatch-shaping DAC. These
conditions are used to analvze and compare several well-known mismatch-shaping
DACs. Chapter 2 presents different implementations of the tree-structured DAC
that give rise to performance and complexity trade-offs. One such implementation.
the dithered first-order low-pass tree-structured DAC. is analyzed in Chapter 3. In
this chapter. expressions for the DAC noise PSD and signal-band power are derived
and used to obtain an achievable power bound for the DAC noise. In Chapter 4.
the DAC noise PSD expression from Chapter 3 is used to develop the theoretical

DAC noise PSD for the tree-structured DAC in a AY modulator application.
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Chapter 1

Necessary and Sufficient Conditions for
Mismatch Shaping in Multi-Bit
Digital-to-Analog Converters

Jared Welz. [an Galton

Abstract—Multi-bit DACs are often constructed by combining several 1-bit DACs
of equal or different weights in parallel. In such DACs. component mismatches give
rise to signal dependent error that can be viewed as additive DAC noise. In some
cases these DACs use dynamic element matching techniques to decorrelate the DAC
mismatch noise from the input sequence and suppress its power in certain frequency
bands. Such DACs are referred to as mismatch-shaping DACs and have been used
widely as enabling components in state-of-the-art delta-sigma data converters. Sev-
eral different mismatch-shaping DAC topologies have been presented. but theoretical
analyses have been scarce and no general unifying theory has been presented in the
previously published literature. This paper presents such a unifying theory in the form
of necessary and sufficient conditions for a muiti-bit DAC to be a mismatch-shaping
DAC. and applies the conditions to evaluate the DAC noise generated by several of the
previously published mismatch-shaping DACs. and qualitatively compare their behav-

ior.

[. INTRODUCTION
OST multi-bit digital-to-analog converters (DACs) consist of multiple 1-bit
M DACs. In each case. the digital input sequence is decomposed into multiple
1-bit sequences each of which drives a 1-bit DAC. Each 1-bit DAC generates one of

two analog output levels depending upon whether its input bit is high or low. The

1
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outputs of the 1-bit DACs are sumined to form the output of the multi-bit DAC. The
primary differences among the various multi-bit DAC architectures reside in how
the multi-bit input sequence is mapped to the multiple 1-bit DAC input sequences.

and how the output levels of the 1-bit DACSs are scaled relative to cach other.

In practice. component mismatches inevitably introduced during cireuit fabrica-
tion. most notably mismatches among nominally identical unit capacitors or current
sources. cause the 1-bit DAC output levels to deviate from their ideal values. The
resulting error can be modeled. without approximation. as additive error and is
referred to as DAC noise. In present VLSI technology. the values of nominally
identical components can rarely be matched to better than a standard deviation of
0.1%. In Nyquist-rate DACs. i.c.. DACs that convert digital signals with a pass-
band from zero up to half their sample-rate. this translates into DAC noise that
limits the achievable signal-to-noise-and-distortion ratio (SINAD) to less than 70
dB. Moreover. without some form of dither or other randomization technique. the
DAC noise is a deterministic. noulinear function of the input sequence so it contains

harmonic distortion which can be problematic in many applications.

Dynamic element matching (DEM) techniques can be applied to multi-bit DACs
both to suppress the power of the DAC mismatch noise in specifie frequency bands
and to eliminate the harmonic distortion. Such muliti-bit DACs are referred to as
musmatch-shaping DACs. They are particularly useful in applications that require
high precision within relatively narrow frequency bands. As such. in recent vears
they have become widely used in high-perforimance delta-sigma (AY) data convert-

Crs.

Although numerous mismatch-shaping DAC architectures have been developed.

published mathematical analvses of these DACs have been limited and disjoint to
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Figure 1.1: The general multi-hit DAC.

date. Most analyses have been individually tailored to specific architectures. and
in most cases sitmulations have been relied upon to determine the characteristics of
the DAC noise. which can be misleading. Consequently. there is no unifving theory
that applies to multi-bit DACs in general. This lack of theory has made it difficult
to compare the merits of the different mismatch-shaping DAC architectures. and
likely has impeded the development of new mismatch-shaping DAC architectures.
This paper provides a unifving theory in the form of necessary and sufficient
conditions for a general multi-bit DAC to be a mismatch-shaping DAC. Unlike
previous analyses [1] the conditions do not rely on properties of the component mis-
matches. The utility of the conditions is demonstrated by using themn to analvze
and qualitatively compare most of the widely used mismatch-shaping DAC architec-
tures published to date: first-order. lowpass implementations of the vector feedback
[2]. data-weighted averaging (DWA) [3].[4]. butterfly shuffler [5]. tree structured [6].

and partitioned DWA [7] DACs.

[I. THE GENERAL MULTI-BIT DAC

The general multi-bit DAC shown in Figure 1.1 consists of a digital encoder and a



bank of N 1-bit DACs. The output of the ith 1-bit DAC is given by

PR '3—_,L +ep,. if afn] is high: (1
il =9 2y o )
—5t +ep,. i ain] is low:

where A; is the nominal step size of the ith 1-bit DAC. and ep,, and ¢, arce its
high and low errors. respectively. In many applications. the 1-bit DAC errors result
fromn component mismatches introduced during fabrication of the 1-bit DACs. As
such. they are modeled here as arbitrary constants. The digital encoder output
is a vector. F[n]. of N 1-bit sequences. aq[n]..... ry[n]. The value of each 1-bit
sequence is taken to be 1/2 when it is high and -1/2 when it is low. Ideally. a
DAC’s output is a scaled version of its input. To ensure that the multi-bit DAC
approaches this ideal behavior when the 1-bit DAC errors approach zero. the digital

encoder determines its output sequences under the following restriction:

AY
Z A 17:["} =Ap- .'1.'[11,]. (2)

=1

where Ap is the nominal smallest step size of the multi-bit DAC. Thus. if the 1-bit

DAC errors were all zero. (1) and (2) imply that the DAC output would be given
by

y[n] = Apxin]. (3)

However. in practice the 1-bit DAC errors are nonzero. and. as a result. the

multi-bit DAC output is a nonlinear function of the multi-bit DAC input. The

crror from this nonlinearity can be written as additive error:
y[n] = Apx[n] + é[n]. (4)

The crror sequence é[n] often contains a constant offset and scaled version of the

input: therefore. it is convenient to write (4) as

y[n] = ax{n] + 1+ en). (5)



where «v and 3 are constants. and e[n] is called the DAC noise. In a well-designed
svstent. the DAC noise is a zero mean sequence that is uncorrelated from the multi-

bit DAC input. and the constants o and 3 depend only on the 1-bit DAC errors.

Mismatch-shaping DACs are designed such that the digital encoder has several
possible output vector values. Fn]. that satisfy (2) for most DAC input values. For
example. in a multi-bit DAC in which all the 1-bit DACs have the same nominal
step size. a nominal output value of zero is obtained for any output vector with an
equal number of high and low bit values. By exploiting this flexibility. the DAC
noise can be tailored so that its PSD has desired properties regardless of the values
of the 1-bit DAC errors. Therefore. a multi-bit DAC is said to produce DAC noise
with a given set of PSD properties if. for any collection of 1-bit DAC errors. there
exist constants « and 3. and a sequence c[n] with the given set of PSD properties

such that y[n] = ax[n] + 3+ ¢[n).

Various DAC noise PSD properties can be obtained by mismatch-shaping DACs.
In some DACs. the digital encoder operates such that the DAC noise is white: 7.¢..
its PSD is constant with respect to frequency. In such DACs. the power of the
white noise depends upon the I-bit DAC errors (e.g.. larger 1-bit DAC errors tend
to increase the power of the DAC noise). but the DAC noise is white for any choice
of the 1-bit DAC errors. In other DACs. the digital encoder operates such that
the DAC noise PSD is continuous with a value of zero at zero frequency: w = 0.
In such cases. the power of the DAC noise tends to reside predominantly at high
frequencies. Again. the overall power of the DAC noise depends upon the 1-bit DAC
errors. but the zero at w = 0 and the weighting of the PSD toward high frequencies
occurs for any choice of 1-bit DAC crrors. Various other DACs are possible that

achieve different DAC noise properties. In each case. specific properties (e.g.. zero
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location) of the DAC noise PSD are preserved regardless of the 1-bit DAC errors.

[II. THE CONDITION FOR MISMATCH SHAPING

The theorem below presents a necessarv and sufficient condition for the general

multi-bit DAC to produce DAC noise with a given set of PSD properties.

Theorem: The multi-bit DAC in Figure 1.1 produces DAC noise with a given set
of PSD properties if and only if there exist N — 1 sequences ¢[n]. . ... @y i1} such
that:

(a) each digital encoder output is given by

N-1
xifn] = mixn] + E dij - pjni. (6)
=1
where d; ; and m; are constants. and
(b) for any selection of the N — | constants ¢y.....cx . there exist two constants

a and b. and a sequence e{n] with the given set of PSD properties such that

N-1

Z ¢j-pjn] = arfn] + b+ zn. (7)

=1

Proof: Because x;[n] is interpreted as 1/2 when high and -1/2 when low. (1) can
be written as

y,-[n] = E,-;:.’,-[n] + ;. (8)

where & = A; — (e, — ) and v = (¢, +e,) /2. Given yln] = Z;\;l yi[n]. (8)

implies that
AY

y[n] = Z Sixifn] + B,. (9)

=1

where 3, = Z,\=1 Yi-



T
Sufficiency: Assume that the N —1 sequences. ¢[n].. ... @x—1[n]. exist and satisfv

(a) and (b) in the theorem. Substituting (6) into (9) gives

A N-l /X
y[n] = z Sim; | r[n] + Z karl,_._j @in]+ . (10)
=l J=1 \k=l
e e’
= (y, = ¢

Condition (b) implies that the second summation in (10) can be decomposed as in

(7). Thus. substituting (7) into (10) gives

yn] = (a + a,) xin] + b+ 3, +n]. (11)
N, e’ Ve
=« =4

where z[n] has the given set of PSD properties. so the multi-bit DAC produces DAC
noise with the given set of PSD properties.

Necessity: To reduce wordiness. all “linear combinations™ discussed hereafter are
assumed to have constant coefficients. Let ¢x[n] = Z;‘\;l (Ai/Ap) a[n]. which. by
(2). implies that ¢xn] = x[n]. and let dy[n]. .. .. @x -1 [n] be any collection of N —1
linear combinations of the digital encoder outputs subject to the constraint that
these linear combinations and the one that generates ¢ y[n] are linearly independent.
Then there exists an invertible N x N matrix A with values aj ;. where j is the row
number and £ is the column number. with ey = Ap/Ap such that o{n] = AF[n].
and. for cach j.

N

djln] = Z ajy - rifn]. (12)
k=1
Let D. whose value in its ith row and jth column is denoted d; ;. be the inverse

matrix of 4. This implies that #[n] = Dg[n] and. for each i.

AY
rifn] = Z(l‘-j - ¢jn]. (13)
=1

With m; = d; v. (13) is identical to (6) because ox[n] = x[n]. Therefore. the N -1

sequences op[n}..... dx—1[n] satisfy condition (a) in the theorens.



b

To show that the NV — 1 sequences satisfv condition (b) in the theorem. assune
the multi-bit DAC produces DAC noise with the given set of PSD properties. In (9).
& and /3, are arbitrary constants because cach DAC error is an arbitrary constant.
Thus. by assumption. for any selection of the constants &;..... En. and 3. there
exist constants a and b, and a sequence s[n] with the given set of PSD properties

such that

N
Zf;;l',-[n] + 3, = ax[nl+ b+ =[n]. (14)
i=1
It follows from (12) that
A A AN
cj-dj[n] = Z Z cj-aj | rinl (15)
= (l,'
for any selection of N — 1 constants. ¢j.....cyv—. Since (14) is satistied for any

selection of & and 3,. suppose & = d; for each i. and 3, = 0. In this case. the
left-hand side of (14) is the same as the right-hand side of (13). which implies (7).
Thus. the N — 1 sequences satisfy condition (b) in the theorem.

[

Therefore. in mismatch-shaping DACs. there are NV — 1 underlying sequences
that. given the DAC input. determine the digital encoder outputs and. when linearly
combined. produce a sequence that has the same form as the DAC output. /.e..
axr[n] + b+ z[n]. where the gain and offset depend on the coefficients in this linear
combination. aud the sequence £[n] has the same PSD properties as the DAC noise.

In efficient mismatch-shaping DACs. none of the N — 1 underlying sequences
arc constant for all DAC input sequences. To verify this assertion. suppose one of

the digital encoder outputs were a linear combination of the other digital encoder
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outputs plus an offset: i.e.. for some j.

N

rjln] = Z d; - xi[n] + dy. (16)
=1

1%
where each d; is a constant. As a consequence of this lincar dependence. an equiva-
lent multi-bit DAC could be implemented using fewer than N 1-bit DACs: the only
difference between the original and equivalent implementations would result from
the 1-bit DAC errors in each. For example. if r;[n] were given by (16). then the jth
1-bit DAC could be removed by changing the nominal step sizes of the other 1-bit
DACs according to the following: for ¢ # j. A" = ’_\j-”‘l + rl;A‘J?”’ .

The theorem can be used to show that the DAC noise from a given architec-
ture has certain PSD properties. However. the corollarv presented next is more

convenient for this application.

Corollary 1: Given the multi-bit DAC in Figure 1.1. let o{n]... .. @x-1[n). and
¢[n] be sequences formed by taking NV linearly independent. linear combinations
of the digital encoder outputs with wn] = z;\_;l (Ai/Ap)x;i[n]. Then. the multi-
bit. DAC in Figure 1.1 produces DAC noise with a given set of PSD properties if
and ouly if. for any selection of the .V — 1 constants ¢j.....cy_1. there exist two

constants a and b. and a sequence s[n] with the given set of PSD properties such

that

-

-1
¢j - djn] = ax[n] + b+ =in}. (17)
1

.
Il

Proof: The proof follows directly from that of the theorem as the N —1 sequences
in the corollary are formed the same way as in the proof of the theorem.
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Therefore. to show that the DAC noise PSD from a given multi-bit DAC has a
certain property. derive the N — 1 sequences. o[n. . ... dx—1[n]. as described in the
corollary and show that any linear combination of these sequences can he written as
in (17). The N — 1 sequences in the corollary result from linear combinations of the
digital encoder outputs. and there are many possible choices for these sequences.
However. for a given multi-bit DAC. these sequences can often be chosen to minimize
the effort required to show they satisfy (17). Several examples of this application
are presented in the following section.
The following corollary is more convenient than the theorem or the first corollary
for proving that the DAC noise from a given architecture does not have certain PSD

properties.

Corollary 2: The multi-bit DAC in Figure 1.1 produces DAC noise with a given set
of PSD properties if and only if. for any selection of N constants. dj..... dx. there
exist constants a and b. and a sequence g[n] with the given set of PSD properties

such that

Z di - xijn] = axn] + b+ gn]. (s

Proof: By definition. the multi-bit DAC produces DAC noise with the given set of
PSD properties. if and only if. for any selection of the 1-bit DAC errors. there exist
two constants o and 3. and a sequence efn] with the given set of PSD properties
such that y[n] = ax[n] + 3+ ¢[n]. The relationship between y[n] and the 1-bit DAC
errors is manifest in (9) as each constant & and 73, are functions of the 1-bit DAC
errors. Because any value of & and /3, can be obtained by an appropriate choice of

the 1-bit DAC errors. the multi-bit DAC produces DAC noise with the given set of
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Figure 1.2: A first-order. lowpass vector feedback DAC.
PSD properties if and only if. for any selection of the constants &;..... Ex. and .

there exist two constants « and 3. and a sequence e[n] with the given set of PSD

properties such that

N
Z Eirin] + 3, = ax[n] + 3 + ¢[n]. (19)
=1

With d; = &. b= 3 - 3. a = a. and g[n] = e[n]. (19) is equivalent to (18).
[

Therefore. to show that the DAC noise does not have the given PSD properties.
it is sufficient to find a linear combination of the digital encoder outputs that cannot
be expressed as in (18). An example of this application is also shown in the following

section.

I[V. ARCHITECTURE ANALYSIS
The theorem and corollaries presented in the previous section are used in this
section to analyze and compare several of the previously published multi-bit DAC
architectures. Specifically. vector feedback. data weighted averaging. butterfiy shuf-
fler. tree structured. and partitioned data weighted averaging DAC architectures are

considered.



VECTOR FEEDBACK

A b-level (i.e.. N = 1) example of the vector feedback DAC is shown in Figure
1.2 [2]. Its input range is {—=N/2. =N/2+ 1..... N/2}. Its 1-bit DACs all have the
same nominal step size (i.e.. A; = Ap for each i). The digital encoder consists of
a vector quantizer. a smallest-element block. two vector adders. and a vector unit
delay. The vector i[n] consists of N clements. the ith of which is associated with the
ith output bit of the digital encoder. At cach sample time. n. the vector quantizer
determines the x[n] + N/2 largest elements of i{n]. and sets the associated output
bits of the digital encoder high. It sets the remaining output bits low. The digital

encoder calculates cach element of i[n] as
wiln] = —eiln = 1] — z{nj. (20)

where

= ,lri[n] - u,,'[‘n,]. (21)

eifnl
and z[n] = min;{—v;[n = 1]}. i.c.. it is equal to the smallest element of —#[n — 1].
To show that the feedback system within the digital encoder is stable. it is
sufficient to show that u;[n] and ¢;[n] are bounded sequences for ecach value of 7.
Suppose that at some sample time. ng. the largest element of ifng] has a value of
P > 1. It follows from (20) that «;[n] > 0 for cach ¢ and one clement of @[n] equals

zero for each n. The operation of the vector quantizer implies that « j[ng] —u;fng] = 1

only when u;[ng] > u;{ng]. So (21) implies that
foilna] — vjln)l < max{|ui[ne] — ujlnoll. 1} < P. (22)

It follows fromn (20) that w;{ng+1]—u;[ng+1} = vifne]—v;{ng]. and since one element
of @[ny + 1] is zero. (22) implies that w;{ng + 1] < P for cach i. By induction. w;[n]

must be a bounded sequence for each 4. and. therefore. (21) implies that v;[n] must

also be a bounded sequence for each i.
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To apply Corollary 1. let
djln] = xjp1{n] — xjn] (2:3)

for j=1.....1] N — 1. Because all the [-bit DACs have the same nominal step size.

¢[n]. as defined in the statement of Corollary 1. is given by
v[n] = xin] + -+ rxn]. (24)

To show that (23) and (24) are linearly independent combinations of the digital

encoder output sequences as required by the corollary. it is sufficient to show that.

when zy{n].....zx[n] are linearly independent sequences. the expression
N—-1
¢j-ojn] +ex-wn]=0. (25)
J=1
where ¢;.....cy are constants. is only satisfied with «; = 0 for each j. Substituting

(23) and (24) into (25) gives

N
Z (cjoy —cj+ex)xjn]+ex - rxn) =0. (20)
J=1

where ¢ is defined to be zero. With linecarly independent digital encoder outputs.

(26) implies that ¢; —¢;_ =cxfor j =1.....¥N—1. and ex_; = —cx. Solving this
difference equation gives ¢; = j-ex for j=1.....N = 1. Since ex_y = (N = 1) ey
and ¢x—; = —cn both hold. it follows that ¢y = 0. Therefore. ¢; = 0 for each j.

It is next shown that the choice of ¢;[n] given by (23) satisfies (17) with a = 0.
b = 0. and an £[n] whose PSD is zero at w = (. By virtue of Corollary 1. this implies
that the PSD of the DAC noise also has a zero at w = 0. and. therefore. that the
vector feedback DAC shown in Figure 1.2 is a first-order mismatch-shaping DAC.

Substituting (20) into (21) gives x:j[n] = vi[n] — vi[n — 1] — z[n]. With (23) this
implies

bjln] = visi[n] — vjza[n — 1] = vj[n] + vj[n - 1.
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Therefore.
n
Z ojlm]| = lvjgr[n] — vjln] — vje 1 [0] + ¢;{0]]. (27)

=0

The partial sum in (27) is bounded for all n because v;[n] is a bounded sequence
for each value of i. As shown in the Appendix. this implies that the PSD of o;[n]
is zero at w = 0. It is also shown in the Appendix that any lincar combination of
such sequences has a PSD equal to zero at w = 0. Therefore. by Corollary 1. the

DAC noise has this property too.

DWA

A 5-level example of the DWA DAC is shown in Figure 1.3 {3]. [4]. Like the
vector feedback DAC. its input range is {—N/2. =N/2 + 1.....N/2}. and all of
its 1-bit DACs have the same nominal step size. The digital encoder consists of a
thermometer encoder and a barrel shifter. Additionally. it consists of a modulo-N
block. a unit delay. and an adder that constitute a modulo-N accumulator. At cach
sample time. n. the thermometer encoder. whose N outputs are binary sequences.
selects its bottom x[n] + N/2 outputs high and its remaining outputs low. The
wodulo-N accumulator output. z[n]. controls the operation of the barrel shifter as

follows: with its inputs and outputs labeled 1 to N from bottoin to top. the barrel
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shifter. at sample time n. routes input i to output 1 + (z[n] + 7 — 1)mod N. Thus.
the digital encoder outputs are generated by performing a modulo-V shift of the
thermometer encoder outputs.

The values of z[n] and z[n] determine the digital encoder outputs at sawmple
time n. and z[n + 1} = (x[n] + z[n] + N/2)mod N. If z[n] < z[n + 1]. then the high
digital encoder outputs at time n are those numbered z[n]+ 1. z[n]+2..... z[n+1].
and the remaining outputs are low. However. if z[n] > :[n + 1]. then the low digital
encoder outputs at time n are those numbered z[n + 1] + L. z[n + 1] +2..... z[n].
and the remaining outputs are high. If z[n + 1] = z[n]. then x[n] = £N/2. and all
of the digital encoder outputs are either high or low at time n. Therefore. at each
sample time. n. there is a contiguous segment of either high or low outputs of the
digital encoder. and z[n] and z[n + 1] determine the segment’s starting and ending
points.

To analyze the DAC noise using Corollary 1. let o;[n] = x4 ([n] — r;n] for
j=1.... N — 1. As previously shown. ¢[n]. as defined in the corollary. is given by
(24). and the N linear combinations that gencrate ¢[nj. .. .. Ox—1[n]. and ©[n] are
linearly independent as required by the corollary.

As in the previous analysis. to show that the DAC noise PSD is zero at w = 0.
it is sufficient to show that the partial sum of ¢;[n] is a bounded sequence. To
show this. note that the N — 1 sequences ¢ [n]. . ... dN-1[n] detect the edges —i.e..
starting and ending points—of the contiguous segment of high or low digital encoder
outputs. If x{n] = £N/2. there are no edges to detect and ¢;[n] = 0 for cach j.
However. if x{n] # £N/2. ¢;[n] is nonzero only when j corresponds to an edge of

the contiguous segment:
~1. if j=z[n]:
piin)=q 1. ifj=zn+1]: (28)
0. otherwise.
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This implies that the nounzero samples of ¢;[n] alternate between -1 and 1. and the

partial sum of ¢;[n] is a bounded sequence:

n

IZ oi[m]| < L. (29)

| =0

Therefore. the DAC noise PSD is also zero at w = 0.

BUTTERFLY SHUFFLER

An example 5-level butterfly shuffler DAC is shown in Figure 1.4 {5]. Like the
previously analyzed DACs. its input range is {—N/2. =N/2 +1...... V/2}. and all
of its 1-bit DACs have the same nominal step size. Unlike the previously analyzed
DAGs. the butterfly shuffler DAC requires that N be a power of 2: ie.. N =
2b. where b is a positive integer. The digital encoder consists of a thermometer
encoder and N swapper cells. which are labeled S;,, and positioned in a matrix
with [ = 1..... 2=l and m = 1..... b. corresponding to the row and columnn
numbers. respectively. The input and output sequences of each swapper cell are
1-bit sequences: the values of each are taken to be 1/2 and -1/2 at sample times
when the sequence is high and low. respectively. At each sample time. n. each
swapper cell determines its outputs by routing its inputs either straight through or
swapped. The thermometer encoder. whose operation is described in the previous

sub-section. is not a necessary component as it can be replaced by any encoder that
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has NV 1-bit outputs and ensures that exactly x[n} + N/2 of its outputs are high at
each sample time. n.

Let digy_y (1] and Zap,,[n] denote the top and bottom inputs of Sp,. respec-

tively. Using S in Figure 1.4 as an example.

" 1
r1afn] = 5 ( Frafn] + Ea[n] + s1.4(n]) . (30)
and
1
T3a(n] = 5 (Fra[n] + d21[n] — s11(n]) - (31)

where 51 1[n] is called a swapper sequence. It is generated within §) ) and is restricted
to the values {—1.0.1}. Thus. cach swapper cell Sp, usCs its swapper sequence.
Sp.m[n]. as in (30) and (31) to determine its outputs. In the first-order butterfly
shuffler DAC. cach swapper cell alternates between swapping and not swapping so
that

| n
> skl < 1. (32)
|k=()

which. as shown in the Appendix. implies that the PSD of each swapper sequence

is zero at w = 0.
Generalizing (30) and (31) to the other swapper cells in Figure 1.4. the top

digital encoder output in the figure can be written as

1
1 . . . 1.
ryfn] = I Ipaln] + span] + sa.n] | + ;Sl_g[n]. (33)
k=1 -

Since x[n] + N/2 of the thermometer encoder outputs are high at time n. it follows

that 22:1 Fp.1[n]) = x[n]. This and (33) imply

to | —

xy[n] = ll ([n] + 511[n] + S2.1[n]) + 5512(n]. (:34)

Therefore. the top digital encoder output is a linear combination of x[n] and the

swapper sequences. It follows by similar reasoning that this holds for every digital
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encoder output. and in general with N = 2°.
)h 1
xiln] = xn]/N + Z Z (lm Spmlnl- (35)
=1 m=1

where each (:;_i,),l is a constant that is either £1/2"="+! or 0.

To apply Corollary 1. once again let ¢j[n] = xjpq[n]—xj[n]for j=1.....N -1
As previously shown. because all the 1-bit DACs have the same nominal step size.
these N — 1 sequences satisfy the linear independence condition of the corollary. It
follows from (32) and (35) that. for cach j. ¢;[n] is a linear combination of swapper
sequences whose PSDs are zero at w = 0. which. as shown in the Appendix. implies
that the PSD of ¢;{n] is zero at w = 0. Therefore. the DAC noise PSD is also zero

at w = 0.

TREE STRUCTURED

An example 3-level tree structured DAC is shown in Figure 1.5 {6]. Like the
previously analyzed DACs. its input range is {—N/2. =N/2+1...... NV/2}. and all
of its 1-bit DACs have the same nominal step size. This DAC requires that N be
a power of two. The digital encoder consists of switching blocks. which are labeled
Sir. where & =1..... b. denotes the layer number. and r =1..... "=k _denotes the

depth in the layer. If the input to Sy, is denoted xy -[n] and cach sequence x;[n] is
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also denoted wq ;[n]. the switching blocks are interconnected such that the top and
bottom outputs of Sy, are rg_y2,.—1[r] and rp_y 9.[n]. respectively. The outputs of
Si.., are given by

Thorar—1[n] = % ([0} + sprn]) . (36)
and
ze—1ar[n] = § (wrrln] = siefn]) . (37)
where s -[n] is called the switching sequence and is generated within Sy .
Analogously to the butterfly shuffler DAC. the switching blocks in the first-order

tree structured DAC ensure that

n

Z sprlm]l < L. (38)

m={)

which. as shown in the Appendix. implies that the PSD of sg .[n] is zero at w = 0.
By recursively solving the switching block outputs in (36) and (37) as functions of

the switching sequences and the DAC input xin]. it follows that,

b )h k
xifn] = xn]/N + Z Z (l - skrin]. (:39)
k=1 r=1

where each d( . is a constant that is either £1/2 2% or 0.

Once again. Corollary 1 can be applied by using the N — 1 sequences oj[n] =
zjri[n] — xjn] for j = 1.....N = L. As previously shown. the N — 1 sequences
satisfy the linear independence condition in the corollary. The PSD of cach ¢ j[n]
sequence is zero at w = 0 because. from (39). each sequence results from a linear
combination of switching sequences whose PSDs are zero at w = (. Therefore. the

DAC noise PSD is also zero at w = 0.

QUALITATIVE COMPARISONS
Comparisons among mismatch-shaping DACs can be made using the necessary

and sufficient condition presented in the theorem. One comparison can be made
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concerning how casily each of the four previously analyzed DACs combat harmonic
distortion in its DAC noise. In the butterfly shutfler and tree structured DACs. the
DAC noise is a linear combination of shaped sequences— i.e.. swapper and switching
sequences—that are generated within their digital encoders. Therefore. as shown
in the Appendix. if these shaped sequences have bounded PSDs. then their DAC
noise PSDs are also bounded and thus do not contain spurious tones. This can
be accomplished by incorporating randommess in the shaped sequences to prevent
any tonal behavior. The relative ease for which this is accomplished is shown in [3]
where pseudorandorn sequences are employed by the switching blocks in both first-
and second-order. lowpass tree structured DACs to eliminate harmonic distortion

in the DAC noise.

However. the vector feedback and DWA DACs obtain DAC noise with the given
set of PSD properties without explicitly generating sequences with these properties.
This indirect approach for spectrallv shaping the DAC noise makes it more diffi-
cult to eliminate or reduce spurious tones. To remove spurious tones in the vector
feedback DAC. randomness must somehow be incorporated into the vector quan-
tizer's operation. but. to the knowledge of the authors. no such vector quantizer has
been demonstrated to date. To remove or reduce spurious tones in the DWA DAC.
its architecture must be changed. Most variants of the DWA DAC are designed
to reduce. relative to the DWA DAC. the harmonic distortion in the DAC noise.
Examples of such DWA variants are presented in {7].[9]. and [10]. To successfully
reduce harmonic distortion. each of these published first-order architectures requires
that the multi-bit DAC input includes a random component-—e.g.. the quantiza-
tion noise from a AY. modulator. This is not required in the previously mentioned

first-order. tree structured DAC whose DAC noise PSD is bounded regardless of



the DAC input [11].

Another comparison can be made concerning the case for which a mismatch-
shaping DAC obtains higher-order—i.e.. greater than first-order --spectral shaping
of the DAC noise. Such DACs are desirable because the DAC noise in a higher-
order DAC usually has less signal-band power. This comparison does not include
DWA because it is inherently a first-order DAC. The theorem states that. given the
DAC input. N — 1 sequences are required to generate the digital encoder outputs
in a mismatch-shaping DAC. However. with N = 2. where b is a positive integer.
the butterfly shuffler DAC requires b- N/2 swapper sequences. which. for b > 1. are
more than necessary as b- N/2 > N — 1. Additionally. as b increases. the number
of extra sequences utilized by the DAC grows at a faster rate than an exponential
function. Each swapper sequence depends on its swapper cell iuput. which depends
on the DAC input. This dependence and the extra swapper sequences makes it
difficult to ensure that each swapper sequence has the desired PSD properties in
higher-order implementations.

For example. to implement a second-order. lowpass butterflv shuffier DAC. it
follows from [8] that each swapper sequence must satisfy the following:

noJ
ZZ sLn[k]| < B. (40)

J=0 k=0

where B is a constant. Because the value of each swapper cell output is either -1/2
or 1/2 at cach sample time. n. it follows that

+1. if Fay_y 1] # dapmn):
] = At 11
L [n] {0 if 1. ["] = IAan ["}' "

Therefore. if the N inputs to the column-one swapper cells are therinometer encoded
as in Figure 1.4. then the column-one swapper sequences are restricted as follows:

N _ L ifan]=N/2-(20-1): 5
Stafn] = {0. otherwise. (42)
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20=1 swapper sequences in the first column

At cach sample time. at most one of the
is nonzero: the choice of which is determined by the DAC input. As b increases. this
dependence on the DAC input makes it more difficult for these swapper sequences
to satisfy (40) and has prohibited the implementation of the second-order. lowpass
butterfly shuffler DAC.

However. the vector feedback and tree structured DACs process N and N -1
internal sequences. respectively. to generate their digital encoder outputs. Because.
for b > 2. these DACs process fewer internal sequences than the butterfly shuffier
DAC. their internal sequences and DAC noise have less dependence on the DAC
input. which enables the implementation of higher-order DACs. For example. in the
tree structured DAC. the layer that directly processes the DAC input. laver b. only
has one switching block as opposed to the 2°=! swapper cells in the first column of
the butterfly shufler DAC. For the switching blocks presented in [8]. the switching

sequence is restricted as follows:

+1. if o fn] + 28V is odd:

serln] = (43)

0. if 21 (1] + 281 is even.

Therefore. the switching sequence in layer b depends only on the parity of the
DAC input. which is much less restrictive than the dependence exhibited by the
column-one swapper sequences shown in (42). Examples of second-order lowpass
implementations of the vector-feedback and tree structured DACs are presented in

[12] and [13]. respectively.

PARTITIONED DWA
The partitioned DWA (P-DWA) DAC. shown in Figure 1.6. was designed to
not only suppress the DAC noise power near w = 0. but to reduce. in comparison

to the DWA DAC. the spurious tones in the DAC noise [7]. Its input range is
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{—-16.-15..... 16}. All of its 1-bit DACs have the same nominal step size. The

digital encoder counsists of two 17-level DWA digital encoders and a divide-by-two
block. The top output of the divide-by-two block is wr{n|/2 rounded up to the
nearest integer (i.e.. [x[n]/2]). and the bottom output is x{n]/2 rounded down to
the nearest integer (i.c.. |x[n]/2]).

Corollary 2 is applied next to show that the DAC noise PSD is not zero at
w = 0. Since the difference between the outputs of the divide-by-two block is one

when z{n] is odd and zero otherwise. it follows that

32 16
Z xi[n] - Z:rj[n] = x[n] mod 2. (44)
i=17 j=1

By Corollary 2. if the above linear combination cannot be written as axn]+b+z[n].
where a and b are constants and the PSD of g[n] is zero at w = 0. then the DAC
noise PSD is not zero at w = 0. Therefore. from (44). it is sufficient to show that.
for some x[n]. the PSD of the sequence

g[n] = (x[n} mod 2) — (axz[n] +b). (45)
is not. zero at w = 0 for any choice of the constants a and b. Since

xn]=2 I.L[)’L]J + (x[n] mod 2). (46)
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(45) can be written as

pln]
z[n] = (1 — @) (z[n]mod 2) — (2(1 |.JL"‘J + b) . (47)

The DAC input. z[n]. can be chosen so that the sequences 2 (x[n]mod 2) — 1 and
L[n]/2] are white and uncorrelated. For this z:[n]. (47) implies that the PSD of
g[n] is not zero at w = 0 for any selection of the constants @ and b. Therefore. by
Corollary 2. the DAC noise PSD is also not zero at w = 0.

Figure 1.7 displays the output noise PSD from a behavioral simulation of a
second-order. analog AY modulator that employs the P-DWA DAC. The AT mod-
ulator input was a -1dB (relative to full scale) sinusoid with frequency 0.0015 f.
where f. is the sample rate. The PSD units are dB relative to A% where A is
the step size of the analog-to-digital converter within the AY modulator. The
frequency axis is normalized with respect to the sample rate. The 1-bit DAC errors
were chosen as independent Gaussian random variables with a standard deviation

of 1% of the 1-bit DAC’s nominal step size.



The output noise in the simulation includes the DAC noise and guantization
noise. The simulation shows that. as a rvesult of the DAC noise. the output noise
PSD is not zero at w = 0. However. the simulation suggests that. compared to
conventional DWA. the DAC noise in this implementation has less harmonic distor-
tion. The reduced harmonic distortion is a result of the randomness in x{n]. which
causes (r[n] mod 2) /2 to act as an additive and subtractive dither sequence that.

as shown in Figure 1.6. is fed into top and bottom DWA DACs. respectively.

V. CONCLUSION
Necessary and sufficient conditions for mismatch shaping with a general multi-bit
DAC have been presented. proved. and discussed. For the DAC noise to have
certain PSD properties. the conditions show that there must be NV — 1 underlying
sequences in the general muiti-bit DAC that. when linearly combined. produce a
sequence that consists of an offsct. a scaled version of the multi-bit DAC input. and
another sequence that has the given PSD properties. As example applications. the
conditions have been used to show that the DAC noise PSDs of four widely-used
lowpass DACs are zero at w = 0 and that the DAC noise PSD of another lowpass
DAC is not zero at w = 0. Additionally. the theory has been used to compare the
case for which several DACs combat spurious tones in their DAC noise and obtain

higher-order shaped DAC noise.

APPENDIX
Two lemmas are presented below that supplement the analyses in Section IV. The
first lemma proves that if a sequence v{n] has a partial sum that is a bounded
sequence. then the PSD of ¥[n] is zero at w = 0. The second lemma proves an

inequality for PSDs that is used to show that an arbitrary linear combination of
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sequences whose PSDs are zero or bounded at a given frequency gives rise to a
sequence whose PSD is also zero or bounded. respectively. at that frequency. [t is

assumed throughout that the PSDs exist for all sequences considered.

Lemma 1: Let v[n] be a sequence whose partial sum is bounded in magnitude by

a constant B for all n: i.e..

lz ~[m]| < B. (48)
m={

for all 7. Then. the PSD of v[n] (if it exists) is zero at w = 0.

Proof: As proved in [14]. the PSD of v[n] is given by

S () = lim LE{ Ty () ). (49)

Mo~ M
where E{-} is the expectation operator. and I"y; (e.f*' } is the M-point Fourier trans-

form of v[n}:
ATES!

|V (eJ‘“) = Z y[nje <", (50)
n=t
Evaluating the PSD at w = 0 gives

4 [ [ M1 2

n=l()

1 .

However. from (48). the partial sum of v[n] in the above expression is bounded in

magnitude by B: therefore.

[}
1o

S~ (/") < lim 5 _, (:

Mo M N
Because S- - (e/~) is nonnegative for all w. (52) implies that S- . (/%) = 0.

Lemma 2: If S;  (¢/*) and S, (¢/*) arc the PSDs of x[n] and y[n]. respectively.

and z[n] = zfn] + y[n]. then

Sez (%) < 2(Seur () + Sy (). (93)



(V]
~1

where S. : (e/) is the PSD of z[n].

Proof: Let Xy (e/<). Yy (e/4). and Zy; (¢/*) be the M-point Fourier transforis
of z[n]. y[n]. and z[n]. respectively —i.e..

M-1

Xy (f’J*) = Z rnje =", (54)

n=()

and likewise for the Fourier transforms of y[n] and z[n]. The Cauchy-Schwartz

inequality implies that

<t
[
~—

ja+ b <2 (laf* + 15 - (:

where a and b are complex numbers. Therefore. it follows from the linearity of the

Fourier Transform that. for every w.

|Zy (C’j“)l2 <2 (|X,,\, («?j”‘)l2 + Yy (ej*')lg) : (56)
As shown in [14].
Se: (¢/) = lim LE{lZv (cfj*')|2} (57)
o Mox M : )

and likewise for PSDs of «x[n] and y[n]. where E{-} is the expectation operator.
Therefore. (56). (57). and the linearity of the expectation operator imply (53).
[

Therefore. it follows from (53) that if. at some frequency w,. S, (¢/=*) = 0.
and S, , (e/“*) = 0. then S. . (e/**) = 0 because the PSD is always nonnegative.
Thus. the sum of two sequences whose PSDs are zero at some frequency gives
rise to a sequence whose PSD is also zero at that frequency. Additionally. if the
PSDs of z[n] and y[n] are bounded functions—there exists a constant. B such that
Srr (/) < B. and S, (e/“) < B for all w—then (53) implies that the PSD
of z[n] is also a bounded function: S. . (e/) < 4B. Therefore. by mathematical

induction. any linear combination of sequences whose PSDs are zero or bounded at.
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a given frequency give rise to another sequence whose PSD is also zero or bounded.

respectively. at that frequency.
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CHAPTER ACKNOWLEDGMENT
The text of Chapter 1 consists of material that has been submitted for publi-

tion as a Regular Paper in the IEEE Transactions on Circuits and Systems-1I:

Analog and Digital Signal Processing. The dissertation author was the primaryv re-

searcher. [an Galton supervised the research which forms the basis of the chapter.

o

=~

REFERENCES

. L. Hernandez. “A model of mismatch-shaping D/A conversion for linearized
DAC architectures.” IEEEc¢ Trans. on Circuits and Systems—I[: Fundamental
Theory and Applications. vol. 45. no. 10. pp. 1068-1076. Oct. 1998.

R. Schreier. B. Zhang. ~Noise-shaped multi-bit D/A converter emploving unit
elements.” Electronics Letters. vol. 31. no. 20. pp. 1712-1713. Sept. 28. 1995.

M. J. Story. “Digital to analogue converter adapted to select input sources based
on a preselected algorithin once per cycle of a sampling signal.”™ U.S. Patent No.
5.138.317. Aug. 11. 1992.

R. T. Baird. T. S. Fiez. ~Linearity enhancement of multi-bit AY A/D and
D/A converters using data weighted averaging.” IEEE Trans. on Circuits and
Systems II: Analog and Digital Signal Processing. vol. 42. no. 12. pp. 753-762.
Dec. 1995.

R. W. Adams. T. W. Kwan. “Data-directed scrambler for multi-bit noise shaping
D/A couverters.” U.S. Patent No. 5.404.142. Apr. 4. 1995.

I. Galton. “Spectral shapiug of circuit errors in digital-to-analog converters.”
IEEF Trans. on Circuits and Systems II: Analog and Digital Signal Processing.
vol. 44. no. 10. pp. 808-817. Oct. 1997.

K. Vleugels. S. Rabii. B.A. Wooley. "A 2.5 V sigina-delta modulator for broad-
band communications applications.” IEEE Journal of Solid-State Circuits. vol.

36. no. 12. pp. 1887-1899. Dec. 2001.

. J. Welz. I. Galtoun. E. Fogleman. “Simplified logic for first-order and second-order



9.

10.

11.

13.

14

29
mismatch-shaping digital-to-analog converters.” IEEE Transaction on Circuits
and Systems —II: Analog and Digital Signal Processing. vol. 48. no. 11. Nov.
2001.

[. Fujimori. L. Longo. A. Hairapetian. K. Seivama. S. Kosic. J. Cao. S. Chan.
~A 90dB SNR. 2.5 MHz output-rate ADC using cascaded muitibit delta-sigma
modulation at 8x oversampling ratio.” IEEE Journal of Solid-State Circuits.
vol. 35. no. 12. pp. 1820-1828. Dec. 2000.

R. Radke. A. Eshraghi. T. Fiez. “A spurious-free delta-sigma DAC using rotated
data weighted averaging.” Proceedings of the 1999 I[EEE Customn Integrated Cir-
cuits Conference. pp. 125-128. May. 1999.

J. Welz. I. Galton. “The mismatch-noise PSD from a tree-structured DAC in a
second-order delta-sigma modulator with a midscale input.” Proceedings of the
IEEE International Conference on Acoustics. Speech. and Signal Processing.
vol. 4. May 7-11. 2001.

A. Yasuda. H. Tanimoto. T. [lida. “A third-order AYX modulator using second-
order noise-shaping dynamic element matching.” IEEE J. Solid-State Circuits.
vol. 33. no. 12. pp. 1879-1886. Dec. 1998.

E. Fogleman. .J. Welz. [. Galton. “An audio ADC delta-sigma modulator with
100dB SINAD and 102dB DR using a second-order mismatch-shaping DAC.”
IEEFE Journal of Solid State Circuits. vol. 36. no. 3. pp. 339-48. March 2001.

S. Havkin. Adaptive Filter Theory. Prentice Hall. New Jersey. 1996.



Chapter 2

Simplified Logic for First-Order and
Second-Order Mismatch-Shaping
Digital-to-Analog Converters

Jared Welz. lan Galton. Eric Fogleman

Abstract—Mismatch-shaping DACs have become widely used in high-performance
delta-sigma data converters because they facilitate delta-sigma modulators with multi-
bit quantization. Relative to single-bit quantization, multibit quantization significantly
relaxes the analog circuit performance necessary to achieve a given level of data con-
verter precision. but significant digital logic is required to perform the mismatch shap-
ing. In modern VLSI processes optimized for digital circuitry. this tends to be a good
tradeoff in terms of both area and power consumption. It is nonetheless desirable
to minimize the digital complexity as much as possible. Moreover. in delta-sigma
ADCs the mismatch-shaping logic is in the feedback path of the delta-sigina mod-
ulator. so it is essential to maintain a sufficiently small propagation delay through
the mismatch-shaping logic. This paper presents and analyzes several variations of
the switching blocks within a tree-structured mismatch-shaping DAC that result in
the most hardware-efficient first-order and second-order mismatch-shaping DAC im-
plementations yet known to the authors. The variations presented allow designers to
trade off complexity for propagation-delay reduction so as to tailor designs to specific

applications.

[. INTRODUCTION
IN AY data converters. both AY analog-to-digital converters (ADCs) and AY
digital-to-analog converters (DACs). coarse quantization is used in coujunction

30
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with quantization-noise shaping and filtering to achieve high-precision data conver-
sion. In both cases. coarse DACs are required. Unlike the error introduced by the
coarse quantization. the errvor introduced by at least one of the coarse DACs in a
AY. data converter is not attenuated inside the data converter’s signal band. In
switched-capacitor implementations. most of the DAC error arises from static ca-
pacitor mismatches. which give rise to step-size mismatches in the multibit DACs.
The resulting step-size mismatches are memoryvless functions of the DAC's input.
so the DAC can be viewed as an ideal DAC followed by a memoryvless nonlinear
function. The nonlinearity tends to fold out-of-band quantization noise into the

signal band thereby limiting the overall accuracy of the data converter.

To avoid this problem. many AY data converters employ 1-bit quantization.
With 1-bit quantization. the coarse DAC is implemented by a 1-bit DAC. Since a
I-bit DAC only generates two levels. it only has one step. and so it is inherently
lincar. However. with 1-bit quantization in the AY modulator. quantization-noise
shaping must be limited to maintain the AY modulator’s stability. Additionally.
the power of the quantization noise in the 1-bit AY modulator exceeds that of its
input. so AX data converters with 1-bit quantization are extremely sensitive to any
nonlinearity or timing error. such as op-amp slewing or clock jitter. which can fold

this quantization noise into the signal band.

To avoid these problems. multibit mismatch-shaping DACs have been developed
[1]-[52]. In these DACs. digital logic is used to scramble the DAC capacitor or
current-source connections in such a fashion that the error introduced by the device
misinatches. referred to as DAC noisc. is suppressed within the data converter’s
signal band. For lowpass mismatch-shaping DACs. the DAC noise is suppressed near

dc so that its power spectral density (PSD) is shaped like the magnitude response of
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a first-order. or in some cases. second-order highpass filter. The five main classes of
mismatch-shaping DACs include individual-level averaging (ILA) [11]-[12]. vector
feedback [13]-[16]. data-weighted averaging (DWA) [17]-[31]. butterfly shuffler [32]-
[37]. and tree-structured [38]-[44]. The criteria used to compare these DACs include
complexity. propagation delay. spurious-tone avoidance. and the order. or degree.

of DAC noise suppression.

In [40}. a tree-structured mismatch-shaping DAC is introduced that has led to
the most efficient implementations of dithered first- and second-order mismatch-
shaping DACs known to the authors [43]. [44]. Moreover. the first-order tree-
structured DAC is the only one for which dither is known to completely eliminate
spurious tones in its DAC noise [46]. This paper furthers the development of this
DAC by presenting new implementations of its digital logic that are more hard-
ware efficient and have less propagation delay than rthose presented in [40]. The
digital logic is first partitioned into functional blocks. one of which determines the
shape of the DAC noise’s PSD and another that is respousible for the digital logic’s
propagation delay. The hardware for the digital logic is presented through inter-
changeable variations of these functional blocks so that the DAC can be tailored
to meet varving specifications for signal-band DAC noise power. propagation delay.
and complexity. Efficient first and second-order mismatch-shaping logic are pre-
sented and the resulting DAC noise from cach is analvzed to show it has the desired
spectral shape. Additionally. medium-speed and high-speed inmplementations of the

DAC arc presented that offer a tradeoff between propagation delay and complexity.

This paper is divided into six sections. Section II reviews the tree-structured
DAC and presents the functional partitioning of its digital logic. Additionally. this

section presents an example application of a 3-bit. second-order ADC AY modulator
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Figure 2.2: A 33-level mismatch-shaping DAC with switched capacitor DAC elements.

that is used throughout the paper to illustrate the DAC's performance and complex-
ity. Section III presents and analyzes the first-order and second-order mismatch-
shaping logic. while Section IV presents the medium-speed and high-speed imple-
mentations of the DAC. Section V presents a hardware comparison between the
different tree-structured DAC implementations and other mismatch-shaping DACs

presented in literature.

II. THE TREE-STRUCTURED DAC

THE AY. MODULATOR APPLICATION
The 5-bit ADC AX modulator presented in [43] is shown in Figure 2.1. It

consists of two delayed switched-capacitor integrators. a 33-level flash ADC. and
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two 33-level DACs.  As shown in Figures 2.1 and 2.2. each 33-level DAC con-
sists of a bank of 32 DAC elements and a shared digital encoder whose outputs.
yiln] (i=1..... 32). are 1-bit sequences. Each DAC element can be viewed as a
1-bit DAC whose analog output is a charge packet applied to the summing node
of an integrator. A DAC element is said to be “selected high™ when its input is
high: otherwise it is said to be “selected low™. For convenicnce. the output of the
ADC. y[n]. is interpreted as an integer between 0 and 32. For cach ADC output
sample. the digital encoder chooses which y{n] of the DAC elements to select high
and which (32 — y[n]) of the DAC elements to select low. In other words. if y;n]
is interpreted numerically as one when high and zero when low. the DAC encoder

ensures that y[n] = yi[n] + - + yza[n].

Mismatches among the capacitor values of the DAC elements cause the output
of each multibit DAC to be a noulinear function of its input. The resulting noulinear
error is represented. without approximation. as an additive noise source referred to
as DAC noise. As shown in Figure 2.1. an output from one of the DACs is added
to the AY modulator’s input. Thus. the AY modulator does not attenuate any of
the signal-band noise power from this DAC. However. the digital encoder can select
the DAC elements such that most of the DAC noise power resides outside of the

signal band.

To demonstrate the improvements that are realized by mismatch shaping. the
DAC presented in [44] was tested with and without the mismatch shaping. The
input for cach test was a 1.5kHz. -1dB (relative to full scale) sinusoid. With
mismatch shaping. the resultant signal-to-noise-and-distortion ratio (SINAD) was
100dB. whereas without mismatch shaping. the resultant SINAD was 64dB. In

general. the tradeoff for the improved performance is the additional hardware and
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propagation delay incurred by the digital encoder. However. the propagation delay

of the digital encoder ouly affects the design of high-speed AT data counverters.

Examples of commercially available data converters that employ mismatch-shaping

DAGs to a similar advantage are presented in [47]-[52].

THE TREE-STRUCTURED DIGITAL ENCODER

The architecture for a 33-level. tree-structured digital encoder is shown in Figure
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2.3. The nodes of this digital encoder are called switching blocks. Each switching
block is labeled Sy .. where kand rrepresent the switching block’s layer munber and
position within the layer. respectively. Each switching block Si . has a single input.
which is denoted x4 [n]. and two outputs. If cach digital encoder output sequence
yi[n] is also denoted g i[n]. then the switching blocks are intercounected such that
the top output of Sy, is xp_12,—1[n] and the bottom output is rg_y2-[n]. The
switching sequence sy .[n] is defined as the difference between the top and bottom

output sequences of Si :
skrlt] = wp—12r-1n] = reoy20[n]. (1)

Figure 2.4 illustrates the input and output sequences of Sy, along with the rela-
tionship between its switching sequence and output sequences.

As shown in [40]. the DAC noise is a linear combination of the switching se-
quences. In general. for a DAC of the type shown in Figure 2.3 with 2 DAC

elements. the output can be written as

ulnl = vy[n] + 3 + ¢[n]. (2)
where
bk
eln] = Z s (3)
k=1 r=1

and 4. 3. and A, are constants that are functions of the inevitable. static errors
that result from process variations during VLSI circuit fabrication.

Therefore. if the switching sequences are all uncorrelated and share the same
characteristics in their PSDs (e.g.. first-order highpass shaping). the DAC noise also
possesses these characteristics. The problem of shaping the PSD of the DAC noise

reduces to the problem of creating switching sequences with the desired spectral
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shaping. Unfortunately. this problem is complicated by the constraints on the

switching sequence described next.

CONSTRAINTS ON THE SWITCHING SEQUENCE

The switching sequence is generated within the switching block to obtain the de-
sired spectral properties of the DAC noise. However. the switching sequences must
be constrained to satisfv restrictions inherent to the digital encoder. As previously
described. each of the digital encoder’s outputs. y;[n] (7 = 1.....32). is limited to
the set {0.1} and their sum must equal the DAC input: y[n] =y {n]+-- -+ y2[n].
It is shown in [40] that these conditions are met if cach switching block satisfies the
following two-part Number Conservation Rule: the two outputs of each switching
block must be in the range {0. 1. ---.2¥71} where & is the layer number. and their

sum must equal the input to the switching block:
Tpor2r-1[n] + rp—r20[n] = e pn]. (4)
From (1) and (4). the input/output relationships of switching block Si . are

(. [n] = s [n]). (D)

N -

|
Tp—1ar—1{n] = 3(;1:k_,.[1¢] + sgr[n])- and  wp_yar(n] = -

The above expressions are implemented by the block diagram shown in Figure 2.5.
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It can be shown that the number conservation rule is satisfied by each switching
block Si . if

[n] 0. ifxy [n]is even: (6)

S = . .
kor 1. if oy [n] is odd.
This is more restrictive than necessary: however. it significantly simplifies the
switching block’s hardware. In Figure 2.5 this restriction is reflected by the switch-

ing sequence generator’s dependence on the input sequence ry [n].

IMPLEMENTATION OF THE SWITCHING BLOCK

The switching sequence sy .[n] is a ternary sequence. and so it can be represented
as two single-bit sequences. It follows from (6) that the magnitude of the switching
sequence is entirely determined by the input to the switching block. so the switching
block can only control the sign of the switching sequence. To separate the magnitude

and sign of the switching sequence. let o .[n] and g .[n] represent s;. .[n] as

0. ifopp[n]=0:
sprn]=¢ 1. ifop [n]=1 g [n]=1 (7)
I
-1. ifop n) =1 g [n] =0
where
L i aygen] is odd: ,
Ok.rn] = {0. if &y [n] is even. (8)

The sequence g [n] represents the sign of si.(n]. It is chosen by the switching
block to ensure the switching sequence is appropriately shaped as described in
Section III. The oy .[n] sequence is referred to as the parity sequence and represents
the magnitude of sg .[n].

Figure 2.6 displays a convenient functional partitioning of the switching block.
The Parity Logic (PL) determines the parity of the switching block’s input and
generates the parity sequence op .[n]. The Sequencing Logic (SL) produces the
sign sequence g .[n] and is responsible for the spectral shaping of the switching

sequence. The combination of the sequencing logic and parity logic counstitute the
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switching sequence generator shown in Figure 2.5. Given xy {n] and the binary
representation of sg . [n] (i.c.. op [n] and gg . [n]). the role of the Splitting Network
(SN) is to perform the aritlunetic operations shown in Figure 2.5 that generate the

switching block’s two output sequences.

[II. LOWPASS SEQUENCING LOGIC

HIGHPASS SWITCHING SEQUENCES

In lowpass mismatch-shaping DACs. the signal band is near de. so the mismatch-
shaping logic is designed such that most of the DAC noise power resides at higher
frequencies. In other words. in a lowpass mismatch-shaping DAC. the PSD of
the DAC noise resembles the magnitude response of a discrete-time highpass filter.
Sequences of this type are called highpass sequences. Thus. the sequencing logic
blocks in a lowpass tree-structured DAC create highpass switching sequences.

To meaningfully characterize the spectral properties of the highpass switching
sequences. a quantitative definition of an Lth-order highpass switching sequence is
required. In a AY modulator with a quantization-noise transfer function that con-

tains zeros only at dc. the order of the AX modulator corresponds to the nmmber of
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de zeros. Let quantization noise denote the component of the AY modulator out-
put arising from the errors induced by quantization. In an Lth-order lowpass AX
modulator. the quantization noise is commonly called Lth-order highpass noise. A
key property of this highpass noise is that it can be processed by L cascaded accu-
mulators such that the values in the accumulators remain bounded. The L de poles
from the accumulators “cancel” the L de zeros in the noise transfer function. How-
ever. if one more accumulator were cascaded. its output would become unbounded
regardless of the accumulators’ initial values.

[n contrast to the quantization noise. the switching sequence. as a result of its
constraints in (6). cannot be generated by filtering a causal. bounded sequence by
a svstem with L de zeros. So the concept of the switching sequence’s order is vague
without a more applicable definition. By defining the highpass order of a switching
sequence using the accumulator property described above. a transfer function is

associated with this sequence. and the desired properties of its PSD are implied.

Definition: Let oy [n] be the “Lth-sum sequence™ of sy [n]:

L Summations

A

rn—l n—1 "L—l—T
agfn}= "> Y wdngl (9)
ny=0ns=0 ny =0

The sequence s .[n] is an Lth-order highpass switching sequence if its Lth-sum
sequence is a bounded sequence—i.e.. there exists a number K < x such that
|aL[n]| < K for all n—. and its (L + 1)st-sun sequence is an unbounded sequence.

If sg [n] is an Lth-order highpass switching sequence. then it can be shown
that the slope of its PSD is 20L dB/decade near de provided the PSD of ag[n] is
continuous and nonzero in a neighborhood of de. This definition provides a means

to create switching sequences that are Lth-order highpass shaped and couform to



41

(6).

FIRST-ORDER LOWPASS SEQUENCING LOGIC

To produce a switching sequence sy .[n] that is a first-order highpass switching
sequence. the switching block ensures that its partial sum. aq[n]. is a bounded
sequence. Suppose the input to switching block S;. - is always odd and thus. from
(6). sg.r[n] = £1 for all n. One method for ensuring that a;[n] is a bounded sequence
is by choosing sg .[n] to be the alternating sequence: sy [n] = (=1)" = cos (7n).
With this switching sequence. the resulting partial sum sequence is bounded in
magnitude by 1:

n—1

g [n]| = lz serim]| < L. (10)

| m=()

and the resulting switching sequence is a single tone of normalized frequency w =
7. For many applications. it is desirable to have DAC noise and thus switching
sequences that do not contain any tounes.

One way to eliminate tones in this scenario and vet obtain a first-order highpass
switching sequence is to coustruct sg_.[n] by randomly choosing between the follow-
ing two types of symbols: ~1.—-17 and “—1.17. When » is even (i.e.. n = 2m). one
of the two symbols is chosen randomly by a fair coin toss. and the chosen sviubol
is placed in the switching sequence. With this construction. the switching sequence
can be written as s [2m] = 1 and s [2m + 1] = —s,[2m]. The alternating
property—i.e.. si[2m + 1] = —s; . [2m]— ensures that the partial sum sequence
satisfies (10). while the random symbol type selection prevents s .[n] from contain-
ing any periodicities. Thercfore. the resulting switching sequence is a first-order
highpass switching sequence that does not contain tones.

This method of using symbols to construct the switching sequence can be gen-

eralized to include even inputs to the switching block. When the switching block’s
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input is even. it follows from (6) that the switching block has no choice but to force
the switching sequence to be zero. To include potential zero runs in the switching

sequence. the two symbols described above are gencralized to be

1.0.---.0.-1.0.---.0 and -1.0.---.0.1.0.---.0. (11)
L S N e’ N
CUntil next Until next Until next  Until next
odd r; (0] odd oy . [n] odd rg o [n] odd rp 0]

Each symbol begins in the switching sequence with a nonzero value that corresponds
to an odd switching block input. The ounly other nonzero element within a syibol
has the alternate sign of the first element. For a switching sequence sy [n] composed
of these symbols. this alternating property ensures that its partial sum satisfies
(10). which implies that the resulting switching sequence is a first-order highpass
switching sequence. Additionally. by randomly choosing between the two svinbol
types. the resulting switching sequence cannot contain tones.

As an example. consider the following segment of the input sequence to the

switching block Sy ,:
rpen)=....12.2.1.0. 1. 1.2, ..

where the segment starts with the value =17 and ends with the value =27, The

parity sequence o .{n] for this input is
oprnl=....1.0.0.1.0. 1. 1.0....

The parity sequence oy .[n] dictates the magnitude of the switching sequence sy . [n]:
therefore. the zeros in the parity sequence correspond to zeros in the switching
sequence. Given this parity sequence. the symbols ©1.0.0. —1.0" and “—1.1.0" are

used to construct the switching sequence

st = ... 1.0.0.-1.0. 1. 1.0. ...
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Figure 2.7: The first-order lowpass sequencing logic with dither.

The choice of the symbol ~1.0.0. -1.0" over *—1.0.0.1.0" and “—1.1.0" over
"1. —1.0" is arbitrary as any combination of these symbols ensure that |a[n]] < 1.

In this example. the resulting partial sum sequence is
aifn]=....0.1.1.1.0.0. - 1.0. ...

Figure 2.7 displays an example of sequencing logic that generates these symbols
in the switching sequence. This sequencing logic contains two D flip-flops and a 2:1
multiplexer. Additionally. a pseudorandom sequence ri[n] is used to select between
the two symbol types and is generated by logic that is not shown in the figure.

Each symbol type from (11) must be further decomposed into two “halves”
to describe how the sequencing logic in Figure 2.7 generates the desired switching
sequence. The first half of the symbol—i.e.. the first “£1.0.---.07--is called the
head of the symbol. and the second half is called the tail. The four states of the
D flip-flops correspond to the two symbol types in sg . [n] and the two segments.
head and tail. of the svinbol. The bit in the leftmost flip-flop represents the value
of |ay[n]|. Since |ai[n + 1]] = 1 when sg.[n] is an element of a symbol’s head. and
ay[n + 1] = 0 when s; [n] is an element of a symbol's tail. the bit in the leftmost
flip-flop tracks whether sy .[n] is an element of the head or the tail of a symbol. The

rightmost flip-flop contains the g .[n] sequence that dictates the symbol types.
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The symbol types are chosen randomly according to the pseudorandom sequence
ri[n] so that there are no tones in the switching sequence. This pscudorandom
sequence is called the dither sequence. and a switching block that uses a dither
sequence to select its symbols types is called a dithered switching block. Ideally. the
dither sequence is a sequence of bits that are uniformnly distributed and independent.
In this implementation. cach switching block in a given layer shares the same dither
sequence.

Undithered switching blocks may also be utilized to reduce hardware complexity
and potentially decrease signal-band DAC noise power. In an undithered switching
block. the same symbol type is used throughout the switching sequence. and the
sequencing logic can be reduced to a single D flip-flop. The resulting switching
sequence can contain tones that lower the noise floor of its PSD relative to the
dithered case. This reduced noise floor can give rise to less signal-band DAC noise
power. However. the resulting spurious tones in the DAC noise can be prohibitive
for a given application. To optimize this tradeoff. some combination of dithered
and undithered switching blocks may be emploved.

Figure 2.8 displays the PSDs of the DAC noise and quantization noise from

behavioral simulations of the 3-bit AY modulator that was introduced in Section II.
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The units of the PSDs are dB relative to A2, where A is the step size of the ADC.
The capacitor errors in the DAC banks were modeled as independent Gaussian
random variables with standard deviations of 1% of their nominal value. This is
not equivalent to 1% wmatching™ which implies that adjacent capacitors in a given
IC are matched within 1%. The input to the AY modulator was a -1dB (relative to
full-scale). 1.5kHz (= 0.0005 f,) sinusoid. To illustrate the effects of dither. a dither
sequence was applied to selected switching blocks in the simulated AY modulator.
The noise PSDs in Figure 2.8 illustrate how the dither sequences either eliminate
or reduce spurious tones in the DAC noise depending on which switching blocks are
dithered.

The total hardware required for the sequencing logic in a (2% + 1)-level digital
encoder depends on how many switching blocks are dithered. When all switching
blocks are dithered. 2- (‘2" — 1) D flip-flops. 2b — 1 multiplexers. and b pseudorandom
sequences are required. When none of the switching blocks are dithered. 2 — 1 D
flip-flops are required. For the implementation of the AX modulator in [43]. the
multiplexer in the sequencing logic is realized by three NAND gates. and the pscu-
dorandom sequences are constructed using a pseudorandom number generator with
28 D flip-flops and 7 XOR gates. The total hardware required for the sequencing
logic (not including the pscudorandom number generator) in the digital encoder

presented in [43] is 62 D flip-Hops and 93 NAND gates.

SECOND-ORDER LOWPASS SEQUENCING LOGIC

The first-order lowpass sequencing logic generates a first-order highpass switch-
ing sequence regardless of the values in the switching block’s input sequence. How-
ever. the restrictions on sg .[n] given by (6) prevent an analogous claim for the

second-order lowpass sequencing logic. For si .[n] to be a second-order highpass
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switching sequence. the switching block attempts to bound the magnitude of its

double sum sequence afn] by a constant K < x for all n:

n—1 n-—11[-1
lva[n]| = Z(u[l] = Z Z spr[m]]| < K.
=0 i =0 m=0

Because the parity of x .[n] dictates when sg .[n] is zero. the sequence [aa[n]] can
be made arbitrarily large by applying the appropriate r -[n]. For example. suppose
zr[0] = L. and xy [n] = 0 for all n > 0. Given a[0] = a[0] = 0. then jaq[n]] =1
and |az[n]] = n — 1 for all n > 0. However. if o [n] is odd with some regularity
(as is the case when the DAC is used in a AY modulator). a switching sequence
can be constructed whose double sum is a bounded sequence. thereby giving rise to
second-order highpass shaped DAC noise.

One method for creating such a switching sequence is to again use svinbols of
the form in (11). but with the symbol type chosen to minimize the magnitude of
the double sum sequence. as[n]. In this case. the magnitude of «[n] is bounded by
oue. so the switching sequence is at least a first-order highpass switching sequence.
At any time n within a symbol’s head. [ [n + 1]| = 1. and it follows that

wn+2]=an+1lj+an+1]=mn+1]£1. (12)
Thus. a2[n + 1] increments or decrements by one at each sawple time within a
svimbol’s head. However. at any time n within a symbol's tail. cq[n+ 1] = 0 and
asln + 2] = as[n + 1]. It follows that the symbol’s tyvpe and the length of its head
determine the values in ag[n]: if a symbol starts at time n and its head’s length is

N, samples. it can be shown using induction that
as[n + Ny + 1] = cafn] + (£N,) . (13)
where the sign of N, is determined by the symbol type. To minimize the value of

|cea[1e + N, + 1]|. the sign of N, in the above expression should be the opposite of

the sign of aa[n].
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To construct such a switching sequence. each switching block ideally calculates
ag[n] with which it selects between the two symbol types. However. when im-
plemented with finite register sizes. the switching block can only estimate aafn].
This estimate. which is denoted @s[n]. has a maximum M,,,, > 0 and minimum
M,.in < 0 which are determined by the number of states in a finite-state machine.
Therefore. the estimate ds[n| equals aa[n] only as long as aaln] does not exceed the
estimate’s range (i.c.. Mpy,in < asln} < My,r). The switching block uses the sign
of @s[n] to determine the symbol types. To approximate c[n]. the sequence dofn]

saturates when it reaches Mo, or My,
qa[n] + ). if My < dofn] + aq[n] < My
a(n+ 1] =< Mpqr- if aaln] + ayfn] > Myur (1)
Mpin. if aafn] + cqn] < M.
The effect of saturation in the above equation can be represented as an accu-

mulated additive error:

aafn + 1] = dan] + ayn] + g + 1] (13)
where e[n] is called the saturation error. The behavior of the saturation error
determines whether the switching sequence is a second-order highpass switching
sequence. Since aqfn] is constrained to the set {—1.0.1}. it follows that £[n] is also
constrained to this set. Let N = min (M0, [Mpin|). For z[n] to be nonzero. there
must be a run of at least N zeros in the parity sequence oy .[n]. Thus. rg [n] must
be even for N consecutive samples to cause any saturation error. If the switching
block’s input is odd at least once within every N-length segment. the saturation

error is always zero. From (15). it follows that

n-1

qp[n] = g[n] + Z a[j] + <[j]) .

j=0
The sequence as[n] is the partial sum of (u['n]: thus. it follows that

asn] = Z €y (16)

Jj=0
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Figure 2.9: The second-order. lowpass sequencing logic with dither.

Because as[n] is a bounded sequence. as[n] is a bounded sequence if and only if
the partial sum of ¢[n] is a bounded sequence. Therefore. s; .[n] is a second-order
highpass switching sequence if and only if the partial sum of g[n] is a bounded
sequence.

The second-order lowpass sequencing logic is shown in Figure 2.9. The 3-
state accumulator produces —aq[n] and the M-state accumulator produces —aen(n].
Therefore. the sign of the value in the M-state accumulator is used to choose the
svinbol types. However. when the M-state accumulator’s value and hence dfn] is
zero. the dither sequence ri[n] is used to choose the symbol type randomly as a
means of reducing the spurious tones in sy [n]. The 3-state accumulator tracks the
intrasymbol information for the switching sequence: |ag[n + 1]} = 1 when s [n] is
an element of the symbol's head. and «q[n + 1] = 0 when s [n] is an element of
the symbol's tail. When s -[n] is in the head of a symbol. the sign of the 3-state

accumulator’s value is the sign of the tail's first clement.

The following is a more detailed description of cach element in Figure 2.9:

1. 3-State Accumulator: A state machine that implements an accumulator
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restricted to the following three states: {—1.0.1}.
e EN and INC) control the state transitions of the 3-state accumulator as follows:

Il["]- if EN; =0:
11[12+l] = 11[7l]+1. if EN{.INC, = 1: (17)
Ii[n] — 1. otherwise:

where [i[n] is the accumulator’s state at time n. The feedback prevents [j[n]
from incrementing or decrementing bevond its three states.

o MAG, = |I1[n]] is the magnitude of the accumulator.

e SGN; represents the sign of I1[n]:

1. if I, [‘ll.] > ()
SGN; = ¢ 0. if h [n] < 0:
don't care. if I1n] = 0.

2. M-State Accumulator: A state machine that implements a saturating accu-
mulator restricted to the M integers in the set {—[(M - 1) /2]..... (M -1)/2]}.
e EN, and INC, control the state transitions of the Al-state logic as follows:
I[nl. if ENy = 0:
Lin+ 1] =< min(la[n] + 1. Nypar) . if ENa. INCy =1:
max (Ia[n] = 1. Nyyin) . otherwise:
where Ir[n] is the accumulator’s state at time n. Ny, = —[(M = 1) /2] and
Nyar = (M - 1)/2].
e "MAG, > 0" is high when [I3[n]] > 0 and low when [»[n] = 0.
e SGN, represents the sign of Ir[n] aud is analogous to SGN) in the 3-State Ac-
cumulator.

3. Decision Logic: Combinational logic that generates Q and its complement. Q).

as follows:

SGN;. if MAG, = 1:
Q=< SGNy. if MAG; =0. "MAG, > 0" =1: (18)

re[n].  otherwise:
where 7 [n] is a pseudorandomn sequence that approximates a sequence of bits that

are uniformly distributed and independent.
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Figure 2.10: DAC noise from a simulation of an analog AT modulator with the second-order. lowpass
sequencing logic with dither and varyving counter sizes for the M-state logic.

Figure 2.10 displays DAC noise PSDs from behavioral simulations of the 5-bit
AY modulator presented in Section II with the second-order lowpass sequencing
logic. Except for the sequencing logic. all other characreristics of these simulations
were the same as those for the first-order lowpass case described previously. Various
M -state accumulators were implemented with counters of different sizes. For smmaller
values of M. the saturation error contributes more power to the DAC noise. In the
limit when “No Counter” is used (i.e.. when M = 1 and Ix[n] = 0 for all n). the
sequencing logic reduces to the first-order lowpass sequencing logic. When the A -
state accumulator is implemented with a 4-bit counter. the power of the signal-band
DAC noise decreases relative to the “No Counter™ noise. but the saturation error
prevents the DAC noise from being second-order highpass shaped. However. with
the M-state accumulator realized by an 8-bit counter. the DAC noise in Figure 2.10
has the spectral shape of a second-order highpass sequence.

The additional hardware required to implement the second-order sequencing
logic relative to the first-order sequencing logic includes the decision logic. which

can be implemented by two 2:1 multiplexers and an inverter. and the M-state
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accumnulator. If Al = 2% and the AM-state accumulator is implemented with a b,-
bit up/down counter. then SGN3 is the MSB of the counter and "M AGy > 07
can be realized bv an OR gate with a fan-in of (b, — 1)-bits. The second-order
sequencing logic for the implementation of this switching block in [44] uses a 4-bit

counter and requires 25 total gates and fHip-flops.

IV. SPLITTING NETWORK AND PARITY LOGIC

In an ADC AY. modulator as in Figure 2.1. the delay of the feedback DAC must
be small enough so that its output is available well before the next AY modulator
input is clocked in. Therefore. the delay introduced by the switching blocks can limit
the maximum sample-rate of the ADC AX modulator. The sequencing logic blocks
presented in Section III do not contribute to the switching block’s propagation delay
because their outputs can be set before their next input is available. However. the
splitting network and parity logic do cause propagation delay.

If the input to the switching block were a binary encoded number. the splitting
network could be implemented with binary adders as shown iu Figure 2.5. and the
parity logic would require no hardware as the input’s parity bit would be its LSB.
However. the propagation delay introduced by the adders could be significant. In
this section. splitting networks are presented that avoid using conventional adders
by employing alternative coding schemes for the switching blocks™ input and output
sequences. Without conventional adders. these splitting networks tend to introduce
less propagation delay. The two splitting networks in this section constitute the
medium-speed and high-speed switching blocks that offer a tradeoff between com-
plexity and propagation delay. Additionally. efficient implementations of the parity

logic blocks are presented for both switching block types.
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THE MEDIUM-SPEED SWITCHING BLOCK

Figure 2.11 displays the medium-speed switching block. The parity logic con-
sists of an XOR gate and the splitting network cousists of two 2:1 multiplexers. In
this section. the sequence "z .[n]” represents both the input of Sy, and its numer-
ical value: the appropriate representation can be determined by its context. The
switching block employs “extra-LSB encoding™ of its input and output sequences.
Motivated by [39] and detailed in [42]. the extra-LSB code of xy .[n] consists of k + 1
bits that are denoted J:if.)r[n] (¢=0..... k). each of which take on a value of one or

zero. The numerical value of .‘L'k.,-['ll.] is interpreted as
0
xprn] Z" (') Ln] + ! )[ . (19)

Thus. the extra-LSB code contains two LSBs. J( )[n] and x )[ t]. both with unity
weighting. A conventional unsigned binary encoded number can be converted to an
extra-LSB encoded number by appending the Oth bit and setting it low.

With this coding technique. the arithietic performed by the splitting network
only modifies the two LSBs of zy.{n]. As described in Section II. the switching
sequence sy [n] is nonzero only when zi,.[n] is odd. It follows from (19) that
whenever . .[n] is odd. one of its LSBs is one and the other is zero. Thus. the

splitting network adds +1 to xy[n] when only one of its LSBs is high. which
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implies that the carry bit can never propagate beyond the two LSBs. When g [n]
is odd. the splitting network adds oue to x4 [n] by setting both of its LSBs high.
or subtracts one from z .[n] by setting both of its LSBs low. Since the sequences
£ p[n] + spp(n] and @ [n] — s [n] are always even valued. both LSBs of these
sequences are equal. The splitting network performs the divide-by-two operation
by right shifting the kA—1 MSBs of ry .[n] and using one of the LSBs of . . [n]Z sy - [n]
as the second LSB of each output.
The two LSBs of xy [n] determine its parity. The value of ry . [n] is odd ouly
when one of its LSBs is one and the other is zero: otherwise. it is even. Therefore.

the parity logic inplements

opr[n] = JLO: [n] = J;Ir)[n]

~

where 2 represents the XOR operation.

The hardware in each switching block is independent of its location in the
digital encoder: therefore. the (2° + 1)-level digital encoder requires 2 - (2" - 1)
2:1 multiplexers for its splitting networks and 2° — 1 XOR gates for its parity logic.
The efficiency of this implementation increases as the nmunber of bits are increased
because the complexity of each switching block does not depend on the bit width —
t.e.. number of bits —of its input. The medium-speed switching block is used in
the 33-level digital encoder presented in [43] wherein the two multiplexers of each
splitting network are realized by five NAND gates. The splitting networks and
parity logic blocks for this implementation require a total of 186 logic gates. For
the AXADC shown in Figure 2.1. additional hardware is required to convert the
thermometer coded output of the flash ADC to an extra-LSB code.

The delay performance for the digital encoder is determined by the digital en-

coder’s critical path. which is defined as the longest path that an input bit must
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Figure 2.12: The splitting network for a high-speed switching block and the CMOS implementation
of a transmission gate.

traverse in a given clock period to set an output bit. Within the medinm-speed
switching block. the longest path from its input to its outputs consists of an XOR
gate and a 2:1 multiplexer. Therefore. the critical path of the (2" + 1)-level digi-
tal encoder consists of b XOR gates and b 2:1 multiplexers. HSpice 0.5 CMOS
simulations of the 33-level digital encoder presented in [43] showed that this digital
encoder has a delay of approximately 5.7 us. This does not include the propagation

delay of the thermometer-to-binary conversion performed in the AXADC's digital

comnon-mode rejection flash ADC.

THE HIGH-SPEED SWITCHING BLOCK

Figure 2.12 displays an example high-speed switching block whose splitting
network consists entirely of switches implemented by CMOS transmission gates.
In this architecture. the parity logic does not physically reside within the switching
block. The parity sequences are generated by an XOR tree as shown in Figure
2.13. The high-speed switching block employs thermometer encoding of its input

and output sequences. The sequence xy,.[n] is thermometer encoded if it has 2F
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Figure 2.13: The parity logic for the high-speed switching block.

bits (yr}{{)r[n]. i=1..... 2%) that are assigned as follows:
(i) 1. if i <uap,ni: .
rypln] = {0. clse. kel (20)

Thus. with thermmometer encoding.

ok

= ST
rprn] = E rp ).
=1
With thermometer encoding. the splitting network perforins the desired arith-
metic by routing the odd indexed bits of 2 .[n] to one output and the even indexed
bits of a4 .[n] to the other output. or vice versa. depending upon g -{n]. It can be

shown that the numerical values of the sequences that comprise the even indexed

bits and odd indexed bits of xj .[n] are

Zk—l zk_l " |
Z ""(k?.:) [n] = l“+MJ . and Z ‘.,..53;—1)[”] _ l'.l»k_;[ll]“:
=1 - i=1 -

respectively. Because si .[n] is limited to the set {—1.0.1}. it follows that
I rln .
[TJ . if ‘lk.r[“] =

[“—5["11 if g [n] =L

th—tar1[n] =



and
”ﬂ—:,[i].l if qi.[n] = 0:

n| = lﬂf’["lJ if gy, [n] = 1.

Therefore. by routing the input’s even and odd indexed bits to separate outputs

Tp-12r]

based on ¢ [n]. the splitting network realizes the arithmetic in (21) and (22).
Moreover. by preserving the order of these bits. the splitting network ensures its
outputs are thermometer encoded.

Since the splitting network does not rely on oy .[n] to route the bits of xy . [n].
the current sample of oy .[n] can be determined after the outputs of the digital
encoder are set. The parity logic block in this section exploits this flexibility to
minimize its hardware. The number of gates required to directly determine the
parity of a thermometer encoded number is proportional to its bit width. However.
using the XOR tree as shown in Figure 2.13. each parity logic block accounts for
ouly one XOR gate.

The XOR tree is a consequence of the functional relationship between the out-
puts of a switching block and its input. From (4). the values of the output sequences
of a switching block must add to the value of the input. Thus. the parity of ry . [n]

can be determined by the parities of g _; 2, [n] and xp_y o, [n]:
Ok (1] = ok—1.2r—1[1] B 012, [1]. (23)

The outputs of each switching block in laver one are 1-bit sequences. This implies
that xg,r[n] = oyr[n]. By recursively immplementing (23). the XOR tree generates
the parity bits for each switching block.

The hardware counts in the medium-speed and high-speed switching blocks
differ only in their splitting networks. With the high-speed switching block. the

number of transmission gates in the splitting network depends on the bit width
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of the switching block’s input. However. the munber of transmission gates per
layer is independent of the layer number: each bit of a switching block’s input is
processed by two transmission gates--one on and one off —and the total number of
input bits is constant for each layer. Thus. with the high-speed switching block.
the (2% + 1)-level digital encoder requires b- 20! transmission gates for its splitting
networks and 2" — 1 XOR gates for its parity logic. A 33-level implementation of
this digital encoder for the AL ADC shown in Figure 2.1 requires 320 transmission
gates for its splitting network and 31 XOR gates for its parity logic. If the input
to the digital encoder were a binary encoded munber. as in the case of a ALDAC.

a binary-to-thermorneter encoder would also be required to implement this digital

encoder.

The high-speed switchiug block tends to have less propagation delay than the
medium-speed switching block because the parity logic in the high-speed switching
block does not contribute to its delay. As previously mentioned. the sequencing
logic does not require the current sample of og -[n] to produce g [n]. Therefore.
qr.r[n] can be calculated and used to set the transmission gates before y[n| is clocked
into the digital encoder. Additionally. the XOR tree processes the output bits of the
digital encoder and does not contribute to the digital encoder’s critical path. There-
fore. the critical path of the (28 + 1)-level digital encoder. which is experienced by
each of its input bits. consists of b preset transmission gates. HSpice 0.5pm CMOS
simulations of a 33-level digital encoder with high-speed switching blocks showed
that this digital encoder has a delay of approximately 1.1 ns. which is approxi-
mately a 5-times improvement over a 33-level digital encoder with medium-speed
switching blocks. This delay does not include the propagation delay of a binary-

to-thermometer encoder that would be required in a AXDAC. An implementation
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Shuffier*!

93 MUXes
31 XORs
31 DFFs

5-bit T/B encoder

320 T-gates
31 MUXes
31 XORs
31 DFFs
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3-bit T/B encoder
2 3-bit adders
62 XNORs
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160 XORs
80 INVs
80 DFFs

Table 2.1: Estimated hardware requirements for undithered mismatch-shaping DAC encoders for
use within a 5-bit ATADC.
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Data-Weighted Averaging

Med. Speed

High Speed

3-bit Rotationall*®!

3-bit BiDWA®Y

3-bit Butterfly
Shuffler™!

5-bit T/B encoder
155 MUXes
31 XORs
62 DFFs

5 random bits

320 T-gates
93 MUXes
31 XORs
G2 DFFs

5 random bits

3-bit T/B encoder
6x 1024-bit ROM
6 DFFs

I random bit

3-bit T/B encoder
320 T-gates
15 MUXes
2 5-bit adders

10 DFFs

320 T-gates
320 XORs
80 INVs
80 MUXes
160 DFFs

3 random bits

Table 2.2: Estimated hardware requirements for mismatch-shaping DAC encoders with dither or
other harmonic distortion compensation for use within a ATADC of specified size.

that uses the high-speed switching blocks for its minimal delay is presented in {45].

V. HARDWARE COMPARISON FOR VARIOUS MISMATCH-SHAPING DACS

To compare the hardware complexity of the tree-structured mismatch-shaping
DAC encoders presented here to other implementations. Tables 2.1 and 2.2 give
estimated hardware requirements for mismatch-shaping DAC encoders appropriate
for use in a AXADC. When possible. the DAC encoder hardware is estimated
for an implementation in the 3-bit AXADC shown in Figure 2.1. In both tables.
the abbreviations “INV™. "MUX". “XOR". and “"XNOR" stand for inverter. 2:1
The abbreviation ~T-

multiplexer. exclusive-or. and exclusive-nor. respectively.

gate” denotes a two-transistor CMOS transmission gate. and the abbreviation “T /B
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encoder” denotes a thermometer-to-binary encoder. A D flip-flop. denoted “DFF™.
is assumed to have true and complemented outputs available: the D Hip-flop with
enable. shown in Figure 2.7. is implemented using a D flip-flop and a 2:1 multiplexer.

The mismatch-shaping DAC encoders shown in Table 2.1 provide no hardware
to eliminate or reduce spurious tones and the hardware differences are not as pro-
nounced. However. when extra hardware is utilized to combat harmonic distortion.
Table 2.2 shows that both the Bidirectional DWA (BiDWA) and tree-structured
DAC encoders contain the least hardware. The BiDWA DAC encoder requires min-
imal hardware because it depends entirely on the randomness of its input to reduce
tones in its resulting DAC noise. Any dc input to a (2! + 1)-level BIDWA DAC.
besides the trivial inputs of 0 and 2”. causes its DAC noise to be tonal. On the
other hand. the dithered tree-structured DAC has been mathematically proven to
produce no tones in its DAC noise [46]. In the Butterfly Shuffier architecture. it is
assumed that the logic driving the swapper cells is implemented as the sequencing
logic for the tree-structured DAC and only oue random bit is used for each column
in the swapper-cell matrix. For the secoud-order tree-structured DAC. the hard-
ware difference becomes more pronounced as the 5-bit implementation presented in
[44] requires only 988 gates while the 3-bit second-order architecture presented in

[15] requires 3500 gates.

VI. CONCLUSION
This paper has presented various implementations of the tree-structured DAC.
First-order and second-order lowpass sequencing logic have been presented that
provide a tradeoff between DAC-noise power and hardware complexity. High-speed
and medium-speed impleinentations of the splitting network and parity logic have

been presented that offer a tradeoff between the digital encoder’s propagation delay
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and hardware complexity. By appropriately choosing between medium-speed. high-

speed. first-order dithered or non-dithered. or second-order implementations. the

tree-structured DAC can be optimized for hardware complexity. propagation delay.

signal-band DAC-noise power. and DAC-noise harmonic distortion.
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Chapter 3

The PSD of the DAC Noise in the
Dithered First-Order Tree-Structured
Digital-to-Analog Converter

Jared Welz. lan Galton

Abstract—The performance of a multi-bit digital-to-analog converter (DAC) is
usually limited by how closely its analog components can be matched when fabricated.
When a multi-bit DAC is constructed by combining several 1-bit DACs in parallel. the
static mismatches among its 1-bit DACs cause its output to be a nonlinear function of
its input. The resulting error. called DAC noise. limits the DAC’s attainable signal-to-
noise ratio (SNR). Mismatch-shaping DACs mitigate this problem by exploiting built-in
redundancy to suppress most of the DAC noise power in the data signal’s frequency
band. Simulations are usually relied upon to estimate DAC noise power and behavior.
which can be misleading because the DAC noise depends on the DAC input. This paper
presents a mathematical analysis of the DAC noise PSD in the dithered first-order low-
pass tree-structured DAC. This DAC ensures that its DAC noise has a spectral null at
dc by generating digital, dc-free sequences using the same techniques that have been
developed for line codes. The derived expression for the DAC noise PSD depends on
the statistics of these sequences and is used to show various properties of the DAC
noise. Specifically, an attainable bound is derived for the signal-band DAC noise power
that is independent of the DAC input and can be used as an estimate for the DAC

noise power.

I. INTRODUCTION
M ULTI-BIT DAC:s are often constructed by combining several 1-bit DACs in
parallel. The multi-bit DAC input is converted to the 1-bit sequences that

66
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drive these 1-bit DACs. and their outputs are summed to obtain an analog version
of this input. Multi-bit DACs of this type differ in the number and nominal step

sizes of the 1-bit DACs and how the 1-bit DAC inputs are generated.

The key problemn with these multi-bit DACs results from the static mismatches
among the 1-bit DACs. which are inevitable in their fabrication in today’s VLSI
technology. Ideally. the multi-bit DAC output is a scaled version of the input: how-
ever. these mismatches cause the output to be a memoryless. nonlinear function of
the input. The error resulting from this nounlinear function is modeled as an addi-
tive noise source called DAC noise. The DAC noise limits the effective resolution
of these DACs and can contain spurious tones. Both of these syniptoms prohibit

the use of this DAC in many applications.

A popular method for mitigating this problem is to suppress the DAC noise
in some frequency band. called the signal band. that encompasses the data sig-
nal’s spectrum so that most of the out-of-band DAC noise power can be removed
by frequency-selective filters. DACs that use this technique are called mismatch-
shaping or dynamic element matching DACs [1]-[6]. Each mismatch-shaping DAC
employs redundant 1-bit DACs so that. for most values of the mismatch-shaping
DAC input. there are several ways to select which 1-bit DAC inputs are high and
which are low. This freedom of choice is exploited to modulate the DAC noise
so that most of its power resides outside of the signal band. These DACs have
facilitated multi-bit AY modulation [7]-[9] for data conversion and consequently
are enabling components in most of today’'s high-performance AY data converters

[10]-[16].

To date. most of the DAC noise theoretical analyses have been limited to show-

ing that the DAC noise PSD vanishes at some frequency. Most other analyses.
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like that for the spurious toues in the DAC noise. have been based on simulations.
which can be misleading. Moreover. the values of the signal-band DAC noise power
have been estimated using simplified models that assume the DAC noise is inde-
pendent of the DAC input. which is never true. Moreover. the DAC noise in many

implementations is correlated to the DAC input and contains spurious tones.

This paper presents a theoretical analysis of the DAC noise in two versions
of the dithered first-order low-pass tree-structured DAC [6]. {15]-[19]. The DAC
noise in this DAC is a linear combination of digital sequences. called switching
sequences. that are generated within the DAC. In the analyvsis of both versions
of this DAC. expressions for the DAC noise PSDs are derived as functions of the
switching sequence statistics and 1-bit DAC mismatches. These PSD expressions
are used to produce a bound of the signal-band DAC noise power for cach version of
the DAC. Each bound is independent of the multi-bit DAC input and can be used
as a worst-case estimate in the design of data converters that employv these DACs.
Moreover. cach bound is shown to be tight as there is a DAC implementation and

input that achieve it.

This paper is divided into four sections and an appendix. Section [T reviews
the operation of the dithered first-order low-pass tree-structured DACs. This sec-
tion shows how line coding techniques are used to ensure that the DAC noise PSD
has a spectral null at de. Section III presents and discusses the expressions for
the switching sequence PSD and signal band power. Section IV presents and dis-
cusses the DAC noise signal-band power bound for the two tree-structured DAC
implementations. The Appendix presents the majority of mathematics that form
the basis of this paper including the DAC noise PSD expressions for both DAC

implementations.
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Figure 3.1: A 9-level tree-structured DAC.

[I. THE TREE-STRUCTURED DAC
An example 9-level tree-structured DAC is shown in Figure 3.1. In general. the
(2b + 1)-level tree-structured DAC. where b is a positive integer. cousists of a bank

of 2! 1-bit DACs and a digital encoder. The output of the i-th 1-bit DAC is given

by

2L+ ep,. i xi[n] is high:

POEEEEN (1)

+ep,. if xifn] is low:

where Ap is the nominal smallest step size of the tree-structured DAC. and ¢y,
and ¢, are the 1-bit DAC's high and low errors. respectively. The 1-bit DAC errors
result from inevitable inaccuracies in the fabrication of the 1-bit DACs and are
taken to be arbitrary constants. The digital encoder consists of b layers of switching

blocks. labeled Sy .. where k= 1..... b is the layer number. and r = 1..... b=k

T
the depth within the layer. The switching blocks are described in more detail later

in this section. The input to the digital encoder. y[n]. is a sequence whose range is
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{—2”_l ..... 2h—1 }. Typically. y[n] consists of a noise component whose power can be

spread across all frequencies and a data signal whose power is confined to the radial

frequencies in the interval (—7n/OSR.x/OSR). where OSR is the oversampling

ratio. The digital encoder outputs. x;[n] for ¢ = 1.. ... 2k, are 1-bit sequences whose

values are taken to be -1/2 at sample times when low and 1/2 at sample times when
high.

[deally. the DAC output is a scaled version of the DAC input: z[n] = Apy[n].

To ensure that the DAC approaches this ideal behavior when the 1-bit DAC errors

approach zero. the digital encoder outputs must satisfy the following:
rin] + ...+ e fn] = ylnl. (2)

This holds for any multi-bit DAC that is constructed by combining 2" 1-bit DACs
of the same nominal step size with a digital encoder as shown in Figure 3.1. For
each value of y[n] except £2%=1. there are several possible ways to choose which
digital encoder outputs are bigh and which are low under the constraint that (2)
is satisfied. For example. if y[n] = 0. (2) is satisfied when the number of digital
encoder outputs that are high equals the number of outputs that are low. This
inherent. redundancy is exploited by the mismatch-shaping DAC to manipulate its
DAC noise. In the tree-structured DAC. the processing of the switching blocks. as
described next. makes this relationship hetween the choices of digital encoder and
the DAC noise manifest.

Let . -[n] denote the input to Sy .. With x;[n] also denoted xg[n]. the switch-
ing blocks are interconnected so that top and bottomn outputs of Si. . are . _y 9,1 1]
and xg_j 2.[n]. respectively. To ensure that (2) is satisfied and that a;{n] = £1/2.
it is sufficient. as proven in {6]. that cach switching block satisfies the following

two-part Number Conservation Rule: the two outputs of cach switching block must
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Figure 3.2: The signal processing performed by the switching block.

. 9 k=9 . .
be in the range {—28-2. .. 2k=2} where k is the layer munber. and their sum must

equal the input to the switching block:
Tper2r—1[0] + Tp—p2r[n] = zp 0] (3)

This rule is satisfied using the switching block architecture shown in Figure 3.2.
which consists of a swilching sequence generator. an adder. a subtracter. and two

divide-bv-two elements. Figure 3.2 indicates that
o te ]

-l'k—l.Qr—l["] = (J'k.r[”] + Sk.r["]) . ()

ol—

and
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(wk.r[n] = skr[n]) . (

o] —

riepar[n] =
where sy [n] is called the switching sequence. To motivate the description of the
switching sequence generator. the relationship between the switching sequences and
the DAC noise is shown next.

As proven in [6]. the DAC output can be written as
z[n] = ayn] + 3 + ¢[n]. (6)

where y[n] is the DAC input. «a and /3 are constants that are functions of the 1-bit
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DAC errors. and e{n]. called the DAC noise. is given by

b ah—k

e[n] = Z Z A rskrln]. (7)

k=1 r=1

\l

where
(r—1)2k 4251

1
Mr=5p > lew—e)=ten_y —er_y )l (8)

i=(r—1)2k+1

Thus. the DAC noise is a linear combination of the switching sequences. The
different possible values of the switching sequences represent the different choices
for how the digital encoder sclects its output values so that (2) is satisfied. As
shown next. the switching sequence generators choose their switching sequences to
manipulate the behavior of the DAC noise.

In the dithered. first-order low-pass tree-structured DAC. the switching se-
quence generator in Sk, selects its switching sequence under the following con-
straints:

1. It satisfies the following:

s ) EL ifopgn]=1: ;
skr[n] = {0. if og-[n] = 0: ()
where o [n]. called the parity sequence of Sy . is 1 when oy [n] + 2871 is odd
| /| . rl

and 0 otherwise:

o

[t is a de-free sequence:

3. It contains no tones for any choice of the switching block input.

Condition I ensures that the switching block satisfies the range requirement of the
Number Conservation Rule. while Conditions 2 and 3 ensure that the DAC noise
PSD has both of these “desired™ properties. With these constraints. the switching
sequence can be viewed as a pseudoternary code for its respective parity sequence.

Since the switching sequence generator is a finite-state machine. it follows from [20]
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that if the parity sequence cousists of independent and identically distributed (i.i.d.)
bits. then sy .[n] is a de-free sequence if and ouly if its running digital sum. given
by
m

RDSi(m) = sicr[n]. (10)

n=()

takes on only a finite numnber of values for all . However. the parity sequence is not
necessarily a sequence of i.i.d. bits. but. as shown in the Appendix. this necessary
and sufficient condition holds in general.

A common line code that satisfies the first two constraints is the bipolar code
[21] (where oy [n] represents the data and sg.[n] is the code). With this code.
the nonzero switching sequence values always alternate between 1 and -1: thus.
RDS;. .(m) takes on only two values. The undithered switching block presented
in [17] generates this switching sequence. However. if og.[n] = 1 for all n. then
sir[n] = sin(wn). which hmplies that the bipolar code does not satisfy the third
constraint.

To satisfy all three conditions. the switching sequence is coustructed by con-

catenating two tvpes of symbols:

Type 1: 1.0.---.0.-1.0.---.0: (11)
| N e’
Cutil next Until next
op r[n]=1 op.rlnj=1
and
Type 2: —1.0.---.0.1.0.---.0: (12)
N s e, e’

Until next  Until next
o [n]=1 og.r[n]=1

the choice of which is made randowmly by an approximated fair coin toss. Using
such symbols to generate s .[n] ensures that RDSy. () € {—1.0.1}: thus. s . [n]

has a spectral null at dc.



Figure 3.3: The FSTD for the switching sequence code where the state corresponds to the value of
RDS, .(m).

Figure 3.3 shows the finite state transition diagram (FSTD) for the switching
sequence generator where the states correspond to the values of RDSy. .(m) and the
edge labels are the outputs that occur with the associated changes of state. The
state of the switching sequence generator changes only at sample times when the
parity sequence is 1. Moreover. it transitions from 0 to 1 at sample times when
a Type 1 svinbol begins in the switching sequence. and it transitions from 0 to
-1 at sample times when a Type 2 svimbol begins in the switching sequence: the
choice of which. as previously described. is random. Example implementations of
this switching sequence generator using 2 D flip-flops are presented iu [15] and [17].

If a svmbol starts at the “present”™ sample time ng. the random syvmbol type
selection implies that. regardless of the parity sequence. op . [n]. the present and

future samples of the switching sequence are uncorrelated from the past samples:
E{sk.r[m) ~ Usgr[no + mj} = 0. (13)

for all m > 0 and [ > 0. Since every other nonzero sample of s; .[n] is the start
of a new symbol. this implies that the switching sequence does not contain tones
regardless of its respective parity sequence.

The choice of the symbol type in s .[n] is made randomly with the 1-bit dither
sequence dy. [n]. The dither sequence approximates a sequence of uniformly dis-

tributed. i.i.d. bits whose values are taken to be 1/2 at sample times when high
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and -1/2 at sample times when low. [f a symbol starts at sample time ng. then
that symbol is a Tvpe 1 svmbol if dg  [ng] = 1/2. and it is a Type 2 symbol if
di.r[no] = —1/2. For (13) to hold. it is sufficient that d. .[n] be independent of
xp.r[n]. Therefore. each switching block in the same layer k can share the same
dither sequence—i.e.. di .[n] = di[n] for each layer k. Implementations utilizing
this dithering scheme require ouly b dither sequences. which are realized by pseu-
dorandom sequence generators as demonstrated in [15]. As shown in Section IV, a
much tighter DAC noise power bound is obtained when an independent dither se-
quence is employed by each switching block: however. this implementation requires

2b — 1 dither sequences.

III. SWITCHING SEQUENCE SPECTRUM

As reviewed in the previous section. the DAC noise in the tree-structured DAC
is a linear combination of the switching sequences. Thus. the DAC noise PSD is a
function of the switching sequence PSDs and cross spectra. This section presents
and discusses an expression for the switching sequence PSD and signal-band power.
The switching sequence cross spectrum is addressed in the Appendix. First. some
intuition behind the switching sequence PSD and its derivation is provided along
with some required terminology.

The dependence of the switching sequence on the parity sequence in (9) prevents
a conventional analysis of its PSD. If o .[n] were a sequence of i.i.d. bits. then sg .[n]
could be written as a function of the Markov chain RDS). - (1). and techniques such
as those presented in [22] could be used to analyze the PSD. If o, .[n] were periodic.
then si .[1] would be a cyclostationary sequence. and its PSD could be determined
by the commonly known techniques (e.g.. see [23]) that were introduced in [24].

However. in general. oy .[n] is neither periodic nor a sequence of i.i.d. bits. so a new



technique must be developed to determine the PSD of sg .[n].

The technique presented in this paper relies on the randomness in the svibol
type selection. As a cousequence of this randomness. samples of sg . [n] that are
in different symbols are orthogonal —i.e.. if ng and n); are sample times such that

sk.r(no] and sg-[11] are in different svmbols. then
E{Sk.,.['ll()].s'k‘r[ll,[]} =0. (14)

Therefore. the PSD of s; . [n] depends only on the correlation between samples of
si.r[n] that are within the same symbol. These intrasymbol correlation statistics
are conveniently described using the terminology presented next.

Let the symbols described in (11) and (12) be divided into two “halves™ where
the first £1.0..... 0 segment is called the head of the symbol. and the second such
segment is called the tail of the svimbol. The head length of a svinbol is defined to
be the number of samnpies of sy [n] that constitute the head of that symbol. Let the
head-length process. Hy .. be the random process that represents the head lengths
of svmbols in s [n]: thus. Hy [m] is the number of samples in the head of the m-th
svinbol in s .[n]. The definitions of tail length and the tail-length process. T .. are

analogous to those for the head length and head-length process. respectively.

Theorem 1: The PSD of s; .[n] is
Si.r ((éj") = 20£.FE{siu") (ii—h——z'—['ﬂ) } (15)

where o} = E{s} [n]}. and the signal-band power of sy .[n] is

nz.rE{l — sinc (%}%"J) }

OSR (16)

Pi.. (OSR) =

where sinc () = sin (7)) / (7x).
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Figure 3.4: The function 1 - sinc (r).

Proof: Presented in the Appendix.
.

Some properties of the above switching sequence PSD can be discerned even
though it depends on the switching sequence head-length statistics and variance. For
example. it is shown next that this P'SD has a continuous derivative. which implies
that the switching sequence canuot contain tones. Let oy, (w) = E {cj“"H"-f["‘l}.
which implies that Re{og,  (w)} = E{cos (wHi[m])}. where Re{-} is the real-

part opcrator. Therefore. the switching sequence can be written as
'“; 2 -
Skr () = of, (1 - Re{mH‘_'r (w)}) . (17)

Provided E{Hkir[m]} < x. then ¢, (w) has a continuous derivative [25] as it is
the characteristic function of Hy .[in]. Therefore. it follows from (17) that Si . (/=)
also has this property in this case. However. if E{Hk.,[m]} = x. then rrf_r =0 and
thus S;. . (ef'“") = 0 because. as proven in Lemma Al in the Appendix.

2
= E{Hi [m]} + E{T; [m]}

(18)

2
(Tk

Therefore. Si., (/) has a continuous derivative in this case too. By the same

reasoning. the real part of the cross spectrum of two switching sequences. as given
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Figure 3.5: The a) PSD and b) signal-band power of s, . [n] given its input parity sequence is an
i.i.d. Bernoulli sequence with p = P (o, Jn] =1).

in Theorem Al in the Appendix. also has a continuous derivative. This implies that
the DAC noise PSD also has this property and thus contains no spurious tones

Properties of the switching sequence signal-band power can also be derived using
(16). Shown in Figure 3.4 is a portion of the function that is the argument of the
expectation operator in (16). This figure suggests the desired property that the
switching sequence power. and thus the DAC noise power. can be made arbitrarily
small by increasing the oversampling ratio. Additionally. for a fixed OSR. (16)
and (18) imply that the signal-band switching sequence power can be decreased by
sufficiently decreasing or increasing. respectively. the head lengths of svinbols in
si.r[n]. This suggests that. as proven in the next section. there is an upper bound
for the switching sequence signal-band power.

Consider the following simplified scenario. Let og.[n] be a sequence of i.i.d.
Bernoulli trials with p = P (o [n] =1). and ¢ = P (0g,[n] =0) = 1 —p. The

desired switching sequence statistics are then

ai, =P (o [n]=1)=p. (19)
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and
P (Hi, [m]=h) = " p. (20)
Substituting (19) and (20) into (15) gives the following switching sequence PSD:

2 (1 + q) sin® (w/2)
P2+ dgsin® (w/2)

Ser (e) = (21)

Figure 3.5a shows the switching sequence PSD given above for varving values of
p. Additionally. Figure 3.5b shows the switching sequence signal-band power for
varying values of p and OSR. Figure 3.5b shows that that. for this simplified parity
sequence. the signal-band power of the switching sequence is bounded as a4 function

of OSR. As shown in the next section. this is true in general.

IV. DAC NOISE POWER BOUND
A key part of the proof of the DAC noise power bound is the derivation of the

switching sequence power bound. which is provided next.

Theorem 2: The signal-band power of 54 .[n] is bounded as follows:

9

= OSR(OSR + 1)

P, (OSR)

and the bound is achieved if and only if Hy [mm] = OSR and Ty . [mm] = 1 almost

surely (a.s.) (i.e.. with probability one).

Proof: Since the tail length of every symbol is at least 1 sample. it follows from

(18) that

5 2
or . < . 23
hor = E{H; [m]} +1 (23)
Additionally. for any positive integer H. Lemma A2 in the Appendix provides
H H+1
1 — sinc < ) 9
S (()SR) = OSR+1 20
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where equality is obtained if and only if H = OS. Substituting (23) and (24) into
(16) proves (22). and equality is obtained if and ouly if P (Hy  [im] = OSR) and
P (Ty..[m] = 1) are both 1.

.

Because the DAC noise is a linear combination of the switching sequences as
shown in (7). Theorem 2 implies that a DAC noise power bound could be obtained
as a function of the oversampling ratio and the switching sequence coefficients (g
for all & and r). However. in practical circuits. the values of these coefficients are
not known. and the DAC noise power is typically estimated as a function of the
oversampling ratio and matching statistics of the 1-bit DACs. Thus. to obtain
a more useful result. the DAC noise power bounds presented in this paper are
functions of the matching of the I-bit DACs and not the Ay . coefficients. Before
the bounds are presented. some additional definitions are required concerning the
matching characteristics of the 1-bit DACs.

Denote ¢;,, — ¢, as the step-size error of the i-th 1-bit DAC. Let the relative
step-size error of the ¢-th 1-bit DAC be defined as

2’:

. 1 .
% = (en, — ) = 55 Z((’-h, —ep ). (

=1

[N
ot
)

Thus. 4; is the difference between the step size of the i-th 1-bit DAC. A;. and the
. R b .
sample average of all the 1-bit DACs. Ap = )—1, ZFI Aj. Let the sample variance

of the step-size errors be denoted

I\.a

III

\'lv

%Z 5 (26)

As shown next. the DAC noise PSD is bounded by a function of the oversampling

ratio and the sample variance given above.
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Theorem 3: If a dither sequence is shared by all the switching blocks in each layer.
the DAC noise power is bounded as follows:

h =2
4" a3

2-OSR(OSR+1)

Dosr < (27)

-2 . . . . . . e, .
and when a5 # 0. this bound is achieved if and ouly if the following two conditions

hold:

1. Hy,[m]=O0SR and Ty [m] =1 as. for each r € {1..... 20-1:

2. There exists a constant o such that & o1 = 0 and daj = —4 for each J €
{1..... 2b=1},

Moreover. if a unique dither sequence is used in each switching block. then the DAC
noise power is bounded as follows:

b 22
2" 5

Docp < .
OSR = OSR(OSR+ 1)

(28)

- . . . . . -, .
and when &5 # 0. the bound is achieved if and only if or the first condition from
the previous case holds and the second condition is relaxed to be the following:

2. d2j1 = —dqj for each j € {1..... 2b=11,

Proof: Presented in the Appendix.
]

Theorem 3 implies that. for either dithering scenario. the DAC noise power
bound is achieved if the relative mismatch errors satisfv Condition 2. the state of
the switching sequence generators in layer one are reset to (0 at sample time n = 0.

and the DAC input is given by

0. if n mod (OSR+1)=0. OSR:
ynl = Jp- : (29)
2°7%.  otherwise.
In this scenario. Hy [m] = OSR and T\ [m] = 1 for each r = 1..... 26=1 and all

m > 0. which satisfies Condition 1 in the theorem.
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The DAC noise power bound is larger in the case where a dither sequence is
shared by switching blocks in the same layer because the switching sequences can be
correlated in this case. If a symbol starts in sy [n] and sg ., [n] (11 # r2) at the same
sample time. then the type of each symbol is chosen by the same dither sequence
because dy ., [n] = dy ,[n] = di[n]. Therefore. these svinbols are the same type. and
this event gives rise to corrclation between the two switching sequences. Although
correlation between switching sequences can increase or decrease the DAC noise
power. it increases the DAC noise power bound. By using an independent dither
sequence in each switching block. a smaller DAC noise power bound is obtained at

the cost of additional hardware.

Theorem 3 can be used to discern a guideline concerning the circuit layout of the
tree-structured DAC. To achieve either power bound. dy;_y = —dy; for j =1..... b.
Thercfore. to minimize either bound. the DAC should be layed out to optimize
the matching between the (25 — 1)-st and (27)-th 1-bit DACs. Typically. this is
achieved by placing these 1-bit DACs as close as possible to each other or. if possible.
interlacing the components of these 1-bit DACs on the integrated circuit. This
guideline is in conflict to the often-used practice of the common centroid lavout

where the goal is to optimize matching amongst all the 1-bit DACs.

The DAC noise power bound can be used for noise budgeting in the design of
circuits. such as AY data converters. that employ the first-order tree-structured
DAC. The worst-case matching among 1-bit DACs is often characterized by the
maximum or “3¢° relative mismatch error. This maximum error is typically given as
a percent. denoted here as 100£%. of the sample average of the step sizes. Ap. This

implies that |§;] < EAp = €A p. which. with (26). leads to 65 < EAp. Substituting
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Figure 3.6: DAC noise power bound relative to A%, as a function percent mismatch and oversampling
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ratio with a unique dither sequence used in a) each switching block and b) each laver.

this inequality into (27) and (28) gives

[V

b c
Dosn o £ : (30)
D 2 \ JOSR(OSR +1)
and y
. 2
D();s*n <o § (31)
Ap VOSR(OSR + 1)

respectively. These upper bounds are shown as functions of £/\JOSR(OSR + 1)
for b = 3.4.5 in Figure 3.6. Thus. the size of the tree-structured DAC (i.e.. b). the
oversampling ratio. the worst-case matching percent. and the dithering scheme can
be chosen using (30) and (31) to ensure the DAC noise power is less than the value

budgeted to it in a given application.

V. CONCLUSION
Expressions for the switching sequence spectrum and signal-band power in the
dithered first-order low-pass tree-structured DAC have been derived. These expres-
sions have been used to obtain an attainable bound on the signal-band DAC noise
power for both versions of this DAC. Necessary and sufficient conditions have been

given for the bound to be achieved in cach case. Additionally. it has been shown
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that by using an independent dither sequence in each switching block as opposed
to cach layer. the DAC noise power bound is smaller and achieved under less strin-
gent conditions on the mismatch errors. Therefore. this dithering scheme is better
suited in applications where the bound is used as an estimate for the DAC noise
power. It has also been shown that. regardless of the dither scheme. the switching
sequence PSD has a continuous derivative. which implies that the DAC noise in

both implementations is void of spurious toues.

APPENDIX
The following material provides most of the mathematics to support the theory
that is presented in this paper. It is tacitly assumed throughout that all spectral

densities considered exist and all sequences are ergodic.

Proposition: Suppose 1) that sln] is the output of a finite sequential state machine
driven by an input sequence which takes on a finite number of values for all n. and

2) that s[n] has a PSD. Then. s{n] has a spectral null at de if and only if its its

n

neq [n]. takes on a finite number of values for

running digital sum. RDS(m) = )_

all m.

Proof: First. suppose that RDS(m) takes on a finite number of values for all m.
This implies RDS(m) is a bounded sequence: i.e.. there exists a constant B such
that |[RDS(m)| < B for all in. Therefore. Lemma 1 in [26]. which is a generalization
of Lemma 1 in {27] (the proof in this lemuna does not require that the underlying
probability measure be a Markov measure) proves that s{n] has a spectral null at
dc. This proof is repeated next because [26] is currently not published. The PSD
of s[n] is given by

) 1 oy (2 .
S () = Jm EB{|Su ()|}, (32)
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where E{-} is the expectation operator. and Sy (e/~) is the M-point Fourier trans-

form of s[n]:

M-1
Sy (e¥) = Z s{nje™*". (33)
n=()
Evaluating the PSD at w = 0 gives
| M-1 2
Y = fim — s . :
S (") = fim 37EY |2 0 (34

However. since RDS(m) takes on a finite number of values for all m. there exists a

constant B such that [RDS(m)| < B for all m. This and (34) indicates

2

' (e < | — =0. .
S(e )‘\}"-& M 0 (

o
[ ]
~

Because S (e/~) is nonnegative for all . (35) implies that S (¢/") = 0.
Suppose s[n] has a spectral null at de. Let z, represent the stale of the finite-
state sequential machine at time n. If the machine input is an i.i.d. sequence. then

it follows from [20} that there exists a complex-valued function o(-) such that
3["‘] = d(zp+1) — ¢(zn). (36)

However. the machine input. ofn]. is not necessarily an i.i.d. sequence. Regardless.
any sequence o[n] can be a sample path of an i.i.d. sequence. so (36) must hold in
general. Therefore. RDS(m) = &(z,,41) — ®(z9). which implies that RDS(m) can
take on only a finite number of values for all .

]

Notation and Definitions: Given the layer number k. let s, [n] = si[n] and
Sk.ra[1] = s2[n]. Two symbols iu the switching sequences s)[n} are s3[n] are called
joint symbols if they start at the same sample time. Let H([m] and Ha[m] represent
the head lengths of the m-th symbols in s;[n] and sa[n]. respectively. Let H;[m] and

Hs[m] be the head lengths of the m-th joint svinbols in sy [n] and sa[n]. respectively.
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Theorem Al. Switching Sequence Cross Spectrum: Given s;[n] and sa[n]
cmploy the same dither sequence. the real part of the cross spectrum of sy[n] and

sa(n] is given by

S.\n.s-_y ((,J.‘.) = 010 /—I)lmE{SiHQ(&-‘_HZIZ[ﬂ[) + %lnz(“-'—’{—';[ﬂd) _ SinQ<-ﬁ(Hl[m]2—H~_»[m])) }
T

(37)
where o) and a3 are the standard deviations of sj[n| and safn]. respectively. and p;

and po are the probabilities that symbols in sy[n] and sa2(n}. respectively. are joint.

Proof: For A = 1.2. let w ;[n] be a window sequence that equals one when sy[n] is
an element of the i-th joint symbol and zero otherwise. Additionally. let wy y[n] =

1 =3, wyi[n]. Therefore. each switching sequence can he written as
x

sa[n] = Z wy i[nlsa[n]. (38)
=0

For i # l. wy[n]si[n] and waq [n]ss[n] are orthogonal because the signs of the
nonzero values in cach sequence are determined by independent. uniform dither
sequences. By the same reasoning. wy[n]si[n] is orthogonal of ws[n]ss[n] for
every [. and wy jsi[n] is orthogonal of wsgy[n]s2[n] for every i. In other words.
Ef{wl.,-[n]sl[n]'wg_l[m]sg[m]} = 0. (39)
for any n. m. when either ¢ or [ is zero. or i # [. where E.{-} is the conditional
expectation operator given the switching block inputs (i.e.. E {-} only averages
over the possible symbol type choices).
The cross spectrum is derived below by taking the expected value of a time-
averaged estimate. Let N; and Ny be the number of samples of si[n] and sa[n].
respectively. that include the first N joint symbols. Let N, = maa:{Nl. N_)} The

time-averaged cross spectruin estimate can be written as
.’\.s—l ‘\'s—l

Py (e.iw') = — Z sl[n]e‘j“’" Z sg['m]ej“"'" . (40)

n=( m=0
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Since only N joint symbols are included in this spectrumn estimate. it follows that

AYES Y Ny-1 N
Py ((J“' = Z Zw[, [n]sq[n]e=d«" Z Z'117-3.[[‘Ill]h’-z['lll](."l"'"" . (41)
n=0 =0 m=0 [=()

Let Sy (e ) = E-{Px (e )}. which. upon rearranging the sums in (41). can

be written as

NON,-1 NON,-d

Sx (ef) = ,\(l E, Z Z wy i[n]s [n)e <" Z Z wy g[m]sa[m]ed<™

o i=0 n=0 =0 m=0

(42)
From (39). the cross terms. with respect to window indices. in the above expectation
are all zero (i.e.. the terms where i # [). Moreover. any term in (42) that includes

an index of ¢ = 0 or [ =0 is also zero. Therefore. (42) can be simplified to

1 AY No-1 Ni—1 .
Sx (e/) = N ZEr Z wy i[n]si[n)e=<n Z wy ;[m]sam]ed="
N =1 n=( m=0

(43)

Let N[i] denote the sample time of the start of the i-th joint svmbol (i < N).
and d[i] be the dither sequence sample that chooses the symbol type of the i-th joint
symbol. The sequences wy ;[n]si[n] and wa [m]sy[m] (for i. j > 0) are nonzero for

only two samples (i.e.. the first element of the head and tail of the svinbol). and so

N1 o
Z wy i[n]s)[nle =" = Qd[i]v-j“‘\'['-] (1 — e [']) . (44)
n=(
and
No-1 _ o o
Z wa ;[msa[m]et<™ = 2([[1,'](’,“‘\ U (1 - (JJ‘“'H'-'[’]) . (45)
m=(}

Substituting (44) and (45) into (43). gives

Sy (@) = — z\:E {4d2[z’] (1= emifll) (4 —(ej*'H'l[i])}. (46)
Y=l

However. 4d?[i] = 1 for cach i. which implies that there is no randomness with

respect to the dither sequence in the above argument of the expectation operator:
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thus.

S\ (’J"' =

Y (1 — i) () - el (47)

....
IIM/
—

Let Sy (e/~) be the real part of Sy (e/~): it follows from the linearity of the real

part operator that

AY . R
Sy (e/*) = Ni Zsiu2 (i}[.l) + sin” (i_;[d) — sin? (“‘————'( “2 ll”) . (48)

Let Np and Ny be the total munber of symbols in si[n] and s2[m] up to and
including the Nth joint symbol. Because a switching sequence is nonzero (£1) only

twice within a symbol. the time-averaged estimate of the variance of si[n] and sy[n]

is )
N -1 -
Ty = ;'VS Z Sl['ll] = .Tr: (49)
n=()
and )
Na—1 -
-2 __ 1 — -)l' QJV_) -
Ty = "\('s 2:0 So |1 ] .N,” . (30)
n=

respectively. Additionally. after N joint symbols. the fraction of symbols in si[n]

and s»[n] that are joint is given by

N
N = —. 51
3 N, (51)
and
N
M= (52)
i¥9

respectively. Thus. (49). (50). (51). and (52) is substituted into (48) to give

al . e 0 £y -
Sx (e7%) = 5162V/p1in l 251112 (i[—l) + sin® ( f{,’" : ) — sin? (*'———(H[['].,_H"'['”) .

(53)
With Ex{-} defined as the time-averaged expectation operator. (53) becomes

S~ (e/¥) = 6162/ Ex {bln ( “H ] )+ sin? (“—l—lH_; = )—Sin' (*(H'['"] ~H, p"”)}
(54)
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Under the ergodicity assumption. the time averages in (51) converge to ensemble

averages as N — x. Therefore. with S, ., (¢/*) = limy_,x Sy (e9<). (37) follows
from (54).

Corollary Al. Cross Spectrum Area: Given an oversampling ratio of OSR.
and s1[n] and sa[n] employ the same dither sequence. the signal-band area of the

real part of the cross spectrum of s[n] and s2[n] is given by

T102\/ M P2 . 2 . . . 3 —H. -
Aosp = X2 E{l—suu:(%"ﬁ'l)—smc (Beld) +sine (H_L_OJ?%J_I)} (53)

2-0OSR

Proof: Given Theorem Al. the cross spectrum area is

_ 1 OSR Jw -
.405[2 = 5}' o S.s'l.s-_» ((’ )rlw. ()())
T

Because the argument of the expectation operator in (37) consists of bounded func-
tions. Fubini’s Theorem [28] implies that the integral and expected value. implied
in (56). can be swapped. Thus. (55) results upon evaluating this integral.

Theorem 1. Switching Sequence PSD and Signal-Band Power: Sec Section

I11 for the theorem statement

Proof: With si[n] = sa[n] = sy [n]. o102 = o} ,. and since every symbol in the
same switching sequence starts at the same sample time. p; = po = 1 and Hy[m] =
Hj[m] = Hy.[m]. Substituting these values into (37) and (55) leads to (15) and
(16). respectively.
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Theorem A2. DAC Noise PSD: Given cach switching block in the same layver

shares a dither sequence. the DAC noise PSD is given by

b f2hk r—1
D (e*) = Z Z AL Sk (€5) + 280 | Y AiSiri (¢) ) ] - (57)
k=1 r=1 =1

where S;. (ej'“" ) is the switching sequence PSD for s .[n] as given by (15). and
Si.ri (€7} is the real part of the cross spectrum of skrln] and s i[n] as given by
(37). Moreover. if a unique dither sequence is used in each switching block. the

DAC noise PSD is

ob—k

D (&%) Z':ZAA Skr (7). (58)

k=1 r=1

Proof: First. assume that switching blocks in the same layer share a dither se-
quence. Because switching sequences in different layers employ independent dither
sequences. these switching sequences are uncorrelated and thus have no cross spec-
trum. Therefore. only the cross spectrum from switching sequences in the same
laver contribute to the DAC noise power.

Let wy [n] be the sequence

-
w p[n] = Z Apiski[n]. (59)
To apply mathematical induction. suppose for some rg = L..... 26—k _ | that the
PSD of g, [1] is
Ty ro—1
Ui, r(, ("’ ZAk +Sker ((’J ) AT Z AL iSkri ((’J ) . (60)
r=| r=1

The PSD of wy r,+1[n] can be written as

Uk.m+l (ejh-') = l/rk."u (()J*) + A‘i-_ro-flsk.l'()'f-l ((J*) + 2Ak.r“+le.m (()J*) N (()1)
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where Cy,, (e/~) is the real part of the cross spectrun of ug . [n] and sg ., 41[n].

which. given (59). is calculated to be

ro

CL ro PJ Z-\L rSkrr(,+l ( ) . (62)

r=1

Substituting (60) and (62) into (61) gives

ro+1 ry
Ukrg1 (€)= D AR St () + 28, (Z Ak S (eJ*‘)) L(63)

r=1 r=1

Therefore. it follows from mathematical induction that (60) holds for each ryy. Since
the switching sequences in different lavers are uncorrelated. it follows from (7) and

(59) that

Ztk oh—k ("’ (64)

Substituting (60) (with ro = 2¥=%) into (()4) gives (57).

When an independent dither sequence is employed by each switching block. all
of the switching sequences are nncorrelated. which implies that Sy, . ; (ef*') = () for
all w. k. and 7 # r. Substituting this into (57) leads to (58).

Corollary A2. DAC Noise Signal-Band Power: Given an independent dither

is shared by all the switching blocks in each layer. the signal-band DAC noise power

is
b f20F r—1
Dosr = _ | D_ A Pur (OSR) +22y, (Z Ak.;Ak.r.f(OSR)) . (63)
k=1 r=1 r=1

where Py . (OSR) is the signal-band power of si .[n] (as in (16)) and A4 .- (OSR)
is the signal-band area of the cross spectruin of sy [n] and sgi[n] (as in (35)). If
a unique dither is used in each switching block. then the signal-band DAC noise

power is
b 2h—k

Dosr =) _ ) Aj,Pur(OSR). (66)
k=1 r=1



Proof: The proof follows directly from Corollary Al. Theorem 1. Theorem A2. and
the lincarity of the integral.

Lemma A1l: The switching sequence variance is
(e]

2 2
T

= E{Hk.r[""]} ; E{Tk"'[m]}.

Proof: Let M, be the number of samples in the first M symbols sg [n]. Given the

ergodicity assumption. it follows that

M,
2 . 1 Z 2 .
Oy = ‘}]_I_)l}x .\[‘ — 'sk.r[/]‘ (08)

. ) . . . . - .ope
Since s3 . [n] = 1 twice within every svinbol. (68) can be simplified to

7 i 2N (69)
gL, = 4 .
kr = M
Additionally. the ergodicity assumption implies
M
E{Hkr[m] + Ty [m]} = lim LZH‘. il + T i) (70)
T : Mox M - ‘

_" . Y . . . .
However. Ziil Hy . [i] + Ty.r[d] is the total number of samples comprising the first

M sywmbols. i.e.. Al,. This implies that

(71)

, . M,
E{Hy [m]+ Ty [m]} = ‘}l_l:}x :‘[ .

This and (69) imply (67).
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Lemma A2: Given H and OSR are positive integers.

l—siu('( H)< H+1 (72)

=1
(3™

OSR) ~— OSR+1

where equality is obtained if and only if H = OSR.

Proof: This lemma requires three claims. which are stated and proven next. These
claims concern the following function:

N = I —sine () -
J () = (73)

where v is a constant in the interval (0.1) and x > 0.

Claim 1: For a: > 2.

1
fola) < 5. (74)
Proof: Let
Fla) = Losiuele) (75)

=
which. since v > 0. implies that f(r) > f- () for all # > 0. The derivative of f(r)
is evaluated to be

) = 2cos (5F) [sine (5) — cos (5£)] . =6)

B
I

The above derivative is zero for the following values of & > 2: (1) » = (21 + 1).

where [ is a positive integer. and (2) x > 0 such that
sinc (f) = cos (&) . (77)

For the first case.
1

1 i,
@2+ -2 (78)

f(x) =
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For the second case.

2 (nr
sin” (5 1
flr)= (5) < -. (79)
I a
where 7 > 0 satisfies
_ T
tan (T’) = —)J (%0)

However. the smallest &+ > 0 that satisfies (80) is greater than 2. Thus. for this .
(79) implies that f(x) < 1/2. This. (78). and the First Derivative Theorem [29]
imply that all the local maxima of f(x) for » > 2 have values that are less then 1/2.
Since f(2) = 1/2. this implies that f(x) < 1/2 for all & > 2. and since f-(x) < f(r).
this also implies (74).

Claim 2: For & € (0.2]. the function f.(x) has one local maximum. which is its

global maximum for = > 0.

Proof: The derivative of f. (r) is evaluated to be

2+~ sine (1) — (0 4 ~) cos (7r) — &
) = (20 + v)sine () — (o + v) cos (mr) r )

)
r{r+~)

which can be written as

A cos? ('_7’) h (1) + vycos (mx)h (mr)

folr) =

2

2
Tl (x+7)
where

h(y) = tan(y) - y. (83)

Given the properties of the tangent function. it follows that h(y) > 0 for y € (0. 7/2).
and h(y) < 0 for y € ((20 — 1) /2. wl]. where [ is any positive integer. This and
the properties of the cosine imply that f2 () > 0 for x € (0.1]. and f! (+) < 0 for

x € [3/2.2]. Thus. the First Derivative Theorem implies that there are no local
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maximums for f. () in the intervals (0.1] and [3/2.2]. and there is at least one
local maximum in the interval (1.3/2).

Using (81). the expression f! (x) = 0 can be simplified to

9 (x + 7) cos> (5;—) — (22 + ) sine () = 7. (84)

&
~ o
—

=g (x)

The derivative of g () is solved to be

- - 5 (TOT ~
g (r) = (—‘n’ (x+7)+ —/—,) sin () + 2 (l + —'/) sin’ (—J—) - —. (83)
Tre T 2

Forallax € (1.3/2) and v € (0. 1). it follows that 7 (+ + ~) > ~/ (,7:1'2). sin? (7 /2) >

1/2. and

L >

2017 (50

S| -

This and (85) imply that ¢’ (r) > 0 for all values of x € (1.3/2). and ¢ (rx) is a
strictly increasing function in this range [29]. This implies that there is at most one
value of x € (1.3/2) that satisfies (84). and thus. by the First Derivative Theorem.
there is at most one local maximum for f. () in this range.

This and the previous arguinents imply that f. (i) has exactly one local max-
imum for & € (0.2]. and because f. (1) = 1/(1 +~) > 1/2. Claim | implies that
this local maximum is the global maximun of this function for r > 0.

Claim 3: The global maximum of f. () is achieved for a single value of r in the

interval (1.1 + v).

Proof: It follows from Claim 2 that. in order to prove this claim. it is sufficient to
prove that

) > f (L +9). (87)
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Using the trigonometric identity for the sine of a sumi. it follows that

vsine (v)

sine (1 ++) = 88
sine (1 + ) T+~ (88)
This implies
1+ ~sine(s)
T+~

- (l+9)= ————. 89
f- (1 +7) 12, (89)

which can be written as

I+~ (1 +sinc (7)) 1

f-(L+7) ( 1725 T+ (90)

Since f. (1)

1/ (1 +9). and sinc(y) < 1 for all v € (0.1). (90) implies that
f-(L+7) < [~ (1)
.

Fix the value of OSR > 1. and cousider the function f (%{ﬁ) where H is
«

. ges e co OSR\ _ P . o . -
a positive integer. Since. f,,f\., (535) = OSR/(OSR + 1) > 1/2. Claim 1 implies
that the maximum of this minction occurs for some value of H < 2-OSR. Moreover.

Claim 2 and Claim 3 imply that the maximum of this function is achieved at either

H =0SR or H=0SR + 1. However. substituting ~ = 1/OSR into (87) indicates

that OSRY - OSR+1)  Therefore. the global maximum of _H_
i f{,—_:w(().sn) f(TL-R( osi) re. the gl f(—,;—.ﬁ(osn)

is OSR/(OSR + 1). which implies (72). and it is achieved only when H = OSR.
.

Notation and Definitions: Let 7., be a 2°-length column vector whose i-th
component is defined to be

(D -2k <i< (- 1)2k 42k,

.= k/2 . X 2 . .
Yiri =94 - (17) . if (r —1)2% 281 < < r2k,
0. otherwise.

(91)

Moreover. let & be the 2°-length column vectors whose i-th component is 4;.
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Lemma A3: Given ¢, is a nonnegative constant for cach & and r.

I) )b —&

ZZ(“A"’ < lll«l\{) fr }F3. (92)

k=] r=1

and equality is obtained if and only if

6= Z bpe.r Py - (93)

(k.r)eR

where each by, is a constant. and

K= {(k.r)| Wb = lx,iet;i{Q"_"(:L._r} ) (94)

Proof: [t follows from the definitions of Ay .. v;. and 7., as given in (8). (25) and

(91). respectively. that

Aer = S = i (95)

This and the distributive and associative properties of matrices imply that the left-

hand side of (92) can be written as

b )I»—k Ix )I:—
. Che.r 2 a:
Z Z Ci. rAl. S E Z —— gy l/‘ o (96)
k=1 r= k=1 r=1 2

k

[\

=D
Given (k1. 71) # (ka.72) (and each are plausible layer numbers and depths). (91)
implies that v, . ; is a constant function of / for all values of i where vy, ., ; # 0.
This implies that 17[l - Vi, o = 0 becanse the set of nonzero values of i, ,, consists
 that am oyka/2 9yk2/2 ) —
of an equal number of values that are (1/2) and —(1/2)"°. Morcover. (91)
implies that 7 b, = 1 for each k and r. Therefore. the 2b — 1 vectors. 7., for

all & and 7. that compose the matrix D are orthonormal. This implies that the

expression for the matrix D in (96) is the spectral decomnposition of the matrix [30].
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and each vector Ui, is eigenvector of this matrix with an associated eigenvalue of
Arr which is given by

(97)

Since D is a symmetric matrix. the Rayleigh-Ritz Theorem [30] implies that the

quadratic expression on the right-hand side of (96) is bounded above by A,,.074.

where Aqr is the maximum eigenvalue of D. This and (97) imply that
b oAbk
b Ceor |\ zr 3 «
Z E (,‘k_,-Ak.,. < llzil.‘( T’-— o' o. (.)8)
k:l =1 g -
which. given ‘2"6’(% = 074, proves (92). Additionally. the Rayleigh-Ritz Theorem
states that the bound is achieved if and ounly if 4 is a linear combination of the

eigenvectors whose associated eigenvalues are equal to A, as given in (93).

Lemma A4: The real-part of the signal-band arca of the cross-spectrum of the
sequences Ay sgp (1] and Ag s, [0] is bounded as follows:

Air P (OSR) + A Prr, (OSR)
9 *

(99)

Ak.l'[Ak.l'-_h:l,\‘.ri,r-_. (OSR) S

where equality is achieved if and only if Mg, = Ag ., = 0 or sp 0 [0] = sp 0] as.

and Ay, = Ap .

Proof: Let win] = Mg, s (1] = AerySkr,[n]. By computing the PSD of wi{n]
and integrating it across the range of the signal band. the power of this sequence is

found to be

Py (OSR) = Af; Pir, (OSR) + A%, Py (OSR) = 22t 1, Miery Ay (OSR).
(100)

Since P, (OSR) > 0. (99) follows from (100).
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The bound is trivially achieved if g, = Ay, = 0: therefore. assume that this
does not hold for the remainder of the proof. If Ay sip (0] = Ngraspr[n] as..
then win] = 0 a.s. Therefore. P, (OSR) = 0 in this case. and. upon substituting
this into (100). equality is obtained in (99). Because sg ., [n] and sg ., [n] are both
constrained to the range {—1.0.1}. Ap . sp (1] = dpry sk (1] as. if and only if
Airy = £, and sg, [0] = £54.,,[n] as. However. two switching sequences are
only correlated when a symbol in each starts at the saunple time. and in such cases.
the switching sequences have positive correlation. Therefore. sg . [n] # —sgp, 1]
a.s.. which implies that Ng . sp (1] = Ay s, 0] as. if and only if Mg = Ay,
and sg ., [n] = sg,,[n] as.

If Djry # Apry and sp o [1] = sy [n] as. then wln] = (A, — Miery) Sk, 0]
as.. and P (OSR) > 0. This and (100) imply equality is not achieved in (99) in
this case.

Suppose sg. , [1#] # sg,[n] a.s. Recall the notation used in Theorem Al and that
H,[mn] represents the head length of the m-th joint symbol in skrin]. Let Hi[m]
be the head length of the m-th non-joint symbol in s, [n]. By averaging the joint
and non-joint svibols. it follows from (15) that the PSD of sg ., [1] can be written

as
Sk.ry ((ej“)= me{sm (—}L:[ﬂl)} )01(1—/)1)E{sm (il['—"l)} (101)

Furthermore. consider the analogous definition and result for si ., [n].

Suppose. for purpose of contradiction. that P, (OSR) = 0. The PSD of win] is
Sw (Pj‘;) = Az.r'l Sk-"l ((Jw) + Ai.rgs’f-"z (()‘jx) - zAk.l'lAk-r;'Sk-"l-r: ("‘j;) . (102)

where Sp,, r, (¢) is the real part of the cross spectrum of st (0] and sy, [n]

as given in (37). Since S, (/%) is continuous. w(n] has no signal-band power if
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and ouly if Sy () = 0 for all w € (-7/OSR.7/OSR). Therefore. the second
derivative of S, ((zf‘*') is zero at w = 0. However. it follows from (37). (101). and
Fatou’s Lemma [28] that

S (%
lim # >

i — (AF . ot (L= p1) + A8 03 (L= ). (103)

|
o] —

Sinee s, [1] # sg.r[n] as.. there is a finite probability that svmbols in both switch-
ing sequences are not joint: ie.. py < 1 and pa < 1. This and (103) imply that the
second derivative of S, (cj"'). if it exists. is greater than 0 which is a contradiction.
Therefore. P, (OSR) > 0 iu this case. which implies that equality is not obtained
in (99).

Theorem 3. DAC Noise Power Bound: Sec Section IV for the theorem state-

ment.

Proof: Consider the case where an independent dither sequence is used only for

cach layver of the DAC. Substituting the inequality in (99) into (65) indicates

b [k
Dose <Y | S A%, P (0SR)
k=1 \ r=1
ok iy (104)
+3 Y (A}, Pir, (OSR) + AL, Prr, (OSR)) .
ri=lra=1

Simplifving (104) gives

b bk
Dosp <Y Y 2FAR P, (OSR). (105)
k=1 r=1

Substituting the power bound in (22) into (105) leads to

b ab—k

1 B
D, < gh=k+172 106
O3k = OSR(OSR+1) g ; Akr (106)
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Applying Lemma A3 with ¢, = 207%*1 the inequality in (92) is substituted

into (106) to give

1 h—k =2 -
< ax{2-4" 5 10
Dosr < Ggmosr+n) {24717 (107)

Since maxk,,.{? . 4"""} = 4%/2. (27) follows from (107).
Now. counsider the case where an independent dither sequence is used in each

switching block. Substituting the power bound from (22) into (66) gives

b b=k

1 )
D < 2. A7 . 108
OSE = OSR(OSR + 1) LZ-[ ; k.r (108)

Applying Lemma A3 again but with ¢, = 2. the inequality in (92) is substituted

into (108) to give

-

e R
Dosr < 4 ax{2h=k+11, 109
ost < GsRosr+ 1) } (109)

Since ulaxk.r{‘Z"_"'“} = 2b, (28) follows from (108) and (109).
For both dithering schemes. max . {2=%¢; .} is achieved with & = 1. Thus.

Lemma A3 implies that the relative mismatch error vector. 4. achieves equality in

this case if and only if it is a lincar commbination of the vectors 7y, for r = 1..... 2h=1
From (91). such a vector is characterized by having doj = —da;—y for j = 1..... ah=1,

With these relative mismatch errors. (8) implies that. for & > 1. Ay, = 0 for each
r. In this case. the DAC noise is solely a lincar combination of switching sequences
in the first layer.

From Theorem 2. the signal-band power of s [n] is maximized only when
Hy. . fm] = OSR and Ty .[m] = 1 as. In order for cach switching sequence in layer
ko to satisfy this condition. each parity sequence in this layer must almost surely
be a deterministic function of the DAC input and thus not dependent on a dither

sequence. For this to hold. s; . [rn] = 0 as. for each & > k¢ and r. and sg . [n] is
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almost surely not a deterministic sequence for each k& < kg and r. Moreover. since
OS R is assumed to be greater than 1. this condition holds only if sy, . [n] = sg,.r.[1]
a.s. for each rp and ry.

The inequality given in (28) depends only on the inequalities in Lemma A3
and Theorem 2. Therefore. it follows from the previous arguments that equality is
obtained in (28) if and only if da; = —dy;_) for each j =1..... 2= and Hy Jm] =
OSR and T\ ;[m] = 1 a.s. for each r.

The inequality in (27) also depends on that in Lemma Ad. As previously dis-
cussed. if Hy, [m] = OSR and T\ [m] = 1 as. for cach r. then sy . [n] = sp..,[n)
a.s. for each vy and r2. Therefore. given this holds. equality is achieved in (99) for

every r; # 19 if and only if there exists a constant 4 such that N, = 8 for each

r=1.... 2h=1 " Given this condition holds. (8) implies that

().-_)J' —(52j_1 = 20. (110)
If. in addition. d»; = —d2;_; as required to achieve the inequality in (92). then (110)
implies that d2; = —da;_| = 4 for cach j. Therefore. the bound in (27) is achieved

if and only if this condition holds and Hy [i] = OSR and T\ ] = 1 a.s. for cach
r.
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Chapter 4

The PSD of the First-Order
Tree-Structured DAC in a
Second-Order ADC Delta-Sigma
Modulator with a Midscale Input

Jared Welz. lan Galton

Abstract—A popular method of creating a multi-bit digital-to-analog converter
(DAC) is to combine several 1-bit DACs in parallel. Ideally. the output of such a DAC
is a scaled version of its input; however. static mismatches among its 1-bit DACs cause
its output to be a nonlinear function of its input. The resulting error, called DAC noise.
limits the DAC’s attainable signal-to-noise-and-distortion ratio (SINAD) and thus the
effective resolution of the DAC. Mismatch-shaping DAC’s mitigate this problem by sup-
pressing the DAC noise power in a frequency band that is inhabited by most of the
data signal’s power. Most of today’s high-performance delta-sigma (AY) data convert-
ers employ these DACs along with frequency-selective filters to enhance the DAC's
effective resolution. However, little is understood about the DAC noise in mismatch-
shaping DACs, especially when the DAC is used in a AY data converter. Simulations
are usually relied upon to estimate the characteristics of the DAC noise, such as the
signal-band power. Such simulations can be misleading because the DAC noise depends
on the DAC input. This paper presents an analysis of the dithered first-order low-pass
tree-structured DAC in a second-order analog AY modulator with a midscale constant
input. Specifically, the analysis develops a theoretical DAC noise power spectral den-
sity (PSD) that compares well with behavioral simulations. This AY modulator was
chosen as it has been used in record-setting analog-to-digital converters (ADCs). The
midscale constant input was chosen because the DAC noise is the most noticeable in
this case. Additionally, simulations and experimental results demonstrated that the

DAC noise performance in this case was worse than that for sinusoidal inputs.

106
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[. INTRODUCTION

ULTI-BIT DACs are often coustructed by combining several 1-bit DACs

in parallel. The multi-bit DAC input is converted to the 1-bit sequences
that drive the 1-bit DACs. and the outputs of these DACs are summed to obtain
an analog value. which. ideally. is a scaled version of the multi-bit DAC input.
However. static mismatches among the I-bit DACs. which are inevitable in modern
VLSI technology. cause the output to be a memoryless. nonlinear function of the
input. The signal-dependent portion of the resulting error is modeled. without
approximation. as an additive noise source called the DAC noise. If not addressed.
the DAC noise prohibits the use of this multi-bit DAC in most high-performance

applications.

Mismatch-shaping (or dynamic element matching) DACs [1]-[6] use spectral
shaping techniques to mitigate this problem. A mismatch-shaping DAC exploits
redundancy in its 1-bit DAC's to shape the PSD of the DAC noise so that most of its
power resides outside of the signal band—i.e.. the range of frequencies that contain
most of the data signal’s power. Frequency-selective filters are then typically applied
to remove most of the DAC noise power while preserve most of the data signal’s
power. The improved SINAD translates to an increase in the effective resolution
of the DAC. The noise shaping techniques emploved by mismatch-shaping DACs
make them ideal for use in AY modulators [7]-[9]. Consequently. mismatch-shaping
DACs have become enabling components in most of today’s high-performance AY

data converters [10]-[16].

To date. the theoretical analyses of mismatch-shaping DACs in literature have
been limited. especially for DACs in AY modulator applications. Most of the math-

ematical theory developed for mismatch-shaping DACs has been used to show that
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the DAC noise in a given architecture has a spectral null at some frequency. The-
oretical estimates of the signal-band DAC noise power are usually obtained with
a sitplified model that assumes the DAC noise is independent of the DAC in-
put. However. the DAC noise depends on the DAC input in all mismatch-shaping
DAGs. and in most cases. the DAC noise is correlated to the DAC input and thus
can contain spurious tones. Although the DAC noise PSD has been determined
for trivial inputs to a mismatch-shaping DAC [17]. simulations have been relied
upon to estimate the behavior of DAC noise in AY modulator applications. which
can be misleading. Moreover. explanations and design rules that accompany such

simulations are usually not well substantiated.

This paper presents a theoretical analysis of a first-order tree-structured DAC
[6]. [15]. [16]. [18]-[21] in a second-order ADC AX modulator with a midscale con-
stant input. Specifically. a DAC noise PSD curve is generated using the PSD
expression derived in [21] and statistics of the DAC input that are obtained with a
AY modulator model. The constant midscale input was chosen because. without a
data signal. the DAC noise is especially conspicuous. Additionally. it was witnessed
in both behavioral simulations and circuit tests that the midscale input gave rise
to more signal-band DAC noise power than that obtained by any sinusoidal input.
which is the typical input used to test the performance of the AX modulator. Thus.
the values of the DAC noise power that are presented in this paper can be used as

favorable estimates in the design of the AX modulator.

This paper is divided into four sections and an Appendix. Section II reviews
the operation of the AY modulator and tree-structured DAC. Section III presents
and discusses the DAC noise PSD and signal-band power values and compares them

with those obtained in behavioral simulations. Section IV presents the AY modu-
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Figure 4.1: A 3-bit. second-order. ADC AY modulator.

lator model and the statistics that give rise to the DAC noise PSD given in Section
III. This section also discusses how the AY modulator model is used to obtain those
statistics. Section IV concludes the paper. The Appendix presents the mathematics

that use the AY modulator model to obtain the DAC noise PSD.

[I. THE AX MODULATOR APPLICATION

THE SECOND-ORDER AY MODULATOR

Figure 4.1 shows the 33-level. second-order low-pass ADC AY modulator that
is analyzed in this paper. It consists of an ADC. two multi-bit DACs. two delayved
accumulators. two subtracters. and a gain element. Two implementations of this AX
modulator are presented in {12] and [15]. both of which gave rise to record-setting
data converters. The real-valued input sequence. x[n]. results from sampling a
continuous-time data signal at a rate of 8-times and 64-times its Nvquist rate in the
implementations presented in [12] and [15]. respectively. The ratio of the sampling
rate to the Nyquist rate is called the oversampling ratio and is denoted OSR.
Therefore. most of the data signal’s power is constrained near de in the interval
(=7/OSR.7/OSR). which is called the signal band. The analysis in this paper.
however. assumnes that the AX modulator input is the constant midscale value: i.c..

z[n] = 0.
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The AY. modulator is used to obtain high-resolution data conversion by using
spectral shaping techniques on the error that results from the coarse ADC. Let the
quantization error. denoted g[n]. be the difference between the output and input of
the ADC quantizer. and the quantization noise be the component of the AY mod-
ulator output that results from the quantization error. If all components are ideal.
the transfer function from the input to output of the ALY modulator. called the
signal transfer function. is given by the Z-transform z72. On the other hand. the
transfer function from the ADC quantizer to the output. called the noise transfer
function. is given by (1 — :"1)2. Thus. the AY modulator acts as an all-pass filter
for its input and a second-order high-pass filter for its quantization error. Since the
signal band is near dc. most of the power of the quantization noise resides outside
of the signal band where it can subsequently be removed by digital filters. However.
noise from the DAC in the outside feedback loop of the AX modulator in Figure
4.1 is injected into the signal path and is not high-pass filtered. Consequently.
this DAC noise often limits the attainable SINAD and hence resolution of the AS

mnodulator.

THE TREE-STRUCTURED DAC
An example 9-level tree-structured DAC is shown in Figure 4.2. In general. the
(2" + 1)-level tree-structured DAC consists of a bank of 20 1-bit DACs and a digital

encoder. The output of the i-th 1-bit DAC is

%ﬂ +ep,. if o] is high:

. . (1)
—%ﬂ +ep,. if xin] is low:

yiln] =
where Ap is the nominal step size of the tree-structured DAC. and ¢, and ¢y, are
the 1-bit DAC's high and low errors. respectively. The 1-bit DAC errors result. from
inevitable errors that occur in the fabrication of the 1-bit DACs and are assumed

to be time-invariant random variables. The digital encoder consists of b layers of
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Figure 4.2: A 9-level tree-structured DAC.
switching blocks. which are labeled Sp. .. where b =1... .. b is the layer number. and
r=1..... 2'=% is the depth within the layer. The input to S .. which is denoted
rt[n]. is constrained to be in the range {281, 26=11 . The digital encoder

outputs. x;[n}. are 1-bit sequences whose values are taken to be -1/2 at sample times
when low and 1/2 at sample times when high. With «;{n] also denoted rq [n]. the
switching blocks are interconnected so that top and bottom outputs of Sy . are
Ir—12r—1[n) and xg_y 2. [n]. respectively.

Figure 1.3 shows the operation of the switching block. As illustrated in the

figure. the outputs of Sy, are given by

(.’l,'k_,.[’ll] + .s'k_,[rt]) . (2)

to—

Tp-p2r—1[n] =
and
wp—rar(n] = 3 (we[n] = sir[n]). (3)

where sy . [n] is called the switching sequence and is generated within Sy .. Let
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Figure 4.3: The signal processing performed by the switching block.

o.rin] be the parity sequence of Si... which is defined to be 1 when xy [n] + 28!

is odd and 0 otherwise. To ensure each switching block output is in the required

range. the switching sequence is restricted as follows:

. £l ifopn]=1:
sk.r(n] = {0. if op (1] = 0. (4)

As shown in [6]. the DAC output can be written as

(W]

z[n] = ay[n] + 7 + e[n]. (

where y(n] is the DAC input. « and ;3 are coustants that are functions of the 1-bit

DAC errors. and e[n] is the DAC noise. which is given by

e[n] = Z z A rskrn- (6)
k=1 r=1
where
N (r=1)28 +2k-1
Apr =51 Z [(en, —e1) = (en,_uoy = €1 ey ). (7)
i=(r—1)2¢+1

Therefore. (6) implies that the switching sequences can be tailored to manipulate
the PSD of the DAC noise.
As detailed in [21]. the switching sequences in the dithered first-order low-pass

tree-structured DAC are coded to ensure that the DAC noise PSD vanishes at de and
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has no spurious tones. This is accomplished by constructing sy .[n] by concatenating

the following two types of symbols:

Type 1: 1.0.---.0.—1.0.---.0: (8)
N, s’ g
Until next Until next
orrnl=l o lnl=1
and
Type 2: —1.0.---.0.1.0.---.0. (9)

R i
Until next  Catil next
o rln]=1 o [n]=1

The choice of each symbol type is made “randomly™ using the [-bit dither sequence
di. -[n]. The dither sequence approximates a sequence of independent. and identically
distributed (i.i.d.) bits that have a uniform distribution and are also independent
of xpr[n]. If a symbol starts in s [n] at sample tie ny. then that symbol is a
Type 1 symbol if dy [ng] is high. and it is a Tvpe 2 svmbol if dy. .[ny] is low. For the
ilmplementation analyzed in this paper and presented in [15]. all switching blocks in
a given layer share the same dither sequence. Thus. b dither sequences are required

in this case. which are realized with pseudorandom sequence generators.

III. THE DAC NOISE PSD

As shown in [21]. the DAC noise PSD is a function of the statistics of the
switching sequence symbols. These statistics are expressed using the definitions
presented next. Let the first half—i.e.. the first £1.0... .. 0 segment of a symbol -
be called the head of the syibol. and the second half be called the tail of a symbol.
The head length of a symbol denotes the munber of samples in the head of that
symbol. Let Hy , be the head-length process for sy [n]: thus. Hy .{m] is the number
of samples in the head of the m-th symbol in sg.[n]. The definitions of the tail

length and tai-length process. Ty .. follow analogously.
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The DAC noise PSD and signal-band power expressions used in this section
require the following two assumptions:

1. The switching sequence cross-spectra are negligible:

2. The head-length distributions and variances for switching sequences in the same
layer are the same: i.e.. (r'f,.rl = af,.r._,. and Hy . [m] and Hy ., [mn] have the same
distribution for cach ry. ra =1..... oh=k.

These assumptions are justified later in this section. Given both assumptions hold.
Hi[m] = Hi([m]. and o} = o} . it follows from [21] that the DAC noise PSD can
be written as

D(e) = ApSi (). (10)

where Sy (e/~) is the laver-k switching sequence PSD given by

Sic(¢) = 20} E{sin? (230} 1. (11)
and
2’:—"
Av=) AL (12)
r=1
Furthermore. the DAC noise signal-band power can be written as
b
Dosr =) AP (OSR). (13)
k=1

where P (OSR) is the layer-k switching sequence signal-band power as given by

af,E{l — sine ("({)_‘g%l)}

OSR ()

PL(OSR) =

It follows fromn (10) and (13) that the DAC noise PSD and signal-band power
are linear combinations of the switching sequence PSDs and signal-band powers.
respectively. By examining these PSDs and signal-band powers. some insight can

be gained into the behavior of the DAC noise.
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Shown in Figures 4.4 and 1.5 are the theoretical switching sequence PSDs and
signal-band powers. respectively. for a 33-level DAC in the AY modulator in Figure
4.1. These results are obtained using the switching sequence statistics provided in
the next section. As shown in Figure 4.4. all switching sequence PSDs have the
same “high-pass™ shape. but with different 3dB bandwidths. This gives rise to the
varying signal-band powers shown in Figure 4.5.

Design guidelines can be extrapolated from these figures. If the goal is to

minimize the DAC noise power for a small signal input to the AT modulator.
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Figure 4.5 can be used to decide how the 1-bit DACs should be layed out. For
example. suppose the oversampling ratio is 64 (as in the AY modulator preseuted
in [15]). Figure 4.5 shows that the switching sequences in layer 2 have the most
signal-band power. Therefore. to minimize these switching sequences™ contribution
to the DAC noise power. (13) implies that the 1-bit DACs should be layed out so
that Ay is minimized. Given (7) and (12). this is accomplished by optimizing the
matching between the i-thand (i + 2)-nd 1-bit DACs for i = 1..... 26 2. Typically.
this is achieved by placing these 1-bit DACs as close as possible to each other or. if
possible. interlacing the components of these I-bit DACs on the integrated circuit.
1 {19]. DAC noise PSDs from theory and simulation are compared for a specific
collection of 1-bit DAC errors. However. in this paper. the average DAC noise PSDs
are compared—i.e.. average with respect to 1-bit DAC errors. The average DAC
noise PSD and signal-band power can be calculated by assuining statistics for the
1-bit DAC step-size errors: ¢y —ep fori = 1..... 20 If the step-size errors are taken
to be i.i.d. random variables with standard deviations denoted a4. it follows from
(7) and (12) that E{\;} = 2”0;;?/-1". Substituting this into (10) gives the following

average DAC noise PSD:

(15)

and substituting it into and (13) gives the following average DAC noise signal-band

power:

Dosp = 202 3" 2O (16)
Figures 4.6 and 1.7 show and compare the average DAC noise PSDs and signal-

band powers. respectively. obtained from theory and simulation of the 33-level DAC

in the AY modulator in Figure 4.1. One hundred simulations of the AY modulator

were performed. each with a different pair of mismatch-shaping DACs. The 1-bit
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DAC errors for each simulation were modeled as independent and identically dis-
tributed (i.i.d.) Gaussian random variables with zero mean and standard deviations
of 0.3% of Ap/2. This corresponds to reasonable natching precision by the stan-
dards of present-day switched-capacitor CMOS circuit technology. The input to
the AY modulator was an i.i.d. sequence of Gaussian random variables with zero

mean and standard deviations of 0.1% of the nominal step size of the ADC. This
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sequence models the front-end AT /C analog noise in the ADC AX modulator pre-
sented in [15]. All other components of the AY modulator were modeled as ideal.
The average DAC noise PSD from these simulations resulted by averaging the one

hundred DAC noise PSDs obtained in these simulations.

Figure 4.6 shows how well the average DAC noise PSD from theory matches
that from simulation. However. this does not illustrate how the DAC noise PSD
in each simulation varied from the theoretical estimate. To accomplish this. Figure
4.7 provides histograms that show the distribution of the DAC noise signal-band

powers. relative to those from theorv. obtained in the one-hundred simulations.

The average DAC noise PSD is obtained by assuining statistics concerning the
1-bit DAC step-size errors that cannot be justified. As discussed in [22]-[24]. the
mismatches among devices on an integrated circuit (IC) typically exhibit correla-
tion. Moreover. there can be correlation among the 1-bit step size errors in different
realizations of the multi-bit DAC unless the 1-bit DACs are “shuffied™ - i.c.. their

placement on the IC randomized —between realizations. which is not practical.

However. the first two assumptions provided at the beginning of this section are
reasonable. The first assumption is justified by the fact that. in the given AY mod-
ulator with a midscale input. the DAC input. y{n]. is usually in the range {—1.0.1}.
Since an independent dither sequence is used in cach laver. only switching sequences
in the same layver can be correlated. Moreover. correlation occurs only when svimbols
start at the same sample time in switching sequences in the same laver. However.
when y[n] € {—1.0. 1}. switching sequences in layers & > 1 are uncorrelated because
at most one switching sequence in each layer is nonzero. For layer 1 in this case. at
most one switching sequence is zero. However. because switching sequences in this

layer are nonzero so often. their head lengths are typically small and consequently.
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their cross spectra. as detailed in [21]. contributes little or nothing to the DAC noise
signal-band power.

The second assumption is justified by the symmetry of the tree-structured DAC
and the behavior of the DAC input. The symmetry of the dither sequence statis-
tics. switching sequence symbol types (as given in (8) and (9)). and switching block
input /output expressions (as given in (2) and (3)) implyv that the tree-structured
DAC does nothing to differentiate between switching block inputs. and thus. switch-
ing sequences in the same layer. Moreover. the DAC input. in the case of the AY
modulator in Figure 4.1. consists mostly of randomn quantization noise that does

little or nothing to differentiate between switching sequences in the same laver.

IV. THE SWITCHING SEQUENCE STATISTICS

As shown in the previous section. the DAC noise PSD depends on the head-
length distributions and variances of the switching sequences. This section presents
an estimate of these statistics using a simplified model of the AY modulator in
Figure 4.1. This model and its assumptions are discussed next. The switching
sequence statistics are then presented with a description of how they are derived.

The development of the AY modulator model is motivated by the complexities
of an ADC A¥Y modulator and the switching sequences™ dependence on the AY mod-
ulator output. It follows from (8) and (9) that a head of length A occurs in sg .[n]
when there is a run of i — 1 zeros og [n]. Thus. the head-length distribution for
symbols in sg -[n] depends on the multivariate distribution of the parity sequence.
ok.r[n]. Furthermore. the multivariate distribution of oy .[r] depends on that of the
DAC input. which is the AY modulator output. Given the AY modulator has a
constant idscale input. its output consists mainly of the quantization noise. but

it also includes noise from both DACs and the analog circuits. These noise sources
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excessively complicate the multivariate characteristics of the AY. modulator output
and thus the parity sequences. However. a sufficiently accurate estimate of the

switching sequence statistics can be obtained by excluding these noise sources.

Based on the AY modulator in Figure 4.1. the AY modulator model consists

of the following assumptions:

1. All components of the AY modulator and its input are ideal. and there is no

analog circuit noise:

o

The quantization error. [n]. is pairwise independent and uniformly distributed

across the LSB interval. (—A /2.8 4/2). where A 4 is the ADC step size.

The first assumption is justified by the fact that. because the ADC quantizer is
coarse in a AY modulator. the quantization error typically has much more total
power. across all frequencies. than any other noise source in the AY modulator.
The second assumption is justified by the analvses in [7]-[9] where it is shown that
the quantization error in a second-order ADC AY modulator asymptotically has
these properties. In [7] and [8]. this result is a consequence of the inevitable i.i.d.
front-end analog circuit noise in this ADC AY modulator. whereas in {9]. it is a
consequence of the inevitable irrational de offset at the input to this ADC AX
modulator. Thus. the AY modulator model is contradictory because the second
assumption requires characteristics of the ADC AY modulator that are voided by
the first assumption. Regardless. it gives rise to the following switching sequence
statistics that. as shown later in this section. match well with those obtained in

behavioral simulations.

Theorem 1: Given the AY. modulator model output is the input to the tree-



structured DAC. the switching sequence variance is

b

s _J1-(3)". fork=1:

Tk =9 1\ b—k+1 .
(5) otherwise:

and the probability that a head length is A samples is

2b=k+2p (1. 0). for k > I:

gb=1

P(HA-['IIL]:IL): 1—5,,—_1‘(1)(1)-1)(2)) fork=1. h= 1:

o1

s (P (h=1) =2P(h)). otherwise:

where

Y (R ROl ) R

P((l)=

and Pi. (h.m) is the function that satisfies

S
= Q) () ()
t=m
where (}) is the combination function with (:%) defined to be 1. and
0. m > h%I
Py (h.m) = iz(I:ZI;(lI:;z) + h(h—,I")Th—?.)‘ h>2. m< L'E_l
ﬁ:—;—ﬁ . otherwise.

Proof: The proof is provided in the Appendix

11 I~1 h—1
4(1+)(1+1) (% ((%) %) + (%) (_‘—]'>> . for [ even:

(19)

Although Theorem 1 does not provide closed form expressious for most of the

head-length probabilities. the recursive expressions provided can be evaluated using

programming software. Using such techniques. several of the head-length probabili-

ties froin Theorem 1 are shown in Figure 4.8. This figure includes the first 15 head-

length probabilities for switching sequences in the 33-level tree-structured DAC. For
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the remaining values. each probability point function continues to asymptotically
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decrease towards zero. the rate of which depends on the layer munber. With the
exception of the first layer. the smaller the layer number. the slower the head-length
probability function decays to zero. Figure 1.9 shows how these probabilities and
the switching sequence variances in (17) vary with those obtained with from the
behavioral simulations described in the previous section. It follows from Figure
4.9a that. with the exception of the first layer. the difference between head-length
probabilities obtained by theory and simulation becomes more pronounced as the
layer number is decreased. On the other hand. the variances from each match well
regardless of the layer number as shown in Figure 1.9b.

The remainder of this section describes how the AY modulator model is used
to obtain the variances and head-length distributions given in Theorem 1. [t is
assumed hereafter that the input to the tree-structured DAC is the output of the
AY modulator model. and. for convenience. the ADC step size is 1 (i.e.. Ay = 1).
The next theorem shiows how the quantization error dictates the behavior of the

AY modulator model.

Theorem 2: For any integer m. the quantization error can be written as.

~({m(cn — 1] —<n]) + 5 - [n]). (22)

0|

gln+m]=.
where (-) is the modulo-1 operator.

Proof: The proof is provided in the Appendix.
]
Thus. (22) implies that two samples of quantization error completely determine

the entire sequence. and since

y[n] = efn] — 2l — 1] +e[n - 2. (23)
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two samples of quantization error completely determine the AY modulator output.
The statistics of two samples of quantization: error are given by the second assump-
tion of the AY modulator model. Therefore. these statistics. (22). and (23) can be
used to determine the multivariate distribution of y[n]. However. it is not neces-
sary to obtain the complete multivariate distribution of y[n]: it is only necessary
to obtain probability functions that can be used to derive the switching sequence
statistics.

Such probability functions are derived by exploiting the characteristics of the

switching block inputs as given in the following lemma.

Lemma 1: Each switching block input. 4 .[n]. has the following properties:

a) Range Property: z,.[n] is restricted to the set {—1.0.1} for all n:

b) Alternating Property: the nonzero samples of x; .[n] alternate between 1 and
-1:

¢) Symmetry Property: given iy .[n] is the A -length vector whose compouents

are given by xy . [n]..... x5 [n+ M - 1].
P (fk.r["] = -'E.\I) =P (fk.r["] = —j:.\l) . (24)
where 7y, is a real-valued M-length vector.

Proof: The proof is provided in the Appendix.
]

As discussed next. Lemuma 1 implies that the switching sequence variances and
head-length probabilities can be obtained with the following two probability func-
tions:

P.(l) = P(a.-k,,[n +i]=(=1) fori=0..... - 1) : (25)



and
Py (hom) = Pleg [n] = 1. xp . [n+ h] = -1.

3 m valuesof i € {1..... h — 1} such that xy [n +i] = 1).
These probability functions were chosen because the operation of the switching
block enables P._; (h.m) and Pj._; (1) to be determined as functions of Py (h.m)
and Py (1). respectively.
Recall that the parity sequence o .[n] deternines the magnitude of sg .[n] and
hence its symbols™ head lengths. Given the Restriction Property in Lemma | and

the definition of oy .[n].

L |z [n]]. for k& > 1: -
Ok.rln] = { 1 - la:k,r[n]l . for k=1: (27)

Furthermore. the Symmetry Property implies that P (|zy [n]] =1) = 2P (1).
Therefore. this and (27) imply that the switching sequence variance. rrf can be

determined using Py, (1) as follows

P(|zir[n]| =1) = 2P (1). for k > 1:

_ “Fh , (28)
P(z;,[nj=0)=1-2P.(1). for k=1

ot = P (o ,[n] = 1) = {
Given Lemma 1 and (27). the head-length probability functions are the following

conditional probabilities:

P(|r[n]|=1: i [n+i]=0 for i=l...h=1: |1y [n+h]]=1)

for k> 1:
P - rl]|=1
P(Hk[m] =h)= (|rx. [l]| )
P(ri  [n)=0: |ri [n+i]|=1 for i=l...h=1: 1; [n+h]=0) for k = 1:
P(-"k.r["]=0) . ;= 12
(29)
where. for b = 1. both P(|ry [n+i]|=1 for i=l....hi=1) and P(ry [n+i}=0 for i=l....h-1)

are defined to be one. As shown in the proof of Theorem 1 in the Appendix. the
properties given by Lemma 1 and the Law of Total Probability are used to determine

the following layer-1 head-length probabilities:

2P (h=1)=2P,(h))
1-2P (1) )

2(P(1)=ri(2)) ch o= 1-
1 - =0 for h =1:

for h > 1:

P(H\[m]|=1h) =



The Alternating Property and (26) imply that

P (h.0y=P(ap n]=1: o n+il=0fori=1..... h—1: ap o+ h]=-1).
(31)
because. if 2t [n + i) = —1 for some i = 1..... h — 1. then there must be another

value of i in this range such that x4 .[n + {] = 1. Thus. for £ > 1. it follows from

the Symmetry Property. (25). (26). (29). and (31) that

Py (h.0
P (Him] = h) = ’T:(‘l—)l (32)

The derivations of the two probability functions are left to the Appendix. but
the following is a brief description of the steps taken in these derivations. First.
the initial values of these two probability functions. i.e.. P, (I) and P, (h.m). are
determined by the statistics of the AY modulator mmodel output. The switching
block’s operation is then used to determnine Pi_; (I) as a function of Py (l) and
Pi_1 (h.m) as a function of P (h.i) for i > m. A closed formn expression is given
for Py (l) = P(l) in (19). and P (1) is evaluated to give (17). However. a closed
form expression was not obtained for P (h.m): it is expressed using the difference

equations in (20) with the initial conditions given in (21).

V. CONCLUSION
This paper has presented the analysis of the DAC noise PSD and signal-band
power for a tree-structured DAC in a second-order ADC AY modulator with a
midscale constant input. Specifically. this paper has provided the first theoretical
DAC noise PSD for a mismatch-shaping DAC in a AY modulator application. A
simplified model for the AY modulator has been constructed to obtain the switching

sequence statistics that are required to produce the DAC noise PSD. With these
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statistics. a theoretical DAC noise PSD curve has been produced and shown to

compare well that obtained in behavioral simulations.

APPENDIX
This appendix provides the mathematics that form the basis of this paper.
Before the results are given. some essential definitions and assuinptious are provided.
First. it is assuined throughout that the described AY modulator model is driving
the dithered. (2" + l)-level. first-order low-pass tree-structured DAC. Let z . [n]

represent the state of si .[n] as follows

. 1. if s-[n] is in the head of a svmbol: -
zer[n] = . (33)
—1. otherwise.
Assume that. at sample time ng. {zp [no] : & = L..... b: r = 1..... 2h=kY s a

collection of uniform. independent random variables. This assumption represents
the uncertainty in the switching sequence states that results from driving the DAC
with a noisy input for sample times prior to 7.

Let R,[m] be the double sum of the AT modulator output as follows

m++n—

1 !
Rufml= Y Y il (34)

l=n i=n

where R,[0] is defined to be zero. Finally. let §[n] be the M -length vector whose
components are given by yn]..... y[n + M — 1]. Define the vectors T [n]. 5¢[n].
and ﬁ’.,,[m] analogously. It is tacitly assumed throughout that the quantization
error is strictly bounded in magnitude by 1/2 (i.e.. |s[n]| < 1/2) because the event
le[n]] = 1/2 occurs with zero probability under the assumptions of the AX modu-
lator model. Note that. because Theorem 1 depends on Theorem 2. it is presented

after Theorem 2 in this Appendix.

Theorem 2: See Section IV for the theorem statement.
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Proof: First. apply mathematical induction for m > —1. For mn = ~1 and 0. (22)
is satisfied because the modulo-1 of any number between 0 and 1 is simply that
number. Suppose (22) holds for all . < mgy. where mg > 0. and let m = mgy + L.
Because there are no noise sources besides the quantization error. and the input is

a midscale constant. the AY modulator output. is the quantization noise:
yln] = eln] — 2e[n — 1} + c[n - 2]. (35)
Since (y[n]) = 0. (35) implies that

). (36)

r)—

n] =

—{(=2efn—1]+¢[n-2] +

[T

m

Upou evaluating (36) at sample time n + m. it follows that
em+ml=§—(-2n+m—-1]+en+m-2]+1). (37)

Under the induction hypothesis. <[n + m — 1] and gn + m — 2] can be evaluated
using (22). which. upon substituting this into {37) gives

s[n.+ m}=§ - <2 ((m = 1) (g[n — 1] — &[n]) + § — <[n])
(38)

—((m=2)(e[n—1] —¢n]) + 1 - s[n]>>.

Removing the modulo-1 operators within the argument of the “larger”™ modulo-1

operator in (38) gives

gln+m] = %—<2(m—1) (g[n = 1] = g[n])=2¢e[n]—(m = 2) (g[n - 1] — ;‘[n})—%+€[n]>.

Simplifying (39) gives (22). which implies. by mathematical induction. that (22)
holds for all 1w > —1.

Now. let m < 0. First. upon evaluation. (22) is satisfied with m = 0 and —1.
To apply mathematical induction. suppose (22) is satisfied for all i < nyy. and let

m = my — 1. Since (y[n]) = 0. (35) implies

eln—2]=1—(=2en—1]+<n]+1). (40)
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Evaluating the above expression at sample time n + m + 2 gives

[

sn+ml=35—(=2cm+m+1]+ecn+m+2]+3). (41)

1o —

Using the induction hypothesis. sln + m + 1] and £[n + m + 2] can be evaluated as
functions of =[n] and e[n — 1] using (22). Upon performing this substitution and
simplifyving as in the previous induction proof. (22) follows and thus holds for all m
by mathematical induction.

Corollary A1l:

R,[m] = {m (eln=2]—cn—-1])+35—¢g[n - I]J (42)

tofr—

where [-] is the function that rounds down to the nearest integer.

Proof: Applying (35) to the definition of R,[m] gives
Ryml=clm+n—-1]—cn—-1]+m(c[n -2} —cin —1]). (43)
From (22). e[m + n — 1} can be written as
sim+n—1]=3=(m(en =2 —¢n-1])+ 1 —<n-1]). (44)
Substituting (44) into (43) and applying the identity |z]| = » — (x) validates (42).
=

Lemma 1: See Section IV for the lemina statement

Proof: To improve this proof’s readability. it is divided into four claims. The first
two apply to the AY modulator output. y[n| = xy;[n]. and the last two apply to

switching sequence inputs in the other layers.
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Claim 1: The AY modulator output satisfies both the Range and Alternating Prop-

erties.

Proof: Since |[n — 2] —e[n — 1]| < 1. and 0 < 1/2—<[n—1] < 1. it follows from (42)
that | R, [m]| < m. Since y[n] = R,[1]. this implies that y[n] has the Range Property.
Suppose. at sample time ng. y[ng] = £1. Let ng+m (m > 0) be the next sample time
where y[n] is nonzero. This and (34) imply that R, [m+1] = £ (m + 1) +y[ng+ m].
Since [y[ng + ml{ = 1 and |R,,[m + 1]| < m + L. this implies that y[ng + m] = F1.
and y[n] has the Alternating Property. ‘

Claimm 2: The AY modulator output satisfies the Symmmetry Property: i.c.. given

an M-length vector ;.

P(fi["] =yu) = P('fi["] =—yu)- (45)
Proof: Given jj,, whose elements are denoted y;... .. yar-let Ry =570 Zle Yi.
and let Ry, be the M-length vector whose clements are Rj..... Ry;. Therefore.

J[n] = gy if and only if R, [in] = R,,. and to prove (45). it is sufficient to show that
P (l—i,,[m] = l-él\,) =P (ﬁ,,[wn] = —l—é.\,) . (46)

By assumption. e[n— 1] = g; and £[n—2] = £2. where £ and £ are independent
random variables that are uniformly distributed across the interval (—1/2.1/2).
From (42). e; and &3 determine the values of R,[m] for all m > 0. To better

represent the dependence of R,[mn] on £1 and €. let

I

f,"(é'l.Ez)E'"L(E":,—El)“f'§—51. (47)
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Thus. (42) implies that R,{m] = | f, (£1.22)]. and
(48)

P (ﬁ,,[m] = I-é‘\,) =P (I_f,,, (&‘1.52)J =R, form=1.....! \)

Because 1 and g9 are independent and uniformly distributed across the svin-

metric interval (—1/2.1/2). (—s|. —z2) has the same distribution as (). ¢2). which
(49)

implies that
P(|fim (—e1.—€2)| =Ry form =1..... M)
=P (Ij,,, (61.5-_;)J =R,,. form=1...... \ I)
Using (47). the function f,, (—sy. —22) can be simplified to
. (50)

fm (_51- _52)
—[x]. it follows from (50) that

Since |+ 1] = |z} + 1. and |—x]

[}
o

if fin(€1.22) 1s an integer:

otherwise.

Because f,, (z1.22) is a continuous function of random variables with continuous

distributions. the probability that f,, (£,.22) is an integer is zero. which implies
(53)

1. —€2)] = = fu (€1.22)] almost surely. and
(54)

-
.....

Thus. | fi (-
=P ([fm(er.e2)| = —Rp. form=1...... V)

The probability function equalities in (49) and (54) imnply (46).
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Claim 3: Each switching block input satisfies the Range and Alternating Properties.

Proof: This is proved by induction on the layer number &. For & = b. the switching
block input is the output of the AY modulator model. which. by Claim 1. satisfy
this claim’s assertion. Suppose this assertion holds for & > 1 and consider the
switching block S, .. for some r = 1..... 2b=k By the svimmnetry of the switching
block’s operation. it is sufficient to prove that the top output of Sy, satisfies the
claim’s assertion. Since s .[n] and xy . [n] are limited to {—1.0.1}. it follows from
(2) that xg_;9,.-1[n] is also in this range because it is restricted to be an integer.
Therefore. 2x_y 9,_1[n] has the Range Property.

From (4) and the induction hypothesis. sg .[n] alternates between being in the
head and tail of a symbol at sample timnes when |:1:,l..,. [n][ = 1. Therefore. at these
sample times. z.[n] alternates between 1 and -1. Since zp,[n] and rg [n] (by
the induction hypothesis) both alternate between 1 and -1 at sample times when
xi.r[n] is nonzero. either rp . [n] = z. [n]op . or xp [n] = —z  [n]o [n] for all
n. Suppose a symbol of length S samples starts in sg [n] at sample time ngy. For

[=0..... S — 1. (2) implies

o g + 1. i dy gl = g fngl/2:
Ipo1 2r—l["0 + l] — ’L.r[“() ] 1« k.r[’.’()] L.y ["0]/ (53)
’ 0. otherwise.
If 2y - [n] = 2k r[nog.r[n]. then the two nonzero samples in xy [no]. ... aop i+

S — 1] alternate from 1 to -1. Otherwise. the two nonzero samples in this segment
alternate from -1 to 1. This holds for every symbol in s [n]. and since sg . [n]
consist entirely of concatenated symbols. (53) implies that the nonzero samples
of zj_y2,--1[n] alternate between 1 and -1. Therefore. xy_y2,—1[n] satisfies the
Alternating Property. and by mathematical induction. the claim’s assertion holds
for all k.
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Claim j: Each switching block input satisfies the Syvmmetry Property: i.e..
r (-'Fk.r["] = f.\l) =P (fk.r[7l] = —-'F.\I) . (56)

for any Al-length vector Ty,.

Proof: This is proved with induction on the laver number k. By Claimm 2. (56)
holds for 3, | [n] = y[n]. Suppose (56) holds for each switching block in layer & > 1.
Since the signs of the nonzero values in each switching sequence are determnined by

a dither sequence. it follows that
P (Sirn] = 5y) = P (Sirln] = -3y) - (97)

for any M-length vector sy,. It follows from (2). (3). (57). and the induction hy-
pothesis that the Symmetry Property holds for each switching sequence in laver
k — 1. Thus. by mathematical induction. this property holds for all switching block
inputs.

(]

.
.

Combining Claims 3 and 4 prove the lemma.

Lemma A1l: Given two positive integers | and m.

Ryl +m] > (R,]-1)(1+%). (58)
and
Ryl +m] < (RI1+1) (1 + /%) . (59)

for every n.

Proof: Let e[n — 1] =1/2 — 51 and g[n — 2] = 1/2 — 49. where. by assumption. v

and v are independent random variables that are uniformly distributed across the
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interval (0. 1). Given (42). this implies that
Ruli] = i (71— v2) + 7). (60)
Because the floor function rounds down to the nearest integer. (60) implies
R.[i] <i(m1— )+ < Rpli] + 1. (61)

which gives
(+Dm - (Rulil+ D) G+ Dw = Rali]

[/ !

(62)

for all ¢ > 0. Therefore. if i = m + [ is applied to the left-hand side of (62). and

¢ = [ is applied to the right-hand side of (62). it follows that

(+m+1D)v — (Rl +m]+1) < (I + 1)y = Ru[l]

63
L +m { (63)
which. given v, < L. can be simplified to

(L+m)R,(I] = L(Ry{l+m]+ 1) <my < m. (64)

Upon simplifying (64). (58) follows.
For the second inequality in this lemma. note that (61) also gives the following

inequality:

79 .+ R,[i] << i +.R,,[i] + 1. (65)
t+1 t+1

for all £ > 0. Therefore. if i = m + [ is applied to the left-hand side of (65). and

¢ = [ is applied to the right-hand side of (63). it follows that

(L +m)~2 + R, [l +m] < lya+ R, [l] + 1
l+m+1 [+1 '

which can be simplified to

U+ 1) Ryl +m] < (RuI] + 1) (L +m + 1) — miys. (67)
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Because v > 0. (67) implies
U+ DRJl+m] < (R + D (L +m+1). (68)

Dividing both sides of (68) by [ + 1 gives (59).
[
Notation: Let Z; be a segment composed of L > 0 zeros. and let Sy (N > 1)

denote the following segment of N + 1 samples:

Sv=1.0.....0.-1: (69)
I

N samples

where only the number of zeros in Sy vary as a function of V.
Lemma A2: If a segment of y[n| is given by
y[n] = e SN 2SNy (70)

with Ny > 1. then L =0 and [Ny — Ny| < 1.

Proof: Without loss of generality. assume that the sequence starts at time n. The

double of sumn of the segment in (70) is given by

. fori=1.....Np:
Ruli] = Nl. torz.= ’1+ l...:.N1+{,+l r (71)
i—L-1. fori=N+L+2...N\+L+Ny+1:

Ni+ Ny, fori=Ny+ L+ Ny+2.

It is shown first that if Ny > 1. then L = 0. With [ = Ny and m = L + 1. it follows

from (71) that R,[l] = R,[l + m] = Ny. and (58) implies

N> (N =1 (1+ 2 ) (72)
Given N| > 1. then (72) implies that
N,
L<——1 —1<1. (73)

N -1
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Since L is a nonnegative integer. (73) implies that L = 0 whenever Ny > 1.
Next it is shown that ([No — V| < 1when Ny > 1. Let Iy = Ny+L+1.m; = VNs.
[ = Ni. and ma = L + Na+ 2. This and (71) imply R,[{li] = R,[l2] = Ny. and
Ru[ly + my] = Ry[lo + ma] = Ny + Ny. Using the [}, and m values with (39). and

the lo and my values with (58). it follows that
(1+EE) V- <M+ <+ (T ). )

With Np > 1. it has already been shown that L = 0 and so (74) can be simplified

to
NI+ Ny +2 NI+ No+2
— (N} -1 N+ N N _— 5
N, (M ) <N+ Np < (N + 1) N, 12 (75)

Upon simplifving. the lower bound in (75) gives Ny — Ny < 2. and the upper bound
gives N1 — Na > =2, which implies |V} — Ny < 1 since Ny and Ny are integers.

Lemma A3: Given the integers K. Ni. Na. N3 > L and L > 0. let a segient of y[n]
be given by

yln]=... T S Sy 2. Sxy- .- (76)
A
K segments

[f Ny # Ns and ecither Ny > 1 or Ny > 1. then L = 0 and either N3 = Ny or

./V3 = ]V-)_ .

Proof: Assume. without loss of generality. that the segment given by (76) begins

at sample time n. The double sum of this segment is

(1. for 1 < i< Np:
i—1- | S| fro<i-M <o+ DR+

Ruli] = N, + M. for 0<i—[N,+1+(Na+1)K]<L: (77)
i—(L+K+1). for0<i—[Ni+1+(Nao+1)R + L] < Nj:
N+ NyK + N3, fori= N +(No+1)R + L+ Ng+2.
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First. it is shown that if Ny # N> and cither Ny > 1 or ¥ > L. then L = 0. If
Ny > 1. it follows from Lemma A2 that L = 0. Suppose Na = 1. which implies that
Ni = 2 by Lemma A2 and the hypothesis. To apply Lemma Al. let | = Ny = 2.
and m = 14+ K (N2 +1)+L =1+2K + L. Using (77). this implies R,{l] = Ny = 2.
and Rp[l + m] = Ny + VoK =2+ K. and (58) gives

1+2K +L

K+2>1+ (73)

Simplifyving (78) gives L < 1. which. since L is a nonnegative integer. implies L = 0
for any K > 1.

Next it is shown that given N # Ny and either Ny > 1 or NV > L. then either
N3 = N3 or N3 = Ny. Suppose N3 # No. Lenuna A2 implies that [N3 — Ny| =1
and [N7 — Na| = 1. To apply Lemma Al. let [; = Ny+1+K (No + 1). gy = L+ V3.
[ = Ny.and my = (Na + 1) K + L + N3 + 2. With these values. (77) implies that
Ru.[li) = N+ KNo. Ry[la] = Nycand R, [l +my) = Ry[la+ma] = Ny + K Na + Ny,
Substituting the first set of values (i.e.. [;. cte.} into (39) and the second set of

values into (58) gives

(Ni-1) ( 14 el be ty o2 ) <NIHR Na+ Ny <(N) +K Nat1) (11-\_’_—’,\“‘\-,—, ) : (79)

Since. as previously shown. L = 0 under the given assumptions. the upper bound

of (79) can be simplified to

N3 (K+1) <N +2+K (N2 +1). (80)
while the lower bound can be simplified to

N3+ K(No—-1)> (N —-2)(K +1). (81)

Since Np < Nj + 1. (80) implies that Ny < N} + 2 for any K > 0. Moreover.

since No — 1 > N3. (81) implies that N3 > Ny — 2. Therefore. [N3 — N7| < 1.
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Since [Ny — Nj| = [Ny — N3| = 1. this implies N3 = N;. Because N3 = N| when
N3 # Na. either N3 = Ny or N3 = N under the given assumnptions.

Theorem Al. Characterization of the ALY Modulator Qutput: There exists
a nonnegative integer N such that y[n] either consists entirely of the concatenation

of the segments Sy and Sy, or =Sy and =S\ 4.

Proof: Lemma A3 implies that if Sy and Sy, constitute a segment of y[n|. then
there are no zero runs between such segments and all segments that follow are of
the same type. The Symmetry Property in Lemma 1 implies that the same result
holds for the segments =Sy and —S\ ;.

s

Definition: A segment S of the AY modulator output is called a Type 4 segment
if there exists a subsegment in S given by .... —1.0..... otherwise. the segment is

called a Type B segiment.

Lemma A4: For m odd. R,[m] is greater than or equal to (m + 1) /2 if and only

if y[n] = 1. and the segment y[n]..... y[ln + m — 1] is a Tvpe B segment.

Proof: (Necessity) Suppose y[n] = 1 and the segment y[n]..... yln+m — 1] is a
Type B segment. Because a negative one is always immediately followed by a one

in this segment. it follows that

Ryl - 1]. ifyln+1-1]= -1

_ 2
R[] {R,,[l — 1]+ 1. otherwise: (52)

for 0 <! < m. This implies that R,[l] =1 — N_[l]. where N_|[{] is the number of

negative ones in the segment ylnj... .. y[n + 1 — 1]. Given m is odd. Theorem Al



implies that there are at most (s — 1) /2 negative oues in the segment yn]. .. .. yln+
m — 1]. Therefore. R[] > (m + 1) /2.

(Sufficiency) Now. suppose R,[m] > (m +1)/2. Since R,[m] > 0. y[n] #
—1. Recall that R,[m] is given by (60) as a function of the two independent and
uniformly distributed (across the interval (0.1)) random variables vy and . If
y[n] = R,[1] = 0. it follows that 2v; — v» < L. which implies v < (1 + ) /2.
Inserting this inequality into (60) gives R,[m] < (m+ 1) /2. Therefore. yln] is
ucither -1 nor 0. which implies that y[n] = 1 by Lemma 1.

Suppose the segment y[n]. .. .. y[n+m — 1] is a Type A segment. Theorem Al
implies then that every one in this segment is immediately followed by a negative
one. which implies that

Rpll — 1]+ 1. ifyn+l-1=1:

Rull] = { Ru[l - 1]. otherwise:
for 0 <! < m. Thus. R,[l] = Ni[l]. where Np[l] is the numnber of ones in the segment
y[n]..... y[n + 1 —1]. Giveu y[n]..... y[n+m — 1] is a Type A segment. there are
at most (m — 1) /2 ones in this segment. This implies that R,[m] < (m —1)/2.
which contradicts the assumption that R, [m] > (m + 1) /2. Therefore. the segment
ylnl..... y{n + m — 1] must be a Type B segment.

Theorem A2: Given m is a nonnegative integer. and h is a positive integer. it

follows that

0. m > "—_7—1
(m+1)° m- 9 h—1. .
Py (h.m) = { wmenoes T agonoon: > 2om < S (83)
Untl) otherwise.

hih+1)(h+2)"*

Proof: From Theorem Al. each one in y[n] either immediately precedes or succeeds
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a negative one. Thus. if there cxist m values of i € {1..... I — 1} such that
y[n + ] = L. then there exist m values of ¢ such that y[n + i) = —=1. Therefore. 2m
must be less than L. which implies that P, (h.m) =0ifm > (h - 1) /2.

Let P (h.m. B) be the probability that:

a) ynl=1and yln+ h}j = -1:
b) There exist m values of i € {1..... h — 1} such that y[n +i] = 1:
¢) The given segment of y[n] is a Type B segment.

As shown in the proof of Lemma Ad. these couditions imply that R[] =1 - N_{l].

where N_;[l] is the number of negative ones in the segment ynj.. ... yln+1-1].
Since y[n + h] = —1. it follows that R,[h] = R,[h + 1] = h —m. Additionally.
because this segment of y[n] is Type B. it follows that m < [h—g-l—j which implies

(84)

9
Ru[h] = Rulh + 1] > [" = J

Since either I or h + 1 is odd. it follows from the above inequality and Lemma A4

that R,[h] = R,[h + 1] = h — m if and ouly if the three events listed above hold.

Thus. P (h.m. B) can be written as
P(h.m.B)y=P(R,[h=R,[h+1]=h—m). (85)

Recall that R, [k] is given by (60) as a function of the two independent and uni-
formly distributed (across the interval (0.1)) random variables ~; and v9. Because

x < o] <+ 1the event R,[h] = R,[h+ 1] = I = m occurs if and only if

h—m h+1 h—m+1 h+1
9 < A . &80
2 TR SMS ThIa Tiaa™ (80)
and
h—m h h—m+1 h
~y < 9. 87
< h+1 +h+l‘n (87)

h+1 +h+l
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With 0 < v < 1 and h — m > 1. the upper bound in (86) is more restrictive
than that in (87). and the lower bound in (87) is more restrictive than that in (86).

Therefore. (86) and (87) are satisfied if and only if

h—m+ h < <h,—m+1+h+l (88)
h+1 h+1/2"71 h+2 h+ 2 2
Thus. the probability that R,[h] = R,[h + 1] = h — m is equivalent to the prob-

ability that v; and 2 satisfy (88). Since v; and v are independent with uniform

distributions. this probability is

mm{ hom=l  hel = Ly l}
P(h.m.B) / / d.rdy. (89)
min '; __'{‘ + h?[ y.l }

Solving this integral gives

(m+1)* , h—1.
P(h.m.B) = { "h=hi(h+2)" for m < %5=: (90)
0.

otherwise.
Let P(h.m.A) be the probability that events a) and b) occur along with the

following:

" The given segment of y[n] is a Type A segment.
By Theorem Al. every one in a Type A segment of y[n] is followed by a negative
one. Thus. it follows that Events a). b). ¢’) occur if and only if Event ¢’) occurs
along with the following events:
a) yn+1=-land yln+h-1] =L

b') There exist m — 1 values of i € {2..... h — 2} such that yjn + i = —1.
By the Symmetry Property in Lemma 1. the probability that Events a'). b'). and
¢’) occur is equivalent to the probability that:
Ay ym+1l=land yln+h -1 = -1

b”) There exist m — 1 values of i € {2..... I — 2} such that y[n + ] = I:
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This nnplies that P(hom.A) = P(h—=2.m - 1.B) for m < (h—-1)/2 aud

h > 2: in other words.

: 3 h—1.
P(h.m.A) = {3(,,_'1")(,,_2). for h > 2. m < =5 (91)

otherwise.
Since. by virtue of Theoremn Al. there are only Type A or B segments of y[n]. then
Py(h.m)=Ph.m.A)+ P (h.m.B). This. (90). and (91) imply (83).

Theorem A3: Given [ is a positive integer.

% . for { odd:
Py (1) = , (92}

wr=nusn-  for Leven.

Proof: For [ even. Py (1) = P, (h.m) with h =1 — 1. and m = (I — 2) /2. In other

words.

! .
B =T ouen (93)

when [ > 0 is even.

For [ odd. P, (l) can be written as

P,(l) =P (R,[m] = I_"';lJ. form=1..... l). (94)

Given R,[l] = (I + 1) /2 and [ is odd. it follows from Lemma A4 that y[n] = L. and

the segment yln].. ... y[n+1—1]is a Type B segment. However. this does not imply
that y[n + i = (=1)' fori =0..... [-1

Suppose | > 1. It is shown next that the two eveuts R,[l] = (I + 1) /2 and
R,[l — 1] = (I —1)/2 occur if and ouly if y[n + ] = (=1) fori = 0..... i — 1.
Necessity follows by computing R,[l] and R,[l — 1]. Now. sufficiency is proven

by supposing that R,[l] = (I+1)/2 and R,[l — 1] = (I -1)/2 both hold. As
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shown in the proof of Lemuna Ad. because the given segment of y[n] is Type B.
R,[i]] = i — N_y[i]. where N_[i] is the number of negative ones in the segment
yln]..... y{n+ 1 —1]. Suppose y[n +i] =0 for some i = 1..... [ — 2. This implies
that N_j[l — 1] < (1 =3) /2. and R,[l — 1] > ({ + 1) /2. This contradicts the fact
that R,[l — 1] = (I — 1) /2. Therefore. y[n+i] #0for i =0..... [ — 2. and since
yln+1-2] = —1. it follows that y[n+{ — 1] = 1 because. as previously shown. this
segment of y[n] is a Type B segment. So. the expressions R, [l — 1} = (I = 1) /2 and
R,[l] = (1 + 1) /2 imply that y[n+i] = (—l)i fori=0..... 1.

Therefore. (94) can be simplified to

D, (l) = P(Ru[l] = Itl-Rn[[ - l] = I—Tl) . (95)

Given R,[0] = 0. (95) holds for all odd [. including { = 1. Recall that R,[l] is given
by (60) as a function of the two independent and uniformly distributed (across the
interval (0.1)) random variables v; and v2. Because x < |r] < x + 1. the event

R,(l] = Ryl = 1]+ 1 = (I +1) /2 occurs if and ounly if

-1 -1 [+1 -1 .
ETH ] T2 < < T'*'—I—’Y'z- (96)
and
SRS LT S o7)
SR UL R B i

Because v, and 2 are restricted to the interval (0. 1). the upper inequality of (96)
is more restrictive than that of (97). while the lower inequality of (97) is more

restrictive than that of (96). Therefore. (96) and (97) are satisfied if and only if

!
= <n< 72- (98)

+1

DO —
Py

Therefore. P, (1) is equal to the probability that v, and v satisfv (98). Since

71 and vy are independent random variables that are uniforinly distributed across
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the interval (0.1). this probability can be evaluated as follows:

uun{ —,—+—,—q l}
/ / dr dy. (99)
1

um{ l+ﬁl/ 1
Evaluating (99) gives
1

r) = nk (100)

for odd | > 0. Therefore. (93) and (100) imply (92).

Theorem A4: The probability function Py (h.m) distributes through the DAC as

follows:
&N

2 1 +3 . i~ 1
Pr_y(h.m) = Z (§> ((lil> +‘2(’; _ 1)) P (h.i). (101)

=i

where & > 1 and (}) is the combination function with (:}) defined to be |

Proof: By assumption. Py (h.m) is independent of the laver depth: therefore.
Pi._i (h.m) is derived from P (h.m) by considering the top output of Sy .. which
is given by (2). As shown in the proof of Lemma 1 (Claim 3). either ry . fn] =
Zkrlnlors[n] or zppn] = —ziplnjorr[n]. Let Py (h.m.i. 1) be the conditional
probability that

a) Tp_1ar—1(n)j=1and xp_ja._[n+ h] = —-1:

il
—_
™

b) There exist m values of j € {1..... h — 1} such that xg_y ar— [0 + Jj]
given that

1. ) =1and xp [n+ h] = -1

[ 8]

. There exist i values of j € {1..... h — 1} such that zp . [n + j] = 1:

&

Lprn] = 2k, [n]og.r[n] for all n.
Under this condition. the segment x -[n].. ...z [+ h] gives rise to ¢ + 1 svmbols

in the switching sequence during these same sample times.
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Recall from (35) that the dither sequence chooses the type of a given sviubol
and determines whether or not rg_j 2,1} is ¢ [n] or 0 at sample times within
this symbol. In the given segment of g [n]. there are i + 1 symbols and thus i + 1
symbol tvpe choices. all of which are made independently with a probability of 1/2.
To satisfv the event characterized in Pi_y (h.m.i. 1). the first and last dither choices
in this segment must ensure Event a) holds. while the remaining / — 1 dither choices
must cusure that Event b) holds. There are (,1,"_11) unique combinations of dither

choices that ensure this. which implies that

R 1 +1 i—1
Pi_i(h.m.i.1) = (;) (m B l)' (102)

Let i)k—l (h.m.i.—1) be the same probability function as Pr_, (h.m.i.1). ex-
cept Condition 3 is changed to the following:
Y. xpp(n] = =z njor[n] for all n.
In this case. symbols always start in sg.[n] at sample times when rg . [n] is -1.
Furthermore. the segment x .[n]..... xp[n + h] includes 7 + 2 dither choices (the
two choices which determine zg_yo.—1{n| and rg_ya.—1[n + h]. and the i choices
between these two samples). To satisfv the event characterized in Pi_y (h.m.i. —1).
the first and last dither choices for the described segment of ay_y o, [n] must ensure

that Events a) holds while the remaining ¢ dither choices must ensure that Event b)

holds. There are () unique combinations of dither choices that ensure this. which

1 42 .
Pooy (hom.i.—1) = (;> (i) (103)
P4 n

Because the initial state of s .[n] is taken to be an independent. uniform ran-

implies that

dom variable. the probability that i .[n] = 24 [n]og[n] and the probability that

xp.r[n] = —zp. [n)og.[n] are both equal to 1/2. Therefore. by averaging the condi-
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tional probabilities that are derived above. it follows that

(i)k—l (homi.—1) + i)k—l (h.m.. 1)) P (h.i). (104)

Substituting (102) and (103) into (104) gives (101).

Theorem AS5: Given & > 1. the probability function . (1) distributes through the

RN
1 : 1 :
(5) : + <§> P.(l). (1095)

DAC as follows:

Proof: It follows from assumption that the value of P;_; (/) can be determined by
analyzing the top output of Si,. As shown in the proof of Lemma 1 (Claim 3).
either (1] = 2 [njog [n] or &g [n] = =z [n]os [n]. The probability of either
event is 1/2 by assumption. Let Pi_; (1. 1) be the conditional probability that:

a) Tp_par—iln+1] = (=1) fori=0..... l-1:
given that

L owgefn+i=(-D)fori=0.....0 -1

2.y [n] = z ok [n).

Given Coudition 2. svinbols in sg . [r] begin at sample times only when g [n] is 1.
Therefore. given Conditions 1 and 2. Event a) occurs if and only if dy .[n+2m] =1

form =0..... [({ + 1) /2] — 1. Since the dither sequence consists of i.i.d. uniform

random variables. the probability of this event is

1+1

. NEs
Py (I.1) = (-) : (106)

K)
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Let Pi_; (. —1) he the same conditional probability as P._; ([.1) except Con-
dition 2 is altered to be
2 xp 0] = =z [n)orr[n]-
This implies that a symbol in sy .[n] always begins at sample times when xy . [n] is
-1. Given Conditions 1 and 2'. Event a) occurs if and only if a dither sample gave
rise toxg n] =land for ! > L. dg [n+2m+1]=—-1form =0..... f(+1)/21-2.
Therefore. the probability of this event is given by

) Nk
Py (l.-1) = (—) . (107)

2

Since Conditions 2 and 2’ occur with equal probability. Pi._, (/) is obtained by

averaging the conditional probabilities as follows

P () = (i),k._I (1) + Pr_y (L. -1)) P (l). (108)

N | =

Substituting (106) and (107) gives (105).

s
Theorem 1: See Section IV for the theoremn statement.

Proof: First. consider the switching sequence variances and the head-length prob-
abilities for switching sequences in layer & > 1. As shown in (28) and (32). these
statistics depend on Py (). By recursively applving (1035). it follows that

*I h—k

1+1
1 1 LTJ 1 [ '
no- (3 0) no
It follows from (92) that P, (1) = 1/4. and with [ = 1. (109) gives

1 h—k+2
P (1) = (5) . (110)
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Substituting (110) into (28) gives (17). Morcover. the head-length probabilities for

a switching sequence in layer £ > 1. as given in (18). follow by substituting (110)
into (32).

Now. consider the probability that a head of length & > 1 samples occurs in

a layer-1 switching sequence. It follows from the Symmetry Property in Lemma |

and (29) that
P(H\[m]=h) =
2P (arl.r[n] =rifn+hj=0.2,[n+i]= (=1)'. i=1..... h - 1) (111)
P(xyr[n] =0) )

Because the nonzero samples of z) ,[n] always alternate between 1 and -1. it follows

fromn the Law of Total Probability that

P(zicln+il=(-1). i=1.... h-1) =
P(esdn+i=(-1). i=0.....h—1)
+P (o] = arafn+ 1) = 0o pfn+ i = (<) i= Lok - 1)
+P (e + i) = (-1). i =1.....h)

The Symmetry Property in Lemma 1 immplies that all of the probability functions
in (112) that do not include 1 [n] = 0 can be determined by the function Py (l) to
give

Pi(h-1)=-2P (h) =

P (:nl_,[n] =z n+h) =02, n+i= (=1)'.i=1..... h — l) .
(113)

Substituting (113) into (111) gives

2(Py (h — 1) — 2P, (h))

P(H\[m] =h) = P (xyr[n] = 0)

(114)

Since 02 = P (x1,.[n] = 0). the expression for a2 given in (17) can be substituted
i 1. I 18

into (114) to give (18) for k=1 and h > 1.
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Finally. cousider the probability that a head of length 1 occurs in sy .[n]. The

head-length probability is given by

P(ry [n]=z1,[n+1]=0)
P (xyr[n] =0)

P(H\ml=1)=

The Law of Total Probability indicates
Pz n]=0)=P(ri,[n]=a1,[n+1]=0)+ Pz, n]=0.21,.[n+ 1] = -1)

+ P(xy, n]=0.21,[n+1]=1).
(116)

Additionally.
Pz n+1]=1)=Px [n]=0.21,n+1]=1)
(117)
+ Pz, [n]=-1l.x [n+1]=1).
Given the definition of Py (1) and the Symmetry Property of Lemuna 1. (117) implies

that

Pz rnj=0.21,[n+1]=1)=P (1) - P (2). (118)

and upon substituting thkis into (116). it follows that
Pley n)=xi,n+1]=0)=Prfn)=0) =2(P, (1) - P, (2)). (119)

Substituting (119) into (115) gives

2(P (1) - P (2)

P(xy,[n] =0) (120)

P(Hyimj=1)=1-

With P (x),[n]=0) = rr% as described in the previous case. (17) aud (120) imply
(18) for k=1and h = 1.

With P (I) = P, (). substituting (92) into (109) gives (19). Moreover. (21) and
(20) follow from Theorems A2 and A4, respectively.
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