

_	Motivation
	 Conventional continuous-time ΔΣ ADCs require: Low-leakage analog integrators High-linearity feedback DACs Low-noise reference voltages High-speed comparators Low-jitter clocks
	So they are increasingly difficult to design as CMOS technology scales and supply voltages reduce
	But highly-scaled CMOS technology offers very fast, dense, and low-power digital circuitry
	This work is a continuous-time $\Delta\Sigma$ ADC that avoids the above analog blocks in favor of digital circuitry

Process / Package	TSMC 65nm LP / 64 pin LFCSP		
Active area	0.07 mm ²		
f_s range	500 – 1152 MHz		
Number of ADCs tested	10		
f_s	1152 MHz	500 MHz	
Signal bandwidth	18 MHz	3.9 MHz	
Peak SNR	70 dB	71.5 dB	
Lowest peak SNDR	67 dB	71 dB	
f_{in} at which lowest peak SNDR occurs	5 MHz	1 MHz	
Power dissipation: Analog + Digital = Total	5 + 12 =17 mW	2.5 + 5.5 = 8 mW	
Relative to best published compared	arable CT ΔΣ A	ADCs have:	
Much smaller area Lower clock jitter sensitivity			
Greater reconfigurability Higher sample-rate			
Two supply voltages (2.5V for	V/I converter.	1 2V for all else	

Conclusion

> Have presented the first high-performance stand-alone VCO-based $\Delta\Sigma$ ADC enabled by digital background correction of VCO nonlinearity and self-cancelling dither

- > Unlike conventional ADCs it does not require:
 - Analog integrators
 - Feedback DACs
 - Reference voltages
 - Comparators
 - A low-jitter clock
- Its performance is limited mainly by the speed of digital circuitry, so unlike conventional ADCs its performance improves as CMOS technology scales

22