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Motivation

» In a conventional pipelined ADC:
« High ADC accuracy = high op-amp linearity
 This dictates high power dissipation

» Alternatively, can save power using:
« Op-amps with poor linearity
+ Digital background calibration to compensate for
the nonlinearity”

» This talk presents a pipelined ADC enabled by a new
such technique called Harmonic Distortion
Correction (HDC)

“e.g., [Murmann, Boser, IEEE J. Solid-State Circuits, Dec. 2003]
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Outline

» The concept underlying HDC
» Application of HDC to pipelined ADCs

» Circuit details of the implemented pipelined ADC

» Measurement results
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An ADC with 3r9-Order Distortion
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HDC Logic

Could correct distortion at the output,
if the distortion coefficient o, were known




Concept Underlying HDC

Want:

1. c[n] to facilitate measurement of a; by HDC
2. c[n] to be uncorrelated from v, (n7)

3. c[n] to have low amplitude

I
HDC Logic

Concept Underlying HDC

Use: c[n] = t,[n]+t,[n]+t;[n]
where 7,[n] =+ 4 (2-level), independent, zero mean
pseudo-random sequences

ti[nl+ulnl+an)

j
HDC Logic

r{n] =6 a; t,[n]t,[n]t5[n]
Hlnlolnl ] + (stuff uncorrelated with #,[n]t,[n]t;[n])

= r[n] t,[n]t,[n]t;[n] / (6 A®) = a, + zero mean random sequence

— averages to o4




Concept Underlying HDC
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Still to be Discussed...

» This simple model so far has assumed:
* No ADC gain error
* Only third-order distortion
* An ideal DAC

* Negligible quantization noise

> These issues will be addressed soon in the context
of the pipelined ADC




14-bit Pipelined ADC Architecture
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» Input sample-and-hold not shown
» Delays not shown

Behavior of Stages 2-6
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Property: two adjacent stages with n and m-bit resolution
behave as a single (n+m-1)-bit stage




Residue Amplifier Distortion Problem
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Stage 1 Stages 2-6

» Problem: high SNDR = ¢,~ 0 = high power consumption

» Solution: reduce residue amp power in trade for large ¢,
correct using HDC

HDC Concept Applied to the Pipeline
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HDC Extension to Handle o, and o,

> Recall typical distortion: f(v,) = o, v, + av,?
» Must combine estimation & correction for ¢, o,
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[Panigada, Galton, IEEE Trans. on Circ. and Sys. I, Sept. 2006]

Application of HDC to Other Stages

Vin(n T)

Behaves

asa
10-bit ADC

x(,,,,[z]_ 3 HDC1 -_@4_ HDC2 —{}

Stage 1 Stage 2 Stages 3-6

» HDC could be applied to all stages
» But typically it is only required in first few stages




14-bit 100MS/s P
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» Dynamic Element Matching (DEM) to scramble DAC

mismatches

» DAC Noise Cancellation (DNC) implemented as in
[Siragusa, Galton, IEEE J. Solid-State Circuits, Dec. 2004]
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DEM DAC Signal Processing

Segmented DAC to reduce area and complexity:

Dynamic Element
Matching Encoder

[Chan, Zhu, Galton, IEEE J. Solid-State Circuits, Sept. 2008]
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Low-Latency Implementation

» DEM tree structure and c[r] adder logic are flattened together

» Computations that don’t need ADC data are done in advance

» Remaining computations are done with 2 T-gate layers
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Die Photograph
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Typical Measured Output Spectra

Power Spectral Densities
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Measured SNR, SNDR, and SFDR
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Measured Performance Table

Design Details

Technology 90 nm CMOS
Package 56 pin QFN

Die Size Including Pads and ESD Protection 2.15 mm x 3.35 mm
Active Area 4 mm’

Digital Calibration on-chip

Voltage References on-chip

Worst Case Measured Results Over Nyquist Band for f; = 100 MHz

Power Supplies Vpp Test Ca;e 1 i Vpp Test Casie 2 i
Vop Power Dissipation Vop Power Dissipation
Analog 1.2V 93 mW 1.0V 62 mW
Digital 1.0V 17 mW 0.7V 7 mW
Clock Generator 1.0V 1 mW 130 mw 1.0V 1 mW 92 mW
Clock Drivers and DEM | 1.35V | 19 mW 135V | 22mW
Performance with HDC
and DNC On
Peak SNR 70 dB 68.3 dB
SNDR at —1dBFS 68.8 dB 66.6
SFDR at —1dBFS 85 dB 75 dB
2-tone SFDR at —1dBFS 86 dB 80 dB
Maximum /NL 3.6 LSB 3.8 LSB
Maximum DNL 0.54 LSB 0.39 LSB

Worst case over all the three tested boards
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Comparison to Prior ADCs

R::e;zlrlfe f. | SNDR | SFDR | Vop | Pw | FOMI1 FoM2
Number | (MS/s) | (dBFS) [ (@B) | (V) | (mW) | (pJistep) | (pJ-Vistep)
3] 75 68 76 3 | 314 2.04 6.12
LTC2259 | 80 73 9 | 1.8 | 93 0.32 0.57
AD9233 80 70.5 90 | 1.8 | 248 113 2.03
ADS6123 | 80 72.3 89 | 33| 318 118 3.89
LTC2260 | 105 73 9 | 1.8 | 112 0.29 0.53
AD9233 | 105 | 705 90 | 1.8 | 320 111 2.00
ADS6124 | 105 | 723 84 | 33| 374 1.06 3.49
6] 250 | 65.9 82 | 1.8 | 150 037 0.67
Thiswork | 100 | 69.8 85 | 12| 130 0.52 0.62
Thiswork | 100 | 67.6 75 | 10| 92 0.47 0.47

SNDR —1.76 dB
6.02dB

FOM1= L and FOM?2=FOMI1xV,, where ENOB=

ENOB
2 s
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Design Issues

» Limitations of our design
« HDC convergence time is 120 seconds

» Stages 2-6 are not optimized so area and power
are higher than necessary

> Practical solutions

« HDC auto-calibration phase would reduce
convergence time to < 1 second

* Fewer bits per stage after stage 1 and more
aggressive scaling would reduce power and
area
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Conclusion

Have:
» Explained the concept underlying HDC

» Explained how HDC can be applied to pipelined
ADCs

» Presented a 14-bit 100MS/s pipelined ADC
enhanced with HDC

The work demonstrates:

» HDC enables high ADC resolution despite low-
power, low-voltage circuitry

» HDC complements DEM and DNC
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