A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation

Ashok Swaminathan^{1,2}, Kevin J. Wang¹, Ian Galton¹

- ¹ University of California, San Diego, CA
- ² Next*Wave* Broadband, San Diego, CA

Outline

- Phase-Noise Canceling Phase-locked loops
- Adaptive Phase-Noise Cancellation
- Circuits
- Experimental Results
- Conclusion

A Sign-LMS algorithm adjusts ΔI_{bias} until DAC gain is correct

- Term proportional to $e_{cp}[n]$ remains in v_{ctrl} if DAC cancellation is not perfect
- Since $sgn\{e_{cp}[n]\} \times e_{cp}[n] = |e_{cp}[n]|$, integrator ramps up or down until ΔI_{bias} is adjusted properly

- v_{ctrl} can have a large DC component (it sets the VCO freq)
- Hence, the LMS loop contains a large $\mathrm{sgn}\{e_{cp}[n]\}$ term
- But $sgn\{e_{cp}[n]\}$ contains large spurious tones
- To suppress the tones, the LMS loop BW must be very low
- \Rightarrow Very slow calibration settling, e.g., 1s in prior art

Proposed Adaptive Calibration

Idea: Split the VCO's varactor into 2 parallel halves; use the common-mode voltage to control the VCO and the differential-mode voltage to control the calibration loop

- VCO is controlled by its common-mode input voltage, but is insensitive to differential-mode voltage
- The differential-mode voltage is now available to independently control calibration loop

8

Proposed Adaptive Calibration Cont.

- Two parallel half-sized loop filters and varactors create differential signal path for calibration loop
- Multiplication by ±1 performed by current steering
- Calibration feedback loop is DC-free

The Calibration Loop Signal Path

The calibration loop is controlled by a differential-mode signal that has no DC component

- ⇒ Calibration signal does not have to be filtered out by the calibration loop
- ⇒ Can have a wide calibration loop BW!

10

The PLL Signal Path

The VCO output is insensitive to calibration signal

⇒ Calibration does not affect operation of PLL!

Dynamic CP Biasing to Save Current

 The CP pulses are on for only a fraction of the reference period, so the CP itself only consume 50 uA on average

- But if the CP bias is left on for the whole reference period, it consumes 11 mA!
- By powering down the bias circuitry between CP pulses, the average current consumption is reduced by over 8 mA

(circuit details on next slide)

14

CP & Bias Circuit Details

- en, and en, are high during CP pulse
- Cascode transistors switch pulses between loop filter halves

Segmented dynamic element matching used to eliminate harmonic distortion from non-ideal DAC weights and pulse shapes (extension of that in [Chan & Galton, ISSCC 06])

- M_1 and M_2 used to minimize injection of channel charge into loop filter
- Separate DAC connected to each loop filter

18

Additional Circuit Details

- Divider: Pulse-swallowing 2/3 dividers; 2 stages CML, 5 stages CMOS
- VCO: $-g_m$ CMOS LC; coarse switched-capacitor tuning in 12MHz steps
- Calibration loop op-amp: folded-cascode; 67dB DC gain, 28MHz UGBW
- Loop Filter: On-chip; Poly and MiM capacitors; poly resistors with coarse tuning to account for PVT shift
- Digital: 0.18µm standard cell library

Performance Table

Design Details		
Technology	TSMC 0.18 µm 1P6M CMOS	
Package and Die Area	32 pin TQFN, 2.2 × 2.2 mm ²	
Reference Frequency	12 MHz	
Output Frequency	2.4 – 2.5 GHz	
Loop Bandwidth	> 730 kHz	
Measured Core Current Consumption (at 1.8V)		
VCO and Divider Buffer	6.9 mA	20.9 mA
Divider	5.8 mA	
CP (dynamic biasing enabled)	2.7 mA	
Digital	0.5 mA	
DAC	3.6 mA	
Calibration	1.4 mA	
Measured Worst Case Integer-N Performance		
Phase Noise @ 100 kHz	-104 dBc/Hz	
Phase Noise @ 3 MHz	-126 dBc/Hz	
Reference Spur	-55 dBc	
Measured Worst Case Performance with DAC and Calibration Disabled		
Phase Noise @ 100 kHz	-88 dBc/Hz	
Phase Noise @ 3 MHz	-91 dBc/Hz	
Fractional Spur @ ≥3 MHz	-45 dBc	
Reference Spur	-52 dBc	
Measured Worst Case Performance with DAC and Calibration Enabled		
Phase Noise @ 100 kHz	-101 dBc/Hz	
Phase Noise @ 3 MHz	-124 dBc/Hz	
Fractional Spur @ ≥3 MHz	-62 dBc	
Reference Spur	-53 dBc	

24

Conclusion

- Have presented an adaptive calibration technique that solves the path matching problem in phasenoise cancelling fractional-N PLLs and avoids the slow settling problem
- Have demonstrated the technique in a fractional-N PLL IC, which, compared to relevant prior art, has
 - \triangleright the lowest reference frequency, f_{ref} (12 MHz)
 - \blacktriangleright the highest reported BW/ f_{ref} (730 kHz/12 MHz)
 - > significantly lower calibration settling time