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Fractional-N PLL Tradeoff
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Tradeoff: Widening the loop BW 
greatly increases phase noise:

A pity, because it also:
y reduces PLL settling time
y reduces sensitivity to VCO pulling
y enables an on-chip loop filter
y enables in-loop transmit modulation
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Fractional-N Phase Noise
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• Each CP pulse is mostly '6
quantization noise

Residual '6 noise in vctrl(t):

• But the '6 quantization 
noise is known, so it can be 
cancelled with a DAC
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'6 Phase Noise Cancellation
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• The DAC cancels most of the '6 quantization noise 
prior to loop filter so PLL bandwidth need not be small
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Result of DAC Gain Error
icp(t)

iDAC(t)

• Ideally, residual '6 noise in vctrl is 
zero except during CP and DAC 
pulses

• DAC gain error spoils this result

� Increased phase noise!

Residual '6 noise in vctrl(t)

• Each halving of fref increases the
required matching accuracy by 9 dB!
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Prior Adaptive Calibration

A Sign-LMS algorithm adjusts 'Ibias until DAC gain is correct
• Term proportional to ecp[n] remains in vctrl if DAC 

cancellation is not perfect
• Since sgn{ecp[n]}×ecp[n] = |ecp[n]|, integrator ramps up or 

down until 'Ibias is adjusted properly
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What’s the Catch?
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• Hence, the LMS loop contains a large sgn{ecp[n]} term

1

sgn{ecp[n]}
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• vctrl can have a large DC component (it sets the VCO freq)

• But sgn{ecp[n]} contains large spurious tones

� Very slow calibration settling, e.g., 1s in prior art 

dB

• To suppress the tones, the LMS loop BW must be very low
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Proposed Adaptive Calibration

• VCO is controlled by its common-mode input voltage, 
but is insensitive to differential-mode voltage

• The differential-mode voltage is now available to 
independently control calibration loop

Idea: Split the VCO’s varactor into 2 parallel halves; use 
the common-mode voltage to control the VCO and the 
differential-mode voltage to control the calibration loop
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Proposed Adaptive Calibration Cont.
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• Two parallel half-sized loop filters and varactors create 
differential signal path for calibration loop

• Multiplication by ±1 performed by current steering
• Calibration feedback loop is DC-free
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The Calibration Loop Signal Path
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The calibration loop is controlled by a differential-mode 
signal that has no DC component

� Calibration signal does not have to be filtered out by the 
calibration loop

� Can have a wide calibration loop BW!
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The PLL Signal Path 

The VCO output is insensitive to calibration signal

� Calibration does not affect operation of PLL!
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Block Diagram of PLL IC
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A Side-Effect of Wideband PLLs
If PLL BW is increased, must decrease CP noise to 
maintain same out-of-band performance

Example:
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PLL Phase Noise from CP Only

Case 1: PLL BW is 100kHz 

Case 2: PLL BW is 500kHz 
but CP current 
sources are 64×
larger than in 
Case 1 to reduce 
CP noise

� CP current consumption becomes significant as PLL 
loop BW is increased

Same out-of-
band 
performance
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Dynamic CP Biasing to Save Current
icp(t)• The CP pulses are on for only a 

fraction of the reference period, so 
the CP itself only consume 50 uA 
on average

• But if the CP bias is left on for the whole reference period, 
it consumes 11 mA!

• By powering down the bias circuitry between CP pulses, 
the average current consumption is reduced by over 8 mA

(circuit details on next slide)
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CP & Bias Circuit Details

• en1 and en2 are high during CP pulse
• Cascode transistors switch pulses between loop filter halves
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Cancellation DAC Structure

Segmented dynamic element matching used to eliminate 
harmonic distortion from non-ideal DAC weights and pulse 
shapes (extension of that in [Chan & Galton, ISSCC 06])
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Segmented DEM Encoder
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1-bit DAC Circuit Details
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• M1 and M2 used to minimize injection of channel charge 
into loop filter

• Separate DAC connected to each loop filter

Charge 
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Charge 
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error
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Additional Circuit Details
• Divider: Pulse-swallowing 2/3 dividers; 2 stages CML, 

5 stages CMOS

• VCO: –gm CMOS LC; coarse switched-capacitor tuning 
in 12MHz steps

• Calibration loop op-amp: folded-cascode; 67dB DC 
gain, 28MHz UGBW

• Loop Filter: On-chip; Poly and MiM capacitors; poly 
resistors with coarse tuning to account for PVT shift

• Digital: 0.18Pm standard cell library
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Die Photograph
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Calibration Loop Settling
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Spurious Performance
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Performance Table
Design Details 
Technology TSMC 0.18 Pm 1P6M CMOS 
Package and Die Area 32 pin TQFN, 2.2 u 2.2 mm2 
Reference Frequency 12 MHz 
Output Frequency 2.4 – 2.5 GHz 
Loop Bandwidth > 730 kHz 
Measured Core Current Consumption (at 1.8V) 
VCO and Divider Buffer 6.9 mA 
Divider 5.8 mA 
CP (dynamic biasing enabled) 2.7 mA 
Digital 0.5 mA 
DAC 3.6 mA 
Calibration 1.4 mA 

20.9 mA 

Measured Worst Case Integer-N Performance 
Phase Noise @ 100 kHz �104 dBc/Hz 
Phase Noise @ 3 MHz −126 dBc/Hz 
Reference Spur −55 dBc 
Measured Worst Case Performance with DAC and Calibration 
Disabled 
Phase Noise @ 100 kHz −88 dBc/Hz 
Phase Noise @ 3 MHz −91 dBc/Hz 
Fractional Spur @ t3 MHz −45 dBc 
Reference Spur −52 dBc 
Measured Worst Case Performance with DAC and Calibration 
Enabled 
Phase Noise @ 100 kHz −101 dBc/Hz 
Phase Noise @ 3 MHz −124 dBc/Hz 
Fractional Spur @ t3 MHz −62 dBc 
Reference Spur −53 dBc 
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Conclusion
• Have presented an adaptive calibration technique 

that solves the path matching problem in phase-
noise cancelling fractional-N PLLs and avoids the 
slow settling problem

• Have demonstrated the technique in a fractional-
N PLL IC, which, compared to relevant prior art, 
has

¾ the lowest reference frequency, fref (12 MHz)
¾ the highest reported BW/fref (730 kHz/12 MHz)
¾ significantly lower calibration settling time


