A 14b 100MS/s DAC with Fully-Segmented Dynamic Element Matching

Kok Lim Chan, Ian Galton University of California, San Diego, CA

Conventional Nyquist-Rate DACs

- Segmentation with multiple MSB current steering (CS) cells
- Calibration, DEM, trimming, and/or special layout techniques applied to MSB CS cells only
- This does not eliminate non-linearity from CS cell pulseshape mismatch, timing and glitch errors at high frequencies
- ⇒ SFDR tends to decrease with signal frequency:

Meaning of DAC Linearity

$$x[n]$$
 DAC $y(t)$

Goal : Output pulse stream is linearly proportional to x[n]

Example:

$$x[n]: 1, 4, -2$$
 $y(t) = \int_{0}^{p(t)} \int_{T_s}^{3T_s} + \text{"Other Stuff"}_{-2p(t-2T_s)}$

 $4p(t-T_s)$

Have linearity if "Other Stuff" is:

- 1) deterministic and independent of x[n], or
- 2) random, spur-free, and uncorrelated with x[n]

DEM Goal

DEM Goal: Choose $x_i[n](\pm 1/2)$ such that

$$\sum_{i=1}^{N} x_i[n] = x[n]$$

2) DAC noise pulses are spur-free and uncorrelated with x[n]

How to achieve DEM Goal

DEM Goal achieved if

[Welz, Galton, TCAS II, Dec 2002]

$$x_i[n] = m_i x[n] + \varepsilon_i[n]$$
 (m_i=constant)

where

$$\sum_{i=1}^{N} m_i = 1$$

$$2) \quad \sum_{i=1}^{N} \varepsilon_i[n] = 0$$

- 3) $\varepsilon_i[n]$ is white and uncorrelated with x[n] and $\varepsilon_i[n]$ for $i \neq j$
 - \implies any leakage of $\varepsilon_i[n]$ due to mismatch will be spur-free!

DEM Goal with Segmentation

DEM Goal achieved if

$$x_i[n] = m_i x[n] + \varepsilon_i[n]$$
 (*m_i*=constant)

where

$$\sum_{i=1}^{N} K_i m_i = 1$$

$$2) \sum_{i=1}^{N} \underline{K}_{i} \varepsilon_{i}[n] = 0$$

3) $\varepsilon_i[n]$ is well-behaved as before!

Details of FSDEM Encoder

Can verify that the FSDEM encoder below satisfies conditions on last slide:

 $d_1[n]$, ..., $d_{14}[n]$ are pseudorandom independent, white ± 1 sequences from LFSR

$$s_{k,1}[n] = \begin{cases} 0, & \text{if } x_{k,1}[n] = \text{even} \\ \frac{d_k[n]}{n}, & \text{else} \end{cases}$$

$$s_{l,r}[n] = \begin{cases} 0, & \text{if } x_{l,r}[n] = \text{odd} \\ \frac{d_{l}[n]}{d_{l}[n]}, & \text{else} \end{cases}$$

Circuit-Level Detail of DAC Cell

- Switch driver generates RZ switching-signals for CS Cell
- RZ switches in CS cell ensure data-independent transients
- Small transistors in CS cell for low parasitic capacitances

10

Die Photograph

Performance Table

Technology	TSMC 0.18 µm CMOS
Update Rate	100 MS/s
Package	QFN 64 with exposed paddle
Single-Tone SFDR @ 70 MS/s, 0 dBFS	78.9 to 82.3 dB across Nyquist
Single-Tone SFDR @ 100 MS/s, 0 dBFS	74.4 to 77.8 dB across Nyquist
Two-Tone SFDR @ 100 MS/s, -6 dBFS	82.1 dB, $f_{signal\ 1}$ =13.97 MHz, $f_{signal\ 2}$ =14.94 MHz 82.8 dB, $f_{signal\ 1}$ =27.98 MHz, $f_{signal\ 2}$ =28.95 MHz 80.6 dB, $f_{signal\ 1}$ =45.99 MHz, $f_{signal\ 2}$ =46.97 MHz
Full-Scale Current	16 mA
Supply Voltages	Analog: 1.8 V; Digital: 2.3 V
Current Consumption @ 100 MS/s	Analog: 30 mA; Digital: 53.5 mA
Area (including bond pads)	4.8 mm x 2.4 mm
Active Area	3.18 mm ²

Conclusion

- DEM with RZ output scrambles pulse-shape mismatch and allows smaller CS cells
- Fully Segmented DEM avoids exponential hardware complexity at the cost of increased CS cell current
- SFDR of >74 dB and >79 dB achieved across
 Nyquist band at 100 MS/s and 70 MS/s, respectively

