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Conventional Nyquist-Rate DACs
• Segmentation with multiple MSB current steering (CS) cells 

• Calibration, DEM, trimming, and/or special layout 
techniques applied to MSB CS cells only

• This does not eliminate non-linearity from CS cell pulse-
shape mismatch, timing and glitch errors at high frequencies
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Simplified Diagram of This DAC 

• DEM with RZ 
output to scramble 
pulse-shape 
mismatch and 
allow smaller CS 
cells

• Fully Segmented 
DEM to avoid 
exponential 
hardware 
complexity

Iout+(t)

Iout�(t)

 x8192 CS Cell x1024 SD
x2[n] 1

 x8192 CS Cell x1024 SD
x3[n] 1

 x4096 CS Cell x512 SD
x4[n] 1

 x4096 CS Cell x512 SD

x17[n] 1
 x32 CS Cell x4 SD

x18[n] 1
 x32 CS Cell x4 SD

x19[n] 1
 x16 CS Cell x2 SD

x20[n] 1
 x16 CS Cell x2 SD

x21[n] 1
 x8 CS Cell x1 SD

x22[n] 1
 x8 CS Cell x1 SD

x23[n] 1
 x4 CS Cell x1 SD

x24[n] 1
 x4 CS Cell x1 SD

x25[n] 1
 x2 CS Cell x1 SD

x26[n] 1
 x2 CS Cell x1 SD

x27[n] 1
 x1 CS Cell x1 SD

x28[n] 1
 x1 CS Cell x1 SD

FSDEM
Encoder

x[n]

x1[n] 1

SD = Switch Driver, CS = Current Steering
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p(t)

Goal : Output pulse stream is linearly proportional to x[n]

Meaning of DAC Linearity
x[n] y(t)

Example:

1, 4, -2 y(t) =

4p(t-TS)

-2p(t-2TS)

+ “Other Stuff”x[n] :
0 TS 2TS 3TS

DAC

Have linearity if “Other Stuff” is:

1) deterministic and independent of x[n], or

2)  random, spur-free, and uncorrelated with x[n]
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Behavior of r th 1-bit DAC

xr[n] =

Example: 

yr(t) = 

=

+
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Stream 
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Stream 
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3-Level DEM DAC Example
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Linear Pulse Stream Offset Pulse Stream

DAC Noise Pulse Stream
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DEM Goal : Choose xi[n](   1/2) such that

1) 

2) DAC noise pulses are spur-free and uncorrelated with x[n]
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How to achieve DEM Goal 
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Hi[n] is white and uncorrelated with x[n] and Hj[n] for i jz

any leakage of Hi[n] due to mismatch will be spur-free!�
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DEM Goal achieved if [Welz, Galton, TCAS II, Dec 2002]
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DEM Goal achieved if

DEM Goal  with Segmentation
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Hi[n] is well-behaved as before!
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Details of FSDEM Encoder

x[n]

FSDEM Encoder

S1,14

S1,13

S1,12

S1,2

S1,1

S2,1

S12,1

S13,1

S14,1

MSB

LSB
d1[n], ..., d14[n] are pseudo-
random independent, white
r1 sequences from LFSR
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Can verify that the FSDEM encoder below satisfies conditions 
on last slide: 
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Circuit-Level Detail of DAC Cell

• Switch driver generates RZ switching-signals for CS Cell
• RZ switches in CS cell ensure data-independent transients
• Small transistors in CS cell for low parasitic capacitances
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Die Photograph
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Measured SFDR versus Frequency
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Performance Table
Technology TSMC 0.18 Pm CMOS
Update Rate 100 MS/s
Package QFN 64 with exposed paddle
Single-Tone SFDR @ 70 MS/s,
0 dBFS

78.9 to 82.3 dB across Nyquist

Single-Tone SFDR @ 100 MS/s,
0 dBFS

74.4 to 77.8 dB across Nyquist

Two-Tone SFDR @ 100 MS/s,
-6 dBFS

82.1 dB, fsignal 1=13.97 MHz, fsignal 2=14.94 MHz
82.8 dB, fsignal 1=27.98 MHz, fsignal 2=28.95 MHz
80.6 dB, fsignal 1=45.99 MHz, fsignal 2=46.97 MHz

Full-Scale Current 16 mA
Supply Voltages Analog: 1.8 V; Digital: 2.3 V
Current Consumption @ 100 MS/s Analog: 30 mA; Digital: 53.5 mA
Area (including bond pads) 4.8 mm x 2.4 mm
Active Area 3.18 mm2
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Conclusion

• DEM with RZ output scrambles pulse-shape 
mismatch and allows smaller CS cells

• Fully Segmented DEM avoids exponential hardware 
complexity at the cost of increased CS cell current

• SFDR of >74 dB and >79 dB achieved across 
Nyquist band at 100 MS/s and 70 MS/s, respectively

INTEGRATED SIGNAL PROCESSING GROUP


