Presented at the 2004 IEEE International Solid-State Circuits Conference

A Digitally Enhanced 1.8-V 15-b 40-Msample/s CMOS Pipelined ADC

Eric Siragusa¹ and Ian Galton

University of California, San Diego

¹ Now with Analog Devices, San Diego, California

- Conventional PADC Example
- Digitally Enhanced PADC Prototype
- System-Level Design Details
- Circuit-Level Design Details
- Measured Results
- Conclusion

Process, Layout and Packaging Overview

• Process

- 0.18 μm CMOS
- MiM capacitors, deep Nwells, thick-oxide devices, low- $V_{\rm T}$ devices
- Layout
 - Deep Nwells and multiple supply domains
 - No special attention to capacitor matching
 - ESD protection circuitry on all pads
- Packaging
 - 56-pin QFN package with exposed die paddle
 - Down-bonding of all grounds to exposed paddle
 - Double-bonding of critical supply pins

ation and Mea	surement Su
Resolution	15 b
Sample Rate	40 MHz
Input Voltage Range	2.25 Vp-p differential
SFDR	90 dB
THD	88 dB
Peak SNR	72 dB
DNL	0.25 LSB
INL	1.5 LSB
SFDR Improvement with DNC and GEC enabled	> 20 dB
SNDR Improvement with DNC and GEC enabled	> 12 dB
Total Power	400 mW
Analog Power	343 mW (1.8 V)
Digital Power	51 mW (2.1 V)
Output Drivers Power	6 mW (1.8 V)
Technology	0.18µm 1P6M CMOS
Die Size	4mm x 5mm (including pads)
Package	56-Pin QFN with
	ground downbonding

Acknowledgements

 The authors are grateful to Erica Poole for digital schematic capture and verification, Sudhakar Pamarti and Ashok Swaminathan for digital layout and technical advice, Eric Fogleman for technical advice, and Andrea Panigada for test board design and technical advice.