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A Conventional Pipelined ADC Example

• Seven stages
• Each resolves slightly more than 3 bits
• 1-b of redundancy per stage

• Ideal DACs and gains � accuracy is just over 15b
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Conventional Switched Capacitor PADC

• Interstage gain error:
– Sources: capacitor mismatch, finite open-loop amplifier 

gain, incomplete amplifier settling
– Effect: “leakage” of quantization noise into PADC output

• DAC Noise:
– Source: capacitor mismatch
– Effect: introduction of signal-dependent errors

• Conventional solutions: 
– Large capacitors, high-gain op-amps
– Foreground calibration techniques
– Analog-intensive calibration techniques
– Trimming
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Digitally Enhanced PADC Prototype

1. E. J. Siragusa, I Galton, IEE Electronics Letters, March 30, 2000 
2. I. Galton, IEEE TCAS-II, March, 2000
3. A. Fishov, E. Siragusa, J. Welz, E. Fogleman, I. Galton, IEEE ISCAS, May 2002.

• Analog performance limitations are mitigated by 
background digital signal processing:
– Gain error correction (GEC) 1
– DAC noise cancellation (DNC) 2
– Segmented mismatch-scrambling DACs 3

• Demonstrated in a 0.18 μm CMOS prototype:
– 1.8 V, 15 bit, 40 Msamples/s, 400 mW
– 90 dB SFDR, 72 dB peak SNR, 88 dB THD

IC Prototype – High-Level Architecture
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Dynamic Element Matching Overview
When DAC mismatches are present:

• DEM alone improves SFDR …but not SNDR!

However DEM causes the noise to have “structure”:
– Noise was “manipulated” with known pseudo-random 

sequences and digital logic in the encoder 
– DNC technique will exploit the structure to remove the noise
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Dynamic Element Matching DAC

DEM Encoder uses pseudo-randomization to convert 1-b DAC 
mismatches, ehi and eli, into a constant gain, α, a constant offset, β, 
and white DAC noise, eDAC[n].
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DEM DAC Example for x[n] = 1

• α and β are independent of x[n] and pseudo-random choice
• eDAC[n] depends on pseudo-random choice
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The DEM Encoder: A Closer Look

• sseg[n] and sj,k[n] are independent pseudo-random 0, ±1 sequences
• sseg[n] and sj,k[n] are known by the digital logic
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The DEM Encoder: Example
One example set of choices for x[n] = 2:
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Structure of the DAC Noise

eDAC[n] is like a spread spectrum signal:
• Δk,r and Δseg are the unknown (constant) “message signals”
• sk,r[n] and sseg[n] are the known “spreading codes”
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The DNC Technique

The DNC logic is a spread spectrum “receiver” that:

• correlates the digitized residue against sk,r[n] and sseg[n] to 
estimate Δk,r and Δseg

• uses the DAC noise equation to cancel eDAC[n]

The DAC noise directly 
corrupts the uncorrected 
ADC output:
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• 9 simple spread-spectrum “receivers” 
• Requantization:

– reduces DNC logic size
– dithered to avoid corrupting correlations
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Interstage Gain Error

• ε = interstage gain error
• Causes imperfect cancellation of ADC quantization noise
• Reduces SFDR and SNDR

Conventional PADC:
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The GEC Technique (1)

• A pseudo-random ±Δ/4 sequence is introduced to the DAC path
• It occupies a portion of error headroom created by redundancy
• It follows the same path and sees the same gain as the quantization 

noise 
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The GEC Technique (2)
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Instead of dividing the digitized residue by the gain estimate: 

• a linear Taylor series approximation is used:

• the resulting correction signal is added directly to output
Any linear contribution to gain error is corrected!
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Circuit-Level Details

• Distributed input sampling4

• Separate input and DAC sampling capacitors
• DNC&GEC => no special attention to cap matching

4. I. Mehr and L. Singer, IEEE Journal of Solid State Circuits, March 2000
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5. M. Dessouky and A. Kaiser, IEE Electronics Letters, January 1999

• Modified version of circuitry presented in [5]
– Thick-oxide devices to avoid exceeding technology limits

• Uses a single 1.8V clock
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Residue Amplifier (1) 

P2

P1

OTA P1
P1

P1
Vcmoi

Voutp

Voutn

Vinn

Vinp

P2

P1

Vcmoo

Vcmoo

1.8V1.8V1.8V 1.8V

VCMFB

VinpVinn Vbn2

Vbn1

Vbp2

Vbp1

CcRc

Vbp3

Voutp

• Closed loop gain of 4 
• Two-stages for high gain and wide output swing

Residue Amplifier (2)

• Conventional PADC:
– Open-loop gain requirement >100dB
– Gain-boosting is typically required
– Simulated gain:  >125dB with gain-boosting, 85dB 

without

• Prototype IC:
– Gain-boosting with enable/disable circuitry is included
– As expected, measured PADC performance with GEC 

enabled and gain-boosting disabled does not change!

• Scaled down once and used in the remaining stages 
without further scaling
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DEM Encoder and GEC Adder Implementation 

• Control logic block presets paths 
• Critical path is 1 T-gate delay
• Encoder & adder implemented 

together to minimize latency
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• 10 1-b DACs:
– 8 step-size Δ
– 2 step-size Δ/2

• References are “double sampled”
– Capacitor sizes halved
– Reduces kT/C noise
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Process, Layout and Packaging Overview

• Process
– 0.18μm CMOS 
– MiM capacitors, deep Nwells, thick-oxide devices, low-

VT devices
• Layout

– Deep Nwells and multiple supply domains
– No special attention to capacitor matching
– ESD protection circuitry on all pads

• Packaging
– 56-pin QFN package with exposed die paddle
– Down-bonding of all grounds to exposed paddle
– Double-bonding of critical supply pins

Measured SFDR and THD vs. Input Frequency

• DNC and GEC enabled
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Measured PSD with a 19 MHz Input

With DNC and GEC disabled With DNC and GEC enabled

SFDR 64.8 dB
SNDR 54.7 dB

SFDR 90.9 dB
SNDR 71.6 dB
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Measured DNL (fin = 1 MHz )
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Measured INL (fin = 1 MHz )
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Fabrication and Measurement Summary
Resolution 15 b
Sample Rate 40 MHz
Input Voltage Range 2.25 Vp-p differential
SFDR 90 dB
THD 88 dB
Peak SNR 72 dB
DNL 0.25 LSB
INL 1.5 LSB
SFDR Improvement with DNC 
and GEC enabled

> 20 dB

SNDR Improvement with DNC 
and GEC enabled

> 12 dB

Total Power 400 mW
Analog Power 343 mW   (1.8 V)
Digital Power 51 mW   (2.1 V)
Output Drivers Power 6 mW    (1.8 V)

Technology 0.18μm 1P6M CMOS
Die Size 4mm x 5mm (including pads)
Package 56-Pin QFN with 

ground downbonding
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Conclusion

• The silicon implementation of two digital signal 
processing background calibration techniques has 
been presented
– DNC to compensate for DAC mismatch noise
– GEC to compensate for interstage gain errors 

• Together they drastically reduce analog circuit 
requirements required to achieve high 
performance

• They have been shown to be enabling components 
in a high-resolution pipelined ADC
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