A Multiple-Crystal Interface PLL with VCO Realignment to Reduce Phase Noise

Sheng Ye^{1,2}, Lars Jansson², Ian Galton¹
UC San Diego ¹
Silicon Wave Inc. ²

Outline

- Motivation
- Proposed PLL architecture
- Theoretical analysis
- Measured results
- Summary

Clock Generation for Bluetooth

Clock generator phase noise requirements:

1 MHz: *low* (e.g., -140dBc/Hz @ 20kHz)

32 MHz: moderate (e.g., -97dBc/Hz @ 20kHz)

Clock Generation For Bluetooth

Objective:

Requirement:

- Low cost ⇒ multiple crystal compatibility
- High integration ⇒ use ring VCO
- Low complexity ⇒ use integer-NPLL

The Problem with a Conventional PLL

- Stability requirement
- ⇒ bandwidth < 25 kHz

- Noisy ring VCO
 - ⇒ bandwidth > 100 kHz
- Low noise spec

Our Approach: Phase Realigned PLL

Conventional integer-N PLL except the VCO phase is realigned periodically to a buffered reference edge

Oscillators Accumulate Phase Errors

- Circuit noise ⇒ phase error in oscillators
- Phase error is accumulated in oscillators[†]
 - ⇒ Oscillator "remembers" previous phase errors
 - ⇒ Oscillator acts as a phase error integrator
 - ⇒ high phase noise in PLL passband

^{† [}G.Chien et al., ISSCC 2000]

Oscillators Accumulate Phase Errors

Realignment Blocks Noise Memory

Periodically realigning the oscillator to a "clean" edge suppresses noise accumulation

Realignment Blocks Noise Memory

Realigned VCO Prototype

- 7-stage ring VCO:
- 4 stages, variable delay → frequency control
- 3 stages, fixed delay → phase realignment
 - → reduce disturbance

Phase Realigning Details (1)

- VCO and buffered reference are in phase nominally; phase error is due to noise
- Phase realignment pulls the VCO edge toward its "correct" value

Phase Realigning Details (2)

- VCO phase shifts almost instantly when realigned
- VCO phase shifts almost linearly to phase error by a factor of β . ($0 \le \beta \le 1$)

Known Model for Conventional PLL

 K_{chp} = Charge pump gain

K_{vco}=VCO gain

 $H_{lp}(s)$ = Loop filter transfer function

M = Divider ratio

Modified Model for Realigned PLL

Realignment ⇒ two new blocks:

 $H_{up}(s)$: up-conversion of reference noise

 $H_{rl}(s)$: transfer function of realignment

VCO Phase Noise Transfer Function

⇒ Realignment widens the noise stopband

Loop Transfer Function

⇒ Realignment increases the phase margin

Measurement Versus Theory

 f_{ref} = 480 kHz, PLL bandwidth = 25 kHz

Reference Spur Issue

- 2 reference signal paths; 2 phase comparisons
- Delay mismatch ⇒ more reference spur power
- Realignment disabled: -78 dBc spur
- Realignment enabled: -34 dBc spur

Reference Spur Reduction

- Variable delay ⇒ compensate for mismatch
- Manual calibration ⇒ -71 dBc spur
- Auto-calibration loop feasible

Performance Summary

Technology	0.35 μ m BiCMOS SOI (with only CMOS components used)
Supply voltage	2.7-3.3V (measurements at 3V)
Total power consumption	6.8mW (no observable difference when realignment enabled)
Die size	1.8 mm ²
Realigned PLL core area	0.22 mm ² . Conventional PLL: 73% Realignment circuitry: 27%
Spot noise @ 20 kHz Offset	-92.5 dBc/Hz (realignment disabled) -102.5 dBc/Hz (realignment enabled)
Reduction of noise power from 1 kHz - 50 kHz	8.3 dB w/ 25 kHz PLL bandwidth 5.3 dB w/ 50 kHz PLL bandwidth

Die Photo

Bias CHP Divider

Realigning Buffer

Summary

 A new VCO phase realignment technique has been presented and shown to significantly reduce phase noise in an integer-NPLL

 A theoretical model has been developed that closely supports the measured results