

Successive Requantizer vs $\Delta\Sigma$ Modulator

- Better frac spur performance
 - 15 dB spur difference between 2^{nd} -order $\Delta\Sigma$ mod and SRs
 - 3-5 dB spur difference between 3^{rd} -order $\Delta\Sigma$ mod and SRs
- \succ No dither
 - \Rightarrow Improved low-frequency phase noise
- > No short-term quant noise spectral fluctuations
- Higher phase noise at high frequencies
 - Not an issue if LPF attenuates noise
- Larger number of output and quant noise levels
 - Higher CP phase noise
- SR could be optimized for even better frac spur performance, but at the expense of quant noise power. Instead:

improve frac spur performance by linearizing CP response

15

Performance Summary				
	[3]	[5]	[6]	This work
Tech (nm)	180	180	40	65
Supply (V)	1.2	1.8	1.0 / 2.0	1.0 / 1.2
Power (mW)	66.42	46.8	9.1	19.52
Area (mm ²)	4.84	3.24	0.046	0.341
Ref freq (MHz)	12	38	26	26
PLL freq (GHz)	2.4	6.12	2.002	3.35
BW (kHz)	975	1000	1500	48 ^a
In-band phase noise	-98	-102	-91	-87.5
(dBc/Hz)	@100kHz	@300 kHz	@5kHz	@10kHz
Out-of-band phase	-	-	-	-126@1MHz
noise (dBc/Hz)	-121@3MHz	-130@3MHz	-105@3MHz	-137@3MHz
	-	-	-115@10MHz	-145@10MHz
Frac spur (dBc)	-64	-61	-70	-72
Ref spur (dBc)	-70	-78	-87	-79
^a BW chosen to optimize phase noise for 2^{nd} -order $\Delta\Sigma \mod 22$				

Conclusion

- > Presented 2^{nd} and 3^{rd} -order successive requantizers as $\Delta\Sigma$ modulator replacements for fractional spur reduction in PLLs
- > Demonstrated performance in an IC PLL
 - PLL linearizes charge pump response with timing technique
 - PLL has lowest in-band fractional spurs to date

23