
836 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 6, JUNE 2016

Second and Third-Order Noise Shaping Digital
Quantizers for Low Phase Noise and

Nonlinearity-Induced Spurious
Tones in Fractional-N PLLs
Eythan Familier, Member, IEEE, and Ian Galton, Fellow, IEEE

Abstract—Noise shaping digital quantizers, most commonly
digital delta-sigma (ΔΣ) modulators, are used in fractional-N
phase-locked loops (PLLs) to enable fractional frequency tuning.
Unfortunately, their quantization noise is subjected to nonlinear
distortion because of the PLL’s inevitable non-ideal analog circuit
behavior, which induces spurious tones in the PLL’s phase error.
Successive requantizers have been proposed as ΔΣ modulator
replacements with the advantage that they reduce the power
of these spurious tones. However, the quantization noise from
previously published successive requantizers is only first-order
highpass shaped, so it usually causes more PLL phase noise
than that from the second-order and third-order ΔΣ modulators
commonly used in PLLs. This paper presents second-order and
third-order successive requantizers to address this limitation. Ad-
ditionally, successive requantizer design options are presented that
result in either lower-power spurious tones or lower phase noise
compared to ΔΣ modulators when used in PLLs.

Index Terms—DC-free quantization noise, noise-shaping quan-
tizers, spurious tones.

I. INTRODUCTION

F RACTIONAL-N phase-locked loops (PLLs) typically in-
corporate all-digital delta-sigma (ΔΣ) modulators to en-

able fractional frequency tuning [1]–[3]. A ΔΣ modulator’s
output sequence can be written as the sum of its input sequence
plus quantization noise. The quantization noise causes the
PLL’s phase error to contain a component proportional to a
lowpass filtered version of the running sum of the quantization
noise [4].1 In practice, non-ideal analog circuit behavior in
the PLL causes the PLL’s phase error to also contain compo-
nents proportional to nonlinearly distorted versions of both the
quantization noise and its running sum. Unfortunately, these

Manuscript received October 11, 2015; revised January 22, 2016; accepted
February 15, 2016. Date of current version July 15, 2016. This work was
supported by the National Science Foundation under Award 1343389, by
Analog Devices, and by corporate members of the UCSD Center for Wire-
less Communications. This paper was recommended by Associate Editor A.
Mazzanti.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at San Diego, La Jolla, CA 92093-0407 USA
(e-mail: eythanfc@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2016.2571598

1In this paper, a PLL’s phase error refers to the difference between the
PLL’s actual and ideal phases and a PLL’s phase noise refers to all stochastic
components of its phase error (e.g., such as those caused by thermal noise).

nonlinearly distorted sequences contain spurious tones, even
when the quantization noise and its running sum are free of spu-
rious tones [5]–[15]. This is problematic in high-performance
applications such as wireless communication systems which
tend to be extremely sensitive to spurious tones.

The successive requantizer was proposed in [7] as a digital
ΔΣ modulator replacement to address this issue. The nonlin-
earities to which the quantization noise and its running sum are
subjected in PLLs tend to be well approximated by truncated
memoryless power series [7], [8]. Therefore, the successive
requantizer in [7] was designed to produce quantization noise,
s[n], with the property that sp[n] for p = 1, 2, 3, 4, and 5 are
free of spurious tones, and such that its running sum, t[n],
has the property that tp[n] for p = 1, 2, and 3 are free of
spurious tones. The successive requantizer was demonstrated
in a PLL with record-setting spurious tone performance in [8].
Unfortunately, its quantization noise is only first-order highpass
shaped, whereas most ΔΣ modulators used in PLLs have
second-order or third-order highpass shaped quantization noise
to reduce the quantization noise contribution to the PLL’s phase
noise [4].2 This issue was addressed in [8] via a quantization
noise cancelation technique at the expense of increased PLL
circuit area and power consumption.

This paper presents extensions of previously published re-
sults that enable successive requantizers with second-order
and third-order highpass shaped quantization noise to address
this limitation. It also presents design techniques that opti-
mize the successive requantizers to either minimize PLL phase
noise or spurious tone power depending on the PLL’s target
specifications.

In both cases, the successive requantizers achieve higher than
first-order quantization noise shaping in return for not ensuring
that sp[n] for p ≥ 2 is free of spurious tones. In practice, this is
not a significant limitation because in most PLLs the frequency
divider output edges are resynchronized to voltage controlled
oscillator edges which tends to make the nonlinear distortion
applied to s[n] negligible [4]. Therefore, the design option
presented in the paper to minimize spurious tones focuses on

2A sequence is said to be first-order highpass shaped if its running sum is
bounded but the running sum of its running sum (i.e., its double running sum)
is not bounded. Similarly, a sequence is said to be second-order highpass shaped
if both its running sum and its double running sum are bounded but its triple
running sum is not bounded.

1549-8328 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto: eythanfc@gmail.com

FAMILIER AND GALTON: SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 837

Fig. 1. High-level diagram of a successive requantizer.

nonlinearity applied to the quantization noise running sum at
the expense of only a slight increase in PLL phase noise.
Specifically, it ensures that tp[n] for p = 1, 2, . . . , h are free
of spurious tones, where h is a positive integer. The other
design option results in successive requantizers that, like ΔΣ
modulators, do not ensure that tp[n] is free of spurious tones for
p ≥ 2. Instead, they offer the advantage of introducing lower
PLL phase noise than their ΔΣ modulator counterparts when
used in typical PLLs.

Therefore, the contribution of this paper is a family of
replacements for the commonly-used second-order and third-
order ΔΣ modulators in fractional-N PLLs, each member of
which either improves PLL spurious-tone performance at the
expense of slightly higher PLL phase noise or lowers PLL
phase noise. Unlike previous work, this is achieved without the
high area and power consumption of phase noise cancellation
techniques.

The paper consists of four main sections. Section II presents
the second-order successive requantizer architecture. Section III
presents two second-order successive requantizer designs
which highlight a tradeoff between nonlinearity-induced spu-
rious tone power and low-frequency quantization noise power.
Section IV presents a second-order successive requantizer with
lower low-frequency quantization noise power than a second-
order ΔΣ modulator. Section V presents a third-order succes-
sive requantizer with lower low-frequency quantization noise
power than a third-order ΔΣ modulator.

II. SECOND-ORDER SUCCESSIVE

REQUANTIZER ARCHITECTURE

A high-level diagram of a successive requantizer is shown
in Fig. 1. Its sequences are all integer-valued and represented
in two’s complement format. It processes a B-bit input se-
quence x0[n] through K serially-connected quantization blocks
to produce a (B −K)-bit output sequence xK [n]. The dth
quantization block, for each d = 0, 1, . . . ,K − 1, divides its
input, xd[n], by two and quantizes the result by one bit such
that its output sequence has the form

xd+1[n] =
xd[n] + sd[n]

2
(1)

where sd[n]/2 can be viewed as quantization noise. The sd[n]
sequence generator generates sd[n] to have the same parity
as xd[n] for all n (otherwise xd+1[n] would not be integer-
valued) and with a small enough magnitude that xd+1[n] can
be represented with one less bit than xd[n]. As explained in [7],

Fig. 2. Block diagram of a first-order sd[n] sequence generator.

it follows that the output of the successive requantizer can be
written as

xK [n] = 2−Kx0[n] + s[n] (2)

where

s[n] =
K−1∑
d=0

2d−Ksd[n] (3)

is the quantization noise of the successive requantizer.
The running sums of sd[n] and s[n] are defined as

td[n] =
n∑

k=0

sd[k], t[n] =
n∑

k=0

s[k] (4)

respectively. Therefore, (3) implies that

t[n] =

K−1∑
d=0

2d−Ktd[n]. (5)

It follows from (3)–(5) that the statistical properties of s[n]
and t[n] are determined by the behavior of the sd[n] sequence
generators.

A first-order sd[n] sequence generator, i.e., one in which
sd[n] is first-order highpass shaped, is shown in Fig. 2 [7].
It contains a pseudo-random number generator that outputs a
sequence of independent, identically and uniformly distributed
pseudo-random variables rd[n], a delayed accumulator block
that takes sd[n] and outputs td[n− 1], and a combinatorial
logic block that generates sd[n] as a function of the lowest
significant bit (LSB) of xd[n], td[n− 1], and rd[n] such that
td[n] is bounded for all n. It follows that td[n] is a deterministic
function of td[n− 1], the parity of xd[n], and rd[n].

Fig. 3 shows the proposed second-order sd[n] sequence
generator. It contains a pseudo-random number generator that
outputs rd[n] as in the first-order case, a combinatorial logic
block, and two difference blocks. As shown in the figure, the
combinatorial logic block generates a bounded sequence ud[n]
conditioned on its delayed version ud[n− 1], a parity sequence
od[n], and rd[n]. As can be seen from Fig. 3

td[n] = ud[n]− ud[n− 1] (6)

sd[n] = td[n]− td[n− 1] (7)

838 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 6, JUNE 2016

Fig. 3. Block diagram of a second-order sd[n] sequence generator.

so ud[n] is the running sum of td[n] and the double running
sum of sd[n]. Unlike in the first-order sd[n] sequence generator,
in the second-order sd[n] sequence generator both the running
sum and the double running sum of sd[n] are bounded, so sd[n]
is second-order highpass shaped.

As described above, sd[n] must have the same parity as xd[n]
for all n, i.e.,

xd[n] mod 2 = sd[n] mod 2. (8)

This imposes some restrictions on the combinatorial logic. It
can be seen from Fig. 3 that

od[n] = (xd[n] + td[n− 1]) mod 2 (9)

which, with (6), can be written as

od[n] = (xd[n] + ud[n− 1]− ud[n− 2]) mod 2. (10)

Equations (6) and (7) imply that

sd[n] = ud[n]− 2ud[n− 1] + ud[n− 2]. (11)

For any integers a and b, [(a mod 2) + (b mod 2)] mod 2 =
(a+ b) mod 2, and (2a) mod 2 = 0, so it follows from (8),
(10), and (11) that the combinatorial logic must generate ud[n]
such that

(ud[n] + ud[n− 1]) mod 2 = od[n]. (12)

The number of bits in the successive requantizer output
is determined by the range of values covered by x0[n] and
by the sd[n] sequences. It follows from (1) that for each
0 ≤ m ≤ K − 1:

xm[n] + sm[n] = 2−mx0[n] +

m∑
d=0

2d−msd[n] (13)

xm+1[n] = 2−m−1x0[n] +

m∑
d=0

2d−m−1sd[n]. (14)

Let Ns be the smallest positive integer greater than or equal to 2
such that

|sd[n]| ≤ Ns for all n and each d ∈ {0, 1, . . . ,K − 1}. (15)

If the range of the input to the successive requantizer is re-
stricted as

−2K ≤ x0[n] ≤ 0 (16)

it follows from (13)–(15) that:

−2Ns − 2K−m < xm[n] + sm[n] < 2Ns for 0 ≤ m ≤ K − 1
(17)

−Ns − 2K−m < xm[n] < Ns for 1 ≤ m ≤ K.
(18)

This implies that xm[n] + sm[n] for 0 ≤ m ≤ K − 1
and xm[n] for 1 ≤ m ≤ K can be represented with
�log2(2K−m+1Ns)� bits, where, for any value x, �x� is the
smallest integer greater than or equal to x. The dth quantization
block represents xd[n] and xd[n] + sd[n] with B − d bits and
xd+1[n] with B − (d+ 1) bits, so it follows that the successive
requantizer requires at least B = K + 1 + �log2(Ns)� bits for
its input, or, equivalently, 1 + �log2(Ns)� bits for its output.

For example, if Ns = 8, as in some of the example suc-
cessive requantizers in the following section, and (16) holds,
the successive requantizer input must have at least B = K + 4
bits, and its output must have at least 4 bits to cover the range
{−8,−7, . . . , 7}. A similar analysis yields that if the range of
x0[n] is restricted as

−2K ≤ x0[n] ≤ 2K (19)

then the successive requantizer requires at least B = K + 2 +
�log2(Ns)� bits for its input, or, equivalently, 2 + �log2(Ns)�
bits for its output.

As illustrated via examples in the next sections, the choice
of Ns represents a tradeoff between PLL spurious tone per-
formance and quantization noise power: increasing Ns pro-
vides flexibility which can be used to improve spurious tone
performance, but it also tends to increase quantization noise
power [12].

It follows from Figs. 1 and 3 that the computational com-
plexity of the successive requantizer is a logarithmic function
of Ns and a quadratic function of the number of quantization
blocks K . The dth pseudo-random number generator can be
implemented with a modified linear-feedback shift register
(LFSR) that simultaneously generates multiple bits that are
well-modeled as zero-mean, white, and independent of each
other [16].

III. SECOND-ORDER SUCCESSIVE REQUANTIZERS

WITH HIGH IMMUNITY TO SPURIOUS TONES

The combinatorial logic block of a second-order sd[n] se-
quence generator can be described by two state transition ma-
trices, Ae and Ao, which define the probability mass function
(pmf) of ud[n] conditioned on ud[n− 1] and od[n] for each n.
Specifically, if ud[n] takes values in {Nu, Nu − 1, . . . ,−Nu},
where Nu is a positive integer, then Ae and Ao are (2Nu +
1)× (2Nu + 1) matrices with elements

Ae(i, j)= Pr(ud[n]=u(j)|ud[n−1]=u(i), od[n]=0)

Ao(i, j)= Pr(ud[n]=u(j)|ud[n−1]=u(i), od[n]=1) (20)

FAMILIER AND GALTON: SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 839

for all i, j ∈ {1, 2, . . . , 2Nu + 1}, where3

u = (Nu (Nu − 1) · · · −Nu)
T . (21)

The combinatorial logic block is deterministic, so the proba-
bilities in (20) arise from the random sequence, rd[n], which
is assumed, by design, to be uniformly distributed for all n.
This implies that the probabilities in (20) must be of the form
k/2b, where k ∈ {0, 1, . . . , 2b} and b is the number of bits
used to represent rd[n].4 The only other requirements the state
transition matrices must satisfy are that their rows add to 1—so
that the pmf is valid—and that

Ae(i, j) = 0 ∀ i+ j : odd and
Ao(i, j) = 0 ∀ i+ j : even. (22)

The last requirement is needed to satisfy (12). Equation (21)
implies that if i+ j is even then u(i) + u(j) is even, whereas if
i+ j is odd then u(i) + u(j) is odd. This and (20) imply that if
Ae(i, j) �= 0 for some odd i+ j, there is a non-zero probability
that ud[n− 1] + ud[n] is odd when od[n] = 0, which contra-
dicts (12). Similarly, if Ao(i, j) �= 0 for some even i+ j, there
is a non-zero probability that ud[n− 1] + ud[n] is even when
od[n] = 1, which contradicts (12) as well.

As an example, if Nu=2 and rd[n]∈{−8,−7, . . . , 7}, then

Ae =

⎛
⎜⎜⎜⎜⎝

1
4 0 3

4 0 0
0 5

8 0 3
8 0

1
8 0 3

4 0 1
8

0 3
8 0 5

8 0
0 0 3

4 0 1
4

⎞
⎟⎟⎟⎟⎠ and

Ao =

⎛
⎜⎜⎜⎜⎝

0 3
4 0 1

4 0
3
16 0 3

4 0 1
16

0 1
2 0 1

2 0
1
16 0 3

4 0 3
16

0 1
4 0 3

4 0

⎞
⎟⎟⎟⎟⎠ (23)

describe valid behavior for the combinatorial logic block. A
truth table for combinatorial logic that implements the behavior
specified by (23) can be constructed from (20) and (21) with
Nu = 2. For example, the elements in the third row of Ae, i.e.,
1/8, 0, 3/4, 0, and 1/8, are the probabilities that ud[n] = u(1) =
2, ud[n] = u(2) = 1, ud[n] = u(3) = 0, ud[n] = u(4) = −1,
and ud[n] = u(5) = −2, respectively, conditioned on ud[n−
1] = u(3) = 0 and od[n] = 0. Therefore, if ud[n− 1] = 0 and
od[n] = 0, the combinatorial logic must set ud[n] = 2 with
probability 1/8, ud[n] = 0 with probability 3/4, and ud[n] =
−2 with probability 1/8. Given that rd[n] is uniformly distrib-
uted among the sixteen integers from −8 to 7, one way to do
this is to map two of these integers to ud[n] = 2, another two
to ud[n] = −2, and the rest to ud[n] = 0; e.g., set ud[n] = −2
if rd[n] = 0 or 1, ud[n] = 2 if rd[n] = 2 or 3, and ud[n] = 0

3In this paper, the ith entry of a vector v is denoted by v(i), whereas the ith
row, jth column entry of a matrix M is denoted by M(i, j).

4Since ud[n] conditioned on ud[n− 1] and od[n] is a deterministic function
of rd[n], the 2b values rd[n] can take map to M ≤ 2b values of ud[n] for each
ud[n− 1] and od[n]. Since rd[n] is uniformly distributed, the probability that
ud[n] = u equals k/2b, where k is the number of different rd[n] values that
map to u.

Fig. 4. Example truth table for the combinatorial logic block described by the
state transition matrices in (23), with rd[n] ∈ {−8,−7, . . . , 7}.

otherwise. A complete truth table, an example of which is
shown in Fig. 4, can be constructed by applying this procedure
to every row of Ae and Ao.

Note that the rows in both Ae and Ao of (23) alternate
between two types of vectors: vectors whose odd-indexed el-
ements are zero, referred to as even-entries vectors, and vectors
whose even-indexed elements are zero, referred to as odd-
entries vectors. This is a consequence of (22) and holds for all
valid state transition matrices.

State transition matrices such as those in (23) were used in
[13] to describe the combinatorial logic block in first-order
sd[n] sequence generators. For such sd[n] sequence generators,
the state transition matrices define the pmf of td[n] condi-
tioned on td[n− 1] and a parity sequence. In contrast, the state
transition matrices in second-order sd[n] sequence generators
define the pmf of ud[n] conditioned on ud[n− 1] and the parity
sequence od[n], as described by (20) and (21). Therefore, if
the same state transition matrices are used to describe the
combinatorial logic block of a first and a second-order sd[n]
sequence generator, and if the parity sequences of both genera-
tors are equal, td[n] in the first-order sd[n] sequence generator
and ud[n] in the second-order sd[n] sequence generator are
statistically equivalent. Furthermore, since td[n] and ud[n] are
defined as the running sums of sd[n] and td[n], respectively,
sd[n] in the first-order sd[n] sequence generator and td[n]
in the second-order sd[n] sequence generator are statistically
equivalent as well.

For any positive integer h, a sequence x[n] is said to be
immune to spurious tones up to order h if xp[n] for p =
1, 2, . . . , h are free of spurious tones. In [13], conditions are pre-
sented on the state transition matrices of a first-order successive
requantizer, i.e., a successive requantizer which uses first-order
sd[n] sequence generators, that make td[n] and sd[n] immune to
spurious tones up to orders h1 and h2, respectively, for each d,
where h1 and h2 are positive integers which do not depend on
the parity sequences of the sd[n] sequence generators. It is also
shown in [13] that such conditions make t[n] and s[n] immune
to spurious tones up to orders h1 and h2, respectively. There-
fore, in a second-order successive requantizer, such conditions
make ud[n] and td[n] immune to spurious tones up to orders h1

840 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 6, JUNE 2016

Fig. 5. Simulated power spectra of the running sum of the quantization noise
of a second-order successive requantizer that implements the state transition
matrices in (23) and a second-order ΔΣ modulator before and after the
application of fourth and fifth-order nonlinear distortion.

and h2, respectively, for each d. Additionally, as can be verified
with identical reasoning to that used in [13] for the first-order
successive requantizer, they make

u[n] =
n∑

k=0

t[k] (24)

and t[n] immune to spurious tones up to orders h1 and h2,
respectively. For example, it was proven in [13] that, in a
first-order successive requantizer, state transition matrices (23)
make s[n] immune to spurious tones up to order 5. Therefore,
in a second-order successive requantizer, these state transition
matrices make t[n] immune to spurious tones up to order 5.
Fig. 5 shows plots of simulated power spectra of t[n] as
generated with a second-order successive requantizer that im-
plements the state transition matrices in (23) and of the running
sum of the quantization noise of a dithered second-order ΔΣ
modulator, tDS[n], before and after the application of fourth
and fifth-order nonlinear distortion. As expected, the simulated
power spectra of t4[n] and t5[n] show no visible spurious tones,
whereas those of t4DS[n] and t5DS[n] do.

Fig. 5 also shows that t[n] has significantly higher low-
frequency power spectrum content than tDS[n]. One of the

contributions of this paper is to reduce this content by modify-
ing Ae and Ao subject to t[n] maintaining a minimum desired
order of immunity to spurious tones.

It follows from Theorem 2 and Lemmas 3 and 6 in [13] and
the parallels of first and second-order successive requantizers
described above that sufficient conditions to make t[n] immune
to spurious tones up to order ht, where ht is a positive integer,
are that

C1) Ae and Ao are centrosymmetric5 with all their odd-
entries row vectors containing at least 1 + 	(Nu +
1)/2
 nonzero entries and all their even-entries row
vectors containing at least 1 + 	Nu/2
 nonzero entries
(where 	x
 denotes the greatest integer that is less than
or equal to x), and that

C2) For each positive even integer p ≤ ht

AeTet
(p)=AeTot

(p)=AoTet
(p)

=AoTot
(p)=cp12Nu+1 (25)

where cp is a constant

Tx(i, j)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ax(i, j+i−2Nu−1), if 2Nu+2−i≤j

≤4Nu+2−i

0, if j≤2Nu+1−i, j

≥4Nu+3−i

(26)

for x = e or o

t(p)=((2Nu)
p (2Nu − 1)p · · · (−2Nu)

p)T (27)

and 12Nu+1 is a length-(2Nu + 1) vector whose elements are
all 1.

For example, if Ae and Ao are given by (23), Te and To ,
computed using (26), are given by

Te =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1
4 0 3

4 0 0

0 0 0 0 5
8 0 3

8 0 0

0 0 1
8 0 3

4 0 1
8 0 0

0 0 3
8 0 5

8 0 0 0 0

0 0 3
4 0 1

4 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

To =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 3
4 0 1

4 0

0 0 0 3
16 0 3

4 0 1
16 0

0 0 0 1
2 0 1

2 0 0 0

0 1
16 0 3

4 0 3
16 0 0 0

0 1
4 0 3

4 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

(28)

The above conditions hold regardless of how the successive
requantizer is initialized.

As explained above, the entries inAe and Ao are constrained
to be of the form k/2b, where k ∈ {0, 1, . . . , 2b} and b is the
number of bits used to represent each rd[n]. This implies that
there is a finite number of matrices Ae and Ao which satisfy
conditions C1 and C2 for each Nu and ht. As justified in the

5An N ×N centrosymmetric matrix A is a matrix for which A(i, j) =
A(N + 1− i,N + 1− j) for all i, j.

FAMILIER AND GALTON: SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 841

Fig. 6. Example truth table for the combinatorial logic block described by the
state transition matrices in (31), with rd[n] ∈ {−512,−511, . . . , 511}.

Appendix, the low-frequency quantization noise can be reduced
by choosing the Ae and Ao matrices that minimize

lim
H→∞

H∑
m=−H

2Nu+1∑
i=1

(
A|m|u

)
(i) · u(i) · (lim

k→∞
Ak)(1, i) (29)

where

A =
(Ae +Ao)

2
(30)

subject to the constraint that A be primitive, i.e., that there
exists a positive integer n such that the entries of An are all
greater than zero. Because A is stochastic, a necessary and
sufficient condition for A to be primitive is that all entries of
A4Nu+1 are greater than zero [17]. In this paper, a computer
program was written which cycles through all Ae and Ao

matrices that satisfy conditions C1 and C2 for Nu = 2 and
ht = 3 and picks those which minimize (29), where the limits
in (29) are approximated with a suitable number of terms (i.e.,
a number high enough that increasing it has no visible effect
on the simulated power spectrum of t[n]). To keep hardware
implementation requirements modest, rd[n] was restricted to
values that can be represented with 10 bits, so the entries in
Ae and Ao are restricted to be of the form k/1024, where
k ∈ {0, . . . , 1024}. Note, however, that larger values of Nu and
ht might require rd[n] to be represented with more than 10 bits.
The resulting state transition matrices are

Ae =

⎛
⎜⎜⎜⎜⎝

0 0 333
512 0 179

512
0 7

128 0 121
128 0

179
1024 0 333

512 0 179
1024

0 121
128 0 7

128 0
179
512 0 333

512 0 0

⎞
⎟⎟⎟⎟⎠

Ao =

⎛
⎜⎜⎜⎜⎝

0 7
1024 0 1017

1024 0
1

512 0 333
512 0 89

256
0 1

2 0 1
2 0

89
256 0 333

512 0 1
512

0 1017
1024 0 7

1024 0

⎞
⎟⎟⎟⎟⎠ . (31)

An example combinatorial logic block truth table of a second-
order sd[n] sequence generator that implements these state
transition matrices is shown in Fig. 6.

Fig. 7. Simulated power spectra of the running sum of the quantization noise
of a second-order successive requantizer that implements the state transition
matrices in (31) and of a second-order ΔΣ modulator.

Fig. 7 shows the simulated power spectrum of t[n] from a
20-bit input second-order successive requantizer that imple-
ments the state transition matrices in (31). Given that ud[n] is
the double running sum of sd[n] and is bounded by Nu = 2,
sd[n] is bounded by Ns = 8. Therefore, as explained in the
previous section, for inputs restricted as in (16), this successive
requantizer’s output ranges from −8 to 7. For comparison,
the figure also shows the simulated power spectrum of the
running sum of the quantization noise of a dithered second-
order ΔΣ modulator, tDS[n]. At low frequencies, the simulated
power spectrum of t[n] is only approximately 1.5 dB above
that of tDS[n]. At high frequencies the power spectrum of t[n]
is higher than that of tDS[n], but as explained shortly this
difference negligibly affects phase noise in typical fractional-
N PLL designs. The range covered by t[n] is (−4, 4), which
is higher than that covered by tDS[n]. However, tDS[n] is only
immune to spurious tones up to order 1, whereas t[n] is immune
to spurious tones up to order 3. Additionally, as can be seen in
the figure, tDS[n] contains an integrated white noise component
due to the ΔΣ modulator’s dither, whereas t[n] does not.

To evaluate the feasibility of using this successive requantizer
in a PLL, an event-driven PLL simulator was written in C to
compare the power spectrum of the PLL phase error when using
the second-order successive requantizer against when using
a dithered second-order ΔΣ modulator as the PLL’s digital
quantizer. The simulator models the PLL shown in Fig. 8 which
consists of a phase-frequency detector (PFD), a charge pump
(CP) with nominal branch currents of 1 mA, a third-order loop
filter with component values of C1 = 67 pF, R1 = 8.67 kΩ,
C2 = 2.02 nF, R2 = 8.67 kΩ, and C3 = 67 pF, a voltage-
controlled oscillator (VCO) with a gain of 5 MHz/V, two digital
quantizers—a second-order ΔΣ modulator and the second-
order successive requantizer described above—with an input,
α, of −2−11, and a multi-modulus frequency divider with
a modulus of 137 plus the output of one of the digital
quantizers [4]. The PLL has a reference frequency fref of
26 MHz, an output frequency fout of 3.56 GHz, a bandwidth of
45 kHz, and a phase margin of 55◦. The circuit noise sources
modeled in the simulation are 1/f2 noise from the VCO
(−125 dBc/Hz at 1 MHz) and white noise from the reference

842 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 6, JUNE 2016

Fig. 8. Block diagram of the PLL used in phase error simulations.

Fig. 9. Simulated power spectra of the phase error of a 3.56 GHz output
frequency, 45 kHz bandwidth PLL when its digital quantizer is implemented as
(a) a second-order ΔΣ modulator and (b) a second-order successive requantizer
that implements the state transition matrices in (31).

oscillator (−150 dBc/Hz). The only non-ideality modeled is a
1% mismatch between the charge pump branch currents, which
introduces nonlinear distortion.

Fig. 9 shows the simulated power spectrum of the phase error
generated using each digital quantizer. As the figure shows,
compared to the ΔΣ modulator, the successive requantizer
results in significantly lower-power fractional spurious tones in
the PLL’s phase error: it reduces the largest fractional spurious
tone power by 17 dB. The figure also shows that the successive
requantizer introduces slightly higher in-band phase noise than
the ΔΣ modulator. This is because the low-frequency portion
of the nonlinearly distorted quantization noise power of the
successive requantizer is slightly higher than that of the ΔΣ
modulator. The noise penalty in a real PLL, however, is usually
not significant, as 1/f noise dominates the phase noise power
spectrum at low frequencies. Due to the relatively low band-
width of the PLL and the third-order loop filter (both of which
are typical design choices for analog fractional-N PLLs), the
phase noise contributed by the digital quantizer is not dominant
at high frequencies, so the higher high-frequency quantization
noise from the successive requantizer does not significantly
affect the PLL’s phase noise performance compared to the ΔΣ
modulator. Therefore, in typical fractional-N PLLs, spurious
tones can be reduced significantly by using a successive requan-
tizer at the expense of a slight increase in phase noise power.

A digital implementation of the second-order successive
requantizer in 65 nm CMOS technology with K = 16 quan-
tization blocks has 1500 digital gates, occupies an area of
6000 μm2, and has an average power consumption of 100 μW.
In contrast, a 16-bit input, second-order ΔΣ modulator im-
plementation in the same technology has 120 digital gates,
occupies an area of 1000 μm2, and has an average power con-
sumption of 20 μW. Given that the digital quantizer’s area and
average power consumption represent a small portion of the to-
tal area and average power consumption of typical fractional-N
PLLs, the larger area and higher power consumption of the
successive requantizer are not significant in practice.

IV. SECOND-ORDER SUCCESSIVE REQUANTIZERS WITH

REDUCED QUANTIZATION NOISE AT LOW-FREQUENCIES

The successive requantizer examples in the previous section
highlight a design tradeoff between low-frequency quantization
noise power and immunity to spurious tones: the successive
requantizer that implements the state transition matrices in (31)
has lower immunity to spurious tones (ht = 3) than that which
implements the state transition matrices in (23) (ht = 5), but
it has lower quantization noise power at low frequencies. This
motivates finding state transition matrices for which ht = 1 to
reduce the low-frequency quantization noise power further. As
can be verified with the proof of Lemma 3 and Theorem 1 in
[13] and from the parallels of first and second-order succes-
sive requantizers, if Ae and Ao are 3 × 3 centrosymmetric
state transition matrices with five and four non-zero elements,
respectively, then t[n] is free of spurious tones. Suppose that
Ae and Ao satisfy the above condition and that their entries
are of the form k/1024, where k ∈ {0, 1, . . . , 1024}, as in the
previous section. Then, the low-frequency quantization noise
can be reduced by choosing the Ae and Ao matrices that
minimize (29).6 A computer program was written which cycles
through all Ae and Ao satisfying the above conditions and
picks those which minimize (29), where the limits in (29) are
approximated with a suitable number of terms as in the previous
section. The resulting state transition matrices are

Ae =

⎛
⎝ 1

1024 0 1023
1024

0 1 0
1023
1024 0 1

1024

⎞
⎠, Ao =

⎛
⎝0 1 0

1
2 0 1

2
0 1 0

⎞
⎠. (32)

As can be verified from simulation, t2[n] has spurious tones,
so ht = 1.

Fig. 10 shows the simulated power spectrum of t[n] from a
20-bit input second-order successive requantizer which imple-
ments the state transition matrices in (32) and of the running
sum of the quantization noise of a dithered second-order ΔΣ
modulator, tDS[n]. As seen in the figure, the power spectrum
of t[n] is lower by approximately 2 dB than that of tDS[n] at
low frequencies. However, the range of t[n] is (−2, 2), which is
double to that of tDS[n]. Additionally, as in the previous section,

6The same low-frequency quantization noise reduction method from the
previous section can be used because, as can be verified, all results derived
in the Appendix hold if condition C1 is replaced by the above conditions for
Nu = 1 Ae and Ao state transition matrices.

FAMILIER AND GALTON: SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 843

Fig. 10. Simulated power spectra of the running sum of the quantization noise
of a second-order successive requantizer that implements the state transition
matrices in (32) and a second-order ΔΣ modulator.

Fig. 11. Simulated power spectra of the phase error of a 3.56 GHz output
frequency, 45 kHz bandwidth PLL when its digital quantizer is implemented
as a second-order ΔΣ modulator and a second-order successive requantizer
that implements the state transition matrices in (32).

tDS[n] contains an integrated white noise component due to the
ΔΣ modulator’s dither, whereas t[n] does not.

Fig. 11 shows the simulated power spectrum of the phase
error of a PLL when using a second-order ΔΣ modulator
and when using the second-order successive requantizer which
implements the state transition matrices in (32). The PLL is
identical to that described in Section III but with its reference
and VCO noise sources turned off to show the quantization
noise contribution to the PLL phase error at all frequencies.
It also has perfectly-matched charge pump branch currents,
as opposed to the modeled PLL in Section III. This allows
comparison of the digital quantizers’ contribution to the PLL
phase noise in the ideal case in which the nonlinearly distorted
versions of the quantization noise do not corrupt the low-
frequency portion of the PLL phase noise, as in the PLL phase
noise PSD shown in Fig. 9(b). As seen in the figure and as
predicted by Fig. 10, the PLL phase noise at frequencies below
5 MHz is lower when the successive requantizer is used.

V. THIRD-ORDER SUCCESSIVE REQUANTIZERS WITH

REDUCED QUANTIZATION NOISE AT LOW FREQUENCIES

The sd[n] sequence generator in the successive requantizer
can be modified to produce higher-order highpass shaped quan-
tization noise by applying more difference operations to the
combinatorial logic block output and by adding logic to ensure
xd[n] and sd[n] have equal parity for all n. For example, a

Fig. 12. Block diagram of a third-order sd[n] sequence generator.

Fig. 13. Simulated power spectra of the running sum of the quantization noise
of a third-order successive requantizer that implements the state transition
matrices in (32) and a third-order ΔΣ modulator.

third-order successive requantizer can be implemented with
the sd[n] sequence generator from Fig. 12. The combinatorial
logic block can be described by state transition matrices Ae

and Ao as before, but since its output is now vd[n]-defined
as the triple running sum of sd[n]-instead of ud[n], where
vd[n] ∈ {Nv, Nv − 1, . . . ,−Nv} for some positive integer Nv,
Ae and Ao are now defined by

Ae(i, j)= Pr(vd[n]=v(j)|vd[n−1]=v(i), od[n]=0)

Ao(i,j)= Pr(vd[n]=v(j)|vd[n−1]=v(i), od[n]=1) (33)

where

v = (Nv (Nv − 1) · · · −Nv)
T (34)

in analogy to (20) and (21). Reasoning similar to that from (8)
to (12) can be used to verify that, for xd[n] and sd[n] to have
equal parity, the combinatorial logic block must generate vd[n]
such that vd[n]− vd[n− 1] and od[n] have equal parity, where
od[n] is generated as in Fig. 12.

Fig. 13 shows the simulated power spectrum of the t[n]
of a third-order successive requantizer that implements the
state transition matrices in (32) and of the running sum of
the quantization noise of a dithered third-order ΔΣ modulator,
tDS[n]. The power spectrum of t[n] is lower than that of tDS[n]
by approximately 1 to 2 dB at low frequencies, but the range of
t[n] is (−4, 4), which is double that of tDS[n]. Fig. 14(a) shows
the simulated power spectrum of the phase error of a PLL
when using the third-order ΔΣ modulator and when using the
third-order successive requantizer. The PLL modeled is that
shown in Fig. 8, where the charge pump (CP) has branch
currents of 500 μA, the loop filter has component values of
C1 = 3.7 pF, R1 = 26 kΩ, C2 = 112 pF, R2 = 26 kΩ, and
C3 = 3.7 pF, the voltage-controlled oscillator (VCO) has a gain

844 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 6, JUNE 2016

Fig. 14. Simulated power spectra of the phase error of a 3.56 GHz output
frequency, 85 kHz bandwidth PLL when its digital quantizer is implemented
as a third-order ΔΣ modulator and a third-order successive requantizer that
implements the state transition matrices in (32) when (a) there are no circuit
noise sources modeled and when (b) reference and VCO noise are modeled.

of 5 MHz/V, the input to the digital quantizers, α, is −2−11,
the reference frequency fref is 26 MHz, the output frequency
fout is 3.56 GHz, and the PLL bandwidth is 85 kHz. As seen
in the figure, the successive requantizer contributes more low-
frequency phase noise than the ΔΣ modulator. This is due to
the inherent nonlinear behavior of the PLL and shows that, at
low frequencies, the power of nonlinearly distorted versions of
the quantization noise running sum of the successive requan-
tizer is higher than that of the ΔΣ modulator. At frequencies
from 400 kHz to 4 MHz the phase noise is lower by 0.5 to
1.5 dB when the successive requantizer is used, whereas at
higher frequencies the ΔΣ modulator results in lower phase
noise. The worse low-frequency behavior of the successive
requantizer when used in a PLL is not an issue in practice, as
low-frequency phase noise is typically dominated by reference,
charge pump, and VCO noise. Fig. 14(b) shows the same
phase noise simulation but with 1/f2 noise from the VCO
(−127 dBc/Hz at 1 MHz) and white noise from the reference
oscillator (−150 dBc/Hz). As seen in the figure, when these
circuit noise sources are included, the phase noise performance
when using either digital quantizer is similar at frequencies
below 400 kHz. Therefore, in this PLL using a successive
requantizer improves PLL spot noise from 400 kHz to 4 MHz
at the detriment of PLL spot noise at higher frequencies.

VI. CONCLUSION

Second and third-order successive requantizers that can re-
place the commonly-used ΔΣ modulator in fractional-N PLLs
to improve PLL phase error performance have been presented.
Specifically, a second-order successive requantizer has been
presented which can drastically improve spurious tone perfor-
mance when used in typical fractional-N PLLs by producing
quantization noise that is free of spurious tones even when
subjected to the PLL’s nonlinear distortion. A phase noise
simulation of one such PLL shows a 17 dB power reduction in
the largest fractional spurious tone when the digital quantizer is
implemented as the second-order successive requantizer instead
of as a second-order ΔΣ modulator while maintaining similar
phase noise performance. Additionally, second and third-order
successive requantizers have been presented which produce
lower-power low-frequency quantization noise compared to

their ΔΣ modulator counterparts. These successive requantiz-
ers are not optimized for nonlinearity-induced spurious tone
reduction, but are rather intended for PLLs requiring low phase
noise at low or mid frequencies.

APPENDIX

This Appendix contains the derivation of the expression in
(29) used to reduce the low-frequency power spectrum content
of t[n]. The derivation is based on three assumptions: that
condition C1 from Section III holds, that each od[n] takes
on the values 0 and 1 with equal probability, and that A is
primitive. The first assumption is a sufficient condition for
t[n] to be immune to spurious tones up to at least order
one, as explained in Section III. The second assumption is
based on the unpredictability of od[n] for most quantization
blocks. An exact expression for the pmf of od[n] conditioned
on the x0[n] and the rd[n] sequences is hard to find. However,
as proven in Section III of [7], each od[n] is a determin-
istic function of {x0[m],m = 0, 1, . . . , n} and {rk[m], k =
0, 1, . . . , d− 1,m = 0, 1, . . . , n}, which motivates modeling it
as being uniformly distributed. Simulations support the validity
of this model for most values of d. The third assumption has
been empirically found to hold for most matrices Ae and Ao

satisfying condition C1, so it does not significantly limit the
utility of (29). An additional assumption in the derivation is
that each sequence x[n] in the successive requantizer is such
that x[n] = 0 for all n ≤ 0. This assumption is not necessary to
obtain (29) but is reasonable and simplifies the derivation.

The power spectrum of t[n] can be estimated with the ex-
pected value of the L-length periodogram of t[n]

It,L(ω) =
1

L

∣∣∣∣∣
L−1∑
n=0

t[n]e−jωn

∣∣∣∣∣
2

(35)

[7], [18]. It follows from (5) and (6) that this expected value can
be written as:

E {It,L(ω)}

=E

⎧⎨
⎩1

L

∣∣∣∣∣
L−1∑
n=0

(
K−1∑
d=0

2d−K(ud[n]−ud[n−1])

)
e−jωn

∣∣∣∣∣
2
⎫⎬
⎭. (36)

Therefore,E{It,L(ω)} can be expanded as a finite sum of terms
of the form

ca,b,n,m,LE {ua[n]ub[m]} (37)

where, without loss of generality, a≥b, a, b∈{0, 1, . . . ,K−1},
n,m∈{0, 1, . . . , L−1}, and ca,b,n,m,L is a constant. Using the
law of total expectation, the expectation in (37) can be written as

E {ua[n]ub[m]} = E {ub[m]E {ua[n]|ub[m]}} . (38)

The inner expectation in (38) can be conditioned on additional
variables as long as the outer expectation in (38) is computed

FAMILIER AND GALTON: SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 845

over all possible values of those variables. Thus, (38) can be
rewritten as

E {ua[n]ub[m]} = E {ub[m]E {ua[n]|ub[m], ua[0], ub[0],

oa[k], ob[k]; k = 1, 2, . . . ,max{n,m}}} . (39)

In Section III of [7], it is proven that in a first-order sd[n]
sequence generator td[n] conditioned on td[0], od[1], od[2], . . . ,
od[n] is a deterministic function of rd[0], rd[1], . . . , rd[n] for
each n > 0. It follows from the parallels of first and second-
order sd[n] sequence generators explained in Section III of this
paper that in a second-order sd[n] sequence generator ud[n]
conditioned on ud[0], od[1], od[2], . . . , od[n] is a deterministic
function of rd[0], rd[1], . . . , rd[n]. It follows from this, from the
derivation in [7] proving that od[n] is a deterministic function of
x0[n] and {rk[m], k = 0, 1, . . . , d− 1,m = 0, 1, . . . , n}, and
from the independence of the rd[n] sequences that, for a �= b,
(39) can be written as:

E {ua[n]ub[m]} = E {ub[m]E {ua[n]|ua[0],

oa[k]; k = 1, 2, . . . , n}} . (40)

Lemma 3 and equation (9) in [13] imply that in a first-order
sd[n] sequence generator

E {ta[n]|ta[0] = 0, oa[k]; k = 1, 2, . . . , n} = 0 (41)

for each a ∈ {0, 1, . . . ,K − 1}. Therefore, in a second-order
sd[n] sequence generator

E {ua[n]|ua[0] = 0, oa[k]; k = 1, 2, . . . , n} = 0 (42)

for each a ∈ {0, 1, . . . ,K − 1}. Since ua[0] = 0, it follows that
the right side of (40) is zero.7 Therefore

E {ua[n]ub[m]} = 0 when a �= b (43)

so (36) can be rewritten as

E {It,L(ω)}

=
K−1∑
d=0

2d−KE

⎧⎨
⎩ 1

L

∣∣∣∣∣
L−1∑
n=0

(ud[n]−ud[n−1]) e−jωn

∣∣∣∣∣
2
⎫⎬
⎭ . (44)

This shows that E{It,L(ω)} can be reduced by reducing the
expected value of the L-length periodogram of td[n]

Itd,L(ω) =
1

L

∣∣∣∣∣
L−1∑
n=0

(ud[n]− ud[n− 1]) e−jωn

∣∣∣∣∣
2

(45)

for each d ∈ {0, 1, . . . ,K − 1}.

7If ua[0] �= 0 it can be shown that the right side of (40) approaches zero as
n → ∞, which allows obtaining (29) but requires a longer derivation.

Equation (45) can be rewritten as

Itd,L(ω)=
1

L

∣∣∣∣∣(1−e−jω)
L−1∑
n=0

ud[n]e
−jωn+ud[L−1]e−jωL

∣∣∣∣∣
2

.

(46)

Let Iud,L(ω) be the L-length periodogram of ud[n]. For any ω
such that Iud,L(ω) �= 0, (46) can be rewritten as

Itd,L(ω) = Iud,L(ω)
(
|1− e−jω |2 +B(ω,L)

)
, (47)

where

B(ω,L)

=
1

L

2ud[L−1]Re

{
(1−e−jω)ejωL

L−1∑
n=0

ud[n]e
−jωn

}
+u2

d[L−1]

Iud,L(ω)

(48)

Using the proof of Theorem 1 in [7], Lemma 3 and Theorem 1
in [13] prove that in a first-order sd[n] sequence generator
where condition C1 holds, Itd,L(ω) is bounded in probabil-
ity for all L ≥ 1 and 0 < |ω| ≤ π. Moreover, the proof of
Lemma 3 in [13] shows that the constant Ct1 in (29) of the
proof of Theorem 1 in [7] equals 0, which implies that J2,2 in
equation (30) of [7] equals 0 when p = 1. It follows from this
and from the rest of the proof of Theorem 1 in [7] that in a first-
order sd[n] sequence generator Itd,L(ω) is uniformly bounded
in probability for all L ≥ 1 and 0 ≤ |ω| ≤ π. This implies that
in the second-order sd[n] sequence generator Iud,L(ω) is uni-
formly bounded in probability for all L ≥ 1 and 0 ≤ |ω| ≤ π.

The above implies that

lim
L→∞

1

L

L−1∑
n=0

ud[n]e
−jωn = 0 (49)

for all 0 ≤ ω ≤ π almost surely. This and the fact that ud[n] is
bounded for all n imply that

lim
L→∞

B(ω,L) = 0 (50)

almost surely, so it follows from (47) that for large enough
values of L and for each ω �= 0 for which E{Iud,L(ω)} �= 0,
E{Itd,L(ω)} can be reduced by reducing E{Iud,L(ω)}. Ad-
ditionally, the continuity of the L-length periodogram and the
fact that Iud,L(ω) is uniformly bounded for all L ≥ 1 and all
0 ≤ |ω| ≤ π implies that the low-frequency power spectrum
content of ud[n] can be reduced by reducing E{Iud,L(0)}.

It can be shown that

Iud,L(ω) =

L−1∑
m=−(L−1)

Rud,L[m]cL[m]e−jωn (51)

846 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 6, JUNE 2016

where

Rud,L[m] =

⎧⎪⎨
⎪⎩

1
L−|m|

L−1−|m|∑
n=0

ud[n]ud [n+|m|] , |m|≤L−1

0, otherwise

(52)

cL[m] =

{
L−|m|

L , |m| ≤ L− 1

0, otherwise.
(53)

By assumption, od[n] takes on the values 0 and 1 with equal
probability, and as proven in [7], od[n] is independent of rd[n],
so the pmf of ud[n], as described by Ae and Ao in (20),
depends only on ud[n− 1] and not on n. This implies ud[n]
is stationary. Therefore, it follows from (52) that:

E {Rud,L[m]} = Rud
[m] (54)

where

Rud
[m] = E {ud[n]ud[n+m]} (55)

is the autocorrelation of ud[n]. It follows from the proof of
Theorem 1 in [13] and the parallels between the first and second-
order sd[n] sequence generators that Rud

[m] decreases expo-
nentially with |m|. This, with (51), (53), and (54), implies that

lim
L→∞

E {Iud,L(0)} = lim
L→∞

L−1∑
m=−(L−1)

Rud
[m]cL[m]

= lim
L→∞

L−1∑
m=−(L−1)

Rud
[m]. (56)

As proven in [7], the sequence whose pmf is described by
Ae and Ao is a Markov process, and Ae and Ao are its state
transition matrices conditioned on the value of od[n] at each n.
In the second-order successive requantizer, this Markov process
is ud[n], as shown in (20). By assumption, od[n] takes on the
values 0 and 1 with equal probability, so the state transition ma-
trix of ud[n] is given by A as defined in (30). This implies that

A(Nu+1−i, Nu+1−u)=Pr(ud[n]=u|ud[u−1]= i) (57)

for all i, u ∈ {−Nu, . . . , Nu}. Because A is primitive

lim
k→∞

Ak (58)

exists and(
lim
k→∞

Ak

)
(Nu+1−i, Nu+1−u)=Pr(ud[n]=u) (59)

for all i, u ∈ {−Nu, . . . , Nu} [19] (the left side of (59) should
be interpreted as the (Nu + 1− i)th row, (Nu + 1− u)th
column entry of the matrix inside the first parentheses).
Additionally, using identical reasoning to that in [13] to derive
equation (94) in that paper, it follows from (21) and (57) that:(

A|m|u
)
(Nu + 1− u) = E {ud[n+m]|ud[n] = u} (60)

for all u ∈ {−Nu, . . . , Nu}.
Using (55) and the law of total expectation, Rud

[m] can be
evaluated as

Rud
[m]=

Nu∑
u=−Nu

E{ud[n]ud[n+m]|ud[n]=u}·Pr(ud[n]=u)

=

Nu∑
u=−Nu

E{ud[n+m]|ud[n]=u}·u · Pr(ud[n]=u) .

(61)

With (21), (59), and (60), (61) can be rewritten as

Rud
[m] =

Nu∑
u=−Nu

(
A|m|u

)
(Nu + 1− u) · u(Nu + 1− u)

·
(
lim
k→∞

Ak

)
(1, Nu + 1− u)

=

2Nu+1∑
i=1

(
A|m|u

)
(i) · u(i) ·

(
lim
k→∞

Ak

)
(1, i). (62)

With (56), this implies that

lim
L→∞

E {Iud,L(0)} =

∞∑
m=−∞

2Nu+1∑
i=1

(
A|m|u

)
(i)

· u(i) ·
(
lim
k→∞

Ak

)
(1, i) (63)

which is the expression in (29).

ACKNOWLEDGMENT

The authors would like to thank Professor Peter Kennedy for
his helpful comments relating to this work.

REFERENCES

[1] B. Miller and B. Conley, “A multiple modulator fractional divider,” in
Proc. Annu. IEEE Symp. Freq. Control, Mar. 1990, vol. 44, pp. 559–568.

[2] B. Miller and B. Conley, “A multiple modulator fractional divider,” IEEE
Trans. Instrum. Meas., vol. 40, no. 3, pp. 578–583, Jun. 1991.

[3] T. A. Riley, M. A. Copeland, and T. A. Kwasniewski, “Delta-Sigma mod-
ulation in fractional-N frequency synthesis,” IEEE J. Solid-State Circuits,
vol. 28, no. 5, pp. 553–559, May 1993.

[4] B. Razavi, Phase-Locking in High-Performance Systems: From Devices
to Architectures. New York, NY, USA: Wiley-Interscience, 2003.

[5] B. De Muer and M. Steyaert, “A CMOS monolithic ΔΣ-controlled
fractional-N frequency synthesizer for DCS-1800,” IEEE J. Solid-State
Circuits, vol. 37, no. 7, pp. 835 844, Jul. 2002.

[6] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4 GHz ΔΣ
fractional-N PLL with 1 Mb/s in-loop modulation,” IEEE J. Solid-State
Circuits, vol. 39, no. 1, pp. 49–62, Jan. 2004.

[7] A. Swaminathan, A. Panigada, E. Masry, and I. Galton, “A digital re-
quantizer with shaped requantization noise that remains well behaved
after nonlinear distortion,” IEEE Trans. Signal Process., vol. 55, no. 11,
pp. 5382–5394, Nov. 2007.

[8] K. J. Wang, A. Swaminathan, and I. Galton, “Spurious tone suppression
techniques applied to a wide-bandwidth 2.4 GHz fractional-N PLL,”
IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2787–2797, Dec. 2008.

[9] H. Jian, Z. Xu, Y. Wu, and F. Chang, “A compact 0.8–6 GHz fractional-
N PLL with binary-weighted D/A differentiator and offset-frequency
Δ− Σ modulator for noise and spurs cancellation,” in Proc. Symp. VLSI
Circuits, Jun. 16–18, 2009, pp. 186–187.

FAMILIER AND GALTON: SECOND AND THIRD-ORDER NOISE SHAPING DIGITAL QUANTIZERS 847

[10] P. Su and S. Pamarti, “Mismatch shaping techniques to linearize charge
pump errors in fractional-N PLLs,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 57, no. 6, pp. 1221–1230, Jun. 2010.

[11] K. Hosseini, B. Fitzgibbon, and M. P. Kennedy, “Observations concern-
ing the generation of spurious tones in digital Delta-Sigma modulators
followed by a memoryless nonlinearity,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 58, no. 11, pp. 714–718, Nov. 2011.

[12] E. Familier and I. Galton, “A fundamental limitation of DC-free quanti-
zation noise with respect to nonlinearity-induced spurious tones,” IEEE
Trans. Signal Process., vol. 61, no. 16, pp. 4172–4180, Aug. 2013.

[13] E. Familier, C. Venerus, and I. Galton, “A class of quantizers with DC-free
quantization noise and optimal immunity to nonlinearity-induced spurious
tones,” IEEE Trans. Signal Process., vol. 61, no. 17, Sep. 2013.

[14] Z. Li, H. Mo, and M. P. Kennedy, “Comparative spur performance of
a fractional-N frequency synthesizer with a nested MASH-SQ3 divider
controller in the presence of memoryless piecewise-linear and polynomial
nonlinearities,” in Proc. ISSC/CIICT 2014, Jun. 26–27, 2014, pp. 374–379.

[15] M. P. Kennedy, H. Mo, Z. Li, G. Hu, P. Scognamiglio, and E. Napoli, “The
noise and spur delusion in fractional-N frequency synthesizer design,”
in Proc. ISCAS 2015, May 24–27, 2015, pp. 2577–2580.

[16] E. Fogleman, I. Galton, W. Huff, and H. Jensen, “A 3.3-V single-poly
CMOS audio ADC delta-sigma modulator with 98-dB peak SINAD
and 105-dB peak SFDR,” IEEE J. Solid-State Circuits, vol. 35, no. 3,
Mar. 2000.

[17] P. Perkins, “A theorem on regular matrices,” Pac. J. Math., vol. 11, no. 4,
pp. 1529–1533, 1961.

[18] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-Time Signal
Processing, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1999.

[19] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic
Processes, 4th ed. New York, NY, USA: McGraw-Hill, 2002.

Eythan Familier (M’16) received the B.S. degree
in electrical engineering from the California Insti-
tute of Technology, Pasadena, CA, USA, in 2010,
and the M.S. degree in electrical engineering from
the University of California at San Diego, La Jolla,
CA, USA, in 2012. He is currently working toward
the Ph.D. degree at the University of California at
San Diego. For the last years he has been part of
the Integrated Signal Processing Group, where he
has worked on spurious tone mitigation techniques
in phase-locked loops.

Ian Galton (F’09) received the Sc.B. degree from
Brown University, Providence, RI, USA, in 1984,
and the M.S. and Ph.D. degrees from the California
Institute of Technology, Pasadena, CA, USA, in 1989
and 1992, respectively, all in electrical engineering.

Since 1996, he has been a Professor of Electri-
cal Engineering at the University of California at
San Diego, La Jolla, CA, USA, where he teaches and
conducts research in the field of mixed-signal inte-
grated circuits and systems for communications. Prior
to 1996, he was with the University of California at

Irvine, and prior to 1989, he was with Acuson and Mead Data Central. His
research involves the invention, analysis, and integrated circuit implementation
of critical communication system blocks such as data converters, frequency
synthesizers, and clock recovery systems. In addition to his academic research,
he regularly consults at several semiconductor companies and teaches industry-
oriented short courses on the design of mixed-signal integrated circuits.

Dr. Galton has served on a corporate Board of Directors, on several corporate
Technical Advisory Boards, as the Editor-in-Chief of the IEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS—PART II: ANALOG AND DIGITAL

SIGNAL PROCESSING, as a member of the IEEE Solid-State Circuits Society
Administrative Committee, as a member of the IEEE Circuits and Systems
Society Board of Governors, as a member of the IEEE International Solid-State
Circuits Conference Technical Program Committee, and as a member of the
IEEE Solid-State Circuits Society Distinguished Lecturer Program.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

