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Quantization Noise Cancellation for
FDC-Based Fractional-N PLLs
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Abstract—This paper presents a quantization noise cancellation
technique for frequency-to-digital converter-based fractional-N
phase-locked loops (FDC-PLLs). The technique cancels quantiza-
tion noise prior to the loop filter so the PLL bandwidth can be
increased without a significant phase noise penalty. The paper also
presents an FDC-PLL architecture enhancement that achieves the
effect of a charge pump offset current to improve linearity without
the extra current source required by previous implementations.

Index Terms—Charge pump offset current, delta-sigma (∆Σ),
frequency-to-digital converter (FDC), frequency synthesizer,
phase-locked loop (PLL), quantization noise.

I. INTRODUCTION

FRACTIONAL-N phase-locked loops (PLLs) for fre-
quency synthesis based on second-order delta-sigma (∆Σ)

frequency-to-digital converters (FDC-PLLs) of the type shown
in Fig. 1 have been shown to offer many of the advantages of
both analog and digital PLLs [1], [2]. However, they inherit the
same bandwidth versus phase noise tradeoff as analog PLLs
and some digital PLLs: suppressing the quantization noise
component of the PLL’s phase noise comes at the expense
of reducing the PLL’s bandwidth. For example, in wireless
transceiver local oscillator synthesis applications, this tradeoff
typically limits analog PLL bandwidths to the order of tens of
kHz [3].

In many applications it is desirable to increase the PLL band-
width above such limits to reduce susceptibility to oscillator
pulling, reduce PLL settling time, and enable in-loop carrier
modulation. To this end, quantization noise cancellation (QNC)
techniques have been proposed that relax the bandwidth versus
phase noise tradeoff in both analog and digital PLLs [4]–[10].
The idea is to subtract much of the quantization noise prior
to the loop filter so that the loop bandwidth can be increased
without a significant phase noise penalty.

This paper presents and analyzes the first QNC technique
applicable to FDC-PLLs. It extends the theoretical results pre-
sented in [1] to incorporate the QNC technique and demon-
strates the findings via simulation and experimental results.
The paper also presents a modification of the original FDC-
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Fig. 1. Second-order ∆Σ FDC-based fractional-N PLL (FDC-PLL).

PLL architecture that simplifies the charge pump relative to that
presented in [2] without sacrificing performance.

II. QUANTIZATION NOISE CANCELLING FDC-PLLS

The FDC-PLL proposed in this paper is shown in Fig. 2. It
consists of a ∆Σ FDC, a digital loop controller (DLC), and
a digitally controlled oscillator (DCO). Its output frequency is
fPLL = (N + α)fref , where N is an integer,α is between−0.5
and 0.5, and fref is the reference oscillator frequency.

The ∆Σ FDC consists of a PFD, charge pump, integrating
capacitor, ADC, 2 − z−1 digital block, and multi-modulus di-
vider. The charge pump consists of a positive current source
and a negative current source. The positive current source is
controlled by the top PFD output to generate a current pulse of
amplitude ICP each reference period when the PLL is locked.
The negative current source is controlled by a one-shot to
generate a current pulse of amplitude −ICP and fixed duration
TOC each reference period.

A 2B · 5-level ADC of step-size ∆/2B, where B ≥ 0, is
used in place of the 5-level ADC of step-size ∆ in Fig. 1. The
variable, −êq[n], is formed from the B least significant bits
(LSBs) of the ADC output and used by the QNC technique to
cancel much of the ∆Σ FDC’s quantization noise prior to the
loop filter. For the special case of B = 0, êq[n] = 0 in Fig. 2 so
the QNC technique is not implemented.

In the remainder of this section it is first shown that without
QNC (i.e., for B = 0) the ∆Σ FDC in Fig. 2 performs the same
signal processing as that in Fig. 1 when the PLLs are locked, but
with the advantage that its charge pump requires two instead of
three current sources. Then the result is extended for B > 0 to
cover the case with QNC.

A. Modified FDC-PLL Without QNC

Suppose the FDC-PLL in Fig. 1 is locked for all times t ≥ t0.
For each n = 1, 2, . . ., let tn and τn be the times of the nth
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Fig. 2. Proposed FDC-PLL with quantization noise cancellation (QNC FDC-PLL).

rising edges after time t0 of the reference oscillator output,
vref(t), and the divider output, vdiv(t), respectively.

The charge pump in the FDC-PLL of Fig. 1 consists of
one positive and two negative current sources [2]. The top
PFD output controls the positive current source to supply a
current pulse of amplitude ICP and duration of τn − tn to
the capacitor during the nth reference period if tn ≤ τn. The
bottom PFD output controls one of the negative current sources
to sink a current pulse of amplitude ICP and duration of
tn − τn from the capacitor during the nth reference period if
tn > τn. The second negative current source sinks a current
pulse of amplitude ICP and duration TOC from the capacitor
each reference period. The action of the latter current source
induces a phase shift in the PLL output which causes the rising
edge of vref(t) to lead the corresponding rising edge of vdiv(t)
by an average of TOC [2], [5], [10]. The value of TOC is chosen
to ensure that tn ≤ τn for all n, so only the positive current
source is modulated by the ∆Σ FDC feedback loop once the
PLL is locked. This prevents mismatches between positive and
negative current sources from introducing nonlinear distortion.

The ADC samples the capacitor voltage shortly after each
charge pump current pulse settles to zero. Therefore, the voltage
sampled during the nth reference period is

Vc[n] = Vc[n − 1] + (τn − tn)
ICP

C
− TOC

ICP

C
+ ep[n] (1)

where ep[n] represents error in the amount of charge delivered
to the capacitor during the nth reference period from noise and
other non-ideal circuit behavior in the charge pump, PFD, and
divider.

The 5-level ADC output sequence is

y[n] =
Vc[n]

∆
+ eq[n] (2)

where

eq[n] =

⌊
Vc[n]

∆
+

1

2

⌋
− Vc[n]

∆
(3)

is the ADC quantization error during the nth reference period,
and, for any value w, ⌊w⌋ represents the largest integer not
greater than w. Substituting (1) into (2) results in

y[n] − eq[n] − (y[n − 1] − eq[n − 1])

= (τn − tn)
ICP

∆C
− TOC

ICP

∆C
+

ep[n]

∆
. (4)

Let ψref [n] and ψPLL[n] be the average frequency errors over
the nth reference period of the reference oscillator and PLL out-
put, respectively. As proven in [1], provided that ICP /(C∆) =
fPLL, the signal processing performed by the ∆Σ FDC is
equivalent to that of the second-order ∆Σ modulator shown in
Fig. 1. Hence, the ADC output sequence can be written as

y[n] = −α− ePLL[n] + e∆Σ[n] (5)

where

ePLL[n] = ψPLL[n] − ψref [n]
fPLL

fref
− ep[n] − ep[n − 1]

∆
(6)

represents the average frequency error of the PLL output over the
nth reference period from all noise sources except eq[n], and

e∆Σ[n] = eq[n] − 2eq[n − 1] + eq[n − 2]. (7)

Substituting (6) into (5) and the result into (4) gives

(τn − tn)fPLL = ψerr[n] + TOCfPLL

− 2eq[n − 1] + 3eq[n − 2] − eq[n − 3] (8)

where

ψerr[n] = − (ePLL[n] − ePLL[n − 1]) − ep[n]

∆
. (9)

Thus, ψerr[n] is the result of non-ideal circuit behavior and
noise. By definition, |eq[n]| ≤ 0.5, so (8) and (9) imply that

TOC − 3 + R

fPLL
< τn − tn < TOC +

3 + R

fPLL
(10)

where R is the maximum magnitude of ψerr[n]. For example,
measured results imply that R ≪ 1 in the FDC-PLL presented
in [2].

Therefore, τn − tn is always positive, and, consequently, the
nth rising edge of vdiv(t) occurs after that of vref(t), if

TOC >
3 + R

fPLL
. (11)

Provided (11) is satisfied, the second term on the right side of
(1) is always positive once the FDC-PLL is locked so it can
be implemented by sourcing a current pulse of magnitude ICP

and duration τn − tn to the capacitor each reference period.
The third term on the right side of (1) can be implemented
sinking a current pulse of magnitude ICP and duration TOC

from the capacitor each reference period. Hence, only two
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current sources are necessary: one positive and one negative.
The positive current source is identical to that in the FDC-PLL
of Fig. 1. The negative current source is driven by a one-shot to
generate a current pulse of amplitude −ICP and duration TOC

each reference period.
This configuration is shown in Fig. 2, where the top and

bottom charge pump inputs control the positive and negative
current sources, respectively, and the third current source has
been eliminated. The ADC is clocked at time tn + Tdelay where
Tdelay is such that

N + α

fPLL
> Tdelay >

3 + R

fPLL
+ TOC >

2(3 + R)

fPLL
(12)

so that the capacitor voltage is sampled shortly after each charge
pump current pulse settles to zero, and the DCO input sequence
is computed by the DLC before the (n + 1)th reference rising
edge occurs.

Therefore, once the FDC-PLL is locked, the behavior of the
∆Σ FDC of Fig. 2 is identical to that of Fig. 1 for the case of
B = 0, even though the charge pump consists of two instead of
three current sources. Prior to achieving lock, the two FDC-
PLL versions do not have identical behavior, but extensive
simulations run by the authors do not indicate that locking
problems occur in the FDC-PLL of Fig. 2.

B. Quantization Noise Cancellation for FDC-PLLs

If B is a non-negative integer the output of the 2B · 5-level
ADC at the nth sample time is

s[n] =
1

2B

⌊
2B Vc[n]

∆

⌋
+

1

2
(13)

and is represented as a 3 + B-bit two’s complement binary
number. The 3 most significant bits (MSBs) of s[n] are the
two’s complement representation of the y[n] sequence in Fig. 2.
As shown below, for any B ≥ 0 and for identical ADC input
voltages, y[n] takes on the same values as the 5-level ADC
output sequence in Fig. 1. Hence, it follows from (5) and
Section II-A that y[n] contains second-order highpass-shaped
quantization noise, e∆Σ[n], once the PLL is locked. The DLC
accumulates y[n] + α, which converts e∆Σ[n] to first-order
highpass-shaped quantization noise given by eq[n] − eq[n − 1].

The B-bit two’s complement sequence −êq[n] in Fig. 2 con-
sists of the B LSBs of s[n] with their MSB inverted. It is an
estimate of −eq[n] up to the resolution of the ADC.

The QNC technique computes the sequence −(êq[n] −
êq[n − 1]) through a first-order differentiator and adds it to
the output of the DLC’s accumulator. The contribution of the
quantization error eq[n] to the FDC-PLL’s output phase noise
is thus cancelled to the extent that êq[n] matches eq[n] and the
∆Σ FDC operates as an ideal second-order ∆Σ modulator so
that (5), (6), and (7) hold.

C. ∆Σ FDC Equivalent Signal Processing

The 3 + B bits used to represent s[n] are denoted as si[n],
for i = 0, . . . , 2 + B, in the order of least to most significant

Fig. 3. Equivalent ∆Σ FDC signal processing for QNC FDC-PLLs.

bits. The numerical value of s[n] is

s[n] = −4s2+B[n] +
B∑

k=−1

2−ks−k+B[n] (14)

where the −4 coefficient for s2+B[n] stems from the two’s
complement representation of s[n]. The 3 MSBs of s[n] are
interpreted as the sequence

y[n] = −4s2+B[n] + 2s1+B[n] + sB[n] (15)

while, by design

−êq[n] = −1

2
(1 − s−1+B[n]) +

B∑

k=2

2−ks−k+B [n]. (16)

The ∆Σ FDC output y[n] can be interpreted as the result of
rounding s[n] − 1/2 to the nearest integer

y[n] = ⌊s[n]⌋ (17)

so that, from (14) through (17)

êq[n] = y[n] −
(

s[n] − 1

2

)
(18)

can be regarded as the quantization error caused by such
rounding operation.

Substituting (13) into (17) gives

y[n] =

⌊⌊
2BVc[n]/∆

⌋
+ 2B−1

2B

⌋
. (19)

For any real number w, integer m and positive integer n,
⌊(⌊w⌋ + m)/n⌋ = ⌊(w + m)/n⌋ [11]. Hence, (19) gives

y[n] =

⌊
Vc[n]

∆
+

1

2

⌋
. (20)

Therefore, y[n] in the ∆Σ FDC of Fig. 2 is identical to y[n]
in the ∆Σ FDC in Fig. 1 at all sample times during which
the ADC inputs in the two ∆Σ FDCs are equal. This result is
independent of B, so the equations derived in Section II-A for
the special case of B = 0 apply to the ∆Σ FDC in the FDC-
PLL of Fig. 2 for any non-negative integer B.

Substituting (2) into (13), and the result into (18), gives

êq[n] = y[n] − 1

2B

⌊
2By[n] − 2Beq[n]

⌋
. (21)

For any real number w, and integer n, ⌊w + n⌋ = ⌊w⌋ + n and
(17) implies that y[n] is integer-valued, so (21) reduces to

−êq[n] =
1

2B

⌊
−2Beq[n]

⌋
. (22)

From (2) through (7), and (22), it follows that the signal
processing performed by the ∆Σ FDC in Fig. 2 is as shown
in Fig. 3 when the PLL is locked. The y[n] output in Fig. 3 is
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Fig. 4. Phase noise model of the proposed QNC FDC-PLL.

identical to that shown in Fig. 1 for FDC-PLLs without QNC.
The −êq[n] output is the estimate of −eq[n] used by the QNC
technique to cancel ∆Σ FDC quantization noise prior to the
digital loop filter.

D. Phase Noise Model for QNC FDC-PLLs

Given the equivalence between the ∆Σ FDC in Fig. 2 and
that in Fig. 1 with respect to y[n] as derived above, it follows
from the corresponding result in [1] that the output of the
accumulator in the DLC of Fig. 2 can be written as

−θPLL(τn) + (N + α)θref(tn) +
ep[n]

∆
+ eq[n] − eq[n − 1]

(23)
where θPLL(t) and θref(t) are the PLL’s and reference oscil-
lator’s instantaneous phase noise in cycles, respectively. As
indicated in Fig. 2, −êq[n] + êq[n − 1] is added to the output
of the accumulator in the DLC to obtain p[n]. Thus, (23) and
Fig. 2 imply that

p[n] = −θPLL(τn) + (N + α)θref(tn) +
ep[n]

∆
+ e∆ΣR[n]

(24)
where

e∆ΣR[n] = eq[n] − eq[n − 1] − (êq[n] − êq[n − 1]) . (25)

Therefore, QNC has the effect of replacing the ∆Σ FDC’s
quantization error term in the output of the DLC’s accumulator,
i.e., eq[n] − eq[n − 1], with the smaller error term, e∆ΣR[n],
given by (25).

Hence, the phase noise model presented in [1] for the FDC-
PLL shown in Fig. 1 can be extended to apply to the pro-
posed FDC-PLL with QNC by replacing eq[n] − eq[n − 1] by
e∆ΣR[n] in the result corresponding to (23) in the phase noise
model derivation presented in [1].

By rearranging terms in (25), e∆ΣR[n] can be written as

e∆ΣR[n] = eRq[n] − eRq[n − 1] (26)

where

eRq[n] = eq[n] − êq[n]. (27)

The phase noise model shown in Fig. 4 for the proposed FDC-
PLL with QNC follows from (24) and (26) by replacing eq[n]
with eRq[n] as the input to the first-order differentiator in the
phase noise model in [1].

As eq[n] = êq[n] + eRq[n], (24)–(26) imply that the FDC-
PLL with QNC shown in Fig. 2 cancels the contribution of êq[n]
to the FDC-PLL’s output phase noise, but does not cancel the
contribution of eRq[n]. Although eRq[n] is not cancelled, it can
be made much smaller than eq[n] by increasing the number of
quantization levels in the ADC.

In the presence of an arbitrarily small random noise com-
ponent in ePLL[n], for any integer n1 eq[n1] and eq[n1 + n2]
asymptotically converge in distribution as n2 → ∞ to a pair
of independent random variables that are each uniformly dis-
tributed between −∆/2 and ∆/2 [12]. It follows from (22)
and (27) that eRq[n1] and eRq[n1 + n2] asymptotically con-
verge in distribution as n2 → ∞ to a pair of independent
random variables that are each uniformly distributed between
0 and 2−B∆. Consequently, for the purpose of deriving its
power spectral density (PSD), eRq[n] is equivalent to a white,
uniformly distributed random process of variance 2−2B∆2/12.

Assuming that θref(tn), ep[n], eRq[n], and the DCO’s instan-
taneous phase noise, θDCO(t), can be modeled as uncorrelated,
wide-sense stationary random processes, and that θref(tn),
ep[n], and θDCO(t) have zero-mean, the two-sided PSD of
θPLL(t) is the sum of two-sided PSD components that each
correspond to one of the noise signals, i.e.,

SθPLL(f) = SθPLL(f)|ref + SθPLL(f)|ep

+ SθPLL(f)|eRq
+ SθPLL(f)|DCO . (28)

The four terms from left to right on the right side of (28) are the
components of the two-sided PSD of θPLL(t) corresponding to
θref(tn), ep[n], eRq[n], and θDCO(t), respectively. The phase
noise model of Fig. 4 implies the following expressions for
these components:

SθPLL(f)|ref = (N + α)2 |G(f)|2 Sθref (f) (29)

SθPLL(f)|ep
=

Tref

∆2
sin2(πTreff) |G(f)|2 Sep(ej2πTref f )

(30)

SθPLL(f)|eRq
=

2−2BTref

3
sin2(πTreff) |G(f)|2 (31)

SθPLL(f)|DCO = |1 − G(f)|2 SθDCO(f) (32)

where Sθref (f) and SθDCO(f) are the two-sided phase noise
PSDs in cycles squared per Hz of the reference, and DCO,
respectively, Sep(ej2πTref f ) is the two-sided discrete-time PSD
of ep[n]

G(f) =
T (ej2πTreff )

1 + T (ej2πTreff )

[
sin(πTreff)

πTreff

]2

(33)

and

T (z) = KDCOTrefL(z)
z−2

1 − z−1
(34)

is the discrete-time loop gain of the FDC-PLL. If the desired
units of the PSD are radians squared per Hz, then (28) must be
scaled by 4π2.

III. IMPLEMENTATION AND DESIGN EXAMPLE

Fig. 5 shows output spectra with and without QNC enabled
of a 3.5 GHz FDC-PLL designed to demonstrate the effect of
the proposed quantization noise cancelling technique [13]. The
PLL has a 10-level flash ADC, so B = 1. It dissipates 21 mW
from 1.0 and 1.2 V supplies, has an active area of 0.56 mm2,
and is identical to the frequency synthesizer in [2] expect that in
[2] the adder at the input of the digital loop filter in Fig. 2 is
bypassed via a multiplexer. Although not implemented in [13],
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Fig. 5. Measured output phase noise of the QNC FDC-PLL in [13] with and
without QNC enabled.

Fig. 6. Calculated PSD plots (smooth curves) and simulated PSD plots
(jagged curves) for a 1 MHz bandwidth FDC-PLL with and without QNC
enabled.

additional ADC levels would have enabled better ∆Σ quantiza-
tion noise suppression.

As an example, Fig. 6 shows the phase noise PSD of an FDC-
PLL that incorporates QNC with B = 6. The data were gener-
ated by an event-driven C-language simulator, with and without
QNC enabled. A SAR ADC clocked at a rate of fref would be
a practical means of achieving the ADC resolution required for
B = 6 with a 1.13 mW increase in power dissipation over [13]
and 0.026 mm2 of additional active area [14]. Transistor-level
periodic steady-state simulations were performed to estimate
the noise levels used by the event-driven simulator [1].

In this design, the FDC-PLL’s bandwidth is relaxed to 1 MHz
without incurring a significant phase noise penalty as the major-
ity of the ∆Σ FDC quantization noise is removed by QNC prior

to the digital loop filter. The solid curves in Fig. 6 are the phase
noise PSDs for the FDC-PLL with and without QNC enabled,
as predicted by the phase noise model derived in Section II-D.
Unlike in narrow-bandwidth FDC-PLLs [1], [2], where it is
adequately suppressed by the digital loop filter, ∆Σ quanti-
zation noise dominates the output phase noise of the 1 MHz-
bandwidth PLL at offset frequencies between 20 kHz and
100 MHz in absence of QNC. As a result, ePLL[n] is corre-
lated with ADC quantization error and the ∆Σ FDC operation
departs from that of an ideal second-order ∆Σ modulator.
Accordingly, the simulated phase noise PSD in absence of QNC
deviates somewhat from the curve predicted by the phase noise
model, as shown in Fig. 6.

When QNC is enabled, much of the ∆Σ quantization noise
is suppressed prior to the digital loop filter. Hence, the phase
noise PSD predicted by (28) through (34) closely matches
the simulated phase noise PSD, which supports the results
presented in this paper for FDC-PLLs with QNC.
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