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A Linearized Model for the Design of Fractional-
Digital PLLs Based on Dual-Mode Ring

Oscillator FDCs
Colin Weltin-Wu, Eythan Familier, and Ian Galton

Abstract—A digital fractional- phase-locked loop (PLL) fre-
quency synthesizer based on a second-order frequency-to-dig-
ital converter (FDC) without conventional analog components was
recently proposed and demonstrated experimentally to have per-
formance in line with state-of-the-art analog PLLs. However, un-
like analog PLLs or prior PLLs based on second-order FDCs,
it is highly digital and does not require an analog charge pump or
ADC, so it is well-suited to implementation in highly-scaled CMOS
technology. This paper derives a linearized model of the new ar-
chitecture and key equations which are necessary for the design of
PLLs based on the architecture.
Index Terms—Delta-sigma, digital PLL, FDC, frequency synthe-

sizer.

I. INTRODUCTION

F RACTIONAL- phase-locked loop frequency syn-
thesizers based on second-order delta-sigma

frequency-to-digital converters (FDCs), referred to as
second-order FDC-PLLs in this paper, offer advantages of
both analog and digital PLL frequency synthesizers [1]–[3]. In
principle, they have the same quantization noise behavior as
analog PLLs based on second-order modulators, so like
such analog PLLs they can achieve very good spurious tone
performance. Yet their loop filters are entirely digital so they
are very compact like digital PLLs
Nevertheless, unlike digital PLLs, most prior second-order

FDC-PLLs contain an analog charge pump and a coarse ADC.
While such FDC-PLLs are not highly sensitive to non-ideal be-
havior of their charge pumps and ADCs, neither are they im-
mune to it. In particular, the low supply voltages and high de-
vice leakage associated with highly-scaled CMOS technology
result in non-ideal charge pump and ADC behavior that can
limit FDC-PLL performance [3].
Recently, a new second-order FDC-PLL architecture that uses

a dual-mode ring oscillator and digital logic instead of a charge
pump and ADC was proposed and a prototype IC based on the
architecture was demonstrated [4]. The new FDC-PLL avoids
the above-mentioned issues associatedwith the charge pumpand
ADC so it is more amenable to implementation in highly-scaled
CMOStechnology thanprior second-orderFDC-PLLs.
This paper provides a detailed analysis of the new FDC-PLL

architecture. It derives key equations and a linearized model
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Fig. 1. (a) High-level diagram of an FDC-PLL with quantization noise can-
cellation (QNC), (b) signal processing equivalent of the FDC when it is
locked.

which are necessary for the system-level design of the PLL.
Section II provides a general description of fractional- PLLs
based on second-order FDCs. Section III describes the de-
tails of the new FDC-PLL, derives the key theoretical results
of the paper with support from the Appendix, and describes the
effects of non-ideal circuit behavior on the FDC-PLL's perfor-
mance. Sections IV and V apply these results to develop the
phase noise model and a design example.

II. FDC-PLL OVERVIEW

The FDC-PLL presented in [4] has the high-level architec-
ture shown in Fig. 1(a). Its analog input is a reference oscil-
lator signal, , which, ideally, is periodic with frequency

. Its output ideally is periodic with frequency
, where is an integer and is a fractional value

between 0.5 and 0.5.
The FDC within the FDC-PLL (the details of which

are described in Section III) generates two -rate digital se-
quences, and . As shown in Section III, the se-
quence has the form

(1)

where is a measurement of the average frequency error
of the PLL output over the th reference period from all noise
sources except quantization noise and is identical to the
highpass shaped quantization noise of a second-order mod-
ulator. Although no modulator is explicitly implemented
within the FDC, its behavior is identical to that of the
second-order modulator shown in Fig. 1(b). Thus,
is equivalent to the result of passing the quantization error from
rounding to the nearest integer through a highpass digital filter
with transfer function [5] The sequence
shown in Fig. 1(b) is the fractional part of the output of the
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Fig. 2. (a) The new ring oscillator based FDC, (b) implementation details of the ring phase calculator within the FDC.

modulator's second accumulator, and is a quantized ver-
sion of . It can verified from well-known properties of
the second-order modulator that

(2)
The accumulator prior to the digital loop filter in the

FDC-PLL operates on , so it follows from (1) and (2)
that its output is an accumulated version of plus

. The former is a measure of the PLL's phase
error, and the latter is first-order highpass shaped quantization
noise [2], [3]. Hence, each output sample of the accumulator
is nearly proportional to the amount of charge in each charge
pump pulse in an analog PLL with a second-order mod-
ulator. Consequently, if the path shown in Fig. 1(a)
is omitted, the FDC-PLL can be designed to have nearly the
same loop dynamics and quantization noise performance as an
analog PLL with a second-order modulator [2].
The path shown in Fig. 1(a) performs quantization

noise cancellation (QNC) [6]. By design, is approximately
equal to , so the path in the FDC-PLL of Fig. 1(a)
approximately cancels prior to the digital loop
filter. This allows the PLL bandwidth to be increased without
significantly increasing the contribution of quantization noise
to the PLL's phase noise. When QNC is not implemented, as
is the case in the FDC-PLL presented in [3], the loop filter's
bandwidth must be low enough to sufficiently attenuate the first-
order highpass shaped quantization noise. QNC is a variant of
similar techniques that have been applied to both analog and
digital PLLs [7]–[11].

III. RING OSCILLATOR BASED FDC

A. FDC Architecture
The FDC presented in this paper is a slightly general-

ized version of that presented in [4]. Its structure is shown in
Fig. 2(a). It consists of a phase frequency detector (PFD), a
dual-mode ring oscillator (DMRO), a digital ring phase cal-
culator (the details of which are shown in Fig. 2(b)), a digital

block, and a multi-modulus divider. The PFD and di-
vider have the same functionality as those in an analog PLL,
and the DMRO and ring phase calculator details are described
below.
The DMRO is implemented as a ring of nominally iden-

tical inverters. Each inverter has a propagation delay that is one
of two values depending on whether the top PFD output, ,
is high or low. The nominal instantaneous output frequency of
the DMRO (neglecting switching transients) is given by

if
if (3)

where is the top PFD output, and and are con-
stants. Ideally,

(4)

and

(5)

where is the reference period, is an integer
chosen under the constraint that must be integer-valued,

is a positive integer, and must satisfy

(6)

The reasons for (4)–(6) are explained in the context of the
analysis presented in Section III-B. As shown via the analysis,
when the FDC-PLL is locked is the average PFD pulsewidth,
and the DMRO is locked to an average frequency of .
The integer is a design parameter that specifies a tradeoff be-
tween the DMRO's frequency spread and its contribution to the
FDC-PLL's overall phase noise. As explained shortly, it is not
critical that (4) and (5) be satisfied exactly or that the frequency
transitions are instantaneous.
The details of the ring phase calculator are shown in Fig. 2(b).

Its input is the DMRO's set of inverter outputs. The -bit
counter is clocked by one of the DMRO inverter outputs, so
the counter increments once per DMRO cycle and rolls over
modulo . The counter bits are interpreted as an unsigned
number in the range .
The ring phase calculator's clock signal, , is an in-

verted version of the reference, so its period is . The number
of counter bits is chosen to satisfy

(7)

As explained in Section III-B, this ensures that the counter rolls
over no more than one time per period.
At any given time the -bit counter output represents the

integer part of the DMRO's phase modulo . Therefore, the
fractional part of the phase goes to zero each time the counter
output increments or rolls over.
Both the -bit counter output and the DMRO in-

verter outputs are sampled on each rising edge of .
A phase decoder block that consists of combinatorial logic
maps the sampled inverter outputs to one of 2 possible
quantized fractional phase values of the DMRO. Specifi-
cally, its th output sample is the greatest number in the set

that is less
than or equal to the fractional part of the DMRO's phase at the
time of the th rising edge of . Consequently, its output
is an unsigned fractional -bit number. If is a power of
two, then . Otherwise, must be larger than

so the phase decoder output represents the set of
fractional values with negligible round-off error.
The sequence in Fig. 2(b) is the sum of the sampled

counter output and the fractional phase decoder output. It is in-
terpreted as an unsigned fixed-point sequence with the sam-
pled counter bits forming its integer part and the fractional
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phase decoder bits forming its fractional part. Thus, is
a quantized representation of the absolute DMRO phase in cy-
cles measured at the th rising edge of that rolls over
modulo cycles.
The portion of the ring phase calculator to the right of

performs two's complement arithmetic.1 The sequence is
obtained by performing a two's complement difference of
and , and replacing the MSB with zero. The clipping
accumulator operates on and generates
the output sequence

if
if
if

(8)

where

(9)

The ring phase calculator output, , is an integer-valued
two's complement sequence formed from the 3 MSBs of .
The output is a fractional two's complement sequence
formed from the LSBs of with an appended MSB
set to 0.

B. The FDC's Equivalence to a Modulator
An oscillator's ideal instantaneous phase is the sum of a time

function that represents its phase noise and the integral of its
ideal frequency. Hence, the instantaneous phases of the refer-
ence oscillator, PLL output, and DMRO, respectively, in units
of cycles are ,

, and

(10)

where , , and are the respective
phase noise time functions.
The following definitions are used through the remainder

of the paper. The time sequences, , , and , for
are the times of the th rising edges of ,

the reference signal, and the divider output, respectively, after
time . The phase noise changes per reference period of the
PLL output, the reference signal, and the DMRO are defined as

(11)
(12)

and

(13)

respectively. Therefore, and represent the
average frequency errors multiplied by of the reference
oscillator and DMRO, respectively. When the PLL is locked
the average period of the divider output is the reference period,
so is approximately the average frequency error of the
PLL output multiplied by .
Throughout the paper it is assumed that

(14)

1Although not shown in Fig. 5, in practice a zero MSB would be appended to
the bus that represents to convert its format to two's complement notation
without changing its value.

for all . The term on the left side of (14) has a magnitude
bounded by 0.5, and the other terms have magnitudes that are
much smaller than 0.5 in practical PLLs, so (14) is not a difficult
requirement to meet.
PFD Pulse Width Derivation: The th rising edge of the ref-

erence oscillator output, , occurs at time which is ex-
actly the point in time at which the reference oscillator's instan-
taneous phase, , crosses an integer boundary. Thus,

(15)
for each integer . Subtracting (15) with from (15)
with and applying , results in

(16)
The FDC shown in Fig. 2 is configured such that the

divider modulus during the th reference period is ,
so there are exactly DCO periods between the

th and th rising edges of the divider output, i.e., the
PLL output's phase change between time and time is

cycles. Therefore,

(17)
which can be rewritten as

(18)
Subtracting (16) from (18), and applying (11), (12), and

gives

(19)
Clipping Accumulator Input Derivation: The DMRO's max-

imum frequency is , so its maximum phase change in cy-
cles over a period (i.e., over a duration of ) is

. Hence, the number of counter bits dictated by (7) is
large enough that the counter has at least as many levels as the
maximum number of DMRO cycles over a period, so
the counter rolls over no more than one time per period.
Zeroing the MSB following the calculation

indicated in Fig. 2(b) has the effect of adding when
is negative. Therefore,

if
otherwise.

(20)
It follows from the definition of in Section III-A that the
only way can be less than is if the counter
rolled over during the th period, i.e., between the

th and th rising edges. Each counter rollover
has the effect of subtracting from what would otherwise be
the counter's output value and only one rollover is possible per

period. This with (20) implies that counter rollovers
have no effect on .
Consequently, can be written in terms of

as

(21)where
(22)

is DMRO quantization noise. It follows that is a quantized
representation of the DMRO's phase change in units of cycles
over the th period.
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Substituting (3) into (10) and taking a first difference of the
result gives

(23)

Substituting (4) and (5) into this result gives

(24)

In the remainder of this section, it is assumed that the
FDC is locked for all . The Appendix derives
the conditions under which the FDC becomes locked and
proves that for all at which it is locked the clipping accumu-
lator does not clip and

(25)

By definition goes to 1 at each time and goes to 0 at
each time , so (25) implies that (24) can be written as

(26)

Substituting this into (21) and applying the operations shown in
Fig. 2(b) prior to the clipping accumulator implies that the input
to the clipping accumulator can be written as

(27)

Clipping Accumulator Output Derivation: As shown in the
Appendix, when the FDC is locked the clipping accumu-
lator does not clip, so, (8), (9), and (27) imply that for

(28)

Solving (28) with for , and
substituting the result into (19), gives

(29)

It follows from (59) in the Appendix that when the clipping
accumulator does not clip, the truncation operation associated
with forming from the 3 MSBs of causes

(30)

where

(31)

This with (8) and (29) gives

(32)

Fig. 3. Error feedback form of a second-order modulator.

where

(33)

Substituting (32) into (28) with gives

(34)

where

(35)

Modulator Equivalence: Substituting (34) into (30)
gives

(36)

where is given by (33). By definition, is integer-
valued. It is shown in the Appendix that when
the FDC is locked, which implies that for each , there is
exactly one value of that causes to be in-
teger-valued. Consequently,

(37)

Therefore, even though is the result of quantization in
two physical locations within the FDC, one following the
DMRO and the other following the clipping accumulator, math-
ematically it is equivalent to the quantization error caused a
single quantization operation, i.e., that of rounding down
to the nearest integer less than or equal to . Rounding any
value, , down to the nearest integer less than or equal to , is
the same as rounding to the nearest integer.
This with (35) and (36) proves that when the FDC is

locked, is equivalent to that generated by the block diagram
shown in Fig. 3, with

(38)

The block diagram shown in Fig. 3 is the error-feedback form
of a second-order modulator, which is known to have the
same input to relationship as the second-order modu-
lator shown in Fig. 1(b) under equivalent initial conditions [5].
It follows from the well-known behavior of second-order
modulators, or, alternatively, from (35) through (38) that
can be written as

(39)

The self-dithering property of the second-order modulator
ideally causes to have a power spectral density equivalent
to that of zero-mean white noise [2], [3], [5], [12].
It follows from (62) in the Appendix and (31) that

when the clipping accumulator does not clip. Thus, (33)
implies that

(40)
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As shown in the Appendix the values taken on by are
multiples of , so the same must be true of . Equa-
tion (22) implies that , so for each
there is exactly one value of that causes

to be a multiple of . It follows that must
have the form

(41)

which represents quantization of to the nearest multiple
of that is less than or equal to . This is the
operation performed by the fractional part quantizer shown in
Fig. 1(b).

C. Average PFD Pulse-Width
If the FDC is locked for all , it follows from (28)

that the output of the clipping accumulator can be written as

(42)

and as shown above is bounded for all . The first three
terms in (42) are bounded by definition, so this implies that the
summation in (42) must be bounded too for all . This is
only possible if the average of the summed terms is zero, so it
implies

(43)
By definition, the left side of (43) is the average pulse width
of the PFD output, , when the FDC is locked, and the
right side is minus a scaled version of the average DMRO
frequency error. Therefore, the average pulse width of is
approximately , and if the average DMRO frequency error
is zero, it is exactly . This result is used in Section III-E in
the explanation of why the DMRO need not have instantaneous
frequency transitions.

D. Average DMRO Frequency
As described above, if the FDC is locked for all ,

then the clipping accumulator does not clip, so the operations
shown in Fig. 2(b) imply that

(44)
An implication of being bounded is that the average fre-
quency of the DMRO is . This follows because (44) can
only be bounded if the average of is . As described
above, represents the phase change in cycles over the th

period (which has a duration of a reference period), so
the DMRO must have an average frequency of .
Given that is an accumulated version of , it

can be interpreted as a quantized measurement of the difference
between the phase of the DMRO and the phase of an ideal oscil-
lator of frequency sampled at the time of the th rising
edge of . As is the integer part of , it can be
interpreted as a measure of this phase difference rounded down
to the nearest integer.

E. Effects of non-Ideal Circuit Behavior
Typically, in frequency synthesizer applications the most

troublesome non-ideal fractional- PLL behavior is the gen-

eration of fractional spurious tones in the PLL's output. This
sub-section describes the types of non-ideal circuit behavior
within the FDC-PLL that can cause fractional spurious tones.
All fractional- PLLs perform quantization, which is

a highly nonlinear operation, so this is a potential source
of fractional spurious tones. In both analog PLLs and
second-order FDC-PLLs, the self-dithering property of
higher-than-first-order, multi-bit modulation ideally sup-
presses spurious tones [2], [3], [5], [12].
Of course, non-ideal circuit behavior can degrade the

FDC's equivalence to a second-order modulator, which can
degrade the self-dithering property. As can be verified from the
equivalence proof in Section III-B, the first accumulator in the
equivalent modulator shown in Fig. 1(b) derives from the
frequency-to-phase integrating behavior of the multi-modulus
divider, and both modulator feedback loops derive from the

FDC's local feedback. As the divider and
block are digital, the first accumulator and both feedback paths
are inherently ideal.
The second accumulator in the equivalent modulator

derives from the frequency-to-phase integrating behavior of
the DMRO implied by (10). The DMRO is not an all-digital
structure, so it is not inherently ideal. However, the FDC-PLL
is fairly insensitive to non-ideal DMRO behavior in much the
same way that analog PLLs are fairly insensitive to non-ideal
charge pump behavior. It is well known that non-ideal charge
pump switching transients do not cause fractional spurious
tones in an analog PLL provided each current source has
time to settle whenever it is turned on or off, and provided
the rising and falling transient shapes are independent of the
times at which the current source is turned on and off, respec-
tively [13]. For the same reasons, non-ideal DMRO frequency
switching transients do not cause fractional spurious tones in
the FDC-PLL provided the high and low durations of each
reference period are long enough for the transients to settle out,
and the rising and falling transient shapes are independent of
the times at which goes high and low, respectively.
As shown in the Appendix when the

FDC is locked, so it follows from (14) and (32) that the min-
imum and maximum high durations of each reference pe-
riod are and , respectively, when
the FDC is locked. Thus, provided the DMRO's frequency
switching transients settle out within , can
be set to ensure that the DMRO has sufficient time to settle each
time it changes frequency. Furthermore, the faster the DMRO
transients settle out, the larger the acceptable range of values of

and, therefore, .
In practical DMROs each switching transient does depend

somewhat on when in the DMRO's cycle the corresponding
transition of occurs. However, simulation and experimental
results indicate that DMROs can be designed for which this ef-
fect does not significantly degrade the FDC-PLL's performance
[4]. Specifically, transistor-level simulations indicate that the
phase of the DMRO presented in [4] deviates from its ideal
linear phase behavior by at most 0.35% per reference period.
Behavioral-level simulations further predict that such error re-
sults in fractional spurious tones with powers that are below
70 dBc in band and that drop quickly as the fractional fre-

quency is increased out of band.
Another source of non-ideal error is that and will

not differ by exactly as specified by (4). It can be
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verified by a slight extension of the analysis presented in Sec-
tion III-B that a percentage error in this difference causes the
same percentage error to occur in the gain of the equivalent
modulator's second accumulator. It is well known that the quan-
tization noise and signal transfer functions of a second-order

modulator are not highly sensitive to deviations in the gain
of its second accumulator [5]. It follows that the FDC-PLL is
not highly sensitive to deviations of from its ideal
value of . Simulation results that support this claim
are presented in Section V.
Another type of DMRO-related non-ideal behavior is cou-

pling of the DMRO oscillation waveforms into other parts of the
PLL. However, as proven in Section III-D, the average DMRO
frequency is a fixed integer multiple of , which greatly re-
duces the potential of the DMRO to introduce fractional spu-
rious tones. If the average DMRO frequency were not a multiple
of the reference frequency (as in PLLs based on SRO-TDCs
as described in Section III-F), its fundamental and harmonics
would have fractional relationships to those of the FDC-PLL
output. In this case, parasitic coupling of the DMRO output lines
into the DCO or reference circuitry would cause fractional spu-
rious tones.
The results described above are supported by the experi-

mental results presented in [4]. The FDC-PLL presented in [4]
has a worst case measured in-band fractional spurious tone
power of 60 dBc, and, as expected, the worst-case measured
fractional spurious tone power drops quickly as the fractional
frequency is increased outside of the loop bandwidth. This is
the best spurious tone performance reported to date for a digital
PLL. Compared to other digital PLLs with similarly low phase
noise, the FDC-PLL achieves an order of magnitude lower
spurious tone power than previously reported in the literature.

F. Comparison to GRO-TDC and SRO-TDC Based PLLs

This subsection compares the FDC-PLL presented above to
prior digital PLLs based on gated ring oscillator (GRO) time-to-
digital converters (TDCs) and switched ring oscillator (SRO)
TDCs [14]–[17].2 In each such PLL, the TDC consists of a
DMRO, i.e., either a GRO or SRO, followed by a digital
block, so it is equivalent to a ring oscillator based first-order
ADC [18].
These TDC based PLLs each have a frequency control mech-

anism similar to that of an analog PLL in that the divider mod-
ulus is controlled by a digital modulator such that its av-
erage modulus is . However, it differs from an analog
PLL in that a TDC, a digital loop filter, and a DCO are used
in place of a charge pump, analog loop filter, and voltage con-
trolled oscillator.
The TDC does the equivalent of integrating and dumping the

top PFD output pulse each reference period and quantizing the
result. Its block simultaneously neutralizes the integra-
tion performed by the DMRO and imposes first-order highpass
spectral shaping on the quantization error. Thus, the output of
the TDC is a quantized measure of the DMRO's frequency.

2A GRO is the special case of a DMRO with . Initially, the SRO
was presented as a generalization of the GRO to allow for [16], but it
has since been used in the literature to denote a block that is distinct from a GRO
(i.e., a DMRO with ) [17]. As the results of this paper hold regardless
of whether the FDC-PLL incorporates a GRO or an SRO, the term DMRO has
been used to avoid potential confusion.

The TDC's DMRO is switched between two frequencies as in
the FDC, but its sampled phase does not control the divider
modulus. Instead, it is subjected to a transfer function,
the result of which is passed directly to the PLL's loop filter.
In contrast, in the FDC the DMRO's sampled phase con-

trols the divider modulus such that the FDC output is equiv-
alent to second-order modulation of the PLL's frequency
error minus . The FDC's quantization noise shaping is not
the result of an explicit transfer function as in the TDCs
described above, but rather the result of the two integrations
performed within the FDC's local feedback as described
in Section III-E. Digital circuitry following the FDC sub-
tracts , and accumulates the result, so, as in the TDC based
PLLs described above, the input to the loop filter is a measure of
the PLL's phase error plus first-order shaped quantization noise.
However, unlike TDC based PLLs, the FDC inherits the
self-dithering property of second-order modulation and its
benefits with respect to spurious tone suppression as described
in Section III-E.
Furthermore, as described above, the output of the
FDC is the quantized difference between the phase of the

DMRO and that of an ideal oscillator of frequency . The
local feedback within the FDC keeps bounded, which
causes the average frequency of the DMRO in the FDC
to lock to as described in Section III-D. In contrast,
in the TDC based PLLs described above the TDC output is a
quantized measure of the DMRO's frequency, so the GRO or
SRO generally has a fractional relationship to .

G. Comparison to Other FDC-PLLs

This subsection compares the FDC-PLL presented above to
previously published FDC-PLLs. These prior FDC-PLLs are
based on either first-order FDCs [19]–[22] or second-order

FDCs [1]–[3].
A first-order FDC uses the phase integrating behavior

of its divider without any additional integration to achieve first-
order quantization noise shaping, so its output sequence is given
by (1) but with . It can be used in
place of the second-order FDC shown in Fig. 1(a) without
the QNC path to implement a first-order FDC-PLL. While first-
order FDCs have the advantage of simplicity, their quan-
tization noise is identical to that of a first-order modulator
so it tends to have large spurious tones even in the absence of
non-ideal circuit behavior [5].
The prior second-order FDCs use a charge pump and

ADC instead of a DMRO and digital logic to implement the
equivalent modulator's second integrator and quantizer. Al-
though the block diagram of such a FDC appears less com-
plicated than that of the DMRO based FDC-PLL shown in Fig.
2, the authors have found the latter to be more area-efficient
in CMOS technology at or below the 65 nm node because of
its highly-digital structure. It also tends to work significantly
better at low supply voltages and in the presence of high device
leakage, because it is difficult to design a good charge pump in-
tegrator under such conditions.
However, the charge pump and ADC based FDC has an

advantage in IC technology with low device leakage. This is
because the charge pump is only on, and, hence, only injects
noise, for a small portion of each reference period. In contrast,
unless a GRO-version of the DMRO is used, the DMRO injects
noise continuously. In particular, the noise it injects can
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Fig. 4. Linearized model of the FDC-PLL.

be problematic, because, as predicted by the linearized model
shown in Fig. 4, this noise shows up as a noise component
of the PLL's phase noise. In principle, a GRO-version of the
DMROwould avoid this problem. Unfortunately, a GROwould
likely have greater frequency-transient time-dependence than
an SRO [17], and, as explained in Section III-E, this can cause
spurious tones in the PLL's phase noise.

IV. FDC-PLL LINEARIZED MODEL

Like many PLLs, the FDC-PLL's output phase noise,
, has a nearly linear and time-invariant dependence

on the noise waveforms introduced by its components. Hence,
it is useful to model the FDC-PLL as a linear time-invariant
system to provide a tractable means of analyzing its phase noise
performance and loop dynamics. Such a model is necessary
for the system-level design of the PLL. The results derived
in Section III allow the linearized model of the FDC-PLL
presented in [2] to be extended to the FDC-PLL presented in
this paper with only minor modifications.
The modifications are required to include the effect of DMRO

phase noise instead of charge pump noise, and to include the
effect of QNC. Equations (13), (38), and (39) imply that the
contribution of DMRO phase noise to the FDC's output
is

(45)
Therefore, the FDC applies the same transfer
function to as it applies to the quantization
noise, . Equation (39) and the operations shown in Fig. 1(a)
imply that the input to the digital loop filter can be written as

(46)

With (40) this can be written as

(47)

Therefore, QNC effectively replaces with at the
input of the digital loop filter. Applying these results to the lin-
earized model presented in [2] gives the modified linearized
model shown in Fig. 4. The model parameters not defined previ-
ously are , , and , which are the phase error
waveform of the DCO, the digital loop filter's transfer function,
and the DCO gain, respectively.3
The linearized model does not contain noise sources corre-

sponding to the divider, PFD, or the counter and ring sampler
registers in the ring phase calculator. If necessary, these noise
sources can be included in the model, but typically they are not
significant in practice. The divider output usually is resynchro-
nized to a DCO edge, thereby negating most of its noise. PFD

3The DCO Gain is defined as the amount in Hz by which the DCO frequency
changes when the DCO input changes by unity.

noise tends to be negligible relative to the PLL's other noise
sources. The jitter introduced by the counter and ring sampler
registers in the ring phase calculator are subjected to the same
transfer function as , but tend to have much lower
power and relatively flat spectra, so their contribution to the
FDC-PLL's phase noise usually is not significant.
Although periodic steady state (PSS) circuit simulations can

be used to quickly estimate the power spectral density (PSD)
functions of the various noise sources within the FDC-PLL, ex-
isting PSS circuit simulations tools are not applicable to the
FDC-PLL as a whole because of the non-periodic nature of the

FDC. An expression for the FDC-PLL's phase noise PSD in
terms of the PSD functions of its noise sources is derived below
to address this issue.
It is assumed that , , , and

can be modeled as uncorrelated, wide-sense sta-
tionary random processes and that , , and

have zero mean. It follows that the two-sided PSD of
is the sum of two-sided PSD components that each

correspond to one of the noise signals, i.e., the two-sided PSD
of has the form

(48)
where the four terms from left to right on the right side of (48)
are the components of the two-sided PSD of corre-
sponding to , , , and , re-
spectively.
Reasoning similar to that presented in [2] can be applied to

the linearized model shown in Fig. 4 to obtain the following
expressions for these components

(49)

(50)

(51)
and

(52)
where and are the two-sided phase noise
PSDs in cycles squared per Hz of the reference and DCO, re-
spectively, is the two-sided discrete-time
PSD of in cycles squared,

(53)

and

(54)

is the discrete-time loop gain of the FDC-PLL.
Standard PSS circuit simulations can be used to estimate

the phase noise PSDs of the reference and DCO in (51) and
(52), but estimating the phase noise PSD of the DMRO in
(50) is less straightforward. This is because the FDC-PLL
changes the frequency of the DMRO each reference period,
which is not handled well by existing PSS simulation tools.
In the next section this issue is addressed by upper bounding
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as the maximum of two simulated
phase noise PSDs, each corresponding to the DMRO running
continuously at one of its two frequencies. This results in
an upper bound for the contribution of the DMRO to the
FDC-PLL's phase noise.
All phase noise waveforms are in units of cycles, so

has units of cycles squared per Hz. It follows from the definition
of dBc/Hz presented in [23] and [24] that the FDC-PLL's output
phase noise PSD in dBc/Hz is

(55)

for .
The first factor in the expression for is the lowpass filter

transfer function of the linearized model's discrete-time loop,
and the second factor is the lowpass filtering effect of the first-
order hold. Both terms are unity at , so has a lowpass
shape and has a highpass shape. The
term in (49) and (50) attenuates spectral power within the pass-
band of . Therefore, the behavior implied by (49), (51), and
(52) is similar to that of a second-order modulator based
analog PLL with QNC [7].
Typically, the phase noise of a ring oscillator consists of

and components within the PLL bandwidth. The
term in (50) imposes a transfer func-

tion term within the PLL bandwidth, so the and
components of the DMRO phase noise contribute flat and
noise components, respectively, to the FDC-PLL's output phase
noise PSD.

V. DESIGN EXAMPLE

Table I shows relevant parameters used to create a system-
level simulation of an FDC-PLL targeted for 65 nm CMOS
implementation. The reference source is a high-quality crystal
oscillator with a flat phase noise floor of 155 dBc/Hz be-
yond a few kHz offset. The DCO is an LC-based core with
power-of-two-weighted coarse and unit-weighted fine capacitor
banks, the latter of which consists of the high- frequency con-
trol elements (FCEs) introduced in [3].
Each FCE has a nominal frequency step of 25 kHz. The output

of the digital loop filter is a fixed point sequence with an update
rate of . Its integer portion drives FCEs directly, and its
fractional portion drives FCEs through a second-order digital

modulator clocked at an eighth of the DCO frequency [25].
This achieves an effective DCO step-size of approximately 100
Hz.
The DMRO is a 16-stage pseudo-differential version of the

ring oscillator presented in [4] with and
. It uses the multi-path technique proposed in

[26], which, as demonstrated in [4] enables operation at these
frequencies in 65 nm CMOS technology. The DMRO fre-
quency is controlled via current-starving switches. Simulations
show that the DMRO's phase noise is relatively independent
of whether the DMRO frequency is set to or , but
as explained in Section IV, the worse of the two phase noise
spectra is used for system simulation to err on the side of
pessimism.
The 16 pseudo-differential stages of the DMRO divide each

DMRO period into 32 phases, so in Fig. 2(b). The choice
of satisfies (4) with . Thus, has 5
bits of resolution, so the FDC-PLL's suppression of quantization
noise via QNC is approximately 30 dB.

TABLE I
DESIGN PARAMETERS AND EVALUATION SETTINGS

With the above choices of and , (7) implies that an
8 bit counter in the ring phase calculator is sufficient. The ref-
erence period is 38.4 ns, so the DMRO is sampled 19.2 ns after
each rising edge of the reference signal. The value of was
chosen in conjunction with via (5) to ensure that the av-
erage up-duration, , is a quarter of the reference period.
This allows 9.6 ns of DMRO settling time after each rising and
falling edge of .
The digital loop filter consists of two single-pole IIR stages

and a proportional-integral (PI) stage. Its transfer function is

(56)
For this example, the 140 kHz bandwidth was chosen as it al-
lows the FDC quantization noise to be just large enough
that it begins to influence overall phase noise at 1–10 MHz off-
sets.
The FDC-PLL was simulated with an event-driven behav-

ioral simulator written in C. The simulator generates events for
the reference clock edges, DCO edges, and DMRO edges. At
each event it uses the current state of the PLL including all the
noise sources to update the occurrences of future events, and
then advances the simulator time to the next event. The phase
noise composite plot of Fig. 5 was generated by selectively en-
abling the various FDC-PLL noise sources. As expected, the ref-
erence phase noise, quantization noise and DMRO phase noise
have similar characteristic roll-offs outside the PLL bandwidth
because of the term in (49), (50), and (51). The FDC
quantization noise is suppressed at a rate of 20 dB/decade to-
ward low frequencies, as a result of the second-order highpass-
shaped frequency noise being converted to first-order highpass-
shaped phase noise by the loop, in accordance with (49). Also
visible is the rising 10 dB/dec phase noise contribution from the
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Fig. 5. Simulated and calculated FDC-PLL phase noise PSD contributions
from individual noise sources (heavy lines represent calculated results).

region of DMRO's phase noise, which, in this case, dom-
inates the total in-band phase noise.
Fig. 6 shows simulated FDC-PLL phase noise PSD functions

for de-tuned such that deviates by 5% from
its ideal value of , to support the claim in Section III-E that
the FDC-PLL has low sensitivity to deviations from the ideal
DMRO frequencies. As indicated in Fig. 6, the phase noise PSD
functions corresponding to 5% errors are nearly
indistinguishable from the ideal PSD functions, and no signif-
icant spurious tones are visible (the simulated fractional fre-
quency is 10 kHz, so non-ideal behavior would be expected to
induce spurious tones at multiples of 10 kHz relative to ).

APPENDIX

A. Clipping Accumulator Output Quantizer Behavior
The clipping accumulator's input, and, hence, its output are

two's complement fixed point sequences with fractional
bits. The clipping operations of (8) are such that the integer part
of its output is a 3-bit two's complement sequence restricted to
the set . Therefore, is a
two's complement sequence with values given by

(57)

where for are the bits that make
up ordered from LSB to MSB. As indicated in Fig. 3,
is taken to be the three MSBs of . It is interpreted as an
integer-valued two's complement sequence, so it can be written
as

(58)

Given that is the integer part of , (8) implies that it can
be expressed as

if
if
if

(59)

where
As indicated in Fig. 3, the bottom output of the ring phase

calculator is taken to be the fractional bits of with a zero-

Fig. 6. Simulated FDC-PLL phase noise PSD functions with 5% variation in
and .

valued MSB appended. It is interpreted as an
two's complement sequence so it can be written as

(60)

It follows from (57), (58), and (60) that

(61)

so (8) and (59) imply that
if
if
if

(62)

This implies that can be interpreted as the quantization
error introduced by rounding down to the nearest integer
less than or equal to .

B. FDC Locking Conditions
The derivation of (32) in Section III-B is valid for any sample

time provided both (25) is satisfied and the clipping accumu-
lator does not clip at sample times and . Let be any
integer greater than 1 and suppose that at times and

(25) is satisfied and the clipping accumulator does
not clip. Therefore, (32) implies that

(63)

where for and

(64)

is given by (31), and is given by (22).
By design, the values taken on by are multiples of

, so the operations indicated by (8) and (9) imply that
the values taken on by are multiples of . Also by
design, is integer-valued, so every integer is a multiple
of . Therefore, (31) implies that is a multiple of

and that

(65)
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for and . Equation (22) implies that

(66)

for all sample times , so it follows from (64) and (65) that

(67)

for and .
By definition, for all (assuming a

reference signal duty cycle of 50%), so to satisfy (25) at time
, it is necessary that

(68)

It follows from (14), (63), and (67) that

(69)

Given that and is in the range given
by (6), it follows from (69) that (68) and, therefore, (25) are
satisfied at time .
This result and the starting assumption that (25) is satisfied

and the clipping accumulator does not clip at times
and are sufficient conditions for the derivation of
(34) and (35) in Section III-B to be valid at sample time .
Therefore,

(70)

where

(71)

This with (14) and (67) imply that . As shown
above, the values taken on by are multiples of as
are the set of integers. Therefore, if ,
it follows that because this is the only multiple of

that (70) can attain given (65). If ,
(66) and (70) imply that . Furthermore, ,
because and .
The above analysis proves that , so clipping

does not occur at sample time . It also shows that (25) is
satisfied at time , and that is (67) satisfied at time

. As was an arbitrary time index greater than 1, it follows
by induction that the clipping accumulator does not clip and that
both (25) and (67) are satisfied for all sample times .
On the basis of the above analysis, the FDC is defined to

be locked at sample time provided both (25) is satisfied and
the clipping accumulator does not clip at sample times
and . The above analysis shows that once it is locked, it
will stay locked for all future sample times provided (14) holds
for all future sample times.
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