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Abstract—Fractional- phase-locked loops (PLLs) are widely
used to synthesize local oscillator signals for modulation and
demodulation in communication systems. Such PLLs generate
and subsequently lowpass filter DC-free quantization noise
as part of their normal operation. Unfortunately, the quanti-
zation noise and its running sum inevitably are subjected to
nonlinear distortion from analog circuit imperfections which
causes spurious tones in the PLL output signal that can degrade
communication system performance. This paper presents the
first general mathematical analysis of this phenomenon. It proves
that if the running sum of the quantization noise, , satisfies

for all , where and are in-
tegers, then subjecting to th-order distortion for at least
one will result in spurious
tones for most fractional- PLL output frequencies regardless of
how the quantization is performed. It also shows that quantizers
exist which are optimal in the sense that subjecting the running
sum of their quantization noise to th-order distortion for any

does not result in any
spurious tones. In a typical fractional- PLL, the larger the
range of the greater the power of the PLL’s phase noise, so
these results imply a fundamental tradeoff between phase noise
power and spurious tones in PLLs.

Index Terms—DC-free quantization noise, noise-shaping quan-
tizers, phase-locked loops, spurious tones.

I. INTRODUCTION

F RACTIONAL- phase-locked loops (PLLs) are widely
used to synthesize local oscillator signals for modulation

and demodulation in communication systems, as they can pro-
vide fine frequency tuning resolution with relatively low power
consumption and integrated circuit area [1], [2]. Ideally, a frac-
tional- PLL’s output signal is perfectly periodic, so its phase
increases linearly with time. Unfortunately, non-ideal circuit be-
havior causes the actual phase of the output signal to deviate
from its ideal phase, where the deviation is referred to as phase
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noise. The phase noise inevitably consists of both periodic com-
ponents called spurious tones and random components. Spu-
rious tones are particularly harmful to the performance of typ-
ical communication systems, so most communication standards
directly or indirectly stipulate stringent limits on the maximum
power of the spurious tones in addition to specifying the max-
imum tolerable power of the overall phase noise in relevant fre-
quency bands [3].
Fractional- PLLs generally contain noise-shaping coarse

quantizers, most commonly implemented as digital delta-sigma
modulators, which have recently been shown to be a sig-

nificant, albeit indirect, source of phase noise spurious tones
[4]–[10]. The output frequency of a fractional- PLL is con-
trolled by a digital codeword that represents a rational number,
, between 0 and 1. The coarse quantizer operates on and gen-
erates a digital sequence that can be viewed as the sum of and
DC-free quantization noise [11]–[13].1 The quantization noise
is converted into analog form, integrated, and lowpass filtered
within the PLL, and the resulting waveform directly adds to the
PLL phase noise [1]. Unfortunately, the quantization noise and
its running sum are subjected to nonlinear distortion from in-
evitable analog circuit imperfections, and this can induce spu-
rious tones even when the quantization noise itself is free of
spurious tones.
This problem is mitigated in the fractional- PLL presented

in [7] wherein the successive requantizer proposed in [6] is used
in place of a modulator. The successive requantizer of-
fers the advantage that its quantization noise and the running
sum of its quantization noise remain free of spurious tones even
when subjected to the type of nonlinear distortion commonly
imposed by non-ideal circuit behavior in PLLs. This enables the
PLL presented in [7] to achieve state-of-the-art spurious tone
performance, but a price is paid for this benefit. In return for
the enhanced immunity to nonlinearity-induced spurious tones,
the power of the quantization noise introduced by the succes-
sive requantizer is significantly higher than that of a comparable

modulator. The PLL presented in [7] employs a technique
known as phase noise cancellation to overcome this problem at
the expense of additional power consumption and circuit area.
No previous publications have addressed the question of

whether the tradeoff between immunity to nonlinearity-induced
spurious tones and increased quantization noise power observed
in the successive requantizer is inevitable. This is an important
question because if the tradeoff were just an idiosyncrasy of
the successive requantizer, it might be possible to design an

1A sequence whose running sum is bounded for all time is said to be DC-free.
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improved coarse quantizer with good immunity to spurious
tones that is not subject to the tradeoff. This paper answers this
question.
The results of the paper prove that spurious tones are in-

evitably generated for most values of when the running
sum of DC-free quantization noise from a quantizer operating
on is subjected to the type of nonlinear distortion typically
imposed by fractional- PLLs. Specifically, if the running sum
of the quantization noise, , satisfies
for all , where and are integers, then subjecting

to th-order distortion for at least one in the set
will result in spurious tones for most

values of regardless of how the quantization is performed.
The paper also shows that quantizers exist which are optimal in
the sense that subjecting the running sum of their quantization
noise to th-order distortion for any value of in the set

does not result in any spurious
tones. Therefore, the results imply a fundamental tradeoff
between phase noise power and spurious tone suppression in a
PLL.
The remainder of the paper consists of three main sections.

Section II describes the details of the spurious tone problem in
fractional- PLLs, Section III presents and proves the theoret-
ical results outlined above, and Section IV presents a method of
quantization that is optimal in the sense described above.

II. SPURIOUS TONES IN FRACTIONAL- PLLS

A. A Tone Definition Based on the Periodogram

Consider a discrete-time complex-coefficient image-rejection
bandpass filter with a positive-frequency passband centered at
any non-zero frequency and an adjustable equivalent noise
bandwidth, , wherein the passband’s peak power gain times

is unity. A sequence applied to the filter is said to contain
a tone at if the squared magnitude of the output of the filter
grows without bound as is reduced to zero. This descrip-
tion of a tone is consistent with the way that tones are measured
in the laboratory using a spectrum analyzer [14].
An example of such a bandpass filter has a length- impulse

response given by

if ,
otherwise,

(1)

where goes to zero as goes to infinity. If the filter is
applied to a sequence, , the squared magnitude of the filter
output at time index can be written as

(2)

The expression given by (2) for any positive integer and any
is known as the periodogram [15]. Therefore, the

periodogram performs a function analogous to that of a labora-
tory spectrum analyzer, where increasing in the periodogram
is akin to decreasing the resolution bandwidth of the spectrum
analyzer.
Accordingly, a mathematical definition of a tone that reflects

the way that tones are measured in the laboratory is as follows.

Definition: Given any , contains a tone at if
is unbounded as .

The definition implies that a sequence is free of tones if
and only if is bounded in for all .2

B. Spurious Tone Generation in Fractional-N PLLs

Ideally, a fractional- PLL generates a periodic output signal
with frequency , where is

the frequency of a reference oscillator, is an integer, and
. In practice, however, the output signal is more accurately

modeled by

(3)

where is a -periodic function and is the phase noise
of the PLL [16].
As shown in Fig. 1, a typical fractional- PLL consists of

a phase detector, a lowpass loop filter, a voltage controlled os-
cillator (VCO), a frequency divider, and a noise-shaping coarse
quantizer that introduces DC-free quantization noise. The phase
detector drives the loop filter with a signal that represents the
phase difference between the reference oscillator and frequency
divider outputs. The instantaneous frequency of the VCO output
signal deviates from its center frequency by an amount propor-
tional to the output of the loop filter at each point in time. The
frequency divider output is a two-level signal in which the th
and th rising edges are separated by cycles of the
VCO output, where for each is an integer generated by
the coarse quantizer. The PLL feedback loop adjusts the output
frequency so as to zero the DC component of the phase detector
output, causing the output frequency to settle to times the
average of . If could be set to for all , the
PLL would have the desired output frequency. However, prac-
tical frequency dividers can only count integer numbers of VCO
cycles, so must be integer-valued. Therefore, the coarse
quantizer ensures that is integer-valued but averages to
in time. This results in the desired PLL output frequency, but
the deviations of from contribute an extra component to
the PLL’s phase noise.
In general, can be viewed as a representation of quan-

tized to be integer valued, and thus can be written as
, where is the quantization noise of . As ex-

plained in the introduction, it is desirable to engineer both
and its running sum , defined by

(4)

to be free of spurious tones and also such that sequences re-
sulting from nonlinearly distorting and are free of spu-
rious tones. In practice, it is most critical for to have these

2An alternative definition of a tone could be constructed based on traditional
power spectral density (PSD) functions. However, the periodogram-based def-
inition is preferred in this work for two reasons. First, the periodogram can be
computed for any signal, whereas the PSD is only defined for a relatively small
class of signals. Second, the phase noise performance of PLLs is usually quan-
tified by time averages using laboratory equipment such as spectrum analyzers,
not by ensemble averages. In this sense, the periodogram provides a meaningful
representation of the power spectrum as used in practice.
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Fig. 1. Block diagram of a fractional- PLL.

properties, because spurious tones generated by nonlinearly dis-
torting usually can be sufficiently mitigated by well-known
frequency divider linearization techniques such as periodically
resynchronizing each frequency divider output rising edge to the
next rising edge of the VCO output signal [17].
As described in the introduction, it is usually highly unde-

sirable for the phase noise of a PLL to contain tones, so any
tones in a PLL’s phase noise are usually referred to as spurious
tones. Given that this paper describes a spurious tone generation
mechanism in PLLs, all tones in the following will be denoted
as spurious tones. Nevertheless, from a mathematical point of
view there is no distinction between tones and spurious tones.
A sequence is said to be immune to spurious tones up to

order if is free of tones for all positive integers .
Based on simulation and experimental results, the nonlinearities
to which is subjected in a PLL tend to be well-modeled as
truncated memoryless power series, i.e. functions of the form

(5)

for some positive integer [6], [7], [18]. Thus, mitigating spu-
rious tone generation in a PLL can be achieved by ensuring that

is immune to spurious tones up to a certain order. As ex-
plained in the introduction, is required to be DC-free, which
means that is bounded, so

(6)

for all , where and are integers. Larger values of
offer more flexibility in the design of the coarse

quantizer, which can be exploited to increase the order of
the spurious tone immunity of . The results presented in
Section III show that the maximum attainable order of spurious
tone immunity can achieve is bounded by
regardless of how the quantization is performed.

III. THEORY OF SPURIOUS TONES IN DC-FREE
QUANTIZATION NOISE

The following theorem shows that it is not possible to quan-
tize most values of such that the quantization noise is DC-free
and its running sum is immune to spurious tones up to order

. The result is general in that it holds regardless of
how the quantization is performed.

Theorem: Let be a constant that satisfies , let
be a sequence such that

(7)

is integer-valued for all , and let

(8)

If

(9)

for all , where and are integers, and

(10)

where and are relatively prime integers with
, then

(11)

is unbounded in for at least one
and at least one .
A practical implication of the theorem is that trying to

develop a coarse quantizer applicable to fractional- PLLs
that eliminates the spurious tone generation mechanism de-
scribed in Section II-B is futile. The coarse quantizer in any
fractional- PLL consists entirely of digital logic and its
variables are represented by finite-width data buses, so all
variables associated with the coarse quantizer, including , are
rational numbers. In particular, this implies that satisfies (10).
Furthermore, the coarse quantizer in a fractional- PLL is
required to have DC-free quantization noise. Thus, any coarse
quantizer applicable to a fractional- PLL must satisfy the
theorem’s hypothesis. The theorem places no other restrictions
on the quantizer; the quantization noise can be deterministic or
probabilistic and the theorem does not make any assumptions
whatsoever about the quantizer’s structure.
Another practical implication of the theorem is that the order

of immunity to nonlinearity-induced spurious tones of from
the coarse quantizer in a fractional- PLL can only be increased
at the expense of increasing the range of values spanned by .
The sequence can be viewed as a lowpass filtered version of
the quantization noise, so increasing its range tends to increase
the power of the quantization noise at low frequencies where the
PLL’s loop filter provides little or no attenuation. The portion of

within a fractional- PLL’s bandwidth is an additive com-
ponent of the PLL’s phase noise, so all other things being the
same, increasing the range of increases power of the PLL’s
phase noise [1]. Furthermore, most integrated circuit based frac-
tional- PLLs use a phase-frequency detector and charge pump
to implement the phase detector in Fig. 1, so the larger the mag-
nitude of at any time index , the longer the current sources
in the charge pump are turned on during the th reference pe-
riod. Increasing the on-time of the current sources causes more
of the current source noise to be converted to phase noise, so
all other things being the same, increasing the range of also
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increases the power of the phase noise component contributed
by the charge pump.

Proof of the Theorem: Equations (7) and (8) imply that

(12)

which can be written as

(13)

where denotes the largest integer less than or equal to and
denotes the fractional part of , i.e. . Let

(14)

with which (13) can be written as

(15)

By definition, is an integer-valued sequence.3 Furthermore,

(16)

for all , because is bounded according to (9) and the last
term in (15) is non-negative and less than 1.
Let

(17)

Substituting (15) into (17) results in

(18)

Let , where is any positive integer, and
, where . Then (18) can be written

as

(19)

Given that , where and are relatively prime
integers (so they have no common integer factors other than
1), the smallest value of greater than zero for which is
integer-valued is . Therefore, is a periodic sequence
with period , so

(20)

3It follows from this and (15) that the fractional part of is periodic, so it
consists entirely of spurious tones. The fractional part operator is a memoryless
nonlinearity, so this demonstrates that it is not possible for to be immune
to spurious tones for all memoryless nonlinearities.

for each integer . Substituting (20) into (19), interchanging the
summations, and rearranging factors gives

(21)

Given that is integer-valued and bounded according
to (16), this can be rewritten as

(22)

where

(23)

and

if ,
otherwise.

(24)

The summation in (23) counts the number of times that
over the consecutive values of from 0 to

. It follows that has the same properties as a
probability distribution in for each and each , i.e.,

(25)

and

(26)

Equation (22) can be rewritten as

(27)

where

(28)

Thus, the right side of (27) is times the squared magnitude
of the discrete Fourier transform (DFT) of . A necessary
condition for the DFT of , i.e.,

(29)
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to converge to 0 for every as goes to
infinity, and, therefore, for times the DFT of to be
bounded in for every , is

(30)

where does not depend on . Given that , it follows
that (30) is also a necessary condition for (11) to remain bounded
in .
Suppose the theorem is false. Then the above implies that

there must exist probability distributions in , for
, each of which must satisfy

(31)

for , where

(32)

Additionally, given that for are
probability distributions, (31) must hold for and
. Thus, (31) represents equations that must be
satisfied by probability values and values of . This
can be viewed a linear system of equations with

unknowns. With , the system has more
equations than unknowns, so if the theorem is false the equations
must be linearly dependent.
The equations represented by (31) for each

and all can
be written as

(33)

with values of given by

(34)

where is given by (35), is given by (36), and

(37)
Furthermore, the equations represented by (31) for each

and can be written as

(38)

with given by (34) and

(39)

It follows from the lemma presented in the Appendix that
can be expressed in terms of as

(40)

where the th element of is given by

(41)
with

(42)

Therefore, (38) and (40) imply

(43)

Substituting (33) into this result yields

(44)

If the theorem is false, (44) must hold for all values of in
the set

(45)

with . The set contains distinct values of because
and are relatively prime integers, so (44) must hold for

more than distinct values of if the theorem is false. It
follows from (41) and (42) that the first element of is a
polynomial in of degree , and each of the other elements
of is a polynomial in of degree less than . Given that
the first element of is non-zero, this implies that

(46)

is a polynomial of degree . Therefore, (46) has roots,
so there can be at most distinct values of that satisfy (44).
This contradicts the supposition that the theorem is false.

The theorem presented above implies that it is not possible
to quantize most values of such that the quantization noise is

(35)

(36)
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Fig. 2. High-level diagram of an example successive requantizer.

DC-free and its running sum is immune to spurious tones up to
order . As explained below, this bound on perfor-
mance is tight in the sense that quantizers exist with the prop-
erty that the running sum of their quantization noise is immune
to spurious tones up to order . The theorem im-
plies that a quantizer with this property is optimal with respect
to spurious tone immunity in the sense that the running sum of
its quantization noise has the highest possible order of immu-
nity to spurious tones.
The successive requantizer provides an existence proof that

quantizers exist which are optimal with respect to spurious tone
immunity. As an example, the successive requantizer proposed
in [6] and demonstrated in the fractional- PLL integrated cir-
cuit presented in [7] is shown in Figs. 2 and 3. For this partic-
ular successive requantizer, can be anymultiple of that is
non-negative and less than 1. As shown in Fig. 2, the successive
requantizer multiples by and processes the integer-valued
result via a cascade of 16 quantization blocks, each of which
simultaneously quantizes by one bit and halves each sample of
its input sequence. The implementation details of each quanti-
zation block are shown in Fig. 3. As proven in [6], is an
integer-valued quantized version of , its quantization noise is
DC-free with , and the running sum of its quan-
tization noise is immune to spurious tones up to order 3.
The results in [6] are extended in [19] to show that for each

positive integer there exist multiple successive requan-
tizers that have and for which the running
sum of their quantization noise is immune to spurious tones up
to order . Therefore, each of these successive requan-
tizers is an optimal quantizer with respect to spurious tone im-
munity in the sense that the running sum of its quantization noise
has the highest possible order of immunity to spurious tones.
While the theorem quantifies the relationship between the

value of and the possible frequencies of the nonlinearity-in-
duced spurious tones, it does not quantify the power of the non-
linearity-induced spurious tones. This is because the theorem
is applicable to any quantizer with DC-free quantization noise,
whereas the effect of varying on quantizer performance for
a particular quantizer depends on the quantizer’s design. For
example, in most delta-sigma modulators with DC-free quanti-
zation noise the nonlinearity-induced spurious tone powers are
strongly dependent on , whereas for the successive requan-
tizer described above computer simulations suggest that they
are nearly independent of . Thus, the effect of varying on
quantizer performance must be evaluated in a quantizer specific
fashion.

IV. ALTERNATE METHOD OF OPTIMAL QUANTIZATION

The successive requantizer is not the only type of quantizer
that is optimal with respect to spurious tone immunity. An al-
ternate method of quantization that is optimal with respect to
spurious tone immunity is presented in this section. Unlike the

Fig. 3. Details of each quantization block within the example successive re-
quantizer.

successive requantizer, the idea upon which it is based follows
directly from the proof of the theorem presented in Section III,
so it gives some insight into the connection between the quanti-
zation process and the theorem.
Suppose that a quantized sequence with mean ,

where and are relatively prime integers, is to be generated,
and that the running sum of the quantization noise is required
to satisfy over all for some positive in-
teger . Thus, and . By the analysis
presented in the proof of the theorem up to (31), a necessary
condition for to be immune to spurious tones up to order

is that there exist probability
distributions in , , where

and , which satisfy (31) for
. It follows from (31) that these proba-

bility distributions must satisfy

(47)

for all , and .
To be probability distributions, they must also be non-negative
and satisfy

(48)
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for all . Any set of that satisfy
(47) and (48), can be used to generate such that

(49)

for all and

(50)

where

if ,
otherwise.

(51)

This can be done either probabilistically or deterministically.
For each , once is known the running sum of the quan-
tization noise, the quantization noise, and the quantizer output
can be calculated using

(52)

(53)

and

(54)

respectively.
For instance, as done in the following examples, can be

generated as a sequence of independent random variables with
probability distributions

(55)

for all and all integers .
It follows from (52) that is a sequence of independent
random variables, and from (47) that the mean of is in-
dependent of for . It follows that

is white noise and is therefore free of spurious tones for
each .
There are many sets of non-negative values that sat-

isfy the system of equations specified by (47) and (48), because
the system is under-constrained; it has
equations and unknowns. Therefore, additional con-

straints can be imposed on the values. For example,
imposing additional constraints of the form

(56)

for as many , as possible has the effect
of minimizing spurious tone power in .
Two quantization noise running sum sequences, and
, based on the method described above are presented below

and demonstrated by simulation to have optimal orders of spu-
rious tone immunity. The magnitude bounds on and

Fig. 4. Estimated power spectra of an optimal quantization noise running sum
sequence bounded by 2 when raised to different powers.

Fig. 5. Estimated power spectra of an optimal quantization noise running sum
sequence bounded by 3 when raised to different powers.

are and , respectively, and the quantized se-
quences corresponding to and have means of

and , respectively. The values found in
both cases are presented in matrices and , defined by

(57)

for , , and or 2:

(58)

(59)
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Figs. 4 and 5 show the estimated power spectra of for
and for . The figures

demonstrate that spurious tones in are present only when
and that spurious tones in are present only

when . This supports the assertion that both
examples represent optimal quantization in terms of spurious
tone immunity.

APPENDIX

The following lemma is used in the proof of the theorem in
Section III.
Lemma: Given arbitrary , let be the fol-

lowing matrix:

(60)

Then, the row vector

(61)

can be expressed as

(62)

where is a row vector whose elements are given by

...

(63)

Proof: Consider the polynomial

(64)

which can be expanded as

(65)

It follows from (64) that is a root of for any
, i.e.

(66)

Additionally, it is seen from (65) that can be expressed
as

(67)

where is the th element of the vector . Therefore,
(66) and (67) yield

(68)

which proves the result.
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