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Abstract—Fractional- phase-locked loops (PLLs) typically
use noise-shaping coarse quantizers to control their instantaneous
output frequency. The resulting quantization noise and its run-
ning sum inevitably get distorted by non-ideal analog components
within the PLL, which induces undesirable spurious tones in the
PLL’s output signal. A recently proposed quantizer, called a suc-
cessive requantizer, has been shown to mitigate this problem. Its
quantization noise and the running sum of its quantization noise
can be subjected to up to fifth-order and third-order nonlinear
distortion, respectively, without inducing spurious tones. This
paper extends the previously published successive requantizer
results to enable the design of successive requantizers whose
quantization noise running sum sequences attain such immunity
to nonlinearity-induced spurious tones up to arbitrarily high
orders of distortion. The extended results are used to design
example successive requantizers whose quantization noise and
quantization noise running sum sequences have optimally reduced
susceptibility to nonlinearity-induced spurious tones.

Index Terms—DC-free quantization noise, noise-shaping quan-
tizers, spurious tones.

I. INTRODUCTION

F RACTIONAL- phase locked loops (PLLs) are widely
used to synthesize local oscillator signals in communica-

tion systems [1], [2]. They typically use noise-shaping coarse
quantizers, most commonly implemented as digital delta-sigma
( ) modulators, to quantize digital sequences that control
their output frequency. Each quantized sequence can be viewed
as the sum of the quantizer’s input sequence plus DC-free
quantization noise [3]–[5].1 In practical PLLs, the quantization
noise and its running sum inevitably are subjected to nonlinear
distortion from analog circuit imperfections within the PLL.
This has the undesirable effect of inducing spurious tones in
the sequences, even when the undistorted sequences are free of
spurious tones [6]–[12]. Spurious tones induced in this fashion
are referred to as nonlinearity-induced spurious tones.
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1A sequence whose running sum is bounded for all time is said to be DC-free.

Most communication applications require the power of spu-
rious tones to be very low, as they ultimately appear in the
PLL’s output signal and can be critically harmful to communi-
cation system performance. One way to minimize spurious tone
power is to make the analog circuitry of the PLL very linear. Un-
fortunately, improving analog circuit linearity tends to increase
power dissipation and integrated circuit area significantly. Al-
ternatively, the coarse quantizer can be designed to ensure that
the quantization noise and its running sum remain free of spu-
rious tones even when subjected to the type of nonlinear distor-
tion commonly imposed within the PLL.
A sequence is said to be immune to spurious tones up to

order if , for , are free of spurious tones.
A recently proposed quantizer, called a successive requantizer,
was introduced in [8] and implemented as part of a phase-noise
cancelling PLL in [9] to mitigate the power of nonlinearity-in-
duced spurious tones. Its quantization noise and the running sum
of its quantization noise are immune to spurious tones up to or-
ders 5 and 3, respectively.
This paper extends the previously published successive re-

quantizer results to design successive requantizers with higher
immunity to nonlinearity-induced spurious tones. It proves that
the order up to which the quantization noise running sum of
a successive requantizer is immune to spurious tones can be
arbitrarily increased at the expense of increasing the range of
values spanned by the quantization noise running sum. In a PLL,
increasing this range tends to increase the quantization noise
power, and, therefore, the phase noise. Hence, a tradeoff exists
between enhanced immunity to nonlinearity-induced spurious
tones and increased phase noise power. The paper also presents
successive requantizers that are optimal in the sense that their
quantization noise and quantization noise running sum are im-
mune to spurious tones up to the maximum possible orders for
the range of values spanned by the quantization noise running
sum.

II. SUCCESSIVE REQUANTIZER BACKGROUND

A. Spectral Properties of Interest

The periodogram of any sequence is defined as

(1)

for any positive integer [13]. By definition, contains a
tone at if is unbounded at as
[8], [14]. In a PLL, the nonlinearities to which the quantization
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Fig. 1. Block diagram of a fractional- PLL.

noise sequence and the quantization noise running sum se-
quence

(2)

are subjected tend to be well-modeled as truncated memoryless
power series [9]. Therefore, this work focuses on the properties
of and for integer values of and up to some
maximum values.

B. Successive Requantizer Architecture

As shown in Fig. 1, a typical fractional- PLL consists of
a phase detector, a lowpass loop filter, a voltage controlled
oscillator (VCO), a frequency divider, and a noise-shaping
coarse quantizer that introduces DC-free quantization noise. Its
purpose is to generate a periodic or frequency modulated output
signal with an instantaneous frequency of ,
where is a positive integer, is a sequence of fractional
values, and is the frequency of a reference oscillator. In
most applications is constant, and in other applications
it varies slowly. The PLL’s feedback loop adjusts the output
frequency to be times the average of the divider modulus

. If could be set to for all , the PLL
would have the desired output frequency. However, practical
frequency dividers can only count integer numbers of VCO
cycles, so must be integer-valued. Therefore, the coarse
quantizer ensures that is integer-valued but averages to

in time. This results in the desired PLL output frequency,
although the deviations of from contribute an
extra component to the PLL’s phase noise. As explained in the
introduction, the coarse quantizer can be implemented as the
successive requantizer presented in [8].
The high-level architecture of the successive requantizer

is shown in Figs. 2 and 3, wherein all node variables are
integer-valued sequences in two’s complement format. The
successive requantizer consists of serially-connected quanti-
zation blocks, each of which quantizes its input by 1 bit, so the
successive requantizer quantizes its input by bits. Its input,

(3)

Fig. 2. High-level block diagram of a successive requantizer.

Fig. 3. Block diagram of a sequence generator.

is a -bit sequence which satisfies for all .
The th quantization block’s input, , and output, ,
are related through

(4)

where is a sequence generated by the quantization block’s
sequence generator. The sequence generator (Fig. 3) generates

as a function of the parity sequence, , which at each
time, , is 1 if is odd and 0 if is even. It chooses

to have the same parity as for each so that
is an integer-valued sequence, and to have a sufficiently small
magnitude that the two’s complement representation of
requires one less bit than that of . Hence, the output of
the successive requantizer is a two’s complement integer-valued
sequence given by

(5)

where

(6)

is the quantization noise. The running sum of is

(7)



4272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 17, SEPTEMBER 1, 2013

so (5) implies that the running sum of the quantization noise can
be written as

(8)

The lowest integer bound on the magnitude of each se-
quence is denoted as , so for all and . There-
fore, it follows from (7) that for all .
As shown in [8], if the sequence generator is designed such

that the probability mass function (pmf) of for each de-
pends only on and , then is a discrete-valued
Markov random sequence conditioned on . Hence, for any
parity sequence, , the evolution of from times to

can be represented by an -step
state transition matrix, , where the element on the
th row and th column is

(9)

and

(10)

It follows from the properties of state transition matrices that for
can be expanded as a product of one-step

state transition matrices as

(11)

As is also shown in [8], at each time index
is equal to one of two one-step state transition matrices, denoted
as and : when , , and
when , . It follows from (6)
that

(12)

so the and matrices describe the probabilistic behavior
of each sequence and determine the orders up to which

and are immune to spurious tones. In any given succes-
sive requantizer they completely specify the required behavior
of the combinatorial logic block and, conversely, can be de-
duced from the combinatorial logic block.
Each sequence satisfies for all , so it

follows from (12) that each sequence satisfies
for all . Therefore, (6) implies that for all ,

and that the output of the successive requantizer, given by (5),
satisfies for all . Since is represented by
a -bit sequence,

(13)

must hold.
Figs. 2 and 3 imply that the th quantization block of the suc-

cessive requantizer contains combinatorial logic that depends

on the and matrices, a pseudo-random number gen-
erator, a -bit adder, a -bit adder, and

flip flops, where denotes the smallest in-
teger greater than . With blocks, where is usually close
to in magnitude, the computational complexity of the succes-
sive requantizer is a logarithmic function of and a quadratic
function of . As an example, the implementation of the suc-
cessive requantizer in 0.18 1P6M CMOS technology in [9],
for which and , and the related pseudo-random
number generator, requires 1049 gates, 114 flip flops, and 232
1-bit adders, and occupies an area of 0.142 .

C. Example Successive Requantizers

If the combinatorial logic implements the truth table shown
in Fig. 4(a), then ,

(14)

It can be verified from the results presented in [15] that in this
case and are free of spurious tones. However, the re-
sults presented in [14] and simulations support the conclusion
that spurious tones are generated for some successive requan-
tizer input sequences when or are subjected to second-
order nonlinear distortion. Therefore, and are immune
to spurious tones only up to order 1.
As proven in [9], if the combinatorial logic implements the

truth table shown in Fig. 4(b), then ,

(15)

In this case it follows from the results in [8] and [14] that
and are immune to spurious tones up to orders 3 and 5,
respectively.

D. Additional Successive Requantizer Properties

The matrices in the examples presented above have
the property that whenever is odd, and

whenever is even; such matrices are
referred to as even-entries matrices and odd-entries matrices,
respectively. As is evident in the example and matrices
presented above, the row vectors of both even-entries and
odd-entries matrices alternate between two types of vectors:
vectors whose odd-indexed elements are zero, referred to as
even-entries vectors, and vectors whose even-indexed elements
are zero, referred to as odd-entries vectors. For example, an
even-entries vector is such that whenever is odd.
These properties of and hold in general as a result of

(11). For any at which , is even, so (11) implies
that the probability that and have different parities
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Fig. 4. Example combinatorial logic truth tables of sequence generators corre-
sponding to the one-step state transition matrices in (a) (12) and (b) (13). In both
cases, is a sequence of independent and identically distributed random
variables which follow a uniform distribution.

is zero. Similarly, for any at which , is odd,
so the probability that and have the same parity
is zero. This implies that the successive requantizer is such that

matrices are always even-entries matrices, and matrices
are always odd-entries matrices.
Not only are the and matrices for any given successive

requantizer even-entries and odd-entries
stochastic matrices, respectively, as described above, but the
converse is also true: any even-entries and odd-entries

stochastic matrices can be used as the and
matrices, respectively, with which to design a successive

requantizer. This is because any such matrices provide a com-
plete description of the pmf of conditioned on and

at each , and any chosen pmf can be realized with ar-
bitrarily high accuracy using combinatorial logic elements and
a pseudo-random number generator.
It is convenient to define a stochastic

matrix that describes the evolution of from times to
, with elements given by

(16)

where

(17)

As shown in [8], the dependence of the pmf of on im-
plies that, at each time , is equal to one of two
matrices, denoted as and . When ,

, and when , . With
(8) and (14) this implies that for

(18)

Equation (14) implies that each nonzero element in and
is equal to an element in and , respectively. Specifically,
for , , and such that , the element in the th
row and th column of is equal to that in the th row and th
column of , and the element in the th row and th column of
is equal to that in the th row and th column of . Hence,
and can be deduced from and as

if ,
if

(19)

for or .

III. OPTIMAL QUANTIZATION IN TERMS OF IMMUNITY TO
SPURIOUS TONES

A. Theory on Optimal Quantization

The one-step state transition matrices, and , are said
to ensure order- -convergence if there is a constant such
that

(20)

for all parity sequences and any
integer , where

(21)

is a length- vector whose elements are all 1,
and the convergence of the vector sequence in (18) is exponen-
tial.2 Similarly, they are said to ensure order- -convergence
if there is a constant such that

(22)

for all parity sequences and any
integer , where

(23)

and the convergence of the vector sequence in (20) is exponen-
tial.
Theorems 1 and 2 state sufficient conditions for and ,

respectively, to be immune to spurious tones up to any given
order.

2A length- vector sequence converges exponentially to a
vector if there exist constants and such that

for all integers .
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Theorem 1: Suppose that and ensure order-
-convergence for all positive integers , where is a
positive integer. Then, is immune to spurious tones up to
order .

Proof: The proof is identical to that of Theorem 1 in [8]
except with [8, equation (29)] replaced by

(24)
for some positive constants and and a constant
, [8, equation (31)] replaced by

(25)

and Lemma 1 in [8] replaced by Lemma 1 in the Appendix of
this paper.
Theorem 2: Suppose that and ensure order-

-convergence for all positive integers , where is a
positive integer. Then, is immune to spurious tones up to
order .

Proof: The proof is identical to that of Theorem 2 in [8]
except with replaced by , [8, equation (36)] replaced by

(26)
for some positive constants and and a constant
, and Lemma 2 in [8] replaced by Lemma 2 in the Appendix
of this paper.
Theorem 3 provides sufficient conditions on and for
to be immune to spurious tones up to order .

Theorem 3: Let and be matrices
with elements that satisfy

if is even,

if is odd,
(27)

if is even,

if is odd,

(28)

where is any integer greater than 1, is the
matrix

(29)
and is any matrix whose elements satisfy

(30)

and for each row

(31)

for at least one if is even and one
if is odd. Then, is immune to spurious

tones up to order .
Note that the and matrices given by (13) satisfy the

conditions of Theorem 3. Specifically, (25) and (26) with

(32)

yield the and matrices given by (13).
Proof of Theorem 3: It is first shown that and are

valid one-step state transition matrices for the successive re-
quantizer, i.e., that they are stochastic even-entries and odd-en-
tries matrices, respectively. These results are then used to show
that Theorem 1 holds for , which completes the
proof.
By definition, and are even-entries and odd-entries

matrices, respectively. To show that they are stochastic ma-
trices, it is sufficient to show that all their elements are non-
negative and that the sum of the elements on each row of each
matrix is 1.
It follows from (25) and (26) that a sufficient condition for

the elements of and to be nonnegative is

(33)

for all , . The matrix can be written
as

(34)

where is the identity matrix, is a length-
vector whose elements are all 0, and is the ex-
change matrix, i.e., the matrix for which all the ele-
ments in the anti-diagonal are 1 and all other elements are 0.
Thus,

(35)

The definition of exchange matrices implies that

(36)
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(37)

(38)

for all , . Combining (35) and (36) yields

(39)

which with (33) and (34) implies

(40)

for all , . It follows from (28), (33),
and (35) that (31) is satisfied for all and

. This, with (38), implies that

if ,

if

(41)

for all . Binomial coefficients have the
property that

(42)

for all , so (39) is equivalent to (31) for
all , . This completes the proof that the
elements of and are nonnegative.
To show that and are stochastic matrices, it remains

to show that the sum of the elements in each of their rows is 1.
It follows from (25) and (26) that the sum of the elements on the
th row of or can either be written as

(43)

(44)

It follows from (38) that the second sum in each of (41) and (42)
is 0. The first sums in (41) and (42) can be rewritten as

(45)

(46)

respectively. The Binomial Theorem implies that the first and
second sums in each of (43) and (44) equal and

, respectively. Thus, (43) and (44) each evaluate to
1, so the sum of the elements on each row of and is 1.
To complete the proof of the theorem it is sufficient to prove

that and ensure order- -convergence for all posi-

tive integers so that Theorem 1 can be applied.
This is done in two parts. First, it is shown that and are
centrosymmetric 3, that all their even-entries row vectors have
at least nonzero entries, and that all their odd-en-
tries row vectors have at least nonzero en-
tries.4 With Lemma 3 in the Appendix, this shows that and

ensure order- -convergence for all odd positive integers
. Second, it is shown that for each even positive

integer

(47)

for some constant . With Lemma 4 in the Appendix, this
shows that and ensure order- -convergence for all
even positive integers .
Combining (34) and (35) yields

(48)

for all , . This, with (33) and (36), implies
that

(49)

for all , . It follows from (40) and (47)
that

(50)

for all , . This, with (25) and (26),
implies that and are centrosymmetric.
Let be any odd-entries row vector of either or
. It follows from (25) and (26) that there is a value of

such that the elements of can be
written as

if , or ,
if , or .

(51)

It follows from (40) that

(52)

and from (38) that

(53)

for each . Therefore, it is not possible for
(49) to be zero for both and for
any if is odd or any if
is even. As indicated by (33), , so if

3An matrix is said to be centrosymmetric if
for all and .

4For any number , denotes the largest integer not greater than .
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is even then is nonzero. Equations (33), (35), and
(51) with the theorem’s stated conditions under which (29) holds
imply that if is odd there is a value of for
which (49) is nonzero for both and

. These results imply that has at least nonzero
elements if is even and at least nonzero
elements if is odd, or, equivalently, that has at least

nonzero elements regardless of whether is even
or odd. Almost identical reasoning leads to the conclusion that
each even-entries row vector of either or has at least

nonzero elements.
Suppose is even. It follows from (9), (25), and (26) that the
th element of or can be written as

(54)
or

(55)
Given that

(56)

for all , (52) and (53) can be rewritten
as

(57)

and

(58)

respectively. It follows from (38) that the second sums in (55)
and (56) equal 0. Therefore, subtracting (55) from (56) yields

(59)

The expression in (57) is 0 for each
[16]. Thus, for each such , (52) and (53) are equal, so there
exists a value such that (45) holds.

Theorem 4 proves that Theorem 2 cannot hold for
, although as shown by example in the next section it

can hold for .
Theorem 4: There do not exist and matrices such that

Theorem 2 holds for .
Proof: The proof is by contradiction. Suppose Theorem 2

holds for . Let be any integer and be a
parity sequence that satisfies

if is even,
if is odd

(60)

for all positive integers . By Lemma 5, is either
an even-entries or an odd-entries matrix for each positive integer
, so its row vectors alternate between even-entries and odd-

entries vectors. For each , let be an even-entries row
vector in . It is first shown that

(61)
for all . This is then used to prove that

(62)

Finally, it is shown that

(63)

However, (60) implies that

(64)

which contradicts (61), so Theorem 2 must not hold for
.

By assumption, and ensure order- -convergence
for each positive integer . With (16), this implies
that, for each such ,

(65)

for some constant . Given (58), (63) implies that

(66)

(67)

so

(68)

(69)
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Therefore, for ,

(70)

or, equivalently,

(71)
Since and are stochastic matrices,

(72)

Given that is a stochastic matrix for each , this
implies that

(73)

so (64) and (65) and, consequently, (69) also hold for .
Note that if , (17) implies that
for all except , and if , (17)

implies that for all except .
Additionally, since, for each , is an even-entries vector,

. Thus, for
and each ,

(74)

This implies that (69) can be rewritten as

(75)
This, with (15), implies that (59) holds for
.
Equation (59) for all can be written

in matrix form as

(76)

where is the length- subvector of
formed by rows 2 through , i.e.,

(77)

for , and is the
matrix

(78)
Matrix is a square Vandermonde matrix [17]. No two ele-
ments in the second column of are equal to each other, so it

follows from the properties of Vandermonde matrices that the
determinant of is nonzero, which implies that is invert-
ible. Right multiplying both sides of (74) by the inverse of
yields

(79)

Since (72) holds for , (77) implies that (60)
holds.
Given that is an even-entries matrix,

whenever is even, because is
odd. Therefore, (17) implies that whenever is
even. In particular, it follows that the sum of the even-indexed
entries in each row of is 0. Given that is an odd-entries
matrix, whenever is odd, because

is even. Therefore, (17) implies that
whenever is odd, so the even-indexed entries

in each row of include all of the row’s non-zero entries. It
follows that the sum of these entries must be unity because
is a stochastic matrix. These results imply that

(80)

This is equivalent to (61), because is a row vector of a
stochastic matrix.

B. Optimal Successive Requantizers

Given any quantizer, let and denote the orders up to
which and , respectively, are immune to spurious tones,
and let denote the smallest integer for which
over all . The design strategy for the successive requantizer
presented in this paper is to find and matrices that max-
imize the values of and .
The results of [14] prove that regardless of the

quantizer used. Theorem 3 shows that for a successive requan-
tizer, there exist and matrices that ensure .
Thus, successive requantizers are optimal quantizers in terms of
the order up to which can be immune to spurious tones.
In this paper, and matrices for , 3, 4, and 5 are

presented for which and which satisfy Theorem
2 for , which implies that . As
proven by Theorem 4, is the maximum value of
for which Theorem 2 can hold. Thus, the matrices presented are
optimal in the sense that and are as large as possible for
the corresponding values of .
The procedure to find the and matrices is to use

(25)–(27) and find the elements of matrix by solving the
system of equations

(81)

with and given by (17), for all even positive integers
and any constants , following
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Fig. 5. Estimated power spectra of the quantization noise of a simulated suc-
cessive requantizer for which before and after the application of
and order nonlinear distortion.

the constraints specified in Theorem 3. By Theorem 3, these
and matrices guarantee that . As shown

in the proof of Theorem 3, and satisfy the conditions of
Lemma 3 in the Appendix, so and ensure order-
-convergence for all odd . Additionally, since the system of
equations specified by (79) holds, it follows from Lemma 6 in
the Appendix that and ensure order- -convergence
for all even positive integers . Thus, .
For each , the system of equations specified by (79) was

solved using Matlab’s solve() function [18]. For , the
and matrices found are those presented in [8] and given

by (13). For each , 4, and 5, , i.e., the matrix from
which and can be constructed using (25)–(27), is

(82)

(83)

Fig. 6. Estimated power spectra of the running sum of the quantization noise
of a simulated successive requantizer for which before and after the
application of and order nonlinear distortion.

(84)

respectively.
The immunity to spurious tones achieved for each sug-

gests that can be increased by increasing , but this result
has yet to be proven theoretically for arbitrary values of .
A quantization noise sequence, , was generated by sim-

ulating a successive requantizer with , wherein and
are constructed from the matrix in (82). Fig. 5 shows

estimated power spectra of before and after the applica-
tion of and order distortion, and Fig. 6 shows estimated
power spectra of the running sum of the quantization noise
before and after the application of and order distortion.
As expected, the power spectra of for , 8, and 9
and for and 5 show no visible spurious tones, as
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Fig. 7. Estimated power spectra of the quantization noise of a simulated suc-
cessive requantizer for which before and after the application of
and order nonlinear distortion.

and , while that of
shows spurious tones. Similarly, a quantization noise sequence,

, was generated by simulating a successive requantizer with
, wherein and are constructed from the matrix

in (83). Fig. 7 shows estimated power spectra of before and
after the application of and order distortion, and Fig. 8
shows estimated power spectra of the running sum of the quan-
tization noise before and after the application of and
order distortion. As expected, the power spectra of for
, 12, and 13 and for and 7 show no visible spu-

rious tones, as and , while
that of shows spurious tones. Simulations of successive re-
quantizers for which , with and as constructed
from the matrix in (84) can also be performed to corroborate
that, for this case, and as well.

APPENDIX

Lemma 1: Suppose the conditions of Theorem 1 are sat-
isfied. Then, for each and each set of parity sequences

, there exists a constant , pos-
itive constants , , and a constant such that for
integers (22) holds.

Proof: Without loss of generality, let . It follows
from (7) that can be expressed as

(85)

Fig. 8. Estimated power spectra of the running sum of the quantization noise
of a simulated successive requantizer for which before and after the
application of and order nonlinear distortion.

so can be written as

(86)

The above expression is a linear combination of terms of the
form

(87)

where and are non-negative integers less than or equal to
for all . It thus suffices to establish a

bound for of the form

(88)

for some constant and some positive constants and .
Equation (85) can be written in terms of conditional expecta-

tions as follows:

(89)

By the law of total expectation, the inner expectation in (87)
can be conditioned on additional variables as long as the outer
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expectation in (87) is computed over all possible values of those
additional variables. Thus, (87) can be rewritten as

(90)

As proven in [8], the inner expectation in the right side of (88)
equals

(91)

Therefore, can be rewritten as

(92)

By the conditions of the lemma, for each ,
the vector sequence

converges exponentially to as
. Thus, there exist constants and

such that

(93)
It follows from (8) that the th entry of the vector

can be written as

(94)

This, with (91), implies that

(95)

It follows that

(96)

for some positive constant .
Consider the expression

(97)

Using (90), this expression can be rewritten as

(98)

Given that, for any random variable , , the
expression in (96) is less than or equal to

(99)

Since the magnitude of each sequence is bounded by
and each is less than or equal to , the expression in (97) is
itself less than or equal to

(100)

With (94), (95)–(98) imply that

(101)
for some constant . By similar reasoning, it can be es-
tablished that

(102)
for some constant . Using the triangle inequality,

(103)

Therefore, it follows from (99)–(101) that (86) holds.
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Lemma 2: Suppose the conditions of Theorem 2 are sat-
isfied. Then, for each and each set of parity sequences

, there exists a constant , pos-
itive constants , , and a constant such that for
integers (24) holds.
The proof is identical to that of Lemma 1 except with ,
, and playing the roles of , , and

, respectively.
Lemma 3: Suppose that and are centrosym-

metric, that all their odd-entries row vectors contain at least
nonzero entries, and that all their even-en-

tries row vectors contain at least nonzero entries.
Then, and ensure order- -convergence and
order- -convergence for all odd positive integers and .

Proof: Let be any parity sequence, be any integer,
and and be any odd integers. It is first shown that and

ensure order- -convergence.
It follows from (9) that the elements of satisfy

(104)

For any integers and , (10) implies that
is either a one-step state transition matrix or

can be expanded as a product of such matrices. Since each such
matrix equals and , the conditions of the lemma imply
that is centrosymmetric or can be expanded
as a product of centrosymmetric matrices. Therefore, by the
properties of centrosymmetric matrices, is
centrosymmetric [19]. This, together with (102), implies that
the elements of satisfy (105), where the
last expression in (105) can be written as

(106)

Thus, the elements of satisfy

(107)

Let be any integer greater than 1. Given (10),
can be written as

(108)

Therefore, the th element of equals

(109)

Let ( ) be a permutation of

(110)

which satisfies

(111)

and a permutation of

(112)
which satisfies

(113)

Then, it follows from (107) and from the rearrangement in-
equality that

(114)

Given (105) and that the elements of are all non-
negative, for .
Thus, (112) implies that

(115)

It is now shown that

(116)

Since is stochastic, all of its elements are nonneg-
ative, and the sum of the elements in each of its rows is 1. Addi-
tionally, since it equals either or , is either
an even-entries or an odd-entries matrix, so its row vectors alter-
nate between even-entries and odd-entries vectors. Suppose
is even. If the th row of is an even-entries row
then for . By the conditions of

(105)
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the lemma, is nonzero for at least values of
, so it is nonzero for at least 1

value of , which implies that (114)
holds. Similarly, if the th row of is an odd-entries
row then for . By the conditions
of the lemma, is nonzero for at least values of

, so it is nonzero
for at least one value of ,
which implies that (114) holds. Now suppose is odd. If the
th row of is an even-entries row then
for . By the conditions of the lemma,

is nonzero for at least values of
, so it is nonzero for at least 1

value of , which implies that (114)
holds. Similarly, if the th row of is an odd-entries
row then for . By the conditions
of the lemma, is nonzero for at least values
of , so it is nonzero for
at least 1 value of , which
implies that (114) holds.
It follows from (113) and (114) that

(117)

where is the smallest nonzero element of and , i.e.,

(118)
Since (115) holds for any integers and , it follows that,
for ,

(119)

where the last inequality holds because
is stochastic, so all of its elements are nonnegative and the sum
of the elements in each of its rows is 1. Thus,

(120)

with exponential convergence.
Note now that (105) implies that

(121)

for each , so

(122)

with exponential convergence as well. Hence, (118), (120), and
the squeeze theorem from calculus imply that and ensure
order- -convergence.
The proof that and ensure order- -convergence

is similar. It follows from (15) that the elements of satisfy

(123)

Given that and are centrosymmetric, (17) implies
that and are also centrosymmetric. For any integers

and , (10), (16), and the conditions of the lemma
imply that is centrosymmetric or can be
expanded as a product of centrosymmetric matrices. There-
fore, is centrosymmetric. This, together with
(121), implies that the elements of satisfy

(124)

The rest of the proof follows from reasoning similar to that pre-
sented above from (105) to (120).

Lemma 4: Let

(125)

for some integer and some constant . Then, and
ensure order- -convergence.

Proof: Let be any parity sequence and be
any integer. It follows from (10) that for each integer

can be written as

(126)
Since equals either or , (123) and
(124) imply that

(127)

Additionally, is stochastic, so

(128)

Therefore,

(129)

so for each integer

(130)

which proves the lemma.
Lemma 5: Given any parity sequence and any inte-

gers and , is either an even-entries or
an odd-entries matrix.

Proof: It follows from (11) that

(131)



FAMILIER et al.: CLASS OF QUANTIZERS WITH DC-FREE QUANTIZATION NOISE AND OPTIMAL IMMUNITY 4283

Since and have the same parity at each , the parity
of each , for , is fixed, i.e.,
each is either even or odd. Therefore, the parity of the
sum in the left side of (129) is also fixed. If the sum is even,
(129) implies that the probability that and have
different parities is zero. Similarly, if it is odd, the probability
that and have the same parity is zero. Therefore,
(8) implies that is either an even-entries or an
odd-entries matrix.

Lemma 6: Let (79) hold for some integer and some con-
stant . Then, and ensure order- -convergence.

Proof: Let be any parity sequence and be any in-
teger. It follows from (10) and (16) that for each integer

can be written as

(132)
The rest of the proof is almost identical to the proof of Lemma
4, with , , and
playing the roles of , , and ,

respectively.
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