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Abstract—Harmonic Distortion Correction (HDC) is one of two
published digital background calibration techniques that com-
pensate for residue amplifier nonlinearity in pipelined ADCs. The
techniques make it possible to reduce the gains and bandwidths,
and therefore the power dissipations, of the op-amps that make up
the residue amplifiers without sacrificing pipelined ADC accuracy.
Unfortunately, the previously published techniques fail to operate
properly when they measure residue amplifier distortion for cer-
tain pipelined ADC input signals, most notably input signals with
small peak-to-peak variations about certain constant values. This
paper identifies the cause of the problem, quantifies its effects, and
provides an all-digital solution applicable to the HDC technique.

Index Terms—Digital background calibration, harmonic distor-
tion correction, pipelined analog-to-digital conversion, residue am-
plifier nonlinearity.

I. INTRODUCTION

P IPELINED analog-to-digital converters (ADCs) are
widely used in applications that require greater accuracy

than can be achieved practically by flash ADCs, and greater
signal bandwidth than can be achieved practically by over-
sampling or successive approximation ADCs. With present IC
technology, they are most commonly used in applications that
require greater than 50 dB of signal to noise and distortion ratio
(SNDR) and greater than 50 MHz of signal bandwidth.
The residue amplifiers in the first few stages of a pipelined

ADC must have high linearity for the ADC to achieve a high
SNDR. In a conventional pipelined ADC, this necessitates
op-amps with high open-loop gains, high bandwidths, and
relatively low output swings. Consequently, the op-amps tend
to dominate the overall power dissipation in conventional
pipelined ADCs.
Recently, digital background calibration techniques have

been proposed that make it possible to reduce the performance
and, hence, the power dissipation of the op-amps without sac-
rificing pipelined ADC accuracy [1]–[5]. The techniques use
digital correlation algorithms to measure the residue amplifier
distortion coefficients during normal ADC operation, and they
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use the measured coefficient values to digitally cancel much of
the residue amplifier distortion. This allows higher-distortion
op-amps to be tolerated without significantly degrading the
overall pipelined ADC accuracy. The calibration circuitry is
mostly digital and tends to dissipate relatively little power, so
the net reduction in pipelined ADC power dissipation offered
by the techniques can be significant.
Unfortunately, all of the previously published digital back-

ground calibration techniques fail to measure the residue am-
plifier distortion coefficients properly for certain pipelined ADC
input signals. As explained in [4] and [5], the most robust of the
techniques in this respect is the Harmonic Distortion Correction
(HDC) technique. Nevertheless, for certain input signals, most
notably those with small peak-to-peak variations about certain
constant values, it too fails to accurately measure the residue
amplifier distortion coefficients. Although it operates properly
for the majority of pipelined ADC input signals, its failure to
work properly even for a small class of input signals presents a
problem in practice.
This paper identifies and quantifies the failure mechanism,

and proposes a simple all-digital modification of the HDC
technique that solves the problem. As explained in the paper,
the problem arises because the small amount of quantization
error introduced by the pipelined ADC corrupts the coefficient
measurement process under certain conditions. The problem is
subtle because the corruption occurs even when the variance of
the quantization noise is much smaller than the dominant error
sources in the pipelined ADC. Although the paper describes
the problem in the context of the HDC technique, the problem
also affects the other previously published digital calibration
techniques, because the quantization error is always present
during the coefficient measurement process regardless of the
technique used.
The paper consists of three main sections. Section II reviews

the HDC technique in the context of an example pipelined
ADC architecture. Section III identifies and quantifies the
HDC failure mechanism, and Section IV presents the proposed
solution.

II. BACKGROUND INFORMATION

A. Pipelined ADC and HDC Overview

Fig. 1 shows a six-stage, 14-b pipelined ADC example. The
input to the pipelined ADC is a sequence of sampled analog
voltages, , where is the sample interval. In prac-
tice each stage in a pipelined ADC contains delay elements, but
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Fig. 1. Example pipelined ADC.

Fig. 2. The th pipelined ADC stage, for , with labels that indi-
cate variable names used throughout the paper.

the delay elements have been omitted in the pipelined ADC ex-
ample of Fig. 1. This reduces the complexity of the notation
presented in the paper without significantly affecting the results
of the paper.
All but the last pipelined ADC stage in Fig. 1 have the form

shown in Fig. 2. Each consists of an 8-level flash ADC with a
nominal quantization step-size of , an 8-level dynamic ele-
ment matching (DEM) DAC, and a residue amplifier. The last
stage of the pipelined ADC consists only of a 16-level flash
ADC with a nominal quantization step-size of .
The output of the th stage’s flash ADC (flash ) is

(1)

where is the input sequence to flash , and
is error introduced by flash . This error is the

output minus the input of flash , with the least signifi-
cant bit of the output taken to have a weight equal to the nom-
inal quantization step-size of flash . In the absence of
non-ideal circuit behavior, is just quantization error,
and is bounded in magnitude by half of its nominal quantization
step size.

The 8-level DAC in the th stage for
converts into analog format. The difference between the
stage’s input sequence and the DAC’s output sequence,

, is called the stage’s residue. It follows from (1) that
in the absence of non-ideal circuit behavior the stage’s residue
is given by

(2)

and is bounded in magnitude by . Ideally, the th stage’s
residue amplifier scales the residue linearly by a factor
of 4, i.e.,

(3)

Therefore, the analog output of the th pipeline stage is ide-
ally bounded in magnitude by , which is less than half the
input range of the flash ADC in the subsequent pipeline stage.
The extra input range, called over-range margin, is used to ac-
commodate flash ADC errors that arise from non-ideal circuit
behavior such as comparator offset voltages and resistor ladder
component mismatches. These errors subsequently cancel in the
digital path of the pipelined ADC assuming ideal circuit be-
havior except for flash ADC errors [6]–[8].
It follows from (1) and Fig. 2 that the digital output of the th

stage, for , is given by

(4)

where

(5)

is called the digitized residue of the th stage. Recursively ap-
plying (1)–(5) with

(6)

indicates that the output of the pipelined ADC ideally is

(7)
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Fig. 3. The example pipelined ADC with HDC applied to the first four stages.

Therefore, in the absence of non-ideal circuit behavior the quan-
tization error from all the flash ADCs except that in the last
pipeline stage cancel, so the only quantization error that prop-
agates to the pipelined ADC output is a scaled version of the
last stage’s quantization error. The pipelined ADC input range
is bounded in magnitude by and the scaled version of quan-
tization error is bounded in magnitude by , so the
pipelined ADC ideally performs 14-bit quantization.
Equations (2)–(7) describe the ideal pipelined ADC behavior.

In practice, the output deviates from (7) because of non-ideal
circuit behavior. In particular, practical residue amplifiers in-
troduce gain error and nonlinear distortion. An often-realistic
model of the th residue amplifier that includes this non-ideal
behavior is

(8)

where is a gain error coefficient, and is a third-order
nonlinear distortion coefficient [5]. If the pipelined ADC in
Fig. 1 is ideal except with residue amplifiers that are well-mod-
eled by (8), it follows from (1), (2), (4)–(7), and (8) that

(9)

where is as given by (7). The distortion
terms in (9) are undesirable because typically they decrease both
the SNDR and the spurious-free dynamic range (SFDR) of the
pipelined ADC.
HDC can be applied to each stage of a pipelined ADC to

digitally estimate and cancel the distortion terms [4], [5]. As
indicated by (9) the distortion terms contributed by the residue
amplifier in the th pipeline stage are scaled by , so the
residue amplifiers in the first few pipeline stages usually are the
dominant sources of residue amplifier distortion in the pipelined
ADC. Thus, in practice HDC usually is applied only to the first
few pipeline stages.
Fig. 3 shows an example of the 14-b pipelined ADC with

HDC applied to the first four stages and Fig. 4 shows the th

Fig. 4. The th pipelined ADC stage with HDC for , 2, 3, 4, with labels
that indicate variable names used throughout the paper.

of these stages in more detail. The implementation of HDC in
the th stage consists of the addition of a calibration sequence,

, to the output of flash , an increase in the resolution
of to accommodate the added sequence, and the addition
of a digital logic block, labeled in the figure. The th
stage’s calibration sequence has the form

(10)

where the sequences are independent, 2-level,
zero-mean, pseudorandom sequences that take on values
of . In this paper as in [5] and, for a reason ex-
plained shortly, , so must have at least 61 output
levels with a minimum step-size of to accommodate .
The calibration sequence increases the maximum signal

swing at the output of the residue amplifier, so it effectively
decreases the over-range margin of the stage. Therefore, a
design consideration is that and must be small enough that
the remaining over-range margin is sufficient to accommodate
the largest expected stage offset and flash errors. In
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Fig. 5. Details of the block.

the example design, half the over-range margin is used to
accommodate the calibration sequence.
Ideally, each block cancels error arising from and
in the th stage’s residue amplifier. It follows from (2), (4),

(7), and (9) that

(11)

for , 2, 3, and 4, where the last term represents error caused
by any non-ideal behavior of the stages subsequent to Stage
such as residue amplifier distortion in Stage 5. Therefore, the
objectives of HDC applied to the th stage can be viewed as
estimating and canceling the terms proportional to and
in (11).
It follows from (1) and Fig. 4 that

(12)

Fig. 5 with

(13)

shows the details of the block. To estimate the and
coefficients, the block first computes the time aver-

ages

(14)

and

(15)

where is the starting time index of the time averaging opera-
tions, and is the number of averaged samples (e.g.,
in [5])1. To the extent that the correlations of and
with the last term (11) in can be neglected, it follows from

1Note that in (15) is different than the corresponding quantity in [4] and
[5]. It can be verified that this version of avoids an approximation made in
[4] and [5] and therefore yields slightlymore accurate results than those obtained
in [4] and [5].

(10)–(14), the statistical properties of the sequences, and
the Law of Large Numbers, that for

(16)

and

(17)

where

(18)

to a high degree of accuracy provided is large.
Combining (16) and (17) results in

(19)

which is a cubic equation that can be solved to find in
terms of , and . A closed form solution exists, but
it is complicated. An approximate but simpler solution can be
obtained by viewing as a function of , and
and using a Taylor series expansion around , i.e.,

(20)

It follows from (19) that

(21)

Differentiating (19) with respect to and substituting (21)
into the result yields

(22)

and continuing this process recursively yields the remaining two
terms on the right side of (20). Substituting these results into
(20) yields

(23)
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The block uses the estimates of and given by
(23) and (17), respectively, to calculate the corrected digitized
residue:

(24)

It can be verified that this causes [4].
The accuracy with which each HDC block estimates its non-

linearity coefficients depends, in part, on how well the subse-
quent HDC blocks have corrected the nonlinearity introduced
by the residue amplifiers in their respective stages. Therefore,
the blocks for , 2, 3, and 4 perform their measure-
ments of and sequentially and periodically, first for

, then for , then for , and then for ,
after which the process repeats [5]. Each HDC block continu-
ally implements (24) with the most recent and values
it measured.

III. EFFECT OF QUANTIZATION ERROR ON HDC COEFFICIENT
ESTIMATION

The goal of HDC in each stage is to perfectly cancel the dis-
tortion terms introduced by that stage’s residue amplifier. Un-
fortunately, the cancellation is never perfect in practice because
the operations that the blocks perform to estimate
and , and to cancel the nonlinear distortion terms involve
approximations.
For example, suppose that the pipelined ADC of Fig. 3 is

ideal except that the flash ADCs have threshold errors and the
, , and coefficients are non-zero. If the HDC blocks

correctly measure for , 3, and 4, and
for , and 4, then the only significant contribution to the last
term in (11) with occurs because of the block’s
imperfect estimation of . In this case it follows from (1), (5),
(6), (8), (24) and Fig. 4, that (11) becomes

(25)

where

(26)

and

(27)

The term represents the error in caused by
the block’s imperfect estimation of . It adds directly
to the pipelined ADC output, but even if its mean squared value
is below the noise floor of the pipelined ADC, it still can some-
times degrade the performance of the pipelined ADC by cor-
rupting the block’s estimates of and . This hap-
pens because for some pipelined ADC input signals
is very strongly correlated with both and .
For example, consider a special case of the above example

wherein , , flash has just a single

Fig. 6. The five values of that occur when the input to flash
is: (a) and (b) superimposed on a plot of the input-output
characteristic of flash (which contains a single threshold error).

threshold error, (which is consistent with the mea-
sured results presented in [5]), and the pipelined ADC’s input
sequence is for all . Given that and

, the ideal operation of the block would be to
calculate and in which case it would have no
effect on and the only effect of the term would
be to decrease the pipelined ADC’s SNDR by about 1.5 dB rel-
ative to its ideal (quantization noise only) value.
Unfortunately, the term causes the block

not to operate ideally for this example. The input to flash
is , so for each takes on one of the
five points shown in Fig. 6(a) (one of which is affected by the
threshold error). The resulting correlations of with

and are both which causes the
block to incorrectly calculate and
(via (14) and (23)). By implementing (24) with these incorrect
estimates of and , the block introduces signif-
icant nonlinear distortion in this case such that the pipelined
ADC’s SNDR is reduced by about 23 dB relative to its ideal
value.
This problem is highly dependent upon the pipelined ADC’s

input sequence. For example, suppose that the example above is
changed only in that for all . Then, the input
to flash is , and the possible values of
are the five points shown in Fig. 6(b). The resulting correlations
of with and are both zero, so the
block correctly measures and in this case.
Thus, for this input sequence, the leakage of into

does not lead to incorrect estimates of and , so
the pipelined ADC’s SNDR is only degraded by approximately
1.5 dB from the presence of in the output sequence.
Returning to the more general situation in which , ,

and are non-zero, it is straightforward to verify that (16),
(25), and (26) imply that the errors in the block’s esti-
mates of and caused by correlations of with

and have magnitudes that are bounded by

(28)

respectively, where is the largest possible magnitude
of for all and . While the bounds given by (28)
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are not tight, specific pipelined ADC input values are known to
the authors for which the errors in the block’s estimates
of and have magnitudes that are larger than half those
in (28).
Therefore, in the worst case scenarios the block’s es-

timates of and are corrupted by error terms that de-
pend on and . If these error terms have magnitudes that
are significant relative to the magnitudes of and , then
the block at best will not cancel distortion from the first
stage’s residue amplifier accurately, and at worst can actually
introduce extra distortion (as in the example described above).
The error terms can be reduced by increasing , but, as de-
scribed in the previous section, increasing uses up more of the
over-range margin of the subsequent stage. This places a prac-
tical upper bound on , so it is not always possible to make
large enough that the errors caused by correlations of
with and are negligible for all pipelined ADC
input signals.
Similar results hold for the other HDC blocks. In general,

for the worst case input signals the estimation process in each
HDC block is highly sensitive to quantization error terms from
subsequent stages that leak into its stage’s digitized residue. For
some ADC input sequences the error terms corrupt the HDC
block’s coefficient estimates even when their average
power is negligible compared to those of the other error sources
in the pipelined ADC. In such cases the error terms do not
significantly reduce the pipelined ADC SNDR directly, but
rather they cause HDC blocks to introduce error that reduces
the SNDR as result of the inaccurate estimates of the
coefficients.
A pipelined ADC converts each sample of its input sequence

to a digital number independently of all prior input samples, and
each sample of the correlation sequence is statistically indepen-
dent of all prior correlation sequence samples by design, so the
statistical expectation of the HDC estimation error caused by
quantization error leakage at time has no dependence on prior
pipelined ADC input samples. Furthermore, a pipelined ADC
implements a time-invariant discrete-time system and the cali-
bration sequence is a stationary random process by design, so
any dependence of the expectation of the estimation error on
each pipelined ADC input sequence value must be independent
of the sample time . It follows that there is at least one input
value that maximizes this estimation error expectation at any
time , so keeping the input signal constant at this worst case
value for all sample times maximizes the effect of the problem.
This is why the set of worst case pipelined ADC input sequences
includes one or more constant sequences.
It follows that the full extent of the problem can be evaluated

by considering the HDC coefficient estimation process for all
constant input sequences. Furthermore, if the HDC technique
is modified such that the HDC coefficients are estimated ac-
curately for every constant pipelined ADC input sequence, it
follows that the modification will also cause the coefficients to
be estimated accurately for every non-constant pipelined ADC
input sequence. Consequently, the simulation results presented
in the remainder of this paper only consider cases in which the
HDC blocks estimate their coefficients for constant pipelined
ADC input sequences.

Fig. 7. Simulation results for pipelined ADC shown in Fig. 3 with
and 0 dBFS sinusoidal input signal.

As explained in [5], the problem can be mitigated by using
sequences in (10) instead of as originally

proposed in [4]. The two extra sequences act as dither
which tends to reduce the correlations of with
and . Unfortunately, even with the problem still
occurs for pipelined ADC input signals that have small peak-to-
peak variations about certain constant values.
Fig. 7 shows simulation results that illustrate the problem for

the example pipelined ADC shown in Fig. 3 using calibration
sequences given by (10) with . The simulated pipelined
ADC includes DEM DACs and the DAC noise cancellation
(DNC) technique as described in [5] with capacitor mismatches
chosen such that the pipelined ADC’s SNR would be limited
to about 67 dB in the absence of other errors if DNC were dis-
abled (DNC is not shown in Fig. 3). The flash ADC threshold
errors were chosen randomly with a standard deviation of .
The distortion coefficients of the first stage were chosen to be

and , and the remaining stages’ dis-
tortion coefficients are similar and are consistent with the mea-
sured results reported in [5].
The SNDR and SFDR values shown in Fig. 7 correspond to

a 0 dBFS sinusoidal input signal with a frequency of
where is the input sample-rate of the pipelined ADC. Each
pair of SNDR and SFDR values were obtained by simulating the
pipelined ADC with the sinusoidal input sequence but with the
HDC blocks using nonlinearity coefficients that were obtained
from a previous simulation with a constant pipelined ADC input
sequence. Each SNDR and SFDR value is plotted versus the
amplitude of the constant input sequence for which the corre-
sponding nonlinearity coefficients were estimated. As expected
from the problem explanation above, there are significant reduc-
tions (of approximately 16 dB) in SNDR and SFDR when the
HDC coefficients are measured for certain constant input sig-
nals.
As demonstrated by the examples described above, the ex-

tent to which the quantization error in each pipeline stage is
correlated with and depends on the pipelined
ADC’s input sequence. Therefore, it makes sense that the ac-
curacy of the HDC coefficient estimation process depends on
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Fig. 8. Pipelined ADC configuration during estimation of and with HDC in the first stage and RD applied to the remaining stages.

the pipelined ADC’s input sequence. This effect is exacerbated
when the pipelined ADC’s input sequence is such that the mean
squared value of is large during the coefficient esti-
mation process, particularly for . In these cases is so
large that the second term in the factor of in (19) is dom-
inant and effectively amplifies any error in . The authors
have verified that the large dips in SNDR and SFDR shown in
Fig. 7 correspond to these cases.

IV. SOLUTION TO THE QUANTIZATION ERROR PROBLEM

As described in Section II the HDC blocks estimate their non-
linearity coefficients sequentially, so only one HDC block in the
pipelined ADC is in the process of estimating its stage’s nonlin-
earity coefficients at any given time. Therefore, whenever the

block is in the process of estimating the and co-
efficients, the calibration sequences in the subsequent pipeline
stages are not necessary, i.e., calibration sequence need
not be added to the output of flash for any .
The proposed solution to the problem described in the pre-

vious section is to replace the sequences for
, where is the number of the stage in which the

nonlinearity coefficients are currently being estimated, by new
sequences, , designed to cancel the unwanted correlations.
In the example described in the previous section, the problem
is that the block estimates and poorly when
the pipelined ADC input signal is such that in (26) is
correlated with either or . In general the problem
is that the block estimates and poorly when the
pipelined ADC input signal is such that is correlated
with either or for any . This problem can
be avoided if the sequences satisfy

(29)

and

(30)

in probability as for .

A. Implementation Details

This sub-section describes the implementation details of the
proposed solution. A detailed explanation of why it works, and,
therefore, the motivation underlying its design, is deferred to
Sections IV-B and IV-C.
Fig. 8 shows the example pipelined ADC described previ-

ously with HDC applied to the first four stages for the case
in which the block is in the process of estimating
and . The blocks labeled , for , 3, 4, and 5, are
called residue decorrelator (RD) blocks because they generate
the above-mentioned sequences. Whenever the
block for is in the process of estimating and , the
block diagram changes from that shown in Fig. 8 only in that

is added to the output of flash in place of for
.2

Fig. 9 shows a block diagram of the block configured for
the case in which the block with is in the process
of estimating and . The function shown in the figure
is defined as

if ,
if ,
if .

(31)

The HDC blocks are the same as described in Section II, ex-
cept they use different correlation sequences than given by (13)
as described below. The calibration sequences are as given by
(10) with .
Themodified correlation sequences used in both the HDC and

RD blocks are

if ,
if ,
otherwise,

(32)

2While adding to the output of flash for is not absolutely
necessary, it is done anyway to dither the flashADCs. This reduces the unwanted
correlations, thereby slightly improving the accuracy of the HDC correlations.
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Fig. 9. Details of the block.

and

if ,
if ,
otherwise,

(33)
where

(34)

and and are two-level zero-mean pseudorandom se-
quences that take on values of and are independent from
each other and from . The constant must satisfy

(35)

Therefore, when (i.e., in the absence of
non-ideal circuit behavior), is acceptable, but in prac-
tice must be somewhat greater than one to accommodate the
maximum anticipated non-ideal flash ADC errors. Any value of
that satisfies (35) will work, but increasing increases the

HDC convergence time, so should be chosen as small as pos-
sible subject to the constraint of (35).
The RD block solution described above involves only dig-

ital circuitry, and the expected area and power dissipation of the
circuitry are small compared to those of the digital circuitry re-
quired by the HDC technique without the RD block solution.
Therefore, the RD block solution is not expected to contribute
significantly to the overall circuit area or power dissipation of
typical pipelined ADCs to which it would be applied.

B. Theory of Operation

As depicted in Fig. 8, each block operates on the output
of the block and generates the sequence. As ex-
plained below, it forms a feedback loopwhich adaptively adjusts

such that the correlations of the block’s output se-
quence with and converge to zero. The output of
the block satisfies

(36)

to a high degree of accuracy, so this causes (29) and (30) to be
satisfied with a high degree of accuracy.
It follows from (36) and Fig. 9 that the outputs of the top and

bottom accumulators in the block can be written as

(37)

and

(38)

As explained below, the block chooses the sequence
to ensure that both and are bounded in probability
for all . This implies that

(39)

and

(40)

in probability as , and therefore that both (29) and (30)
hold.
Table I shows the values along with the

corresponding values of , , , and
, for each of the 16 possible sets values

that , , , can take on. By definition,
each of the 16 possible sets occurs with a probability of 1/16.
In the following, several observations are made from Table I to
show that (39) and (40) hold in probability as .
Table I indicates that one or the other of and

is guaranteed to be zero at each time index ,
so it can be seen from Fig. 9 that only one of and
changes each time is incremented. Consequently, for each
value of , influences but has no effect on
if is nonzero, or vice versa if is
nonzero. This is why it is possible for to keep both
and bounded; each RD block implements two feedback
loops that are interlaced with each other such that no crosstalk
occurs between them.
It follows from Fig. 9, (31), and (36) that

(41)

and

(42)

where if and otherwise. The
last terms in (41) and (42) correspond to
and , respectively. For each , one of
these terms is zero and the other has the opposite sign of the
corresponding value of or .
To show that this ensures and are bounded in

probability for all , it remains to show that in each of (41) and
(42) the average magnitude of the last term is at least as large
as that of the term proportional to . That is, for (41)
it remains to show that

(43)
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TABLE I
ALL POSSIBLE SETS OF VALUES THAT , , , CAN TAKE ON ALONG WITH THE CORRESPONDING VALUES OF ,

, , AND

is at least as large as

(44)
and for (42) it remains to show that

(45)

is at least as large as

(46)
As mentioned above each row of Table I corresponds to one

of the 16 possible sets of values that , , ,
can take on, so the rows correspond to mutually exclu-

sive events that each occur with a probability of 1/16. Therefore,
Table I implies that (43) evaluates to and
(45) evaluates to .
Table I indicates that the correlation sequences contain
and only when the calibration sequence is zero.

This implies that the input sequence to the flash ADC in the
th stage is statistically independent of and ,

so is also statistically independent of and
. Since and are both zero-mean sequences,

it follows that the correlations of with the cor-
relation sequences are both zero. Therefore, Table I implies
that (44) and (46) must be no larger than and

, respectively.
It follows that (43) and (45) are at least as large as both (44)

and (46) if , which is equivalent to
(35). Therefore, (29) and (30) are satisfied in probability as
for by the solution described in

Section IV-A.

C. Calibration Sequence Choice

As described in Section II, the number, , of two-level se-
quences added to form the calibration sequence must be
at least as large as the highest order of nonlinear distortion to be
cancelled by the HDC algorithm. Therefore, the minimum pos-
sible value of is 3 when the residue amplifiers are well-mod-
eled by (8).
However, if were used with the solution presented

in Section IV-B, the magnitude of would have had to be
to ensure full cancellation of the unwanted correla-

tion terms for all pipelined ADC input signals. Since
is greater than in practice, such sequences would ex-
ceed the over-range margin of the pipeline stages.
The solution proposed in Section IV-B uses to

avoid this problem. With the calibration sequence,
, is zero 6/16 of the time (see Table I), and whenever

this happens is uncorrelated with the correlation
sequences as explained in Section IV-B. However, as shown
in Section IV-B, the sequence is correlated with the
correlation sequences regardless of whether the calibration
sequence is zero, which makes it possible to operate properly
with sequences that have a magnitude of only .
Therefore, the sequences use exactly the same portion of
the over-range margin as the calibration sequences.

D. Simulation Results

Fig. 10 shows computer simulation results that are identical
to those which produced the data shown in Fig. 7, except that
the simulated pipelined ADC was enhanced with the modified
calibration sequences and RD blocks as described above. As in
Fig. 7, the SNDR and SFDR values shown in Fig. 10 correspond
to a 0 dBFS sinusoidal input signal with frequency of .
Each pair of SNDR and SFDR values were obtained by sim-
ulating the enhanced pipelined ADC with the sinusoidal input
sequence but with the HDC blocks using and coeffi-
cients that were obtained previously by simulating the pipelined
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Fig. 10. Simulation results for pipelined ADC shown in Fig. 8 with and 0 dBFS sinusoidal input signal and with representative power spectral
density plots of the output.

ADC with a constant input. Each SNDR and SFDR value is
plotted versus the input sequence for which and coef-
ficients were estimated.
A comparison of Figs. 7 and 10 indicates that the proposed

technique improves the worst case SNDR and SFDR values by
12.6 dB and 15.8 dB, respectively. Numerous other simulation
experiments performed by the authors have yielded quantita-
tively similar results. The proposed technique involves several
approximations as described above, so it does not completely
eliminate the variability of the SNDR and SFDR with the input
signal, but it greatly reduces the variability as intended.
As explained in Section III, accurate nonlinearity coefficient

estimation for all constant input sequences implies accurate co-
efficient convergence for all non-constant input sequences too.
Therefore, the results support the assertion that the solution to
the quantization-induced convergence error problem presented
in this paper enables correct operation of the blocks re-
gardless of the pipelined ADC input signal.
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