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Delta-Sigma FDC Based Fractional- PLLs
Christian Venerus, Member, IEEE, and Ian Galton, Fellow, IEEE

Abstract—Fractional- phase-locked loop frequency syn-
thesizers based on time-to-digital converters (TDC-PLLs) have
been proposed to reduce the area and linearity requirements of
conventional PLLs based on delta-sigma modulation and charge
pumps ( -PLLs). Although TDC-PLLs with good performance
have been demonstrated, TDC quantization noise has so far kept
their phase noise and spurious tone performance below that of the
best comparable -PLLs. An alternative approach is to use a
delta-sigma frequency-to-digital converter ( FDC) in place of
a TDC to retain the benefits of TDC-PLLs and -PLLs. This
paper proposes a practical FDC based PLL in which the
quantization noise is equivalent to that of a -PLL. It presents
a linearized model of the PLL, design criteria to avoid spurious
tones in the FDC quantization noise, and a design method-
ology for choosing the loop parameters in terms of standard PLL
target specifications.

Index Terms—Delta-sigma, fractional- , frequency discrim-
inator, frequency synthesizers, phase-locked loop, phase noise,
PLL.

I. INTRODUCTION

D ELTA-SIGMA modulator based fractional- phase-
locked loops ( -PLLs) of the type shown in Fig. 1

are widely used as local oscillator frequency synthesizers in
wireless communication systems because they offer excel-
lent spectral purity with virtually unlimited frequency tuning
resolution [1]–[4]. Unfortunately, to achieve the performance
necessary for most wireless applications a -PLL requires
a highly-linear charge pump and large loop filter capacitance,
often on the order of hundreds of pico-Farads. Typically, this
necessitates an off-chip loop filter, which increases the pin
count, circuit footprint, and overall system cost. Furthermore,
in highly-scaled CMOS technology, low voltage headroom
on the input node of the voltage controlled oscillator (VCO)
necessitates tradeoffs that limit performance. Reducing the
voltage swing requires an increase in the VCO gain which
tends to increase the phase noise, yet increasing the voltage
swing for a given supply voltage reduces charge pump linearity
which increases spurious tones.
Recently, fractional- PLLs have been proposed that ex-

ploit digital signal processing to avoid these problems [5]–[10].
They use a time-to-digital converter (TDC), a digital loop filter,
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Fig. 1. A delta-sigma modulator based fractional- PLL ( -PLL).

and a digitally controlled oscillator (DCO) in place of a di-
vider, phase-frequency detector (PFD), charge pump, analog
loop filter, and VCO. The TDC generates a quantized estimate
of the instantaneous phase of the DCO at each positive edge of
the reference oscillator. The difference between the calculated
instantaneous phase of an ideal oscillator running at the desired
output frequency and the TDC output is digitally lowpass fil-
tered and the resulting digital sequence controls the DCO.
Although such TDC-based PLLs (TDC-PLLs) have been

demonstrated to have very good performance, TDC quantiza-
tion noise has so far kept their phase noise and spurious tone
performance below those of the best comparable -PLLs.
TDC quantization noise is relatively coarse and, unlike quanti-
zation noise in -PLLs, it is not highpass shaped so it is not
as well suppressed by the PLL.
An alternative approach that offers the advantages of both
-PLLs and TDC-PLLs is to use a delta-sigma frequency-to-

digital converter ( FDC) in place of a TDC [11]–[14]. Such
FDC based fractional- PLLs (FDC-PLLs) have been pro-

posed in which the FDC performs 1-bit quantization and the
DCO is implemented as a DAC followed by a VCO [15], [16].
It is likely that improved performance can be achieved in future
FDC-PLLs by using the type of high-performance DCOs devel-
oped for TDC-PLLs and, as quantified in this paper, by avoiding
1-bit quantization in the FDC.
This paper proposes a practical FDC-PLL architecture and

proves that its quantization noise performance is equivalent to
that of a -PLL with a second-order delta-sigma modulator.
It shows that 5-level quantization in the FDC is both nec-
essary and sufficient to avoid spurious tones that would other-
wise be caused by quantizer overloading. It derives a linearized
model that accurately predicts the transfer functions imposed
by the FDC-PLL on its component noise sources, and provides
a design methodology based on the model for choosing the loop
parameters in terms of standard PLL target specifications.

1549-8328/$31.00 © 2012 IEEE
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II. BACKGROUND INFORMATION

A. Phase Noise in Fractional- PLLs

The instantaneous frequency of the reference oscillator in Hz
is

(1)

where is the nominal reference frequency, and is the
reference oscillator’s instantaneous frequency error. The refer-
ence oscillator’s instantaneous phase in cycles relative to an ini-
tial time, , is the integral of (1) from time to time :

(2)

where

(3)

is the reference oscillator’s instantaneous phase noise in cycles.
A fractional- PLL generates a periodic output signal with

an average frequency of , where is an integer and
is a fractional value with a magnitude less than 1. Therefore,

its instantaneous output frequency in Hz can be written as

(4)

where is its instantaneous frequency error. The PLL’s
instantaneous output phase in cycles relative to time is the
integral of (4) from time to time :

(5)

where

(6)

is the PLL’s instantaneous phase noise in cycles.
A fractional- PLL must control its output frequency such

that has zero mean and the power spectral density
(PSD) of is within acceptable limits for the desired ap-
plication. As described below, the -PLL and the FDC-PLL
each do this by estimating a phase error sequence proportional
to

(7)

sampled at the reference frequency, passing the estimated phase
error sequence through their loop filter, and using the output of
the loop filter to control the output frequency of their VCO or
DCO. The feedback ensures that has zero mean (pro-
vided that has zero mean), and the characteristics of the
loop filter, the DC loop gain, and the accuracy with which (7) is
estimated determine the spectral properties of .

B. Fractional- PLLs

A typical -PLL is shown in Fig. 1. It consists of a PFD, a
charge pump, an analog loop filter, a VCO, a frequency divider,
and a second-order digital delta-sigmamodulator clocked by the
divider output.

The divider output is a two-level signal in which the th and
th rising edges are separated by VCO periods,

where is an integer-valued sequence from the delta-sigma
modulator. As indicated in the figure for the case where the
PLL is locked, if the th rising edge of the reference signal,

, occurs before that of the divider output, , the
charge pump generates a current pulse of nominal amplitude

and duration equal to the time difference between the two
edges. Otherwise, the pulse has the same magnitude and dura-
tion, but its polarity is reversed.
The input to the delta-sigma modulator is plus

pseudo-random least significant bit dither, , so its output
has the form , where is
second-order highpass shaped delta-sigma quantization noise.
As proven in [17], the dither prevents from containing
spurious tones that would otherwise show up as spurious tones
in the -PLL’s output.
As shown in [18], the net charge delivered to the loop filter by

the charge pump’s current pulse each reference period is propor-
tional to the sum of a phase error term and first-order highpass
shaped delta-sigma quantization noise. The phase error term is

(8)

where and , are the times of the positive-going zero-cross-
ings of and , respectively, corresponding to the
th charge pump pulse.
The loop bandwidth of the -PLL is designed to be low

enough that the delta-sigma quantization noise is largely sup-
pressed by the lowpass filtering operation of the loop. Hence,
the average output frequency settles to , as de-
sired, with the delta-sigma quantization noise contributing only
a small amount of phase noise.

III. OVERVIEW OF THE FDC-PLL

A. System Description

The proposed FDC-PLL is shown in Fig. 2. It consists of three
main components: a FDC, a digital loop controller, and a
DCO. The digital loop controller is clocked and the output of
the digital loop controller is latched into the DCO on each rising
edge of the reference signal.
The FDC consists of a PFD, charge pump, integrating

capacitor, 5-level ADC, digital block, and multi-mod-
ulus divider. The PFD and charge pump are the same as those
in a -PLL. As in a -PLL, when the FDC-PLL is locked
the magnitude of the difference between the time of each rising
edge of and the time of the corresponding rising edge

is a small fraction of the reference oscillator period, .
Therefore, the charge pump generates a relatively narrow (com-
pared to ) positive or negative pulse of current around the
time of each rising edge of . The 5-level ADC is clocked
with a delayed version of the reset signal within the PFD, such
that it samples the capacitor voltage shortly after each charge
pump current pulse settles to zero. The divider in the FDC-PLL
is identical to that in a -PLL, but its modulus is varied by

instead of .
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Fig. 2. A delta-sigma FDC based fractional- PLL (FDC-PLL).

By design, is restricted to the range

(9)

and the charge pump current, , ideally satisfies

(10)

where is the step-size of the 5-level ADC.1

As shown in the Appendix, the FDC implicitly im-
plements second-order delta-sigma modulation. In particular,

is a measure of the PLL’s frequency error plus
second-order highpass shaped ADC quantization noise, so
it averages to zero when the average DCO frequency is

.
The accumulator in the digital loop controller converts

the PLL’s frequency error to phase error and reduces the
second-order highpass shaped ADC quantization noise to
first-order highpass shaped ADC quantization noise. Specifi-
cally, as shown in Section IV the output of the accumulator,

, consists of the phase error term given by (8) plus
first-order highpass shaped ADC quantization noise. Therefore,
the properties of are very similar to those of the sequence
of charge pulses delivered by the charge pump to the analog
loop filter in the -PLL of Fig. 1. Accordingly, the digital
loop filter in the FDC-PLL performs the same function as the
analog loop filter in the -PLL. It suppresses out-of-band
quantization noise and circuit error, and sets the loop dynamics.
The DCO is an analog oscillator with a means for the fre-

quency to be controlled by a digital sequence, in this case the
output of the digital loop filter, . Depending on the transfer
function of the digital loop filter, the required DCO frequency
change corresponding to the minimum step-size of can be
very small. A common method of implementing a DCO with
a very small minimum frequency step is to quantize with
a digital delta-sigma modulator clocked at a rate much higher
than the reference frequency, where the clock signal is obtained
by dividing the PLL output signal by a small integer [19]. For
each value of , the delta-sigma modulator generates mul-
tiple output values with a minimum step-size greater than that of

which are used to modulate the frequency of the DCO. The
natural lowpass filtering imposed by the DCO suppresses much

1As demonstrated in Section IV, deviations of the charge pump current
sources on the order of several percent do not significantly degrade the perfor-
mance of the FDC-PLL. Therefore, since typically has a magnitude much
smaller than , usually it is reasonable to set .

of the quantization noise introduced by the delta-sigma modu-
lator, so the effective minimum frequency step of the DCO is
that of at the cost of additive phase noise.
In this paper, any quantization of performed by the DCO

as described above is considered to happen within the DCO,
so it is not shown explicitly in Fig. 2. Accordingly, the DCO
phase noise is defined to be the sum of the phase noise caused
by analog oscillator noise and any phase noise caused by quan-
tizing within the DCO.

B. Digital Loop Filter

Given that the digital loop filter in the FDC-PLL plays the
role of the analog loop filter in the -PLL, it is reasonable to
design the digital loop filter such that it has comparable filtering
characteristics to the analog loop filter shown in Fig. 1. This can
be achieved with a digital loop filter transfer function of

(11)

where

(12)

and are constants called the proportional path gain and
integral path gain, respectively, and is an all-pole low-
pass filter section described shortly [20]. The portion of
the filter is often called a proportional-integral filter and is suf-
ficient to obtain a stable feedback system. The portion
of the filter provides attenuation above the PLL bandwidth to
reduce phase noise.
Such a digital loop filter has comparable filtering characteris-

tics to the analog loop filter shown in Fig. 1 if contains
a single pole. Unfortunately, neither filter rolls off very sharply
with frequency.
In the -PLL this problem is often addressed by adding an

extra pole outside the PLL bandwidth. Usually, no more than
one extra pole is added, though, because of the increased area
and power consumption associated with adding multiple extra
poles.
In contrast, the incremental area and power consumption as-

sociated with adding multiple extra poles to a digital filter tend
to be modest. Therefore, the loop filter used in the FDC-PLL
analyzed in this paper has a transfer function given by (11) with

(13)
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Fig. 3. The implicit second-order delta-sigma modulator implemented by the FDC followed by the adder and accumulator of the digital loop controller.

where for , and are real poles. A design
procedure for selecting , and for , and
in terms of the desired loop bandwidth and phase margin is

presented in Section IV.

C. -PLL and FDC-PLL Capacitance Comparison

It is mentioned in the Introduction that the capacitance in the
loop filter of the -PLL tends to be large, often on the order
of hundreds of pico-Farads. To sufficiently suppress the delta-
sigma quantization error, the loop bandwidth of a fractional-
PLL is usually a small fraction (e.g., several hundredths) of the
reference frequency. With the analog loop filter shown in Fig. 1,
the loop bandwidth is proportional to , and the total capac-
itance is approximately inversely proportional to . Therefore,
for any given loop bandwidth, and can be reduced by si-
multaneously increasing and decreasing . Unfortunately,
decreasing tends to increase the PLL’s phase noise because
the loop gain of the -PLL’s linearized model is proportional
to [18]. This places a lower bound on for any given
application, which, in turn, typically dictates a large total ca-
pacitance when the loop bandwidth is small.
In contrast, as shown in Section IV the loop bandwidth of the

FDC-PLL is independent of and , and the overall phase
noise is not a strong function of either or , so can be
much smaller than the loop filter capacitance in a comparable

-PLL. For example, pF in the FDC-PLL design
example presented in Section IV.

IV. THE FDC-PLL LINEARIZED MODEL

A. Model Derivation

It is proven in the Appendix that the FDC behaves as the
second-order delta-sigma modulator shown in Fig. 3 along with
the adder and accumulator of the digital loop controller. It is
further shown that the output of the accumulator can be written
as

(14)

neglecting a possible constant offset, where represents the
combined error from noise and other non-ideal circuit behavior
in the charge pump, PFD, and divider,

(15)

and is the sum of quantization noise and any additional
error from non-ideal circuit behavior in the ADC. As explained
in the Appendix, a five-level ADC is necessary and sufficient to

ensure that the delta-sigma modulator does not overload when
the PLL is locked, which would introduce spurious tones.
The output of the loop filter, , is latched into the DCO

on each positive-going zero-crossing of , so is
applied to the DCO during the time interval
for each positive integer . It is assumed that the DCO’s control
word latency is negligible, so its instantaneous frequency during
each time interval is

(16)

where is the nominal center frequency of the DCO in Hz,
is the DCO gain in Hz, and is the DCO’s in-

stantaneous frequency error.2 It follows from (4) and (16) that
during the time interval the FDC-PLL’s instan-
taneous frequency error can be written as

(17)

The ideal output frequency when the FDC-PLL is locked is
, so can be written as

(18)

where is the zero-mean component of . It follows from
(17) and (18) that

(19)

during the time interval for each positive integer
.
Integrating (19) from time to where gives

(20)

where

(21)

is the instantaneous phase noise introduced by the DCO. Typical
reference oscillators have high spectral purity, so

(22)

2The DCO Gain is defined as the amount by which the DCO frequency
changes when changes by unity.
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Fig. 4. Phase noise model of the FDC-PLL.

holds to a high degree of accuracy. Hence, (20) implies that
can be written as

(23)

for which can be rewritten as

(24)

where

(25)

The second and third term in (24) represent a linear interpola-
tion between the th and th samples of . This type
of interpolation is called first-order hold interpolation [21]. To
extend (24) to hold for any , the first-order hold compo-
nent can be written as a sequence of triangular time pulses with
amplitudes , i.e.,

(26)

for arbitrary , where

(27)

The bandwidth of a practical PLL is much smaller than the
reciprocal of the maximummagnitude of the difference between
and , so

(28)

holds to a high degree of accuracy. Hence (24) yields

(29)

Combining (14), (15), (25), (26), and (29) results in the lin-
earized model shown in Fig. 4 where the sample-rate of the dis-
crete-time blocks and the first-order hold interpolator is .
The discrete-time portion of the model implements the FDC-
PLL’s feedback system and generates , which is linearly
interpolated by the first-order hold block as described above.
It follows from Fig. 4 that the discrete-time loop gain of the

FDC-PLL is

(30)

and the various FDC-PLL discrete-time transfer functions are

(31)

(32)

(33)

and

(34)

These equations describe the loop dynamics of the FDC-PLL.

B. Phase Noise PSD Calculation

It is assumed that the noise signals ,
and can be modeled as uncorrelated, zero-mean, wide-
sense stationary random processes, so the PSD of is
the sum of PSD components that each correspond to one of the
noise signals. Likewise, the discrete-time PSD of is the
sum of the discrete-time PSD components that each correspond
to one of the noise signals.
It follows from (31) that the component of the discrete-time

PSD of corresponding to is

(35)

where is the discrete-time PSD of . The
continuous-time Fourier transform of the output of a first-order
hold interpolator with input and sample-rate is

(36)
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where is the discrete-time Fourier transform of
[21]. Therefore, the component of the PSD of cor-

responding to is

(37)

By similar reasoning, the component of the PSD of cor-
responding to is

(38)

where is the discrete-time PSD of .
As described in the Appendix, is asymptotically

white and uniformly distributed between and 0.5, so the
discrete-time PSD of is 1/12. It follows from reasoning
similar to that which led to (37) and (38) that the component of
the PSD of corresponding to is

(39)

in units of cycles squared per Hz. If the desired units of the PSD
are radians squared per Hz, then (39) must be scaled by .
The component of the PSD of corresponding to DCO

phase noise depends on both and , which
are obviously correlated. Consequently, the effects of
and must be considered together when calculating the
component of the PSD of corresponding to DCO noise.
The component of corresponding to DCO noise is

filtered by the discrete-time lowpass transfer func-
tion (32). As implied by (36), the first-order hold interpolator
imposes a continuous-time lowpass filtering operation on this
signal component that rolls off in frequency at 40 dB per
decade. As shown in Fig. 4, is added to the output
of the first-order hold interpolator and for a typical DCO the
PSD of rolls off in frequency by no more than 20 dB
per decade (except at low frequencies where noise is
significant). Therefore, in calculating the component of the
PSD of corresponding to DCO noise, the output of the
first-order hold interpolator can be neglected for frequencies
above with a high degree of accuracy.
It follows that the effect of adding in the feedback

loop of Fig. 4 is practically equivalent to adding fil-
tered by

(40)

to the output of the first-order hold interpolator. This result relies
on the reasonable assumption that aliasing error in

within the passband of (32) is negligible. It follows that the com-
ponent of the PSD of corresponding to DCO noise is

(41)

where is the continuous-time PSD of .
The PSD of from all of the FDC-PLL noise sources

is the sum of (37), (38), (39), and (41). Typically, estimates of
, and are obtained via

circuit simulation. As described in Section II, the DCO phase
noise is the combination of phase noise introduced by the under-
lying analog oscillator and any quantization of , so circuit
simulations used to estimate the DCO phase noise PSD must in-
clude any such quantization noise.

C. Loop Filter Design

The loop filter transfer function, , determines the FDC-
PLL’s loop bandwidth, phase margin, and noise filtering charac-
teristics. In analogy to a conventional -PLL, the FDC-PLL’s
phase noise consists of highpass filtered DCO noise, i.e., (41),
and lowpass filtered noise from the reference oscillator, ADC,
divider, PFD, and charge pump, i.e., (37)–(39). The design ob-
jective for is to strike a compromise among these noise fil-
tering operations appropriate to the application’s requirements
while maintaining a given desired loop bandwidth and phase
margin.
In a -PLL, having a zero-frequency pole in the loop filter

ensures the charge pump output current pulse sequence has zero
mean, which simplifies the design of both the charge pump and
PFD [4]. In contrast, the delta-sigma modulator relationship de-
rived in the Appendix implies that in the FDC-PLL the charge
pump output current pulse sequence has zero mean regardless
of whether the loop filter has a zero-frequency pole. Therefore,
a major reason for having a zero-frequency loop filter pole in

-PLLs does not apply to the FDC-PLL.
Nevertheless, there are still advantages to having a zero-fre-

quency pole in an FDC-PLL’s loop filter. One advantage is
that it causes the transfer function portion of (41) to have a
second zero-frequency zero. DCO phase noise typically has
a PSD proportional to for where is the
frequency below which noise is significant. Having two
zero-frequency zeros in the transfer function portion of (41)
prevents the portion of the PSD proportional to from
contributing significantly to the overall FDC-PLL phase noise.
Another advantage is that the zero-frequency pole eliminates
the dependence of on the DCO’s center frequency
and gain, which both vary with process, supply voltage, and
temperature.
The primary disadvantage of having a zero-frequency pole

in the loop filter is that it introduces negative phase into the
loop gain which limits the achievable sharpness of the filter’s
transition band for a given phase margin. Therefore, in some
applications not having a zero-frequency pole in the loop filter
may offer an advantage with respect to minimizing phase noise.
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Unlike the case of an analog PLL, there is a great deal of
flexibility in the choice of , regardless of whether it has a
zero-frequency pole. The remainder of this section evaluates the
practical choice of given by (11) with (12) and (13), which
includes a zero-frequency pole.
A reasonable design procedure is to first choose values of

and via the equations derived below that result in the desired
loop bandwidth and phase margin to the extent that

and (42)

where is the unity-gain frequency of the FDC-PLL’s loop
gain. This requires that the poles of be initially chosen
such that

(43)

Then a trial and error procedure can be used in which the
values are reduced to improve noise suppression while the
and values are adjusted to maintain the desired loop band-
width and phase margin.
By definition, the unity gain frequency of the FDC-PLL’s

loop gain, , satisfies

(44)

It can be verified from (12), (30), and (42) that

(45)

where

(46)

Typically, in which case (45) reduces to

(47)

Furthermore,

(48)

given , so the FDC-PLL’s loop bandwidth, ,
is approximately given by

(49)

The FDC-PLL’s phase margin in radians is

(50)

With (11), (12), (30), (42), and (45), this can be written as

(51)

TABLE I
PARAMETERS AND EVALUATION SETTINGS OF THE EXAMPLE FDC-PLL DESIGN

It follows from the above analysis that for fixed and
the loop bandwidth depends primarily on and for fixed

, and loop bandwidth the phase margin depends pri-
marily on . Therefore, it is straightforward to choose
and using (47), (49), and (51) to achieve a desired loop
bandwidth and phase margin provided (42) holds. Then, a trial
and error process can be applied in which the values are
reduced to improve phase noise suppression and and
are increased to maintain the desired loop bandwidth and phase
margin. The trial and error process is guided by plotting (37),
(38), (39), and (41) at each iteration.

V. DESIGN EXAMPLE

The design methodology described above has been applied
to select the example FDC-PLL design parameters presented in
Table I. This section applies the linearizedmodel to calculate the
example FDC-PLL’s expected performance with realistic input
noise levels, and compares the calculated performance to the
performance predicted by computer simulation. The example
was chosen because it is suitable for use as a carrier synthesizer
for the widely-used GSM mobile handset standard and facili-
tates comparison with previously published TDC-based PLLs
[7], [10].
To apply the linearized model to calculate the FDC-PLL’s

output phase noise PSD, i.e., the PSD of , the PSDs of
the input noise sources , and must be
known or estimated. In this example, the input noise sources
are estimated to be in line with what can be achieved in a 65 nm
CMOS process with a 1 V power supply. The simulated DCO is
identical to that presented in [19], so , which includes
both DCO quantization noise and analog noise, is taken to have
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Fig. 5. PSD of used in the design and simulation of the FDC-PLL
example.

Fig. 6. Calculated PSD plots (smooth curves) and simulated PSD plots (jagged
curves) of the FDC-PLL output phase noise resulting from each of the noise
sources individually and all together.

a PSD consistent with the results presented in [19] as shown in
Fig. 5. The and input noise source levels were
estimated via periodic steady-state (PSS) circuit simulations of
transistor-level reference buffer, divider, PFD, and charge pump
circuits.
PSS simulation of the reference buffer indicates that

can be modeled as white noise with a PSD level of
dBc/Hz. Therefore, the discrete-time PSD level of is

dBc.
Simulations indicate that is dominated by the charge

pump, which has the form of the single-ended design presented
in [22]. The quantization step-size of theADC is 80mV. Its input
voltage, and, therefore, the output voltage of the charge pump,
ranges from 0.3 V to 0.7 V. The choices of and are related
via (10), and for this exampledesign theyare 1.25pFand359 A,
respectively. Additionally, ( is defined in the
Appendix) and ns. PSS simulations of the charge pump
and offset current circuitry indicate that can be modeled
as white noise with a discrete-time PSD level of dBV.
All the PSD plots in Figs. 6 through 8 were obtained with the

input noise source levels described above. The calculated PSD
plots shown in the figures where obtained via (37), (38), (39),
and (41). The simulated PSD plots shown in the figures where
obtained via an event-driven C-language simulator. The simu-
lator calculates the times of successive events, which include the

Fig. 7. Calculated and simulated PSD plots of the FDC-PLL output phase noise
with all noise sources with and without the portion of the loop filter.

Fig. 8. Calculated PSD plot of the FDC-PLL output phase noise with all noise
sources, and the corresponding simulated PSD with several non-ideal circuit
effects taken into account in addition to noise.

positive-going zero crossings of , and , the
sample times of the 5-level ADC, and the desired output sample
times of the . Each event time is calculated as a function
of the FDC-PLL’s state variables, and the state variables are up-
dated at each event time.
Fig. 6 shows the simulated and calculated PSD of

for several cases.3 In one of the cases all of the noise sources
presented above are considered together. In each of the other
cases, only one of the noise sources is considered with all the
other noise sources set to zero. Therefore, the figure shows how
each noise source contributes to the total FDC-PLL output phase
noise.
Fig. 7 shows the simulated and calculated PSD of for

two cases to demonstrate the effect of the portion of the
FDC-PLL’s loop filter. One case is that shown in Fig. 6 for all the
noise sources acting together. The other case differs only in that
the simulation and calculations were made with effec-
tively disabled by setting its coefficients to 1, and and

adjusted to maintain approximately the same phase margin
and bandwidth as the first case.
Fig. 8 shows the effect of typical non-ideal circuit behavior.

The smooth curve is the same calculated PSD of shown

3In each plot, the smooth curves represent the calculated PSDs, and the jagged
curves represent simulated PSDs.
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in Fig. 6 for all the noise sources acting together. The jagged
curve is the corresponding simulated PSD but with several non-
ideal circuit effects taken into account in addition to noise. The
non-ideal circuit effects involve the charge pump, offset cur-
rent, sampling capacitor, and 5-level ADC. The magnitudes of
the positive and negative charge pump current sources were in-
creased and decreased, respectively, by 5%, and the offset cur-
rent magnitude was decreased by 5%. A capacitor leakage cur-
rent of nA per reference periodwas introduced. Randomly
chosen errors of 10 mV, mV, 6 mV, and mV, respectively,
were introduced into the ADC threshold voltages. The errors
were made larger than would be expected in practice to demon-
strate the robustness of the FDC-PLL architecture.
The simulated and calculated results presented in Figs. 6 and

7 demonstrate that the linearized model accurately predicts the
expected phase noise performance of the example FDC-PLL for
the considered evaluation settings. Furthermore, the simulation
results presented in Fig. 8 suggest that the FDC-PLL is robust
with respect to non-ideal circuit behavior. Numerous additional
FDC-PLL design parameters and evaluation cases considered
by the authors have yielded consistently positive results.

APPENDIX

This Appendix proves that the FDC followed by the
adder and accumulator in the digital loop controller perform the
signalprocessingoperationsshowninFig.3.Italsoappliesknown
delta-sigmamodulator results to draw various conclusions about
the quantization noise introduced by the 5-level ADC.
The derivation consists of four parts. The first two parts de-

rive expressions for the positive-going zero-crossing times of
the reference oscillator and the divider output, respectively. The
third part derives an expression for the voltage across the capac-
itor at the output of the charge pump. The fourth part combines
the results of the previous parts to show that the ADC’s quanti-
zation noise is that of a second-order delta-sigma modulator.

A. Reference Oscillator Zero-Crossing Time Derivation

Recall that , for , are the times of consec-
utive positive-going zero-crossings of the reference oscillator
signal, . The phase in cycles of an oscillator at each of its
positive-going zero crossings is integer-valued, so the definition
of implies that the phase of the reference oscillator at time
is

(52)

for all non-negative integers .
Exactly one reference oscillator cycle occurs during the time

interval , so it follows from (2) and (52) that

(53)

where

(54)

is the change in the reference oscillator’s instantaneous phase
noise in cycles between times and .4 Summing (53) from

through any positive integer yields

(55)

B. Divider Output Zero-Crossing Time Derivation

Recall that , for each , is the time of the
positive-going zero-crossing of the FDC-PLL’s output signal,

, that triggers the th rising edge of the divider output,
. Without loss of generality, assume that is indexed

such that

(56)

The th output value of the 5-level ADC, , is a digitized
sample of the charge pump capacitor voltage sampled after time
, but well before time , and it follows from Fig. 2 that

(57)

Therefore, the th sample of is available prior to time .
The divider modulus is immediately updated when the sample
is available such that exactly DCO cycles occur during
the time interval . The definition of implies
that

(58)

It follows from (5) and (58) that

(59)

where

(60)

is the change in the FDC-PLL’s instantaneous output phase
noise in cycles over the interval . Summing (59)
from through any positive integer yields

(61)

C. Charge Pump Output Derivation

Subtracting (55) from (61) gives

(62)

4Note that is a different function than , but they are related
in that is proportional to the average of over the th reference
period. The functions and are similarly distinct.
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where

(63)

The term in can be interpreted as the phase change in
cycles over one reference period of an ideal oscillator of fre-
quency minus that of the ideal output of the FDC-PLL.
The definitions of and imply that the average
value of is zero when the FDC-PLL is locked, and
that is a measure of the average over the th
reference period of the difference between times the
instantaneous frequency of the reference oscillator and the in-
stantaneous frequency of the output signal.
It follows from (5) and (56) that

(64)

Substituting (57) and (64) into (62) gives

(65)

Suppose the FDC-PLL is locked for all so that

(66)

for all , where is the nominal period of the
reference oscillator. If the PFD and charge pump are as shown
in Fig. 1, then in the absence of non-ideal circuit behavior the
output of the charge pump is a sequence of current pulses given
by

(67)

for all positive integers . An additional current pulse of fixed
duration and fixed (positive or negative) amplitude may also
be included in each reference period to reduce nonlinear
distortion introduced by the PFD and charge pump [23], [24].
The ADC samples the capacitor voltage each reference pe-

riod shortly after the charge pump current sources settle to zero.
Let be the voltage sampled by the ADC during the th
reference period minus the midscale voltage of the ADC (i.e.,

corresponds to the middle of the ADC’s input range).
The operation of the charge pump implies that

(68)

where and are the duration and amplitude, respec-
tively, of the additional current pulse if it is used (otherwise

), and represents the combined error from noise
and other non-ideal circuit behavior in the charge pump, PFD,
and divider. Each sample of is the result of error in the
amount of charge in the current pulses integrated onto the ca-
pacitor during the th reference period.

Substituting (10) and (65) into (68) results in

(69)

where

(70)

D. Delta-Sigma Modulator Equivalence and Implications

The output of the ADC, , can take on values from the set
and can be written as

(71)

where is the sum of quantization noise and any addi-
tional error from non-ideal circuit behavior in the ADC. The
ADC has only five levels, so its quantization is very coarse.
Therefore, it is assumed that the only non-negligible compo-
nent of is quantization noise, so the th output sample
of the ADC is taken to be rounded to the nearest in-
teger when

(72)

and or 2, respectively, when is less than , or
greater than or equal to .
Equations (69) and (71) are equivalent to the block diagram

shown in Fig. 3 to the left of the adder for ,
where

(73)

and the initial condition on is

(74)

The block diagram has the well-known form of a second-order
delta-sigma modulator, so its output can be written as

(75)

where

(76)

is second-order highpass shaped quantization noise [25], [26].
If (72) is satisfied for a given integer , then is the

quantization noise caused by rounding to the nearest in-
teger. In this case the delta-sigma modulator is said to be non-
overloading at time . Otherwise, the delta-sigma modulator is
said to be overloaded at time . If the delta-sigma modulator is
non-overloading for all , then is asymp-
totically white and uniformly distributed between and 0.5
under the realistic assumption that contains a small amount



1284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 5, MAY 2013

of independent random noise [27]. In contrast, if the delta-sigma
modulator becomes overloaded, then becomes corre-
lated with , its variance increases, and it often contains spu-
rious tones. Hence, for best phase noise performance it is desir-
able to keep the delta-sigma modulator non-overloading once
the FDC-PLL is locked.
Sufficient conditions for the delta-sigmamodulator to be non-

overloading for are that it is non-overloading for
and , and

(77)

for . The proof of this result is as follows. It can
be verified from Fig. 3 that

(78)

If the delta-sigma modulator is non-overloading for
and , then and are each
bounded in magnitude by 0.5, so (73) and (78) imply that

(79)

This implies that (72) is satisfied and therefore that the delta-
sigma modulator is non-overloading for provided (77)
holds for . The result follows from induction.
It follows from (63) that (77) is satisfied for any in the range

given by (9) if

(80)

Frequency synthesizers usually are designed to have low phase
noise, so the left side of (80) is expected to be far less than 1/2
in practice. Furthermore, in most practical cases the magnitude
of is much larger than the left side of (80). In such cases it
can be verified that only four of the five ADC levels are exer-
cised once the FDC-PLL is locked. Thus, the five ADC levels
are easily sufficient to ensure that the delta-sigma modulator re-
mains non-overloading once the FDC-PLL is locked, which also
ensures that does not contain spurious tones induced
by quantizer overloading.
Nevertheless, it can be verified from well-known delta-sigma

modulator properties, that when the magnitude of is 0.5, four
ADC levels would only be sufficient to ensure that the delta-
sigmamodulator remains non-overloading in the absence of any
noise other than quantization noise. Therefore, in practice five
ADC levels are necessary to avoid overloading for values of
with magnitudes close to 0.5.
Substituting (63) into (75) gives

(81)

This sequence is accumulated prior to the loop filter, so the
input to the loop filter can be written as (14) neglecting a pos-
sible offset that depends on the initial value of the accumulator
output.
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