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A Discrete-Time Model for the Design of Type-II
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Abstract—Type-II charge-pump (CP) phase-locked loop (PLLs)
are used extensively in electronic systems for frequency synthesis.
Recently, a passive sampled loop filter (SLF) has been shown to
offer major benefits over the conventional continuous-time loop
filter traditionally used in such PLLs. These benefits include
greatly enhanced reference spur suppression, elimination of CP
pulse-position modulation nonlinearity, and, in the case of phase
noise cancelling fractional- PLLs, improved phase noise can-
cellation. The main disadvantage of the SLF to date has been
the lack of a linear time-invariant (LTI) model with which to
perform the system-level design of SLF-based PLLs. Without such
a model, designers are forced to rely on trial and error iteration
supported by lengthy transient simulations. This paper presents
an accurate LTI model of SLF-based type-II PLLs that eliminates
this disadvantage.

Index Terms—Frequency synthesis, phase-locked loop (PLL),
PLL linearized model, sampled loop filter (SLF).

I. INTRODUCTION

I NTEGER- and fractional- phase-locked loops (PLLs)
are used extensively in electronic systems to synthesize

higher frequency signals from lower frequency references. The
majority of these PLLs are charge-pump (CP)-based type-II
PLLs [1].

Recently, sampled loop filters (SLFs) have been shown
to offer advantages over continuous-time loop filters (CLFs)
in PLLs. SLFs can greatly reduce reference spurs in both
integer- and fractional- PLLs [2], [3]. They eliminate CP
pulse-position modulation distortion in fractional- PLLs
[4], [5], and they improve phase noise cancellation in phase
noise cancelling fractional- PLLs [5], [6]. Moreover, SLFs
eliminate the large reference spur that would otherwise arise
as a side effect of the CP offset current method for reducing
fractional spurs in fractional- PLLs [3], [7].

Several different types of SLFs for PLLs have been pub-
lished. In [4], an active SLF is implemented by preceding a CLF
with an op-amp-based sample-and-hold circuit. In [2], a passive
switched-capacitor SLF is implemented for a type-I PLL. In [3],
a passive SLF is implemented with the addition of a transistor
switch within an otherwise conventional CLF.
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The SLF presented in [3] offers a major benefit over the other
SLFs: It is the only published passive SLF applicable to type-II
PLLs. The sampling operation involves only a single switch, so
it consumes very little power and circuit area beyond those of
a comparable CLF. Its applicability to type-II PLLs is impor-
tant because such PLLs are by far the most widely used PLLs at
present. Furthermore, the SLF has been demonstrated in a frac-
tional- PLL with record-setting reference and fractional spur
performance.

The main drawback to date of the SLF presented in [3] has
been the lack of a linear time-invariant (LTI) model with which
to perform the system-level design of PLLs based on the SLF.
Without such a model, designers are forced to rely on trial and
error iteration and lengthy transient simulations as their primary
design tools.

Despite its implementation simplicity, the SLF presented in
[3] is more difficult to analyze than the other published SLFs be-
cause it behaves as a time-varying continuous-time filter. There-
fore, it cannot be well approximated as a continuous-time LTI
system. Nevertheless, as proven in this paper, PLLs based on
the SLF can be modeled accurately as discrete-time LTI sys-
tems. This paper derives such an LTI model and demonstrates
how it enables the system-level design of PLLs without the need
to resort to computer simulation. Hence, the results of this paper
eliminate the drawback described earlier.

The model yields equations which accurately predict the
transfer functions, bandwidth, and phase margin (PM) of the
PLL in terms of its component values. While the equations
are not simple, they each have closed form. They can be im-
plemented easily in a tool such as Matlab and used to rapidly
generate results that heretofore required lengthy transient sim-
ulations. The PLL design process is inherently iterative, so not
having to simulate the PLL at each iteration step significantly
speeds up the design process.

This paper is organized such that all the information required
to use the model to design PLLs is presented separately from the
derivation of the model. This allows readers to use the model
prior to understanding its derivation. The information required
to use the model is presented in Sections II–III and Appendix A,
and the detailed mathematical derivation of the model is pre-
sented in Section IV and Appendix B.

II. OVERVIEW OF THE SLF PLL

The block diagram of a typical CP-based integer- PLL is
shown in Fig. 1(a) [1]. Its purpose is to generate a spectrally
pure periodic output signal with a frequency of , where
is a positive integer and is the frequency of the reference
signal . It consists of a phase-frequency detector (PFD),
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Fig. 1. Block diagram of a typical (a) integer-� PLL and (b) fractional-� PLL.

Fig. 2. Circuit diagram of (a) a CLF with the VCO, (b) an SLF with VCO, and (c) the timing of � ���.

a CP, a low-pass loop filter (LF), a voltage-controlled oscillator
(VCO), and a digital divider.

The divider output is a two-level signal in which the th and
th rising edges, for , are separated by

periods of the VCO output. The PFD compares the posi-
tive going edges of the reference signal to those of the divider’s
output signal and causes the CP to drive the LF with current
pulses whose widths are proportional to the phase difference
between the two signals. The pulses are low-pass filtered by the
LF, and the resulting waveform drives the VCO.

Fig. 2(a) shows a CLF, and Fig. 2(b) shows the SLF addressed
in this paper. The SLF differs from the CLF only in that it in-
cludes a switch which splits into and , where

. For example, in [3], . The switch is
opened and closed once per reference period such that when the
PLL is locked, and are disconnected whenever

. As explained and experimentally demonstrated in
[3], this significantly reduces the reference spur compared to the
conventional LF.

The switch is controlled by the two-level signal ; it
is closed when is high and open when is
low. A typical waveform for is shown in Fig. 2(c).
The th reference period is defined as the time interval between

the th and th rising edges of the reference signal. In the
case of a noise-free reference signal, these edges occur at times

and , respectively, where . As
shown in Fig. 2(c), during each reference period, the switch is
first open for a duration of , then closed for a duration of

, and then open for a duration of , where , , and
are constants chosen by the designer. Together with the LF

components, these constants define the behavior of the SLF.
As described in Section III and suggested by the model equa-

tions in Appendix A, decreasing has the effect of decreasing
the PM of the PLL, whereas the values of and for any
given value of have little effect on the dynamics of the PLL.
Therefore, , , and should be chosen such that is
as large as possible subject to the requirement that the switch be
open whenever once the PLL is locked.

The block diagram of a typical CP-based fractional- PLL
is shown in Fig. 1(b) [1]. Its purpose is to generate a spectrally
pure periodic output signal with a frequency of ,
where is again a positive integer and is a fractional value
between zero and one. The fractional- PLL differs from the
integer- PLL only in that the th and th rising edges of
the divider output, for , are separated by
periods of the VCO output, where is the integer-valued
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Fig. 3. Single-rate discrete-time linearized model of an SLF-PLL with noise sources.

output sequence from a noise-shaping quantizer with input .
Typically, the noise-shaping quantizer is a digital delta–sigma
modulator, but other types of quantizers such as a successive
requantizer can also be used [3].

III. DESCRIPTION AND APPLICATION OF THE PLL MODEL

This section describes the proposed model of the PLLs shown
in Fig. 1 with the SLF of Fig. 2(b) and explains how the model
can be used to analyze and design such PLLs. The mathematical
derivations that underlie the models are referred to Section IV
and Appendix B.

A. Model Description

The phase of the fractional- PLL’s output signal at time
can be written as

(1)

where represents the PLL’s phase error, i.e., the differ-
ence between the actual phase and ideal phase of the PLL output
signal at time .

The purpose of a PLL model is to provide a simple means
of evaluating in terms of the PLL’s design parameters
and error signals such as circuit noise, assuming that the PLL
is already locked. PLLs are neither linear nor time invariant,
but when locked, they can be approximated as LTI systems. For
example, the most commonly used model for PLLs with con-
ventional LFs is a continuous-time LTI system that accurately
models the locked behavior of such PLLs [8], [9], [12]. Dis-
crete-time LTI models have also been developed for such PLLs
[8], [10], [11].

The model presented in this section is a discrete-time LTI
system applicable to the SLF-PLL. As described in the next
section, the sampling operation of the SLF would result in a
time-varying continuous-time model which would be difficult
to analyze, and this problem is avoided by using a discrete-time
model.

Two versions of the model are presented: a single-rate ver-
sion and a multirate version. The single-rate version provides
samples of at a sample rate of . The multirate ver-
sion provides samples of at a sample rate of , where

is a positive integer.

The two versions of the model are identical in terms of how
they represent the PLL’s feedback behavior, but the latter per-
forms interpolation to obtain extra output samples per ref-
erence period. When has most of its power concentrated
at frequencies with magnitudes less than , the single-rate
version of the model is sufficient. The multirate version, al-
though more complicated than the single-rate version, is useful
in cases where has enough power at frequencies with
magnitudes above in that it is necessary to sample
at a higher sample rate than .

The single-rate version of the model is shown in Fig. 3, where
is the magnitude of current pulses sourced and sunk by the

CP, is CP noise sampled at , is the
reference signal’s phase noise sampled at ,
is the open-loop VCO phase noise sampled at ,

is the quantization noise from the noise-shaping quan-
tizer

(2)

and , , and are constants. Appendix A provides equations
that yield the values of , , and given the LF design values,
i.e., the values of , and .
The model, as shown in Fig. 3, applies to the fractional- PLL,
but when modified to have and , it also applies
to the integer- PLL.

The PLL’s locked behavior can be analyzed by applying well-
known LTI system techniques to the model in Fig. 3. Specifi-
cally, the model indicates that the loop gain is

(3)

Therefore, the PLL’s PM is

(4)

where is the unity-gain frequency of and the loop
bandwidth (LBW) of the PLL is approximately equal to . The
noise transfer functions from , , ,
and to , respectively, are

(5)
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Fig. 4. Model of the SLF and VCO for the (a) single rate and (b) multirate cases.

Fig. 5. Multirate discrete-time linearized model of an SLF-PLL with noise sources.

(6)

(7)

(8)

The multirate version of the PLL model differs from the
single-rate version shown in Fig. 3 only in its representation of
the SLF and VCO. The components of the single-rate model
that represent the SLF and VCO are shown separately in
Fig. 4(a). The multirate version is obtained by removing these
components in the single-rate model of Fig. 3 and replacing
them with the components shown in Fig. 4(b). The resulting
multirate model is shown in Fig. 5.

Therefore, the SLF and VCO in the multirate model are repre-
sented by the components shown in Fig. 4(b): an -fold upsam-
pler, a discrete-time filter with sample rate and transfer
function

(9)

the addition of the VCO phase noise sampled at a rate of ,
and an -fold downsampler. The integer is defined as

(10)

where is the largest integer less than or equal to . The
output of the -fold upsampler is given by

(11)

and the -fold downsampler discards all but every th sample
of to obtain . The transfer function

has the form

(12)

where each has the same three poles as (2)
and can have either two or three zeros. Appendix A pro-
vides equations that yield the full transfer function of each

given and the LF design values, i.e., the values of
, and .

B. Analysis Example

The parameters that specify the system-level design of an
SLF-PLL are , and the LF design values, i.e.,
the values of , and . Both
versions of the model described in Section III-A describe the
locked behavior of the PLL in terms of these parameters. An
example is presented hereinafter for the case of an SLF-PLL
with , MHz, mA,

rad V s , pF, pF,
, fF, , ,

ns, ns, and ns.
To apply the single-rate version of the model, it is first

necessary to calculate , and to apply the multirate
version of the model, it is first necessary to calculate .
Appendix A provides the equations required to calculate
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Fig. 6. Comparison between the transfer function for the single-rate �� � �� case and the transfer functions for the multirate �� � �� � � �� case.

and starting from the LF design values. Ex-
ecuting Steps 1)–6) in Appendix A with the LF design values
listed earlier yields

(13)

In addition, executing Steps 7) and 8) in Appendix A for
yields

(14)

where is given by (13) and

(15)

Substituting (14) and (15) into (12) yields for
. The same procedure can be used to obtain for any

positive integer .
These and functions can be used in the

versions of the model shown in Figs. 3 and 5, respectively, to
analyze the locked behavior of the SLF-PLL. As described ear-
lier, the model implies that the loop gain of the PLL is given
by (3). Substituting (13) into (3) and solving for the unity-gain
frequency indicate that the LBW of the PLL is 1 MHz, and it
follows from (4) that the PM of the PLL is 60 . Figs. 6–8 show
various additional aspects of the behavior of the SLF-PLL as
predicted by the two versions of the model.

Fig. 6 shows the phase noise transfer function from the ref-
erence signal input, i.e., the squared magnitude of (5) in deci-
bels with , as predicted by the single-rate
version of the model and the multirate version of the
model for and . As expected, there is little de-
viation among the predicted transfer functions for frequencies
below , and each transfer function is periodic with a pe-
riod of . In general, the larger the value of , the higher the
maximum frequency at which the transfer function predicted by
the model accurately represents that of the actual SLF-PLL. The
PLL bandwidth is relatively wide in this example, so the transfer
function is not highly attenuated at . In such cases, the
multirate version of the model provides useful information.

Fig. 7 shows plots of the squared magnitudes of (5)–(7) in deci-
bels with as predicted by the model with

and the corresponding transfer functions as predicted by
computer simulation. The plots suggest that model agrees well
with the simulation. The one exception is that the transfer func-
tions corresponding to (6) deviate somewhat at low frequencies,
but this has been traced to limitations of the simulator.

Fig. 8 shows a time-domain plot of the simulated VCO output
phase corresponding to a reference signal phase step, and the
corresponding sample values predicted by the model. As ex-
pected, the sample values predicted by the model fall precisely
on the simulated curve.

C. Synthesis Problem

As shown earlier, the proposed model al-
lows for straightforward analysis of an SLF-PLL
given the PLL design parameters, i.e., given

,
and . However, designers are often faced with the



WANG AND GALTON: DISCRETE-TIME MODEL FOR THE DESIGN OF TYPE-II PLLS WITH PASSIVE SLFS 269

Fig. 7. Comparison between the model and simulated results for various noise sources for a fractional-� PLL �� � ��.

Fig. 8. Simulated VCO output phase of the SLF-PLL corresponding to a reference signal phase step, and the corresponding sample values predicted by the model.

synthesis problem of choosing the SLF component values, i.e.,
, and , such that the PLL has a desired

LBW and PM. Typically, ,
and are known prior to choosing the SLF component
values because they depend on circuit-level considerations and
application requirements.

The model equations could be solved numerically to provide
the SLF component values in terms of the other PLL design pa-
rameters and the desired LBW and PM, but it is simpler to use
the following iterative approach. The first step is to choose the
LF component values for a conventional CLF-PLL that approx-
imately achieves the desired LBW and PM. Approximate equa-
tions that provide the values of , and for a conven-
tional CLF-PLL in the absence of and are well known

[12]. Typically, designers use these equations to find ,
and and then choose and such that the extra pole
they introduce has a high-enough frequency in that it negligibly
affects the LBW and PM. The second step is to iteratively adjust
the values of , and to compensate for the sampling op-
eration in the SLF using the proposed SLF-PLL model to guide
the iteration process.

As observed in [4], the sampling operation in an SLF de-
creases the PM of the PLL by approximately the product of the
LBW and the duration over which the switch is open each ref-
erence period, i.e.,

(16)
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Fig. 9. Reference and VCO phase noise transfer functions of the original CLF-PLL and the SLF-PLL obtained via the synthesis procedure.

where is the LBW. This loss in PM can be addressed by
increasing the ratio . Increasing moves one of the filter
zeros to a lower frequency, but typically is large, so moving
the zero significantly requires a significant increase in the circuit
area. Decreasing moves one of the filter poles to a higher fre-
quency, but this has the disadvantage of reducing the high-fre-
quency attenuation of the loop. Experimentally, a combination
of these two adjustments yields the best tradeoff between area
and high-frequency attenuation. The approach is to iteratively
adjust and and, at each iteration step, use the proposed
SLF-PLL model to evaluate whether further adjustment of
and is necessary. A similar iterative process can be used to
optimize the choices of and if necessary.

The amount by which the sampling operation affects the be-
havior of the SLF-PLL depends, to a large extent, on the LBW.
If the LBW is sufficiently low, the LF components obtained in
the first step mentioned earlier for the CLF-PLL can be used in
the SLF-PLL with only a minor degradation of the PM. Never-
theless, in such cases, the proposed SLF-PLL model is useful to
verify that no further adjustment is necessary.

D. Synthesis Example

Consider an integer- SLF-PLL for which ,
MHz, mA, rad V s ,

, ns, ns, and ns. Suppose
that it is desired to choose , and , such that
the LBW is 1 MHz and the PM is 60 .

The first step of the procedure described earlier is to choose
, and for a corresponding conventional

CLF-PLL. Applying the equations in [12] with fF,
k , an LBW of 1.015 MHz, and a PM of 67 yields

(17)

Note that the LBW and PM have both been increased relative
to the target values of 1 MHz and 60 , respectively, to approxi-
mately account for the effects of and which are neglected
by the equations in [12].

If the values in (17) are used without modification in the SLF-
PLL, the resulting LBW and PM are 960 kHz and 44 , respec-
tively. Iteratively adjusting and and, to a lesser extent,

, as described earlier, indicates that the SLF-PLL achieves
the target LBW and PM with

(18)

Fig. 9 shows the phase noise transfer functions from the
reference signal and the VCO for both the CLF-PLL and the
SLF-PLL in the aforementioned design example. Although the
corresponding transfer functions of the two PLLs are similar,
some differences are evident. The difference between the
transfer functions from the reference signal occurs because
in (18) is less than half of in (17). The difference between
the transfer functions from the VCO occurs because
in (18) is greater than that of (17). These differences are ex-
aggerated because of the high LBW in this example. A lower
LBW would result in less significant differences between the
two sets of curves.

Fig. 10 shows a comparison of SLF-PLLs and CLF-PLLs
using the same LF components. Two cases are examined: a
low-LBW (200 kHz) design and a high-LBW (1 MHz) de-
sign. In each case, MHz, and for the SLF-PLL,

. The results demon-
strate that it is reasonable to use the component values derived for
a CLF-PLL in an SLF-PLL when is small.

IV. DERIVATION OF THE PLL MODEL

A. Background Results

Once the PLL is locked, the output of the VCO can be mod-
eled as , where is some
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Fig. 10. Reference phase noise transfer functions of the CLF-PLL and SLF-PLL for low and high LBWs.

nonzero positive waveform and is the
ideal output frequency of the PLL. The PLL’s total phase noise
is given by

(19)

where is the phase noise caused by deviations of the
VCO control voltage from its mean value and is the
open-loop VCO phase noise, i.e., the phase noise that would
remain if the VCO control voltage were held constant. Therefore

(20)

where is the VCO gain and is the voltage for which the
free-running frequency of the VCO would be exactly in the
absence of .

Suppose that the PLL is already locked at time . Let
be the time of the th rising edge of the reference signal, and
let be the corresponding rising edge of the divider output for

. As shown in [8], the net charge delivered to or
removed from the LF by the CP during the th reference period
is

(21)

where is the magnitude of current pulses sourced and sunk
by the CP, is the quantization noise from the

noise-shaping quantizer, and is the phase noise of the
reference signal.

B. Derivation of the Single-Rate Version of the Model

The state of the SLF and at time can be represented
together as a vector given by

(22)

where is the total charge on all the LF capacitors,
is the charge on , and is the charge on , all at time
. Let , for , be a sampled version of ,

defined as

(23)

As proven in the next section

(24)

(25)

where , and and are a 4 4 matrix and a 1
4 vector, respectively. The elements of and are fixed num-
bers that depend only on the LF component values, ,
and .

In a practical PLL, has a bandwidth that is less than
a tenth of the reference frequency and for

, so it follows that

(26)

to a good approximation [8]. Consequently, (24) and (25) pro-
vide an expression for in terms of .
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Equations (24) and (25) are called state-space equations
[13]. They indicate that is the output of an LTI
discrete-time system with input . Appendix A provides
equations with which to obtain , and , and well-known
techniques are available to calculate the transfer function once

, and are known. For example, the built-in Matlab
command, i.e., , can be used. The result is
a four-pole three-zero function which can be written as

(27)

where has the form given by (2).
The single-rate model shown in Fig. 4 follows directly from

and is a graphical representation of (19), (21), (26), and (27).
The aforementioned derivation applies to fractional- PLLs.
However, by setting and , it also applies to
integer- PLLs.

The only approximation made in the model’s derivation is
(26). The standard model for conventional PLLs also relies on
this approximation. However, in contrast to the model presented
in this paper, the standard model for conventional PLLs relies on
several additional approximations.

C. Derivation of the Single-Rate State-Space Equations

Without loss of generality, can be taken to have zero
mean so that (20) reduces to

(28)

This simplifies the notation of the following derivation, yet it can
be verified that it does not change the results of the derivation.

The SLF is a time-varying circuit, but during any time interval
over which the switch either remains closed or remains open, it
reduces to an LTI system. Furthermore, it follows from (28) that

is an LTI function of the LF output.
Suppose that the switch is closed for the time interval from
to . As described in Section II, is zero when

the switch is closed, so the total charge in the SLF remains un-
changed during this time interval, i.e.,

(29)

Given that the system is linear and time invariant over the in-
terval, well-known linear systems theory results can be invoked
(see, e.g., Appendix B) to write the other elements of (22) at
time in terms of their values at time as

(30)

(31)

(32)

where each is an LTI system impulse response. For in-
stance, is the charge on as a function of in response

to a Dirac delta function current impulse, , injected
across the terminals of for the case in which the charge on
each capacitor is zero for . In particular, the time-invari-
ance property of (28) and the SLF over the time interval imply
that the factors in (30)–(32) depend only on the dura-
tion of the interval but not on the start time of the interval.

Equations (29)–(32) can be written more compactly as

(33)

where is given by (22) and

(34)

Now, suppose that the switch is open for the time interval
from to . As described in Section II, is not
necessarily zero when the switch is open, so

(35)

However, it follows from Fig. 2(b) that, when the switch is
open, does not affect the other elements of (22). There-
fore, equations for the other elements of (22) that apply to the
case in which the switch is open can be obtained by exactly the
same reasoning that led to (30)–(32). These equations, along
with (35), can be written as

(36)

where

(37)

and each is an LTI system impulse response. Specifically,
the expression for each is identical to that of the corre-
sponding except with replaced by .

These results can be combined to prove (24) and (25). It fol-
lows from Fig. 2(c), (23), (33), and (36) that

(38)

(39)

Substituting (38) into (39) yields (24) with

(40)

Similar reasoning leads to (25) with

(41)
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Fig. 11. Model for the multirate SLF and transformation to � ���.

D. Extension to the Multirate Version of the Model

Nearly identical reasoning to that presented earlier which led
to (25) and (41) also implies that

(42)

for in the range , where

(43)

Therefore, (42) and (43) can be used to obtain any sample of
in the range .

In particular

(44)

for , where

(45)

and is given by (10). For each value of , (44) defines an LTI
filter with input and output samples given by (44) for

. The transfer function of the th of such filter
has the form

(46)

where is obtained in the same way that is
obtained from , , and , as described in Section III-B, ex-
cept with replaced by . Note, in particular, that
by definition, so .

It follows that the SLF and VCO can be modeled as shown
in Fig. 11(a). With the noble identity for upsampling, this can
be redrawn as shown in Fig. 11(b) which is equivalent to the
system shown in Fig. 4(b), with as given by (12).

APPENDIX A

This Appendix describes all the calculations necessary
to obtain and starting from the values of

, and . The calcu-
lations are most easily implemented via a computer calculation
script executed by a software tool such as Matlab. Therefore,
the calculations are listed hereinafter in the form of specific
steps that must be executed by such a calculation script. Steps
1)–6) specify the calculation details of in (2). Steps
1)–5) followed by Steps 7)–8) specify the calculation details of

in (12).
1) Define the following functions of the variables

, and :

where

2) Define the following functions of the variables
, and and the functions defined in

Step 1):
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3) Define the following 4 4 matrix function of the variable
and the functions defined in Steps 1) and 2):

(47)

where

Therefore, with the functions defined in Steps 1) and 2)
substituted into the functions defined in Step 3), is
a matrix function of the variables ,
and .

4) Define the following 4 4 matrix functions of
, and using the matrix func-

tion defined in Step 4):

5) With numerical values for
, and and

the matrix functions from Step 4), calculate the
following 4 4 matrix of numbers:

and the following 1 4 vector of numbers:

6) Calculate the poles, zeros, and scale factor of in
(2) from its state-space representation as specified by the

matrix and vector from Step 5) and .
For example, this can be done using the Matlab function

7) With numerical values for
, and and the

matrix functions from Step 4), calculate the following 1
4 vectors of numbers for :

where

8) For each , calculate the poles, zeros, and
scale factor of each function [which has the same
form as (2)] from its state-space representation as specified
by the matrix from Step 5), the vector from Step 7),
and . For example, this can be done using
the Matlab function

Substitute the resulting functions into (12) to
obtain .

APPENDIX B

This Appendix derives (31) and (32) to find expressions for
the third and fourth row elements of in (34). The deriva-
tion of (30) is not presented because it is almost identical to that
of (31).

Let denote the capacitor to the left of the switch, let
denote the capacitor to the immediate right of the switch

in Fig. 2(b), and let their respective charges at be and
. Then, the charge on can be written as

(48)

where is the charge transfer function from capacitor
to capacitor , is the charge transfer function

from capacitor to capacitor , is the charge
transfer function from capacitor to capacitor , and

is the charge transfer function from capacitor to
capacitor , all over a time interval of . These charges can
be expressed in terms of the elements of as

(49)

Substituting (49) into (48) leads to (31) with

(50)
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The functions can be found by computing the in-
verse Laplace transform of the -domain charge transfer func-
tion from any one of the capacitors to any other and then evalu-
ating the result at . For example, suppose that the switch
is closed and consider . In the -domain, the
charge on capacitor due to charge on capacitor is given
by

(51)

where and are the -domain voltage and current associ-
ated with capacitor , and are those for capacitor ,
and are the two non-dc poles of , and

represents the initial charge on capacitor .
Taking the inverse Laplace transform of (51) yields

(52)

where

(53)

(54)

Repeating this calculation for all the functions and
substituting the results into (50) lead to the third row of (34).

Now, consider the transfer functions associated with the state
variable . The VCO integrates the voltage on capacitor

. Thus

(55)
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