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Abstract—A major problem in oversampling digital-to-analog
converters and fractional- frequency synthesizers, which are
ubiquitous in modern communication systems, is that the noise
they introduce contains spurious tones. The spurious tones are the
result of digitally generated, quantized signals passing through
nonlinear analog components. This paper presents a new method
of digital requantization called Successive Requantization, special
cases of which avoids the spurious tone generation problem.
Sufficient conditions are derived that ensure certain statistical
properties of the quantization noise, including the absence of
spurious tones after nonlinear distortion. A practical example is
presented and shown to satisfy these conditions.

Index Terms—Dither techniques, nonlinearities, quantization.

I. INTRODUCTION

OVERSAMPLING digital-to-analog converters (DACs)
and fractional- phase-locked loops (PLLs) are each en-

abling components in modern communication systems [1]–[3].
In both components, a digital delta-sigma modulator,
i.e., a modulator implemented with digital logic, is used to
coarsely quantize a constant or slowly varying digital sequence.
The quantized sequence can be viewed as the sum of the original
sequence plus spectrally shaped quantization noise that has most
of its power outside of a given low-frequency signal band. Ulti-
mately, the quantized sequence is converted to an analog signal
and further processed by analog circuitry including a low-pass
filter to suppress quantization noise outside of the signal band.

In most communications applications, it is critical that any
spurious tones in the noise introduced by DACs and frac-
tional- PLLs have very low power [2], [4]. In principle, dither
applied to a modulator can prevent the quantization noise
from containing any spurious tones whatsoever [5], [6]. Never-
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theless, in practice digital modulators are major sources of
spurious tones in oversampling DACs and fractional- PLLs
[7], [8]. Regardless of how dither is applied, all modulator
architectures known to the authors give rise to spurious tones
when their quantization noise is subjected to nonlinear dis-
tortion. This is particularly problematic in fractional- PLLs
wherein the input to the modulator usually is a constant
and the output sequence from the modulator is converted
to analog form and subjected to various nonlinear operations
because of nonideal circuit behavior. Heretofore, the only
known solution was to make the analog circuitry very linear
so that the spurious tones have sufficiently low power for the
given application. Unfortunately, this limits design options and
results in higher analog circuit power consumption than would
be required if fewer linear analog circuits could be tolerated.

This paper presents a new type of digital quantizer, referred
to as a Successive Requantizer, that addresses this problem. The
paper presents sufficient conditions on the successive requan-
tizer’s design parameters to ensure certain statistical properties
of the requantization noise and the running sum of the requan-
tization noise. These properties include the absence of spurious
tones under application of nonlinear distortion. An example
is presented that satisfies the conditions and is demonstrated
via computer simulation. The work borrows ideas from dc-free
codes [9], [10] and dynamic element matching tree structured
encoders [11], [12]. In particular, the work in [12] reflects the
operation of a successive requantizer in a limited context.

The paper consists of three main sections. Section II presents
the principle of successive requantization, as well as an example
that illustrates the appearance of spurious tones when the quan-
tized sequence is subjected to nonlinear distortion. Section III
presents the sufficient conditions mentioned above. Section IV
presents an example successive requantizer that satisfies the suf-
ficient conditions.

II. SUCCESSIVE REQUANTIZATION

A. Spectral Properties of Interest

As outlined above, fractional- PLLs and delta-sigma DACs
ultimately generate analog waveforms. Each such waveform
contains components corresponding to digitally generated
quantization noise, , and, in the case of fractional- PLLs,
its running sum

(1)
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Fig. 1. (a) High-level block diagram of the successive requantizer. (b) Quantization block details. (c) Signal processing model.

Moreover, inevitable nonideal analog circuit behavior generally
causes nonlinear distortion. The distortion can be any nonlinear
function, but for almost all practical applications can be repre-
sented by a memoryless, truncated power series. This gives rise
to components in the output waveform corresponding to
for , and for , where

and are the highest significant orders of distortion for the
given application applied on and , respectively.

Most communication system standards specify the required
performance of such systems in terms of quantities that can
be measured using spectrum analyzers, so the properties of the
waveforms typically are quantified in the laboratory using spec-
trum analyzers. Although the waveforms themselves are consid-
ered to be random processes in most cases, spectrum analyzers
can only average over time, not over ensemble. Therefore, in
such applications the properties of the periodograms of
and given by

(2)

and

(3)

are of particular interest, rather than traditional power spectral
density (PSD) functions [13]. It is well known that in certain
cases the expected values of the periodograms converge to the
true PSD functions in the limit as , but in the applica-
tions mentioned above this is not a requirement, or even rele-
vant to the measured performance. Hence, the results presented

in this paper focus on the properties of the periodograms given
by (2) and (3).

B. Signal Processing Model of the Successive Requantizer

The proposed successive requantizer architecture is shown in
Fig. 1(a). Its input is a sequence of -bit numbers, , and
its output is a sequence of -bit numbers, , where

, is the time index of the sequences. The suc-
cessive requantizer consists of quantization blocks, each of
which quantizes its input by one bit, so the successive requan-
tizer quantizes bits overall.1

The high-level details of each quantization block are shown in
Fig. 1(b) and the signal-processing model is shown in Fig. 1(c).
Each quantization block generates a quantization sequence,

, with the property that is an even number for
each , where is the quantization block’s input sequence.
The quantization block adds to and discards the
least significant bit (LSB) to implement the 1-bit quantization.
Without loss of generality, numbers within the successive
requantizer are taken to be integers with a two’s-complement
binary number representation. Since is an even
number for each , its LSB is zero, so discarding the LSB
does not incur a truncation error. Hence, the quantization noise
of the successive requantizer is a weighted sum of the
sequences

(4)

1Quantization blocks that quantize their input sequences by more than one
bit could be used. However, it is straightforward to show that this is a trivial
extension of the one-bit-per-stage case.
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So far, the only restriction on the sequences is that
must be an even integer for each and .

This leaves considerable flexibility in the design of the
sequences which is exploited in the remainder of the paper to
achieve the desired quantization noise properties.

The versions of the successive requantizer considered in this
paper partially exploit this flexibility to have first-order high-
pass shaped quantization noise, i.e., they are designed such that
the running sum of each sequence

(5)

is bounded over all and that the estimated power spectrum of
has a high-pass spectral shape. It follows from (4) that the

overall quantization noise, , inherits the spectral shape of
the sequences, and similarly that the running sum of the
quantization noise

(6)

is bounded.
The restriction to first-order high-pass shaped quantiza-

tion noise still leaves flexibility in the design of the
sequences. This flexibility is exploited in the remainder of the
paper to ensure that for , and for

are free of spurious tones, where and
are positive integers. By definition, if and contain
spurious tones at a frequency , then (2) and (3), respectively,
are expected to be unbounded in probability at as

. Therefore, to establish that there are no spurious
tones in either or , it is sufficient to show that (2) and
(3) are bounded in probability for all as . A
spurious tone at is just a constant offset. Many practical
systems are able to tolerate, or compensate for this offset so
this case is excluded from consideration. Theorems 1 and 2
in the next section present sufficient conditions on the
sequences for (2) and (3) to be bounded in probability for every

and , thereby ensuring the absence of
spurious tones in and .

C. Example Successive Requantizer, Appearance of Spurious
Tones, and Comparison to Prior Art

As shown in [14], first-order high-pass quantization noise is
achieved with quantization blocks that implement

even
odd
odd
odd

(7)

where is an independent random sequence that takes on the
values 1 and 1 with equal probability. The results presented in
[15] imply that neither nor contain spurious tones.
Therefore, and inherit these properties provided the

sequences for are independent. This is
demonstrated by the estimated power spectra shown in Fig. 2

Fig. 2. Estimated power spectra of the quantization noise and its running sum
for the successive requantizer presented in Section II.

Fig. 3. Estimated power spectra of the square of the running sum of the quan-
tization noise for the successive requantizer presented in Section II.

which correspond to a simulated successive requantizer with
, , and quantization blocks that imple-

ment (7).
However, if the quantization noise or its running sum is sub-

jected to nonlinear distortion, spurious tones can be induced. For
instance, Fig. 3 shows the estimated power spectrum of for
the simulation example described above. Discrete spikes are evi-
dent in the plot, and it can be shown that the spikes grow without
bound in proportion to the periodogram length. Therefore, the
spikes represent spurious tones. The presence of spurious tones
implies that subjecting to second-order distortion is suffi-
cient to induce spurious tones even though is known to be
free of spurious tones.

The spur generation mechanism can be understood by
considering the first quantization block. Suppose the input
to the successive requantizer is an odd-valued constant and

for some value of . Then (7) implies that
is either ( 1, 1) or (1, 1) depending on

the polarity of . It follows from (5) that
is either ( 1, 0) or (1, 0), and, by induction, has the
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form . Therefore, has the
form which is periodic. A similar,
but more involved analysis can be used to show that the
sequences for also contain periodic components. These
periodic components cause the spurious tones visible in Fig. 3.

Other methods of implementing noise-shaped quantizers are
presented in [16]–[19]. However, these methods specifically
focus on stabilizing noise-shaped coders and do not address
the effect of nonlinearities on the quantization error. Succes-
sive requantization distinguishes itself from these methods in
that it eliminates spurious tones that arise after subjecting the
quantization error to nonlinear distortion.

III. THEORY FOR TONE-FREE QUANTIZATION SEQUENCES

It is assumed throughout the remainder of the paper that the
input to the quantizer, , is an integer-valued and determin-
istic sequence for , and that the successive requan-
tizer is designed such that the following properties are satisfied:

Property 1: is integer-valued
for , and .
Property 2: there exists a positive constant such that

, for .
Property 3: , and

(8)

where is
a set of independent identically distributed (iid) random
variables, and

if is odd
if is even

(9)

is called the parity sequence of the th quantization block.
Furthermore, is a deterministic function which
does not depend on .

Property 2 guarantees first-order spectral shaping of the quan-
tization error by ensuring that takes on a finite number of
values for all . However, it need not be an optimal bound on
the quantization error of the successive requantizer. Much of the
literature concerning noise-shaped coders is focused on mini-
mizing some error function, which typically results in a mini-
mization of the quantization error [17]. This paper posits that
by relaxing this bound, and hence incurring more quantization
error power, useful properties can be obtained such as the re-
moval of spurious tones under nonlinearities.

Property 1 and the assumption that is integer-valued
imply that is an even integer when is even, and an
odd integer otherwise. Therefore, (5) implies that is in-
teger-valued, and Property 2 further implies that it is restricted
to a finite set of values. Let denote these values.
Therefore, the function in Property 3 takes on values restricted
to the set .

It follows from Properties 1, 2, and 3 that , , and
, for , and , depend only

on the set of iid random variables
and the deterministic successive requan-

tizer input sequence, . Therefore, the

sample description space of the underlying probability space is
the set of all possible values of the random variables

and .
Equation (5) implies that

(10)

Therefore, it follows from Property 1 that

(11)

for . Recursively substituting (11) into itself and
applying (9) yields

(12)
Recursively substituting (8) into itself implies that for any in-
teger ,

(13)

where is a deterministic, memoryless function. Similarly, for
any pair of integers , recursively substituting (8)
into itself times implies that

(14)

where is a deterministic, memoryless function.
Repeatedly substituting (12) into (13) to eliminate the

variables and then recursively sub-
stituting the result into itself to eliminate the variables

shows
that is a random variable that depends only on

(which is deterministic), and the random variables
. This in

conjunction with (12) implies that is a random vari-
able that depends only on , and the random variables

. In particular
since the random sequence does not
depend on the random sequence and
since all the random variables

are statistically independent by Property 3, it fol-
lows that and
are statistically independent random sequences. By similar
reasoning, the random variable is statistically independent
of the random variables .

Hence, (14) implies that conditioned on the random
variables is a
function only of the statistically independent random vari-
ables . By definition, for

the random variables
are statistically independent of the random variables

. Therefore, for
the random variables and conditioned on

,
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are statistically independent. Conse-
quently, for any positive real numbers ,

(15)

where the second equality follows from (8) and the inde-
pendence of the sequences for

. This implies that the probability mass
function (pmf) of the random variable conditioned on

is independent of any ad-
ditional conditioning by
for .

The statistical independence of and together with
(8) imply that is a discrete-valued Markov
random sequence conditioned on the sequence

. Whenever is odd, the one-step state transition
matrix for is given by

(16)

Similarly, whenever is even the one-step state transition
matrix for is given by

(17)

The function in Property 3 is independent of and , so nei-
ther matrix is a function of and .

Equation (10) implies that each possible value of is
given by for some pair of integers and , , ,
so

(18)

Given that is restricted to possible values, is re-
stricted to possible values where . With identical
reasoning to that used to proceed from (11)–(15), it follows that

(19)

Given that is a discrete-valued Markov
random sequence conditioned on the sequence

, the conditional pmf of given and
is equal to the conditional pmf of given ,
and . Therefore, (10) implies that (19) is equivalent to

(20)

The following definitions are used by the theorems presented
below. In analogy to the matrices and , let

(21)

and

(22)

where is the set of all possible values of .
Property 3 ensures that neither matrix is a function of and .
It follows from (18) that each nonzero element of or is
equal to an element in or , respectively. For example, if

, then the element in the th row and th column
of is equal to the element in the th row and th column of

. In this fashion, once and are known, and can
be deduced.

Let

...
... and ...

(23)

Suppose a sequence of vectors, con-
verges to a constant vector, , as . Then the conver-
gence is said to be exponential if there exist constants
and such that

(24)

for all and .
Theorem 1: Suppose that the state transition matrices and

satisfy

(25)

and there exists an integer such that for each positive
integer

and (26)
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where is a constant and the convergence of both vectors is
exponential. Then for every

(27)

for each . Moreover, the bound , which is
independent of , is uniform in for all .

By Markov’s Inequality [20], this immediately leads to:
Corollary 1: Under the assumptions of Theorem 1,

is bounded in probability for all and for each satisfying
.

Proof of Theorem 1: The expectation of can be ex-
pressed as

(28)

The notation above means that and are defined as the
first and second terms, respectively, to the left of the symbol.
Property 2 states that , so it follows from (6) that

for some finite constant . Therefore, .
The crux of the proof is showing that there exists a constant ,
positive constants , and a constant such that
for

(29)

The proof of (29), is outlined in Lemma 1 in the Appendix. Here
(29) is used to complete the proof of the theorem. From (28),
can be expressed as

(30)

From (29) it is seen that

(31)

and the bound is independent of . Similarly, can be
bounded by

(32)

which is finite, independent of , for each satisfying
; the bound is uniform for all satisfying
since . The result of the theorem

then follows from (28)–(32).
Theorem 2: Suppose that the state transition matrices and

satisfy

(33)

and there exists an integer such that for each positive
integer , the sequence transition matrices and
satisfy

(34)

where is a constant and the convergence of all vectors are
exponential. Then for every

(35)

for each . Moreover, the bound , which is
independent of , is uniform in for all .

By Markov’s Inequality, this immediately leads to:
Corollary 2: Under the assumptions of Theorem 2,

is bounded in probability for all and for each satisfying
.

Proof of Theorem 2: The proof is identical to that of Theorem
1. Replacing and with and respec-
tively, the crux of the proof is showing that there exists a con-
stant , positive constants , , and a constant
such that for

(36)

With (36) proven in Lemma 2 in the Appendix, the remainder
of the proof follows directly from Theorem 1.

IV. A SUCCESSIVE REQUANTIZER THAT SATISFIES

THEOREMS 1 AND 2

A. Verification of Example Matrices

Matrices , , , and which can be used with the suc-
cessive requantizer to generate quantized sequences and satisfy



5388 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 11, NOVEMBER 2007

the conditions of Theorems 1 and 2 for and are
presented in this section.

For a state whose possible values are ,
define

(37)

and the proposed state transition matrices as

and

(38)

From (10) all possible values are
, and further define

(39)
Applying (18) yields

and

(40)

Multiplying the matrices in either order yields

(41)

so the matrices commute. Direct computation reveals that the
eigenvectors of both and are linearly independent, and
therefore and are diagonalizable [21]. Specifically,

, where

and (42)

and , where

and (43)

By inspection of (42), converges to

(44)

The vector given by is equal to , where
0, 1 and 0 for 1, 2, and 3, respectively, which is of

the form required by Theorem 1. To show exponential conver-
gence, consider

(45)

where is the norm, and , 2 or 3. Evaluating for
, and yields and ,

respectively, therefore the right side of (45) is equal to

(46)

and therefore each element of the vector given by
converges exponentially to zero.

By inspection of (43), does not converge, however, it
is sufficient to show that the vector converges.
Consider where

and

(47)



SWAMINATHAN et al.: DIGITAL REQUANTIZER WITH SHAPED REQUANTIZATION NOISE 5389

Fig. 4. First-order �� modulator.

Multiplying by for 1, 2 or 3 results in
a vector with all zero elements for all . Therefore, for
all and 1, 2, or 3, . By
inspection, converges to

(48)

The vector given by is equal to , where
, 1 and 0 for , 2 and 3 respectively. Replacing ,

, , and in (45) with , , , and re-
spectively shows that converges exponentially
to . Therefore the state transition matrices given by (38) sat-
isfy the conditions of Theorem 1 for .

Using the decomposition in (42) and (43) and the sequence
transition matrices given by (40), it can be shown by direct com-
putation that , , and
converges to , where 0, 1.5, 0, 6, and 0 for 1, 2,
3, 4 and 5, respectively. Furthermore, the convergence of each
vector at index can be bounded using (45), replacing
alternately with and , which implies that the
convergence of , , and
are exponential. Therefore, the matrices , , , and
given in (38) and (40) also satisfy the conditions of Theorem 2
for .

B. Simulation Results and Comparisons

The successive requantizer presented above performs first-
order quantization noise shaping. Therefore, it is reasonable
to compare its quantization noise characteristics to those of a
first-order modulator of the type shown in Fig. 4. The

modulator consists of a discrete-time integrator and a
mid-tread quantizer enclosed in a negative feedback loop. A
random iid dither sequence, , is added to the output of the
discrete-time integrator prior to the quantizer to ensure that
the quantization noise sequence introduced by the quantizer is
white (and therefore free of spurious tones) [22]. The quantizer
implements

Fig. 5. Distortion polynominals applied on t[n] and s[n].

where is the floor function, and the dither sequence has a
triangular pmf with support on .

Simulation results for the successive requantizer presented
above and the modulator with and a constant input
of are shown in Fig. 6. The quantization noise,
as well as its running sum for both the successive requantizer
and the modulator are subjected to the following distortion
polynomials graphically shown in Fig. 5

(49)

which represent levels of distortion typically found in frac-
tional- PLLs [23]. Fig. 6 shows the estimated power spectra
of the quantization noise and integrated quantization noise
before and after application of the distortion polynomials. The
estimated power spectra of the sequences, or , are
taken to be the average of the periodograms of the windowed
sequences, and , for

, where is a Hanning window of length
. As expected from the theoretical results presented above,

no spurious tones are apparent in the figures for the succes-
sive requantizer before or after application of the distortion
polynomials. In contrast, spikes, which imply the presence of
spurious tones, are evident in the estimated power spectra of
the quantization noise from the modulator after application
of the distortion polynomials.

The distortion polynomials in (49) are applied to the quantiza-
tion noise and integrated quantization noise of the noise-shaped
coding schemes in [16]–[19], with the result shown in Fig. 7.
The example noise-shaped coders used to generate the data in
Fig. 7 are a third-order single-bit delta-sigma modulator with

[16], a fifth-order coder with a quantizer step size,
of 1/8 [17], a first-order single loop delta-sigma modulator with
a time horizon of two samples [18], and a second-order coder
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Fig. 6. Estimated power spectra of (a) the quantization noise sequences, and (b) the running sums of the quantization noise sequences of the first-order ��
modulator and the successive requantizer presented in Section IV before and after application of nonlinear distortion.

with 7/3 [19]. Spurious tones are evident in both the quan-
tization noise, and integrated quantization noise. Furthermore,
the same distortion polynominals are applied to the quantiza-
tion noise and integrated quantization noise of the successive
requantizer presented above with a full-scale sinusoidal input at
a frequency of 1/64 the sample rate. As expected from the the-
oretical results, a periodic input also does not result in spurious
tones in the quantization noise before or after application of the
distortion polynominals.

APPENDIX

This Appendix contains the proof for Lemmas 1 and 2, used
in Theorems 1 and 2, respectively.

Lemma 1: Suppose the conditions of Theorem 1 are satisfied.
Then there exists a constant , positive constants , and
a constant such that for

(50)

Proof of Lemma 1: To establish (50), it suffices to assume
that . Using (6), can be expressed as

(51)
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Fig. 7. Estimated power spectra of (a) the quantization noise sequences, and (b) the running sums of the quantization noise sequences of (clockwise from upper
left) the successive requantizer presented in Section IV with a periodic full-scale sinusoidal input, the noise shaped coders from [16]–[19].

It is seen that the above expression is a finite sum of terms of
the form

(52)

where and are positive integers less than or equal to . It
thus suffices to establish a bound for of the form

(53)

The right side of (52) is computed by conditional expectation as
follows:

(54)
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Substituting (15) into the inner conditional expectation of (54)
yields

(55)

Since is a Markov process for any
given parity sequence, where

, it follows from (16) and (17) that the -step
state transition matrix corresponding to from time to
time can be written as

(56)

where is an matrix with elements of the form

(57)

Since is either 1 or 0 for each , (25) can be used to write
(56) as

where (58)

By definition, or depending on the
given parity sequence. It follows from the exponential conver-
gence of (26) that there exists positive numbers and
and positive numbers and less than unity such that
each element of

(59)

is less than for , and each element

(60)

is less than for .
The matrices and are stochastic matrices, so

, and

(61)

(62)

Since the elements of the vectors in (59) and (60) are exponen-
tially bounded, the same must be true for the vectors in (61) and
(62). From (58) it follows that the right side of either (61) or
(62) is equal to

(63)

Therefore, in general each element of (63) has a magni-
tude less than where and

, which implies that

(64)
as uniformly in where the convergence is also ex-
ponential. This result is independent of the given deterministic
sequence , so it implies that

(65)

almost surely as uniformly in where the convergence
is also exponential.

Thus, the inner conditional expectation in (55) converges ex-
ponentially to as with probability one so that

(66)

More precisely, the exponential convergence of (66) implies that
for every

(67)

with probability one where is a constant that depends on
. For every

(68)

where is given from Property 2. By similar reasoning, it can
be established that

(69)

Hence, the above two bounds imply there exist positive con-
stants and such that for all

(70)
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Consequently, there exists a constant such that

(71)

which is of the required form.
Lemma 2: Suppose the conditions of Theorem 2 are satisfied.

Then there exists a constant , positive constants , and
a constant such that for

(72)

Proof of Lemma 2: The proof is similar to that of Lemma 1,
so only the nontrivial differences with respect to the proof of
Lemma 1 are presented.

Similarly to the proof of Lemma 1, it is necessary to show
that

(73)

almost surely as uniformly in where the conver-
gence is also exponential. With this result and , , and (20)
playing the roles of , , and (15) in the proof of Lemma 1,
respectively, the proof of Lemma 2 is almost identical that of
Lemma 1. Therefore, it is sufficient to prove (73).

Since the random variables and are statistically
independent, for any given parity sequence,

where , it follows from (21), (22), and
(57) that

(74)

where is an matrix with elements of the
form

(75)

where is the row index and is the column index. By similar
reasoning to that used in the proof of Lemma 1, (33) and (34) to-
gether imply that there exists a positive number and a positive
number less than unity such that each element of the vector

(76)

has a magnitude less than . Thus, (76) implies that

(77)

as uniformly in where the convergence is also ex-
ponential. This result is independent of the given deterministic

sequence , so it implies that (73) holds al-
most surely as uniformly in where the convergence
is also exponential.

ACKNOWLEDGMENT

The authors would like to acknowledge S. Pamarti and J. Welz
for helpful discussions relating to this work.

REFERENCES

[1] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Con-
verters. New York: Wiley-IEEE Press, 2004.

[2] B. Razavi, Phase-Locking in High-Performance Systems: From De-
vices to Architectures. New York: Wiley-Interscience, 2003.

[3] I. Galton, “Delta-sigma data conversion in wireless transceivers,” IEEE
Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 302–315, Jan. 2002.

[4] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[5] S. Pamarti, J. Welz, and I. Galton, “Statistics of the quantization noise
in one-bit dithered single-quantizer digital delta-sigma modulators,”
IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 54, no. 3, pp. 492–503,
Mar. 2007.

[6] W. Chou and R. M. Gray, “ Dithering and its effects on sigma-delta
and multistage sigma-delta modulation,” IEEE Trans. Inf. Theory, vol.
37, no. 3, pp. 500–513, May 1991.

[7] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz
delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation,” IEEE
J. Solid-State Circuits, vol. 39, no. 1, pp. 49–62, Jan. 2004.

[8] B. De Muer and M. Steyaert, “A CMOS monolithic ��-controlled
fractional-N frequency synthesizer for DCS-1800,” IEEE J. Solid-State
Circuits, vol. 37, no. 7, pp. 835–844, Jul. 2002.

[9] B. H. Marcus and P. H. Siegel, “On codes with spectral nulls at rational
submultiples of the symbol frequency,” IEEE Trans. Inf. Theory, vol.
IT-33, no. 4, pp. 557–568, Jul. 1987.

[10] G. L. Pierobon, “Codes for zero spectral density at zero frequency,”
IEEE Trans. Inf. Theory, vol. IT-30, no. 2, pp. 435–439, Mar. 1984.

[11] I. Galton, “Spectral shaping of circuit errors in digital-to-analog con-
verters,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process.,
vol. 44, no. 10, pp. 808–817, Oct. 1997.

[12] E. Fogleman and I. Galton, “A digital common-mode rejection tech-
nique for differential analog-to-digital conversion,” IEEE Trans. Cir-
cuits Syst. II: Analog Digit. Signal Process., vol. 48, no. 3, pp. 255–271,
Mar. 2001.

[13] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[14] J. Welz, I. Galton, and E. Fogleman, “Simplified logic for first-order
and second-order mismatch-shaping digital-to-analog converters,”
IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 48,
no. 11, pp. 1014–1027, Nov. 2001.

[15] J. Welz and I. Galton, “A tight signal-band power bound on mismatch
noise in a mismatch shaping digital-to-analog converter,” IEEE Trans.
Inf. Theory, vol. 50, no. 4, pp. 593–607, Apr. 2004.

[16] A. J. Magrath and M. B. Sandler, “Efficient dithering of sigma-delta
modulators with adaptive bit flipping,” Electron. Lett., vol. 31, no. 11,
pp. 846–847, May 1995.

[17] S. H. Yu, “Noise-shaping coding through bounding the frequency-
weighted reconstruction error,” IEEE Trans. Circuits Syst. II: Expr.
Briefs, vol. 53, no. 1, pp. 67–71, Jan. 2006.

[18] D. E. Quevedo and G. C. Goodwin, “Multistep optimal analog-to-dig-
ital conversion,” IEEE Trans. Circuits and Systems I: Regular Papers,
vol. 52, no. 3, pp. 503–515, Mar. 2005.

[19] I. Daubechies and R. DeVore, “Approximating a bandlimited func-
tion using very coarsely quantized data: A family of stable sigma-
delta modulators of arbitrary order,” Ann. Math., vol. 158, no. 2, pp.
679–710, 2003.

[20] A. Papoulis and S. Unnikrishna Pillai, Probability, Random Variables
and Stochastic Processes. New York: McGraw-Hill, 2002.

[21] R. A. Horn and C. A. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[22] R. M. Gray and T. G. Stockham, Jr., “Dithered quantizers,” IEEE Trans.
Inf. Theory, vol. 39, no. 3, pp. 805–812, May 1993.

[23] A. Swaminathan, K. J. Wang, and I. Galton, “A wide-bandwidth
2.4GHz ISM-band fractional-N PLL with adaptive phase-noise can-
cellation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, San Francisco, CA, Feb. 2007, pp. 302–303, 604.



5394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 11, NOVEMBER 2007

Ashok Swaminathan (S’96) received the B.A.Sc.
degree in computer engineering from the University
of Waterloo, Waterloo, ON, Canada, the M.Eng.
degree in electronics engineering from Carleton Uni-
versity, Ottawa, ON, Canada, and the Ph.D. degree
from the University of California at San Diego, La
Jolla, in 1994, 1997, and 2006, respectively.

From 1997 to 2000, he was with Philsar Semicon-
ductor, which was later acquired by Skyworks So-
lutions, developing analog and mixed-signal circuits
for low-power wireless transceivers. Since 2006, he

has been with NextWave Broadband, San Diego, CA, designing high-perfor-
mance frequency synthesizers for WiMAX applications.

Andrea Panigada (S’05) received the Laurea degree
in electrical engineering from the University of Pavia,
Pavia, Italy, in 1999.

From 2000 to 2004, he worked for STMicro-
electronics as a Design Engineer at the Studio di
Microelettronica of Pavia, a design center founded
by STMicroelectronics with the cooperation of the
Electronic department of the University of Pavia.
There he conducted research in algorithms for the
digital calibration of analog-to-digital converters and
in the design of CMOS prototypes of sigma-delta

and pipelined ADCs. In 2003, he spent one year as a visiting scholar at the Uni-
versity of California at San Diego (UCSD), where he worked at the Integrated
Signal Processing Group (ISPG). Since 2005, he has been pursuing the Ph.D.
degree at UCSD, where he joined the ISPG. His research interests are in the
field of mixed-signal integrated circuits and systems, including data converters.

Elias Masry (S’64–M’68–SM’83–F’86) received the B.Sc. and M.Sc. degrees
from the Technion–Israel Institute of Technology, Haifa, Israel, in 1963 and
1965, respectively, and the M.A. and Ph.D. degrees from Princeton University,
Princeton, NJ, in 1966 and 1968, respectively, both in electrical engineering.

From 1955 to 1959, he served in the Israel Defense Forces. From 1963 to
1965, he was a Teaching Assistant at the Technion. Since 1968, he has been
on the faculty of the University of California at San Diego, La Jolla, CA, and
is currently a Professor of electrical engineering. His current research interests
include spectral, probability density, and regression functions estimation in a
time series context, function estimation from nonequally spaced data, analysis
of adaptive filtering algorithms and wireless communication systems.

Dr. Masry was the Associate Editor for Stochastic Processes of the IEEE
TRANSACTIONS ON INFORMATION THEORY from 1980 to 1983.

Ian Galton (M’92) received the Sc.B. degree from
Brown University, Providence, RI, in 1984, and the
M.S. and Ph.D. degrees from the California Institute
of Technology, Pasadena, CA, in 1989 and 1992, re-
spectively, all in electrical engineering.

Since 1996, he has been a Professor of electrical
engineering at the University of California at San
Diego, where he teaches and conducts research in
the field of mixed-signal integrated circuits and
systems for communications. Prior to 1996, he was
with the University of California at Irvine, and prior

to 1989, he was with Acuson and Mead Data Central. His research involves the
invention, analysis, and integrated circuit implementation of critical communi-
cation system blocks such as data converters, frequency synthesizers, and clock
recovery systems. In addition to his academic research, he regularly consults at
several semiconductor companies and teaches industry-oriented short courses
on the design of mixed-signal integrated circuits.

Dr. Galton has served on a corporate Board of Directors, on several corporate
Technical Advisory Boards, as the Editor-in-Chief of the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, as
a member of the IEEE Solid-State Circuits Society Administrative Committee,
as a member of the IEEE Circuits and Systems Society Board of Governors, as
a member of the IEEE International Solid-State Circuits Conference Technical
Program Committee, and as a member of the IEEE Solid-State Circuits Society
Distinguished Lecturer Program.


