
492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 3, MARCH 2007

Statistics of the Quantization Noise in 1-Bit Dithered
Single-Quantizer Digital Delta–Sigma Modulators
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Abstract—An analysis of the quantization noise introduced by
a widely-used class of single-quantizer digital delta–sigma (��)
modulators with low-level, 1-bit dither is presented. Necessary
and sufficient conditions are derived that ensure, in an asymptotic
sense, various ensemble statistical properties of the quantization
noise such as uniformity and independence from the input and
delayed versions of itself. The conditions are also shown to be
sufficient for a single realization of the quantization noise sequence
to possess these properties in a time-averaged sense. Several of the
most commonly-used digital�� modulators are shown to satisfy
the conditions.

Index Terms—Delta–sigma (��) modulation, dither tech-
niques, quantization.

I. INTRODUCTION

HIGH-PERFORMANCE analog-to-digital converters
(ADCs), digital-to-analog converters (DACs), and frac-

tional- phase-locked loops (PLLs) based on delta–sigma
( ) modulation—collectively referred to as data con-
verters—are enabling components in consumer communica-
tions and entertainment products including cellular telephones,
wireless LANs, modems, and MP3 players. The basic concept
underlying data converters is that of performing coarse
quantization within a feedback loop such that the power of
the resulting quantization noise is suppressed within some
frequency band of interest. This technique is known generally
as quantization noise shaping, but in the context of data con-
version is usually referred to as modulation for historical
reasons [1]. Devices that perform modulation are referred
to as modulators.

The two most basic classes of modulators are analog and
digital. Analog modulators quantize continuous-amplitude
input signals to generate discrete-amplitude, quantized output
signals. They are used in oversampling ADCs. Digital mod-
ulators requantize discrete-amplitude input signals to generate
more coarsely quantized discrete-amplitude output signals. Dig-
ital modulators are used in oversampling DACs and frac-
tional- PLLs, examples of which are shown in Fig. 1.

Although the number of commercially deployed digital
modulators far exceeds that of analog modulators, most of
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Fig. 1. Digital �� modulators in (a) an oversampling DAC, and (b) a frac-
tional-N PLL.

Fig. 2. (a) Generic SQDSM. (b) 1-bit dithered SQDSM.

the published modulator analyses apply only to analog
modulators. Interestingly, most of these analyses do not apply
or even readily extend to the case of digital modulators.
This paper addresses this issue by presenting a statistical anal-
ysis of the quantization noise introduced by an important family
of digital modulators, i.e., single-quantizer digital mod-
ulators (SQDSMs) with low-level 1-bit input dither.

A generic SQDSM is shown in Fig. 2(a). It consists of a
digital requantizer, a forward transmission filter , and a
feedback filter . In most cases, it is critical in data con-
verter applications that the error introduced by the requantizer,
i.e., the quantization noise, be white and uncorrelated with the

modulator’s input sequence. Experimental evidence sug-
gests that adding a 1-bit random sequence to the least significant
bit (LSB) of the input—henceforth referred to as a 1-bit or LSB
dithering—imparts theses properties to the quantization noise in
many digital modulators [2]–[7]. The LSB dithering tech-
nique has been very popular because it barely increases the noise
floor of the digital modulator’s output. In contrast, the al-
ternative technique of adding step-size dither to the input of the
quantizer dither increases the output noise floor by 3 dB.

This paper presents conditions applicable to digital mod-
ulators of the form shown in Fig. 2(a) with LSB dithering that
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are sufficient and necessary to ensure that the quantization noise
is asymptotically uniform and independent of delayed versions
of itself and the input sequence. The conditions are shown to be
also sufficient to ensure that the quantization noise is uniform,
white, and uncorrelated with the input and the dither sequences
in a time-averaged sense.

The results presented in this paper are extensions of those
presented in [8]–[10]. The results presented in [8] and [9] are
similar to those presented in this paper, except that they are
restricted to analog modulators. In [8], it is shown that
no-overload dithering does not make the quantization noise in
the standard first-order analog modulator white but it does
so in standard multi-stage higher order analog modulators
with at least two stages. In [9], conditions were derived that were
sufficient for input dithering to render the quantization noise
in a class of single-stage and multi-stage analog modula-
tors asymptotically white and uncorrelated with the input. Both
[8] and [9] assume that the probability distribution of the dither
has an absolutely continuous component. The similarities be-
tween analog and digital modulators notwithstanding, the
analog case results do not readily extend to the digital case be-
cause discrete-amplitude dither does not possess the aforemen-
tioned property of analog dither. The results presented in [10]
are applicable to digital modulators, but are significantly
more limited than those presented in this paper. Specifically,
[10] presented conditions that were sufficient for LSB dithering
to render the quantization noise in single-stage and multi-stage
digital modulators asymptotically uniform and independent
of the input and delayed versions of itself. This paper elaborates
on the results presented in [10] and derives a more relaxed set
of sufficient conditions that are also necessary.

Other published research results that characterize quantiza-
tion error in modulators are restricted to analog modu-
lators with constant or sinusoidal inputs [11]–[15] or irrational
initial conditions [16]. However, these restrictions are limiting
in practical applications wherein input signals deviate from ideal
constant values or sinusoids, and irrational initial conditions are
not feasible in digital modulators with finite bit-width data
paths.

The paper consists of four main sections. Section II presents
a brief overview of digital modulators and 1-bit dithering.
Section III presents the aforementioned sufficient conditions.
Section IV presents theoretical proof of the success of 1-bit
dither in popular low-pass and bandpass digital modulators.
Section V presents corroborative simulation results.

II. DIGITAL MODULATORS AND 1-BIT DITHERING

Fig. 2(b) shows a 1-bit dithered generic SQDSM. The input
is the sum of a desired signal sequence and a dither se-

quence . The dither sequence possesses the following prop-
erties:

(1)

Without loss of generality, all signals are assumed to be in-
teger-valued. The integer representation follows from the digital
nature of the modulator—the smallest LSB of all the signals
in the modulator is defined to have a value of unity which

Fig. 3. Example uniform midtread requantizer.

implies that all signals are restricted to integer values. With this
definition, it follows that the impulse responses of ,
and , i.e., , and , respectively, are in-
teger valued.

The operation of the uniform midtread requantizer is defined
as

(2)

where is the largest integer less than or equal to is a
positive, even integer referred to as the step size, and
are arbitrary odd integer multiples of .1 Fig. 3 illustrates the
operation of the uniform midtread requantizer using an example
with and . With the quantization
noise defined as

(3)

it can be shown [7] that

(4)

where “*” is the convolution operator, and and are, re-
spectively, the impulse responses of the signal and noise transfer
functions

(5)

Without , the quantization noise, , can have periodicities
in its autocorrelation or can be correlated with ; either situa-
tion can result in undesirable artifacts such as discrete spikes in
the power-spectral density (PSD) of . Experimental evidence
suggests that removes these spikes for some special cases of
the generic SQDSM. It is suspected that in such cases be-
comes an uncorrelated sequence whose samples are uniformly
distributed and uncorrelated with in a time-averaged sense

where

(6)

1The results presented in the paper apply, with minor modifications, to digital
�� modulators with midrise requantizers.
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Fig. 4. Failure of 1-bit dithering: PSD of total quantization noise of a dithered SQDSM when (a) F (z) = z (1 � z ) ; G(z) = 1, and (b) F (z) =
z (1� z ) ; G(z) = 3z � 3z + 1, and R = R = N=2.

(7)

where (8)

If (6)–(8) were true in some sense (e.g., in probability, in ,
in , or simply in mean), they could explain the disappearance
of spikes in the PSD of . Furthermore, they would enable ac-
curate quantitative predictions (such as of the PSD of ) cru-
cial to the use of the SQDSM. For instance, if were to have
a PSD, , it can be shown2 that the PSD of is

(9)

Simulations suggest that (6)–(8) are not true in general as
illustrated in Fig. 4. Fig. 4(a) depicts the simulated PSD of the
total quantization noise [the second term in the RHS of (9)] for
a popular SQDSM: , and .
Fig. 4(b) depicts the same for another popular SQDSM

, and .
In both cases, the requantizer step-size was chosen to be

and was set to be a constant. The discrete spikes in the
PSD suggest that at least (8) is not true.

Conditions for which (6)–(8) are true in probability are pre-
sented in Section III. Specifically, a theorem is presented which
specifies conditions on that are necessary and sufficient
for the quantization noise, , to possess the following proper-
ties.

2The derivation of (9) based on (3)–(8), and Fig. 2(b) is well known in the
literature and is omitted here.

• The probability mass function (pmf) of converges to that
of a uniform random variable as ;

• The pmf of given converges to that of a uniform
random variable as for every finite ;

• The joint pmf (jpmf) of and converges to that of a
pair of independent random variables as for every
finite 0.

A corollary to the theorem is then presented which stipulates
that the same conditions on are sufficient for (6)–(8) to be
true in probability.

The results are applicable to non-overloading SQDSMs, i.e.,
SQDSMs in which the for all . In practice,
the non-overloading condition can be guaranteed for a bounded-
input, bounded output (BIBO) stable and a bounded
input signal, , simply by ensuring that the requantizer has suf-
ficient number of output levels. For example, consider the dig-
ital modulator used to generate the PSD in Fig. 4(b) namely,

and . It can be
shown [7] that the midtread requantizer is non-overloading pro-
vided

III. THEORY OF LSB DITHERING

It follows from (2) that for a non-overloading SQDSM the
quantization noise is given by

(10)

where and is the requantizer input given
by

(11)
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It further follows from (2) that takes on only integer multiples
of .3 Since , i.e., the impulse response of ,
is integer valued, so is , and hence, the second
term in the RHS of (11) has no effect on the fractional operator.
Consequently, the statistical properties of do not depend on

.
It is assumed without loss of generality throughout the re-

mainder of the paper that all signals associated with the SQDSM
are zero for . It follows that the quantization noise can be
written as

(12)

where

and (13)

The statistics of as given by (13) have been studied exten-
sively when takes on values from a continuous range and

is independent of for (e.g., see [17]–[19]). In
contrast, the following theorem concerns the ensemble statis-
tics of when is not an independent sequence but is instead

convolved with . The corollary to the theorem con-
cerns the distribution of the values taken by a single instance of
the quantization noise vector an aspect that
is of particular interest because of the time evolution of .

Definition 1: The sequence is said to be asymptotically
identically distributed and independent of the sequence if
for every finite integer

(14)

where is the probability of given is a discrete
random variable, and integers and take on values from the
ranges of and , respectively.

Theorem 1: Suppose the input to a non-overloading SQDSM
is , where is an arbitrary
bounded integer sequence and is a 1-bit dither sequence.
Let and be independent integer random variables that are
uniformly distributed over .

i) is asymptotically identically distributed and indepen-
dent of if and only if at least one of the following con-
ditions is true for each integer , and each integer

.
1) The sequence does not converge to zero as

.
2) A non-negative integer exists such that

.
ii) converges in distribution to if and only

if at least one of the following conditions is true for every
integer , and each integer pair and

.
1) The sequence does not converge

to zero as .
2) A non-negative integer exists such that

.

3Consider the example where r = 25 is truncated by a midtread quantizer
of step size N = 8. In some published work, the output of the quantizer is
implied to be the value y = 3 instead of y = 24 = 3 � 8. For purposes of
simplicity, this paper uses the latter convention.

3) A non-negative integer exists such that
.

Remark: The conditions of part (ii) imply those of part (i):
conditions 1 and 2 of part (i) are respectively special cases of
conditions 1 and 2 of part (ii) for ;
since does not satisfy the condition 3 of part (ii), the con-
ditions of part (ii) imply those of part (i).

Proof of Theorem 1: The details of the proof of part (ii) are
presented below. The proof of part (i) is similar so, only the
differences are pointed out.

Part (ii): Each of , and are bounded discrete
random variables, so the convergence of in distribu-
tion to as is equivalent to

(15)

The values of the jpmf of in the LHS of (15)
form a unique two-dimensional discrete Fourier transform pair
with the samples of the joint characteristic function (jcf) of

(16)

Similarly, the samples of the jcf of form a unique
two-dimensional discrete Fourier transform pair with the
samples of the jpmf of . Since the characteristic functions
are bounded, it follows that (15) is equivalent to the following:

(17)

where the product represents the samples of the jcf
of two independent uniform random variables, and . Note
that the equivalence of (15) and (17) is just a special case (for
discrete, finite range) of the continuity theorem [20, Th.26.3, p.
359]. Note also that the use of jcfs to prove results about the
jpds is well known [8]–[12], [17]–[19]. Since both the LHS and
the RHS of (17) are equal to unity for , (17) (and
hence, (15)) are equivalent to

(18)

It is next proved that (18) is true if an only if the conditions of
part (ii) are satisfied. First, the jcf of is expressed
in terms of the jcf of and the common characteristic
function of the independent, identically distributed random vari-
ables represented .

The jpmf of ) is related to the jpd of as
follows:

(19)
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It follows that the jcf of is related to the jcf of
as follows:

(20)

The details of the derivation of (20) from (19) are not pre-
sented here for the sake of brevity since they are well known in
the literature (for e.g., see (17) in [21] or Lemma A1 in [9]). So,
it follows from (13) that the jcf of is

By assumption, the samples of are independent, identically
distributed random variables also independent of . Therefore,
it follows from the properties of that

(21)

where is the jcf of . Substituting
in the first product in the RHS of (21),

in the second product, and , and
substituting the result in (20) gives

(22)

Since (15) is equivalent to (18), it just remains to be shown that
the RHS of (22) converges to zero as if and only if the
conditions of part (ii) are satisfied. It is shown below that this is
indeed the case. But first, note that the characteristic function of
each is

(23)

Sufficiency: Suppose that for every given finite , and
every integer pair, , where ,
conditions 1, 2, or 3 (of part (ii)) are true. If condition 3 is true,

then one of the individual terms in the last product term in the
RHS of (22) equals 0

where

Similarly, if condition 2 is true, then one of the terms of the first
product term equals 0. If condition 1 is true, then

where

Since for all , and is finite

for some > 0. The inequality implies that the first product
term in the RHS of (22) converges to zero as . Since
all the terms in the RHS of (22) are bounded, the entire RHS
of (22) converges to zero as well. The result is proved for all
finite by interchanging the roles of and in the
preceding discussion: for a given finite and

thereby proving the result for all finite as well.
Necessity: For every given finite , (22) converges to

zero for arbitrary only if the two product series in the RHS
of (22) together converge to zero i.e., if the first product series
converges to zero as , or if one of the terms of the first
product series equals zero or if one of the terms of the second
product series equals zero. The three conditions of part (ii) cor-
respond to the above three cases respectively. The necessity is
extended to the finite case just as in the sufficiency proof.

Part (i): The proof is similar to that of part (ii). Proceeding as
before, it can be shown that proving (14) is equivalent to proving
that

(24)

where is the characteristic function of
given , and is the characteristic function of the uniform

discrete random variable . Note that the LHS of (24) is actually
a function of both and the value of ; however, the
latter argument is suppressed for the sake of simplicity, and is
shown explicitly only when required. Proceeding as before, it
can be shown that

(25)
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where . Since (24) is true for , it remains
to be shown that

(26)

if and only if the conditions of part (i) are satisfied. Note that the
complex exponential term in the LHS of (26) is never zero and
that depends on the sequence . Therefore, (26) is true for
arbitrary if and only if the product series term in the LHS of
(26) converges to zero. The rest of the proof is similar to that of
part (ii).

Notation:

Corollary:
i) The conditions of part (i) of Theorem 1 are sufficient for

to possess the following time-averaged properties in
probability:

(27)

(28)

ii) The conditions of part (ii) of Theorem 1 are sufficient for
to possess the following time-averaged auto-covari-

ance in probability:

where (29)

Proof: Equation (28) is proved below; the proofs of (27)
and (29) are similar and hence, not presented here. For a fixed

, define . The goal is to prove that
converges to 0 in probability as . Set and

. Since and are bounded for all
, it follows from (13) that is a bounded, measurable

function of . The desired result follows
from Lemma A2 presented in [22] if

(30)

in probability. Now, we obtain the equation shown at the bottom
of the page. Since is bounded for all , (30) and the desired
result follows if

(31)

in probability. To prove (31) note that (12) and (13) can be
rewritten as

where

(32)

Fixing , and proceeding exactly as in the
proof of part (i) of Theorem 1, with and respectively
playing the role of and , it can be shown that

point wise. Since and are bounded, discrete random vari-
ables, it follows that the random variable

point wise and hence, in probability.

IV. LSB DITHER IN POPULAR SQDSMs

In many popular SQDSMs is just a delay and
is either a high-pass or a band-reject filter depending

on the application. The former are referred to as low-pass
SQDSMs and are widely used in DACs and fractional- PLLs;
the latter are called bandpass SQDSMs and are sometimes used
in DACs for bandpass signal generation. Low-pass SQDSMs
usually have

(33)

where is a positive integer resulting in

(34)

Example realizations for , and 4 are shown in Fig. 5
and are referred to as the first-, second-, and third-order low-
pass digital modulators, respectively. In contrast, bandpass
SQDSMs often use and derived from their low-pass
counterparts, e.g., (33), by applying the transformation,

4Note that the structures in Fig. 4 can be extended to realize low-pass digital
�� modulators of higher order, L.
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Fig. 5. Example of single-stage digital �� modulators. (a) First-order low-
pass��modulator. (b) Second-order low-pass��modulator. (c) Third-order
low-pass �� modulator.

. For example, the th-order bandpass SQDSM derived
from the th-order low-pass SQDSM has

(35)

(36)

This section proves that the in (33) and (35) satisfy the
conditions of Theorem 1 provided and requantizer step-
sizes are positive powers of 2 . It
also proves that if a low-pass SQDSM satisfies the conditions of
Theorem 1 then so does the bandpass SQDSM derived from it
using the transformation. Other SQDSMs not of the
type shown in (33)–(36) have also been reported. However, for
the sake of brevity, the discussion is limited to the aforemen-
tioned cases.

Note that step-sizes that are positive powers of two are the
most common choices owing to their ease of implementation.
This is illustrated in Fig. 6 for the case of —the midtread
requantization is achieved using just one 2-bit adder and some
re-wiring.

A. First-Order Low-Pass SQDSM

In the first-order low-pass modulator,
, which does not satisfy the conditions of part (ii) of the

Theorem 1 as shown below. The impulse response of
is , where is the unit step function.

So, for and

Fig. 6. Two’s complement implementation of requantizer with N =

2 ;M > 1.

and so, neither condition 1 nor 2 is satisfied. Furthermore,
and so, condition 3 is also not

satisfied. However, condition 1 of part (i) is satisfied since

Consequently, converges to a uniform random variable that
is asymptotically independent of ; but does not
converge to in distribution. The simulations described
later in Section V and shown in Fig. 7 corroborate this claim.

B. Second–Order Low-Pass SQDSM

Theorem 2: Suppose that . Then, the
impulse response of satisfies the conditions of part (ii) of
the Theorem 1 for , where is a positive integer.

Proof: The impulse response of is .
Condition 1 of part (ii) is satisfied for most positive values of
as shown below. The rest of the proof identifies the situations in
which condition 1 is not satisfied and shows that in such situa-
tions, either condition 2 or condition 3 is satisfied.

In the following note that ,
and > 0. Substituting this in the expression for condition 1
results in (37), shown at the bottom of the page. So, condition 1
is not satisfied only if

(38)
To determine the cases where condition 1 is not satisfied, sup-
pose that (38) is true. Then, there exist two consecutive integers

, which satisfy (38)

and (39)

Subtracting the first of the two equations in (39) from the second
and substituting the result back in either equation in (39) results
in

(40)

So, condition 1 is true for all triplets except those
specified by (40). As shown below, these triplets satisfy condi-
tion 2 for and condition 3 for the remaining .

(37)
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Fig. 7. Simulated jpmf of e and e in (a) first-order SQDSM without LSB dither, (b) first-order SQDSM with LSB dither, (c) second-order SQDSM without
LSB dither, and (d) second-order SQDSM with LSB dither.

Case : The only triplet that satisfies (40) for is
. Choosing in (37)

implies that the condition 2 is satisfied.
Case : Note that the second equality in (40) is satisfied

only if and where is a positive
integer, and and are non-negative integers such that .
The integer satisfies the condition 3 if

Since

except when and . Note that
and corresponds to the triplet

which has shown to satisfy condition 2. Therefore,
the triplets of (40) satisfy condition 3 for .

Remark: Note that the above proof shows that the impulse
response, , of does not satisfy con-
dition 1 of part (ii) for all , i.e., it does not satisfy the suf-
ficient conditions presented in [10]. The additional conditions 2
and 3 are required to prove that of the second-order low-pass
SQDSM possesses the desired time-averaged statistics in prob-
ability. It is interesting to note that satisfies the equivalent of
condition 1 for all for the counterpart analog modu-
lators presented in [9].

The proven result extends to SQDSMs employing any other
and even with a slightly different namely,

, where is an integer. The impulse response
of has to be an integer sequence and the constraints
of no-overload and need to be satisfied. The extension
to other follows from the discussion in Section III [specifi-
cally, (12) and (13)]. That the result is true for can be seen
by redrawing the SQDSM with and

two additional delay elements namely, each: one out-
side the modulator’s feedback loop and the other merged with

.

C. th-Order Low-Pass SQDSM

It is shown below that satisfies the impulse response
conditions for all integers .

Theorem 3: The impulse response of
satisfies the condition 1 of part (ii) of Theorem 1 for

all integers , and , where is a positive
integer.

Proof: Define for positive inte-
gers and suppose is its impulse response. Then, and

are related by the difference equation

(41)

The result will be proved by the mathematical induction on the
index using (41).

: Suppose that condition 1 is not satisfied for some
. Since the impulse response of is

for that particular and some integer ,

(42)

The set of equations in (42), in the three unknowns , and
, can be reduced by considering these equations for any three

consecutive values of , resulting in the following:

and

where (43)
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Fig. 8. Illustration of the effect and utility of LSB dither in an oversampled DAC.

The equations in (43) can not all be simultaneously true: since
is odd, and is greater than one and a power of 2, has to be a
multiple of to satisfy the second equation; but this contradicts
the first equation in (43). So it is proved by contradiction that

satisfies condition 1.
Given : It is proved below by contradiction that if

satisfies condition 1 for a given , so does .
For a given , and some integers such that

and , suppose that satisfies con-
dition 1, but does not. Then does
not converge to zero as but for some integer

(44)
For all pairs of consecutive integers and where

, (44) implies the following:

(45)

Subtracting the first of the two equations in (45) from the sec-
onds results in

(46)

Substituting (41) in (46) results in

(47)

So, it is proved by contradiction that satisfies condition
1 if does.

D. Bandpass SQDSMs

To the best of the authors’ knowledge, there has been no pub-
lished work analyzing the effects of dither in bandpass mod-

ulators, digital or analog except for [9]. As mentioned before,
bandpass modulators are typically derived from low-pass

modulators by applying the transformation, , on
all the concerned filters. Theorem 4 below shows that the
of such bandpass SQDSMs satisfy the conditions of part (ii) of
Theorem 1 for .

Theorem 4: Suppose the impulse response of satisfies
the conditions of part (ii) of Theorem 1. Then, so does the im-
pulse response of

Proof: Suppose were the impulse response of .
Then, the impulse response of is

Case Odd: Suppose that where is a non-
negative integer. Then,

(48)

where is an integer. By assumption, satisfies the conditions
of part (ii) and so, for the pair , where , either

does not converge to 0 as or equals for
some . While the former implies that the even
terms of the LHS of (48) (modulo- ) do not converge, the latter
implies that one of the even terms of the LHS of equals
(modulo- ) for some . Consequently, satisfies
conditions of part (ii) for odd .
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Fig. 9. Illustration of the effect and utility of LSB dither in a fractional-N PLL.

Case Even, : In this case

(49)

where is a non-negative integer. Fix non-negative integer pair
such that . By assumption,

satisfies at least one of the three conditions of part (ii) for the
given and . If satisfies the condition 1 then

Since if , it follows that

Substituting in (49) implies that the even terms of
do not converge to 0 as for the

given . So, satisfies the condition 1. Instead, if
satisfies the conditions 2 or 3 then

or

Note that implies . Furthermore,
since = 2 and , the existence of implies the
existence of and the existence of implies
the existence of . So, it follows that satisfies the

conditions 2 or 3 for the particular pair. Therefore, for
even, satisfies at least one of the three conditions

of part (ii) of Theorem 1.
Case Odd, : Equation (49) is applicable in

this case too. Fix as before. Note that

Note that satisfies at least one of the conditions of part (ii)
of Theorem 1 for the pair . Applying the same
arguments as in the case of even for instead of

proves that satisfies at least one of the conditions of
part (ii) of Theorem 1.

V. SIMULATIONS

Computer simulation results of the first- and second-order
low-pass SQDSMs in stand-alone configuration and in DAC and
fractional- PLL applications are presented in this section to
demonstrate the results presented in Section IV and the utility
of LSB dither in these applications.

In one set of simulations, first-order and second-order low-
pass SQDSMs [see Fig. 4(a) and (b)] with and a
constant input were simulated without and with LSB dithering.
The jpmf of and , i.e., , in the first-order
SQDSM without and with LSB dithering are plotted in Fig. 7(a)
and (b) respectively; whereas, in the second-order
SQDSM without and with LSB dithering are plotted in Fig. 7(c)
and (d). Note that is expected to be a constant if

and are asymptotically independent and uniform. As is
evident from the figures, it is the case only in the second-order
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SQDSM with LSB dithering; LSB dithering is not successful in
making a constant in the first-order SQDSM. These
simulations confirm the results from Section IV-A and B.

In the next set of simulations, the second-order low-pass
SQDSM [see Fig. 4(b)] is simulated in the context of a DAC
and a fractional- PLL. In both applications, the SQDSM
employs a 16-bit , a requantizer with , and 5
output levels. The output of the SQDSM for a sinusoidal
was fed to a 4-bit DAC5 and the result was low-pass filtered by
a third-order Butterworth filter with a dB bandwidth of 6
MHz as shown in Fig. 1(a). The SQDSM and the DAC were
clocked at 48 MHz. Fig. 8(a) and (c) depicts the simulated
PSD of the SQDSMs total quantization noise for a 2 MHz

without and with LSB dithering respectively. Fig. 8(b) and
(d) depicts the PSDs of the outputs of the SQDSM and the
low-pass filter without and with LSB dithering respectively.
The absence of the spikes and the 20 dB/decade high-pass
shape of the quantization noise PSD in Fig. 8(b) confirm the
claims of Theorem 2. The elimination of tones is critical to
the DAC’s use in applications such as high-fidelity audio or
video. Without LSB dithering the spikes are perceptible in such
applications even after the filtering provided by NTF and
the low-pass filter as shown in Fig. 8(b).

The output of the SQDSM modulator for a constant is fed
to a frequency divider of a fractional- PLL operating on a 48
MHz reference as shown in Fig. 1(b). Successive frequency di-
vision ratios are chosen according to the 4-bit output sequence,

. The instantaneous frequency of the PLL’s output tracks the
changes in the modulator’s output thereby allowing fre-
quency synthesis of arbitrary precision at the expense of con-
version of the SQDSM’s total quantization noise into PLL phase
noise. The 16-bit was chosen to be a constant such that the
PLL’s output has a fixed frequency of 2.451 GHz. Fig. 9(a)
and (b) depicts the PSD of the SQDSM’s total quantization
noise without and with LSB dithering respectively. Fig. 9(c) and
(d) depicts the PSD of the PLL’s output without and with LSB
dithering respectively; Fig. 9(e), and (f) depicts the PSD of the
output’s phase noise without and with LSB dithering respec-
tively. The elimination of spikes in the PSDs enables the use of
this fractional- PLL for frequency synthesis in many high-per-
formance applications such as wireless transceivers.

VI. CONCLUSION

Necessary and sufficient conditions for the quantization noise
in 1-bit dithered non-overloading SQDSMs to be asymptoti-
cally uniformly distributed and independent of delayed versions
of itself and the input sequence have been presented. They are
also sufficient to ensure that the quantization noise is uniform,
white, and uncorrelated with the input in time-averaged sense.
Many popular non-overloading low-pass and bandpass digital

modulators have been shown to satisfy the presented con-
ditions.
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