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LSB Dithering in MASH Delta–Sigma
D/A Converters

Sudhakar Pamarti, Member, IEEE, and Ian Galton, Member, IEEE

Abstract—Theoretical sufficient conditions are presented that
ensure that the quantization noise from every constituent digital
delta–sigma (��) modulator in a multistage digital �� modu-
lator is asymptotically white and uncorrelated with the input. The
conditions also determine if spectral shape can be imparted to the
dither’s contribution to the power spectral density of the multi-
stage digital �� modulator’s output. A large class of popular
multistage digital �� modulators that satisfy the conditions are
identified and tabulated for easy reference.

Index Terms—Delta–sigma (��) modulation, dither tech-
niques, MASH, quantization.

I. INTRODUCTION

DIGITAL-TO-ANALOG converters (DACs) and frac-
tional- phase-locked loops (PLLs) based on digital

delta–sigma ( ) modulators, collectively referred to as
DACs, are enabling components in consumer communications
and entertainment products including cellular telephones, wire-
less LANs, modems, and MP3 players. Digital modulators
coarsely quantize over-sampled discrete-amplitude input sig-
nals within a feedback loop such that the power of the resulting
quantization noise is suppressed (or shaped) within some
frequency band of interest. Many popular DACs are based
on an important class of modulators called MASH
modulators: they comprise a cascade of single-quantizer digital

modulators (SQDSMs) whose outputs are combined to
achieve aggressively shaped overall quantization noise [1], [2].

In many, but not all SQDSM and MASH modulators,
the 1-bit (or LSB) dithering technique (adding a white 1-bit
random sequence to the least significant bit (LSB) of the input of
the modulator) can make the quantization noise asymptot-
ically white and independent of the modulator’s input [3]–[7].
These properties are crucial for the use of digital modula-
tors in a DAC. Theoretical prior art has identified classes
of SQDSMs in which 1-bit dithering offers the aforementioned
benefits [8], [9].

However, in the case of MASH modulators, inadequate
prior art has forced designers into an ad hoc application of
the 1-bit dithering technique: some have added the dither
to the input of only the last SQDSM in the cascade, others
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have added a different dither sequence to every SQDSM in
the MASH system, others still have dithered only the input
of the first SQDSM, all with varying degrees of success. The
situation is compounded by the different forms of MASH
modulators used in DAC applications: in some systems
the individual SQDSM outputs are combined in digital domain
(digital combination MASH) e.g., fractional- PLLs [10];
whereas in others the SQDSM outputs are combined using
error-prone analog circuitry (analog combination MASH) e.g.,
high resolution DACs [2] and noise cancellation fractional-
PLLs [7], [11]. Furthermore, the designers of high resolution
MASH based DACs have used filtered dither (henceforth re-
ferred to as shaped dithering) to suppress the dither noise floor
in the frequency band of interest.

This paper presents a theoretical analysis of the properties of
the quantization noise in digital and analog combination MASH
systems with a filtered 1-bit random sequence added to the input.
Specifically, it presents sufficient conditions which, if satisfied
by the MASH system and the dither filter, ensure that the quan-
tization noise from every SQDSM is asymptotically white and
independent of the MASH system’s input. The conditions are
an extension of the set of conditions that were presented in [8],
[9]. The paper also presents a relaxed set of conditions that en-
sure that the quantization noise from only the final SQDSM is
asymptotically white and independent of the MASH system’s
input; the final SQDSM’s quantization noise is very important
to the designers of digital combination MASH as explained later
in this paper. Finally, the paper also identifies a class of popular
MASH systems that satisfy the presented conditions resulting
in a reference table for designers interested in employing 1-bit
dithered MASH DACs.

The paper is organized as follows. Section II presents
an overview of MASH digital–analog (D/A) conversion.
Section III presents an overview of dithering in MASH sys-
tems. Section IV presents the theoretical analysis leading to
the aforementioned sufficient conditions. Section V identifies
popular MASH modulators that satisfy the conditions.

II. OVERVIEW OF MASH D/A CONVERSION

A typical MASH D/A system is made of a cascade of
SQDSMs: the input is quantized in steps—coarse quantization
of the input, then finer quantization of the first SQDSM’s
quantization noise and so forth; the outputs of the individual
SQDSMs are combined appropriately to form the final output
signal. Fig. 1(a) shows a generic MASH system that is a cas-
cade of individual SQDSMs. The th SQDSM has signal and
noise transfer functions, and , respectively.
It employs a midtread requantizer of step size , where
is a positive integer, and forward transmission and feedback

1549-8328/$25.00 © 2007 IEEE
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Fig. 1. (a) Gneric MASH digital �� modulator. (b) Example 2-1-1 MASH digital �� modulator.

Fig. 2. (a) A generic digital combination MASH system (b) A generic analog combination MASH system.

filters, and . The midtread requantizer1 internal to
the th SQDSM is henceforth referred to as the th requantizer.
The midtread requantizers in this paper do not overload unless
otherwise specified. The quantization noise from the th re-
quantizer , is computed by subtracting its input from its
output ; it is fed as input to the succeeding i.e., the th
SQDSM as shown in the figure. The step-sizes of successive
requantizers decrease in integer ratios to provide overall coarse
quantization

(1)

The outputs are combined using a bank of post-pro-
cessing filters , to produce a single
output

(2)

1The operation of a midtread requantizer is defined in [9].

where , and are the impulse responses of the
th post-processing filter, and the so-called overall signal and

noise transfer functions, and , respectively

(3)

Fig. 1(b) shows an example MASH system called the 2-1-1
MASH

, and
.

The MASH systems differ in whether the post-processing
filter outputs, , are summed in the digital domain or in the
analog domain. In the digital combination MASH, the outputs

are summed using digital logic and the digital output se-
quence, , is sent to a bank of DAC elements as shown
in Fig. 2(a). Sophisticated dynamic element matching (DEM)
algorithms exploit redundancies in the DAC banks to ensure
that mismatches among these 1-bit DAC elements do not cor-
rupt the desired signal [12]–[14]. In fact, appropriately chosen
DEM algorithms ensure that the effect of the mismatches within
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the DAC banks can be modeled using a gain error , and an un-
correlated additive noise source [15]2

(4)

Since the summation of to generate is performed
using digital logic (see (2)), the overall quantization noise in the
digital combination MASH depends on and the quantiza-
tion noise of only the final ( th) SQDSM

(5)

In contrast, the overall quantization noise in the analog com-
bination MASH depends on the quantization noise of all the
SQDSMs as shown below. In analog combination MASH, the

are sent to individual banks of DAC elements whose analog
outputs are summed to produce the analog equivalent of
[16]–[18]. The DEM algorithms are employed prior to each
bank of DACs as shown in Fig. 2(b). The individual banks of
DAC elements contribute different gain errors, , and different
uncorrelated additive error sources,

(6)

Because of the unequal gain errors, the sum of contains
potentially the quantization noise from every SQDSM

(7)

where is a constant and , are impulse
responses, all of which are determined by , and
the gain errors, . Note that on some occasions, the SQDSM
outputs, , are sent to individual DACs followed by post-pro-
cessing filters implemented in the analog domain (e.g., as
switched capacitor filters [2]). It can be shown that the output
in such cases is also of the above form. The rest of the paper
discusses the effects of 1-bit dithering on the ensemble and
time-average statistics of the various in a MASH system.

Note that digital and analog combination MASH systems
offer contrasting advantages and disadvantages. The former are
simpler to implement with fewer analog blocks. However, they
require a lot of hardware to implement the DEM algorithms:
complexity of DEM algorithms can grow exponentially with
the number of bits of e.g., a popular dynamic element
matching algorithm called the tree structured mismatch shaping
requires digital switching blocks3 [19] where is
the number of bits of . Analog combination MASH
systems employ multiple, smaller banks of DACs, so the DEM
hardware requirements are relaxed. Consequently, while the
digital combination MASH is popular in fractional- PLL
applications, the analog combination MASH is popular in high
resolution D/A conversion applications such as high-fidelity
audio and video DACs.

2Not all DEM algorithms guarantee that the DAC bank can be modeled using
(4); the relevant necessary and sufficient conditions on DEM algorithms are
discussed in [15].

3A switching block is the composite of all the logic gates required to imple-
ment the algorithm.

Fig. 3. LSB dithering in analog and digital combination MASH systems.

III. OVERVIEW OF 1-BIT DITHERING IN MASH SYSTEMS

In 1-bit dithering of an analog or digital combination MASH
system, a 1-bit dither sequence, , filtered by a shaping filter,

, is added to the LSBs of a bounded desired signal, , as
shown in Fig. 3

(8)

The sum serves as input to the entire MASH system. The 1-bit
dither sequence is a random sequence with the following prop-
erties:

(9)

Note that the shaping filter is often not implemented ex-
plicitly. For example, could be implemented
by simply adding to the LSB of the first accumulator used
in realizing the forward transmission filter, , of the first
SQDSM (instead of adding it to the LSB of the input of the
MASH); similarly, can be implemented
by adding directly to the LSB of the second accumulator of
the first SQDSM. Experimental evidence suggests that for cer-
tain choices of , and , every becomes
a sequence whose samples are uniformly distributed and uncor-
related with in a time-averaged sense

where (10)

(11)

where (12)

Furthermore, it suggests that every pair of distinct quantization
noise sequences, and , is uncorrelated in a similar time-
averaged sense

(13)

If the above properties were true, it follows from (7) that the
power-spectral density (PSD) of the overall quantization noise
of the corresponding digital and analog combination MASH
systems has no spikes (other than those in the input)

(14)
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Fig. 4. (a) Effect of LSB dithering on the quantization noise in a 1-2 MASH system. (b) Effect of LSB dithering on the quantization noise in a 2-1 MASH system.

where is the PSD of is the PSD of
is the Z-transform4 of is the variance of

, and is the variance of the 1-bit dither, .
However, (10)–(13) are not generally true as illustrated in

Fig. 4. The figure shows the simulated PSD5 of the quantiza-
tion noise of the individual SQDSMs in two MASH systems
for dc inputs, both with . The plots in Fig. 4(a)
correspond to

,
and , a configuration popularly referred to as the
“1–2” MASH. Notice that while has some spikes in its
PSD, has none suggesting that does not possess
one or more of the properties (10)–(12). Consequently, the
“1–2” configuration is not desirable as an analog combina-
tion MASH system whereas it could be used as a digital
combination MASH. The plots in Fig. 4(b) correspond to

, and ,
a configuration popularly referred to as the “2–1” MASH.
Surprisingly, both and display a flat PSD without
any spikes suggesting that the “2–1” configuration could be
used as both a digital or an analog combination MASH system.
Simulations of the above two MASH systems with other inputs
e.g., sinusoidal inputs, also reveal that exhibits has spikes
in the “1–2” configuration but not in the “2–1” configuration
whereas exhibits no spikes in either case.

The properties of the quantization noise in a MASH system
are also dependent on the shaping filter , as illustrated
below. Note that the shaping filter , can be chosen to at-

4Assuming that the Z-transform exists.
5Simulated PSDs are plotted against normalized angular frequencies unless

otherwise specified.

tenuate the dither noise floor that would have otherwise limited
the signal-to-noise ratio (SNR) in the frequency band of interest.
Fig. 5(a) shows the simulated PSDs (plotted against normalized
angular frequencies) of the output , of a digital combina-
tion MASH. The bank of DACs are assumed to be ideal without
any errors; the MASH system has only one stage for the sake
of simplicity:

, and . The output PSDs are plotted
for the cases of and , respectively.
In both cases, a sinusoidal input, , was used. The low-fre-
quency content of the overall quantization noise is dominated
by the dither noise in both cases, but is significantly attenuated
for . Simulations confirmed similar behavior
for other inputs, particularly for constant inputs as well. Without
the shaping filter, i.e., for , the dither noise floor can be
made small only by increasing the number of bits representing
the input of the MASH. However, this is wasteful in terms of
the additional digital circuitry needed. Furthermore, in the case
where the modulator is employed in a fractional-
PLL, the dither undergoes integration and appears in the phase
of the PLL output [20], [21], potentially severely degrading the
phase noise of the PLL output. As shown in the figure, the noise
floor due to the dither is imparted a 20-dB/decade high-pass
shape with , without compromising the pri-
mary utility of the dither namely, imparting with the prop-
erties (10)–(12). If the band of interest in normalized frequen-
cies is from 0 to , it can be readily shown that
improves the in-band SNR by
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Fig. 5. (a) Effect of shaped dither on the output of a digital combination MASH with F (z) = z (1� z ) . (b) Effect of shaped dither on the output of a
digital combination MASH with F (z) = z (1 � z ) .

The advantages of shaped dithering have encouraged
designers to aggressively shape the additive dither. For
example, a 1-bit random sequence that has a third-order
high-pass spectral shape has been added to the LSB of a
third-order SQDSM in [6]. Unfortunately, arbitrarily shaped
dither can not eliminate spurious tones in arbitrary MASH
systems as illustrated in Fig. 5(b). The figure depicts the
simulated PSD (plotted against normalized angular frequen-
cies) of the output of a digital combination MASH in which

, and
for the cases of and .

The evident spikes in the PSD indicate that i.e.,
in this case, does not possess at least some of the properties
(10)–(12). Note that the first-order shaped dither is buried under
the second-order quantization noise in the figure.

It is evident from the preceding discussion and Figs. 4 and
5 that possess the properties (10)–(13) only for certain
MASH systems. The next section presents a theoretical anal-
ysis of the properties of leading to conditions for which
(10)–(13) are true in probability. Specifically, a theorem is
presented which specifies conditions on the impulse responses
of and that are necessary and sufficient for the
joint probability mass functions (pmf) of to acquire the
following properties asymptotically.

• The pmf of converges to that of a uniform random
variable as .

• The conditional pmf of given converges to that
of a uniform random variable as for every finite .

• The joint pmf of and converges to that of a pair
of independent random variables as for every finite

.

• The joint pmf of and converges to that of a pair
of independent random variables as for and
every finite integer .

The results of the theorem are applicable to a very large class
of input sequences : they are applicable to constant inputs,
deterministic nonconstant inputs such as quantized sinusoids,
and more general classes of inputs as long as they are bounded
integer sequences.

A corollary is also presented which stipulates that the same
conditions on and are sufficient for (10)–(13) to
be true in probability. A second theorem in Section V and an
associated corollary present a relaxed set of conditions that are
sufficient for only the quantization noise from the last SQDSM,

, to possess properties (10)–(12) in probability.

IV. THEORETICAL RESULTS

It is assumed without loss of generality that all signals asso-
ciated with the MASH system are zero for . Denote the
input to the th SQDSM as

where

(15)

It can be shown [9] that the quantization noise of the th
SQDSM is

(16)

where . Note that does not depend on
the feedback filter of the th SQDSM because the outputs of
the feedback filters are integer multiples of . The interested
reader is referred to [9] for the details of this result. The the-
oretical analysis of the properties of proceeds by first ex-
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pressing each directly in terms of the dither as shown in the
following lemma.

Lemma 1: The quantization noise of the th SQDSM is given
by

(17)

where and are impulse responses of filters and
that depend only on and the various

(18)

Proof: See the Appendix.
The above lemma suggests that even though the dither is

added to the input of the only the first SQDSM in the MASH, it
effects the properties of every . Furthermore, the properties
of and depend on the impulse responses of the filters

and namely, and , respectively. The The-
orem 1 presented below specifies conditions on and
that are necessary and sufficient to ensure that and pos-
sess the ensemble statistical properties listed at the end of the
previous section. The theorem is followed by two corollaries.
The first corollary concerns the distribution of the values taken
by a single instance of the quantization noise sequence e.g.,

, an aspect that is of particular interest
because of the time evolution of . The proofs of the theorem
and its corollary are presented in the Appendix.

Definition 1: The sequence is said to be asymptotically
identically distributed and independent of the sequence if
for every finite integer

(19)

where is the conditional probability of given ,
and is a discrete random variable, integers and take values
from the range of and , respectively.

Theorem 1: Suppose the input to a MASH system is
, where is

an arbitrary bounded integer sequence and is a 1-bit
dither sequence, and is the impulse response of

for all .
Let be integer random variables that are
uniformly distributed over and such that
and are pair-wise independent for all . Then,
for and , the following are true.

i) is asymptotically identically distributed and indepen-
dent of if and only if at least one of the following con-
ditions is true for each integer , and each integer

.
1. The sequence does not converge to zero as

;
2. A nonnegative integer exists such that

.
ii) is asymptotically identically distributed and indepen-

dent of if and only if at least one of the following con-
ditions is true for each integer , and each integer

.

Fig. 6. Conceptual dithered SQDSM that generates the same quantization noise
as the ith SQDSM in a MASH system.

1. The sequence does not converge to zero as
;

2. A nonnegative integer exists such that
.

iii) converges in distribution to for all
integers if and only if at least one of the following
conditions is true for every integer , and each integer
pair and .
1. The sequence does not con-

verge to zero as ;
2. A nonnegative integer exists such that

;
3. A nonnegative integer exists such that

.
iv) converges in distribution to for all

integers if and only if at least one of the following
conditions is true for every integer and each integer
pair , such that , and

.
1. The sequence does

not converge to zero as ;
2. A nonnegative integer exists such that

;
3. A nonnegative integer exists such that

equals for or for .

Remark 1: Note that (see (17) and (18)) is identical to
the quantization noise of an LSB dithered SQDSM shown in
Fig. 6 when , and is an arbitrary
filter with an integer valued impulse response; the input to the
SQDSM is and is the impulse response
of . The properties of the quantization noise of the 1-bit
dithered SQDSM have been studied in the authors’ prior work
(see Theorem 1 in [9]), for the case when is bounded. The
referred theorem presented almost identical (to those presented
in parts (i), (ii), and (iii) in the above theorem) conditions on

that are necessary and sufficient for to be asymptotically
identically distributed and independent of , and for

to converge in distribution to where and
are integer random variables that are uniformly distributed over

. The above theorem extends the referred the-
orem in two crucial aspects. Foremost, part (iv) of the above the-
orem addresses the correlation between the quantization noise
of multiple dithered SQDSMs namely, between and
for . Next, the theorem relaxes the condition that
be bounded; this condition is easily violated even if were
bounded e.g., when .

Remark 2: Note that the conditions of part (ii) imply those of
part (i) since in part (ii).
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Remark 3: The conditions of part (iii) imply those of part (ii):
conditions 1 and 2 of parts (i) and (ii) are, respectively, special
cases of conditions 1 and 2 of part (iii) for

; since does not satisfy the condition 3 of part (ii),
the conditions of part (iii) imply those of part (ii).

Proof of Theorem 1: See the Appendix.
As mentioned before, the following corollary concerns the

distribution of the values taken by a single instance of the quan-
tization noise sequence, : specifically,
it claims that the conditions of Theorem 1 imply the time-av-
eraged mean and correlation properties of (see (10)–(13))
in probability. The properties are reproduced below in the state-
ment of the corollary for the sake of completeness and ease of
reference.

Corollary:
i) The conditions of part (ii) of Theorem 1 are sufficient for

the following to be true in probability:

where (20)

ii) The conditions of part (iii) of Theorem 1 are sufficient for
both (20) and the following to be true in probability:

where (21)

iii) The conditions of part (iv) of Theorem 1 are sufficient for
the following to be true in probability:

(22)

Proof of Corollary: (i) and (ii): The proofs are similar to
that of the corollary of Theorem 1 in [9] and hence are omitted
here. Note that the conditions of part (ii) imply those of part
(i). (iii): The proof is very similar to that of parts (i) and (ii).
Note that the conditions of part (iii) also imply (20) because
the conditions of part (ii) are implied by those of part (iii) as
explained in Remark 2 following Theorem 1.

The above theorem and corollary can be used to analyze a
large class of digital and analog combination MASH systems.
For digital combination MASH systems, only is of con-
cern: if satisfies the conditions of part (iii) of Theorem 1
then, possesses properties (20) and (21); if not, and
hence the eventual analog output will most likely have undesir-
able artifacts such as spikes in the PSD. For analog combination
MASH systems, all are of concern. So, every

has to satisfy the conditions of part (iii) of Theorem 1 and
furthermore, every pair of and have to satisfy
the conditions of part (iv) of Theorem 1. While seemingly cum-
bersome, the conditions are easily verified for a large class of
MASH systems as illustrated in the next section.

V. DITHERING IN POPULAR MASH D/A SYSTEMS

This section identifies classes of MASH systems that sat-
isfy the conditions of Theorem 1; the results are summarized
in Table I. The table will serve as a quick reference to deter-
mine if 1-bit dithering, shaped or otherwise, ensures that
is asymptotically uniform, white, and uncorrelated with and
other in low-pass MASH systems i.e., systems for which
the is ideally a high-pass filter. The table is divided
into three sections: SQDSMs i.e., MASH systems with ,
digital combination MASH in which only is of concern,
and analog combination MASH in which every is of in-
terest. In each case, it is assumed that the impulse responses of
the appropriate are integer valued, the step-sizes are in-
teger powers of 2 i.e., , and none of the quantizers
overload. These assumptions are representative of most popular
MASH systems. The numbers in the “ , al-
lowed ” column indicate the highest order of high-pass shape
that can be imparted to LSB dither and still ensure that has
the aforementioned properties. An allowed value of “none”
in the digital combination MASH section implies that even un-
shaped dither i.e., does not ensure that has the
aforementioned properties; in the analog combination MASH
section it implies that at least one of the may
not possess the properties. For instance, Table I suggests that a
1-1-1 configuration with LSB dither and can
be used in a digital combination MASH but not in an analog
combination MASH: either or may not possess the
aforementioned properties and hence the eventual analog output
might have undesirable artifacts such as spikes in the PSD or de-
creased in-band SNR.

The theoretical bases for the results in Table I are presented
below: it is shown that the for the various MASH systems
shown in Table I satisfy the conditions of Theorem 1. Theorem 2
and its corollary concern digital combination MASH systems in
which only is of interest; Theorem 3 concerns analog com-
bination MASH systems in which the properties of every ,
and every pair of are of interest. Note that analogous
results can be obtained for bandpass MASH systems i.e., sys-
tems for which is ideally a band stop filter, through
a similar application of Theorem 1.

Theorem 2: Suppose a digital combination MASH with
, where and

are integers, the impulse responses of are integer
valued, the step-sizes are integer powers of 2, such
that for all , and none of the quantizers overload.
Then, the quantization noise has the properties (20) and
(21).

Proof: The MASH system can be redrawn with an appro-
priate integer scaling constant and delay elements at the output
such that : the statistics of re-
main unchanged. Since only is of interest, corollary 1 can
be used with to prove the result: it needs to be shown that

satisfies the conditions of part (iii)
of Theorem 1. The results in [9] (see Theorems 2 and 3) prove
the same.

Note that since only is of concern in a digital recombi-
nation MASH, the condition that none of the quantizers should



786 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 4, APRIL 2007

TABLE I
1-BIT DITHERING IN GENERAL LOW-PASS MASH SYSTEMS

overload can be relaxed: it is only required that the th quan-
tizer not overload as shown in the following corollary to The-
orem 2. Of particular interest are those MASH modulators
in which all but the final digital requantizer is a simple, single-bit
requantizer.

Corollary to Theorem 2: Suppose that only the th quantizer
in the digital combination MASH system in Theorem 2 does not
overload. Even then, the quantization noise possesses the
properties (20) and (21).

Proof: While is still given by (15), the other are
different because they are allowed to overload. Specifically,
are not bounded to be within ; it can be shown
that

where (23)

Note the additional term in (23) compared to (16). The
additional term does not alter the relation between and

derived in Lemma A1. Consequently, Lemma A1 still
remains applicable; the result follows from Theorem 1 and its
corollary.

Theorem 2 and its corollary prove the results summarized in
the SQDSM and digital combination MASH sections of Table I.
For instance, consider a digital combination MASH with

, and

: since , it fol-
lows from Theorem 2 that has the properties (20) and
(21). For the same reason, the of an SQDSM (i.e., a digital
combination MASH with with
and possesses these properties as
well. The SQDSMs with typically
provide a third-order high-pass noise transfer function and are
popular choices with fractional- PLLs. By using 1-bit
dither with a first-order high-pass shaping i.e.,

, this particular SQDSM simultaneously removes spikes
from the SQDSM’s overall quantization noise and ensures that
the in-band phase noise is small.

In the case of analog combination MASH systems, it is desir-
able that every pair of and possess the property
(22) apart from every possessing the properties (20) and
(21). For a given analog combination MASH system, the corol-
lary to Theorem 1 suggests that the conditions of both parts (iii)
and (iv) of Theorem 1 are sufficient for these properties. Conse-
quently, it needs to be verified that (a) every (the impulse
response of ) satisfies the conditions of part (iii) of The-
orem 1, and (b) every pair of and satisfy the conditions
of part (iv) of Theorem 1. The following Theorem 3 proves the
same for a large class of : first, Lemma 2 proves that every
pair of impulse responses and of this class of
satisfy the conditions of part (iv) of Theorem 1; then the lemma
is used to prove Theorem 3.
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Lemma 2: Suppose and are positive integers such that
is an integer, and and are the impulse responses

of filters

(24)

where , and are integers. Then, for every
integer and each integer pair such that

and , the sequence

does not converge to zero as .
Proof: See the Appendix.

Theorem 3: Consider a dithered analog combination MASH
system in which

and where

and , the impulse responses of are integer
valued and none of the quantizers overload. Then, every
possesses properties (20) and (21), and every pair of and

where has the property (22).
Proof: Note that

(25)

Since , it follows that for all
. Therefore, Theorem 2 implies that every pos-

sesses the properties (20) and (21). Setting

, and in Lemma 2 proves that
the impulse responses of and satisfy the first condition
of part (iv) of Theorem 1. Note that as required by The-
orem 2. Therefore, every pair of and where has
the property (22).

Theorem 3 proves the results summarized in the analog
combination MASH section of Table I. For instance,
consider an analog combination MASH with

, and
. Note that the same configura-

tion was considered for a digital combination MASH in the
discussion following Theorem 2: it was shown that since

has the properties (20) and
(21).

VI. CONCLUSION

A theoretical analysis of two classes of LSB dithered MASH
systems is presented; a set of sufficient conditions that ensure
that the quantization noise from every constituent SQDSM is
asymptotically white and uncorrelated with the MASH system’s
input. A large class of popular analog and digital combination

MASH systems have been shown to satisfy these sufficient con-
ditions.

APPENDIX

Proof of Lemma 1: It follows from (15) and (16) that

where (26)

Similarly,

where

(27)

Substituting (27) in (26) results in

Proceeding recursively and noting that are
positive integer multiples of (see (1)) results in

where (28)

Substituting (28) and (15) in (16) results in (17) and (18).
Proof of Theorem 1: As mentioned before, Theorem 1 is an

extension of Theorem 1 presented in [9]; their respective proofs
are very similar. The quantization noise of the th SQDSM (see
(17)) can be written as

where

(29)

where as the quantization noise that the Theorem 1 in [9] con-
cerns with is

where and (30)

For a fixed , while the similarities are evident from (29) and
(30), the differences are two-fold: first, in (29) filtering under-
gone by is not the same as that undergone by ; second,
unlike in [9], the conditional pmf of given and that of

given are of interest instead of the conditional pmf of
given . However, the proof of Theorem 1 in [9] does

not rely on the form of . Consequently, much of the proof
of Theorem 1 follows from the proof of Theorem 1 in [9]. In
fact, the conditions on presented in Theorem 1 in [9] apply
here with minor changes to . The variations that concern the
conditional pmf of given and that of given are
pointed out below. Note that the joint pmf of for

is also of interest here and is considered separately.
Proof of Part (iv): The proof is very similar to the proof

of part (ii) of Theorem 1 in [9]. Each of , and
are bounded discrete random variables, so the convergence of

in distribution to as is equivalent
to

(31)

It can be shown that the uniform samples of the joint char-
acteristic function (jcf) of two discrete random variables that
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take on values from finite sets of size and , and their joint
pmf form a unique two-dimensional discrete Fourier transform
pair: [9] argued the same for but the argument
applies otherwise too. Consequently, (31) is equivalent to the
following convergence:

(32)

Note that the samples of the jcf of simplify to a product
of Kronecker delta functions because and are independent
and uniformly distributed. Also note that the equivalence of (31)
and (32) is just a special case (for discrete, finite range) of the
continuity theorem (Theorem 26.3, pg. 359 in [22]). It can also
be shown (see [9], or (17) in [23], or Lemma A1 in [24]) that if

and are related by the fractional operator as shown in
(29), then

(33)

By assumption, the samples of are independent, identically
distributed random variables also independent of . Therefore,
it follows from the properties of and (29) that

(34)

where is the jcf of . Substituting
in the first product in the RHS of (34),

in the second product, and ,
and substituting the result in (33) gives

(35)

Both the RHS of (35) and the RHS of (32) equal unity for
. Therefore, it remains to be shown that the RHS of (35)

converges to zero as for every integer and each integer
pair such that and ,
if and only if at least one of the conditions of part (iv) is true.
But first, note that the characteristic function of each is

(36)

Sufficiency: It can be shown (see proof of Theorem 1 in [9])
that if conditions 2 or 3 (of part (iv)) are true, then one of the

constituent terms in the RHS of (35) equals zero: in such
cases, the argument of the term becomes an odd integer
multiple of . It can also be shown (see proof of Theorem 1
in [9]) that if condition 1 is true, then the infinite product in the
RHS converges to zero as for any integer . The details
of both arguments are explained in [9] and hence omitted here.

Necessity: Note that the first term in the RHS of (35) depends
on but not on . Consequently, the RHS of (35) converges to
zero as for arbitrary only if at least one of the
terms equals zero or if the infinite product converges to zero as

. Therefore, the conditions of part (iv) are necessary.
Proof of Part (iii): The proof is similar to that of part (iv)

with . An almost identical result has been proved in part
(ii) of Theorem 1 in [9].

Proof of Parts (i) and (ii): The proof is similar to that of part
(iv) except that conditional pmfs and conditional characteristic
functions are used instead of joint pmfs and joint characteristic
functions: for e.g., proving that

(37)

is equivalent to proving that

(38)

where is the conditional characteristic
function of given , and is the characteristic function of
the uniform discrete random variable . Note that the LHS of
(38) is actually a function of both and the value of ;
however, the latter argument is suppressed for the sake of sim-
plicity, and is shown explicitly only when required. Proceeding
as before, it can be shown that

(39)

where . Since (38) is true for , it
remains to be shown that the RHS of (39) converges to zero as

for every integer if and only if for every
integer , at least one of the conditions of part (ii) are true.
The rest of the proof of part (ii) is very similar to that of part
(iv). The reader is referred to the proof of part (i) of Theorem
1 in [9] for further details. The proof of part (i) is slightly dif-
ferent with playing the role of . By assumption,
are independent of for all integers . Therefore, the
terms need not be treated separately in (39). Consequently, the
conditions of part (i) do not require that .

Proof of Lemma 2: Note the following property about the
impulse responses, and

and

(40)

The proof is by contradiction. Suppose that
does not converge to 0 as for every

integer and every integer pair such that
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and . Then some integers
exist such that , and , and

(41)

Therefore, the following is true for every pair of integers
such that

(42)

Subtracting the second of the above pair of equations from the
first, and substituting (40) yields

(43)
where is an integer. Note that (41) and (43) together imply a
set of equations that can be recursively applied till either or

becomes zero. Since , proceeding recursively gives

(44)

where the fact that for large has been used.
The difference of two equations derived from (44) for every pair
of consecutive integers is

(45)

Applying the resulting recursive equations till the first index
variable on reaches 0 results in

(46)

which can not true since and is an integer.
The contradiction proves the result.
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