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Digital Background Correction of Harmonic
Distortion in Pipelined ADCs
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Abstract—Pipelined analog-to-digital converters (ADCs) are
sensitive to distortion introduced by the residue amplifiers in their
first few stages. Unfortunately, residue amplifier distortion tends
to be inversely related to power consumption in practice, so the
residue amplifiers usually are the dominant consumers of power
in high-resolution pipelined ADCs. This paper presents a back-
ground calibration technique that digitally measures and cancels
ADC error arising from distortion introduced by the residue
amplifiers. It allows the use of higher distortion and, therefore,
lower power residue amplifiers in high-accuracy pipelined ADCs,
thereby significantly reducing overall power consumption relative
to conventional pipelined ADCs.

Index Terms—Analog-to-digital conversion, calibration, har-
monic distortion, mixed analog–digital integrated circuits (ICs).

I. INTRODUCTION

P IPELINED analog-to-digital converters (ADCs) are
widely used in applications that require data converters

with resolutions in the range of 10 to 16 bits and bandwidths
in the range of 15 to 250 MHz [1]–[14]. Such applications in-
clude cellular telephone base station receivers, 802.11 wireless
LAN receivers, and 802.16 wireless metropolitan area network
receivers. In general, pipelined ADCs are attractive when the
required bandwidth is too high for oversampling delta–sigma
ADCs to be efficient and the required resolution is too high for
flash ADCs to be efficient.

Unfortunately, the power consumption of high-resolution
pipelined ADCs tends to be large, mainly because of the high-
performance op-amps required in the first few pipeline stages.
Passive sampling can be used to avoid having an op-amp based
sample-and-hold in the first stage, which leaves the op-amps in
the residue amplifiers of the first few stages as the dominant
consumers of power [15], [16]. Each stage in a pipelined ADC
performs coarse digitization of its input signal, but the outputs
of the stages are combined such that most of the quantization
noise cancels to achieve a high-resolution digitized version of
the input signal. However, distortion introduced by the residue
amplifiers, particularly those in the first few stages, results
in imperfect cancellation which reduces the linearity of the
pipelined ADC and increases its noise floor. In general, high
op-amp gain and bandwidth are required to achieve sufficiently
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low-distortion closed-loop residue amplifier performance. If it
were not for this limitation, much lower performance op-amps
could be used in pipelined ADCs to significantly reduce power
consumption.

This paper presents a digital background calibration tech-
nique, called the harmonic distortion correction (HDC) tech-
nique, that digitally measures and cancels ADC error arising
from distortion introduced by the residue amplifiers. This makes
it possible to reduce the power consumption of the op-amps in
a given pipelined ADC without sacrificing ADC accuracy. The
HDC technique operates in background during normal opera-
tion of the pipelined ADC, so it adapts to environmental changes
without the need to interrupt normal operation of the ADC. As
with other digital calibration techniques, such as presented in
[17] and [18], the HDC technique requires a significant amount
of digital signal processing. However, the reduction in op-amp
power consumption is expected to far exceed the increase in
power consumption from the extra digital logic.

The HDC technique is based on a different principle of oper-
ation than the only other techniques known to the authors that
cancel harmonic distortion in pipelined ADCs [19], [20]. The
benefit of the HDC technique relative to that presented in [19]
is that it works for any pipelined ADC input signal, and the ben-
efits relative to that presented in [20] are that it does not have re-
strictions with respect to dc input signals and it is not sensitive
to amplifier offsets.

The paper consists of three main sections. Section II presents
an example pipelined ADC architecture and describes the
residue amplifier distortion problem. Section III presents
the signal processing details underlying the HDC technique.
Section IV presents an implementation example of the HDC
technique. Section V presents simulation results and limitations
of the HDC technique.

II. RESIDUE AMPLIFIER DISTORTION PROBLEM

A. Example Pipelined ADC

A seven-stage example pipelined ADC architecture is shown
in Fig. 1. Each stage except the last consists of a 9-level flash
ADC, a 9-level digital-to-analog converter (DAC), and a residue
amplifier with a gain of 4. The last stage consists of just a 9-level
flash ADC. All the flash ADCs and DACs are clocked simulta-
neously at a sample rate of . The ideal behavior of
each flash ADC is to update its digital output each sample time
to whichever of the 9 values, , is closest to
the input voltage at that sample time, where is the quantiza-
tion step size of the flash ADC. Therefore, from a signal pro-
cessing point of view, each flash ADC ideally acts as a 9-level
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Fig. 1. Block diagram of an example 15-bit pipelined ADC.

uniform quantizer, and the output of the th flash ADC is given
by

(1)

where is the flash ADC’s input signal, and is
the quantization error introduced by the flash ADC. The input
no-overload range of each flash ADC, and, therefore, the usable
input range of each pipeline stage, is to , because
the magnitude of the quantization error introduced by the flash
ADC is bounded by for input voltages within this range and
exceeds otherwise. The ideal behavior of each DAC is to
convert the format of its input from a digital representation (e.g.,
bits) to an analog representation (e.g., voltage) without intro-
ducing distortion or noise. Therefore, from a signal processing
point of view an ideal DAC performs no numerical operation. It
follows that in the absence of nonideal circuit behavior the input
to and output of the th residue amplifier at the nth sample time
are given, respectively, by

and (2)

The outputs of the flash ADCs are combined as shown in
Fig. 1 to form the output of the pipelined ADC, . The
output, , of each digital divide-by-four block is called the
digitized residue of the th stage. As can be seen from Fig. 1,

for , so recursive
application of (1) and (2) gives

(3)

Hence, in the absence of nonideal circuit behavior the quanti-
zation error sequences from all but the last pipeline stage cancel
to give

(4)

Since is bounded in magnitude by and the
first pipeline stage has a usable input range of to ,
this represents slightly more than 15-bit analog-to-digital con-
version accuracy.

With ideal circuit behavior, the magnitude of the quantiza-
tion error from each flash ADC is bounded by , so the
analog output of each pipeline stage ideally never exceeds

in magnitude. However, nonideal circuit behavior such as
comparator offset voltages can cause the analog outputs of the
pipeline stages to have magnitudes that exceed from time to
time. To accommodate such over-range conditions, the useable
input range of the second through seventh pipelined stages is
maintained at to instead of to . In this
case, the pipelined ADC is said to have an over-range margin of

. The over-range margin greatly relaxes the performance
requirements of the flash ADCs in pipelined ADCs [21].

B. Effect of Residue Amplifier Distortion

The effect of residue amplifier distortion can be demonstrated
by considering the pipelined ADC of Fig. 1 with all ideal com-
ponents except for the residue amplifier in the first stage. This
scenario is shown in Fig. 2, wherein a function, , is used to rep-
resent distortion introduced by the first stage’s residue amplifier.

The distortion introduced by a practical residue amplifier
tends to be well-modeled as a memoryless, weakly nonlinear
function of the amplifier’s input voltage, so it can be approxi-
mated accurately by its first Taylor series coefficients where

typically is small (e.g., is common). Consequently,
the distortion function, , in Fig. 2 is given by

(5)

The same argument used above to obtain (4) implies that the
output of the pipelined ADC is now

(6)

where is the ideal output of the pipelined ADC
given by (4).

For example, suppose for all except . This im-
plies that the distortion is just a gain error, i.e., linear distortion.
In the absence of other nonideal circuit behavior,

and is, therefore, bounded in magnitude by , so it
follows from (6) that the maximum magnitude of the error from
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Fig. 2. Pipelined ADC of Fig. 1 except with a residue amplifier in the first stage that introduces distortion.

the nonideal residue amplifier gain is . It
follows from (4) that the quantization error introduced by the
ideal version of the pipelined ADC has a maximum magnitude
of . Hence, a gain error of just is sufficient
to cause the resulting pipelined ADC error to be comparable in
magnitude to the pipelined ADC’s quantization error. More gen-
erally, if , the th term in
(5) gives rise to an error component in the pipelined ADC output
with a magnitude comparable to the pipelined ADC’s quantiza-
tion error.

The 15-bit, 40-MS/s pipelined ADC integrated circuit (IC)
presented in [18] provides a convenient circuit-level example
of the issues described above. The ADC is based on the archi-
tecture shown in Fig. 1 modified to include digital background
calibration techniques that cancel ADC error arising from
DAC capacitor mismatches and interstage gain errors. The
ADC achieves over 90 dB of spurious-free dynamic range
(SFDR) and 72 dB of peak signal-to-noise-and-distortion ratio
(SNDR) over the 20-MHz bandwidth. To achieve sufficiently
low distortion for this level of ADC performance, high-power
residue amplifiers are used in the design: the op-amps in the
residue amplifiers consume approximately 80% of the 400 mW
consumed by the entire IC.

Had the sample rate been higher than 40 MHz, even higher
performance, and, therefore, higher power residue amplifiers
would have been required to maintain the same SFDR and
peak SNDR. For example, circuit simulations indicate that the
pipelined ADC’s SFDR and peak SNDR drop to 65 and 56 dB,
respectively, if the sample rate is increased to 100 MHz without
improving the performance of the residue amplifiers.1 Simula-
tion of the residue amplifier stage indicates that this reduction
in performance comes from both linear gain error associated
with incomplete settling and from third-order distortion; the
use of differential circuitry causes the even-order terms to be
negligible in this example relative to the target specifications
of 90-dB SFDR and 72-dB peak SNDR, and, although higher
order distortion terms are present, they too are negligible in
this example. Later in the paper, this example is revisited and

1The digital logic in the IC limited the clock rate to 50 MHz, so this observa-
tion had to be made via transistor-level simulation. However, circuit simulation
results up to 50 MHz are consistent with measured results.

an implementation of the HDC technique is described that
digitally measures and cancels the error introduced by the
residue amplifiers to restore the SFDR and peak SNDR to their
target values of 90- and 72-dB, respectively.

III. SIGNAL PROCESSING DETAILS OF HDC TECHNIQUE

A. An th-Order Distortion Correction Example

To demonstrate the basic idea underlying the HDC technique,
a simplified case is considered first: the residue amplifier in the
first stage introduces only th-order distortion, i.e.,

for some integer, , and all other components in the
pipelined ADC are ideal.

The HDC technique for this example is shown in Fig. 3. A
set of uncorrelated, two-level, pseudorandom, digital calibra-
tion sequences, , each of which takes on
values of , is zero-mean, and is independent of the pipelined
ADC’s input signal, are added to the output of the flash ADC.
They are converted to analog form along with the output se-
quence from the flash ADC, so the input to residue amplifier at
the th sample time is

(7)

The amplitude of the calibration sequences is chosen such
that the sum of the calibration sequences has a maximum am-
plitude of approximately . Since the sum of the calibra-
tion sequences is amplified along with the quantization error
from the flash ADC, this implies that approximately half of
the over-range margin is taken up by the calibration sequences,
which leaves the other half of the over-range margin for error
associated with nonideal circuit behavior.

The calibration sequences are subjected to the distortion func-
tion of the residue amplifier along with the quantization error
from the first pipeline stage, and, by reasoning similar to that
presented in the previous section to obtain (3)

(8)
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Fig. 3. Example of the HDC technique for correction ofmth-order residue amplifier distortion.

It follows that the pipelined ADC output prior to correction
by the HDC technique is

(9)

The purpose of the HDC logic is to estimate
with which to cancel the th-order distortion in , i.e., the
second term in (9). It does this by correlating against the
product of the calibration sequences, . The
correlation involves multiplying the digital sequence

(10)

by , a two-level sequence that takes on
values of , and averaging the result. Since the calibration
sequences are zero-mean, uncorrelated with each other, and
independent of the pipelined ADC’s input signal, it follows that

is uncorrelated with all of the terms in (10)
except the term that occurs in the
expansion of , as given by (7), raised to the th power.
Consequently, the average of times
over is . The HDC logic multiplies the output of
the averager by to obtain which is an
estimate of . It then multiplies by to obtain the
estimate of .

To the extent that the calibration sequences have the above-
mentioned statistical properties, converges exactly to as
the number of samples averaged by the HDC logic increases; the
more samples in the average, the better the estimate of . This
convergence occurs regardless of the pipelined ADC’s input
signal, so the HDC technique performs background calibration,
i.e., it functions during normal operation of the pipelined ADC.
After an initial convergence time during which the averager ob-
tains a sufficiently accurate estimate of that the pipelined

ADC’s accuracy is limited by nonideal circuit behavior other
than th-order residue amplifier distortion, the pipelined ADC
operates at its full accuracy, and the HDC technique continues
to track slow variations in that may occur because of tem-
perature changes or as the device ages.

Although the estimate of has an accuracy that depends
only upon the number of samples averaged by the HDC logic,
the accuracy of the estimate of is limited by the
presence of unwanted higher order terms that occur in .
For example, it follows from (8) that if and the small last
term of (8) is neglected, then

(11)

Fortunately, as demonstrated in the next section, the un-
wanted terms in (11) tend to be small in practice in which case
they can be neglected.

For the special case of , the HDC technique as shown
in Fig. 3 reduces to the gain error correction (GEC) technique
presented in [18] and [22]. Hence, the HDC technique can be
viewed as an extension of the GEC technique.

B. HDC Technique for Correction of Multiple Orders of
Distortion

By a minor extension of the analysis presented above, it is
easy to verify that converges to even if the residue ampli-
fier’s distortion function contains lower order distortion terms.
In other words, even if any of the for are nonnegligible
in (5), the HDC logic shown in Fig. 3 accurately estimates .

However, a complication arises if any of the for are
nonnegligible. For example, suppose that the HDC technique
as shown in Fig. 3 is implemented with , but instead
of the residue amplifier introducing only third-order distortion,
it introduces first-order, third-order, and fifth-order distortion.
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Fig. 4. An example of the HDC logic for correction of fist-order, third-order, and fifth-order residue amplifier distortion.

That is, suppose . In this case,
(10) becomes

(12)

with still given by (7). Expanding the fifth-order term
in (12) results in several cross-terms that are correlated with
the product of the calibration sequences, . These
terms cause to converge to a value that differs from .
Specifically, now converges to

(13)

as the number of averaged samples increases, where
denotes the average of . Therefore, the presence of
nonnegligible fifth-order residue amplifier distortion prevents
the version of the HDC technique shown in Fig. 3 from func-
tioning properly because of the unwanted term in (13).

As another example, consider the same distortion function,
but suppose . In this case the HDC logic correlates a
single calibration sequence, , against to obtain .
It follows from the presentation above that in the absence of
third-order and fifth-order distortion, would converge to .
However, the third-order and fifth-order terms in (12) contain
several cross-terms that are correlated with . Consequently,

converges to

(14)

From these examples, it is evident that the HDC technique
must be modified for cases in which the residue amplifier’s dis-
tortion function has more than one nonnegligible term. The idea

is to use two-level calibration sequences as described above,
correlate against to obtain for each

, at which is nonnegligible, and estimate the
unwanted terms in each value to obtain an estimate of the
corresponding .

For example, suppose again that
. In this case, 5 calibration sequences are used, each of

which takes on values of where . The corre-
sponding HDC logic is shown in Fig. 4, where .
It calculates , , and as described above, as well as the
averages of and which are denoted as and ,
respectively. By the arguments presented above, converges
to the quantity given by (14), converges to the quantity
given by (13), converges to , and and converge to

and , respectively. Therefore, the vector
converges to where

and is shown in the equation at the bottom of the
page.

The HDC logic uses the resulting estimated values of ,
, and to cancel the corresponding distortion terms in the

pipelined ADC’s output sequence as shown in Fig. 4.

C. Convergence Time

It follows from the presentation above that the values cal-
culated by the HDC logic can be written as

(15)
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where

if
otherwise

and is the number of samples averaged by the averager blocks.
The sign of the product of the calibration sequences, , is a
random sequence, so for any finite value of , is a random
variable.

If the averagers in the HDC logic were ideal, they would
evaluate (15) in the limit as in which case would
converge to its ideal value, . However, is finite in
any practical averager, so the convergence process is incom-
plete and this introduces a random estimation error component.
The mean squared value of the estimation error, i.e.,

, can be used to quantify the estimation error. By its
definition, is a white random sequence with zero mean and
unity variance. It is independent of the pipelined ADC’s input
sequence, any term that does not contain one or more of the se-
quences as factors, and any term that con-
tains a calibration sequence other than as
a factor. With set to (to provide a specific example),
it follows from these properties and (15) that

(16)

where is the number of calibration sequences, and is
equal to minus the terms that are correlated with .
Equation (16) specifies the relationship between the number of
samples averaged and the convergence accuracy of the HDC
technique. By the design of the pipelined ADC, ,
so (16), viewed as a function of , has the form of a bounded
sequence divided by . Hence, as expected this implies that the
estimation error goes to zero as .

The required convergence time is the minimum value of for
which the HDC logic is able to measure all the values with
sufficient accuracy that the error arising from residue amplifier
distortion is canceled to the point that the target specifications
of the pipelined ADC are met. Equation (16) gives insight into
which terms affect the required convergence time. However, a
closed-form expression for the required convergence time is not
yet known. Hence, as demonstrated in the next section, com-
puter simulations are used to determine the required conver-
gence time on a case-by-case basis.

One insight offered by (16) is that the mean squared estima-
tion error for a given value of gets worse as is increased.
The number of calibration sequences, , must at least equal
the order of the highest order distortion term to be measured
by the HDC logic, so is at least as large as in (16), and
the mean squared estimation error is proportional to . Thus,
the highest order distortion term to be measured generally de-
termines the required convergence time. For example, in the
HDC technique implementation presented in the next section,
the third-order distortion term is the highest term measured by
the HDC logic. This term causes the required convergence time
to be on the order of four billion samples (e.g., 40 s worth of
samples at a sample rate of 100 MHz).

D. Overview of Practical Issues

To simplify the presentation, the HDC technique has been de-
scribed up to this point under the unrealistic assumption that
the only nonideal analog component in the pipelined ADC is
the residue amplifier in the first pipeline stage. However, as de-
scribed in the remainder of the paper, the HDC technique is
able to function effectively in the presence of realistic circuit
nonidealities.

It follows from the analysis presented above that the con-
vergence process works in the presence of any signal that is
statistically independent of the calibration sequences. There-
fore, circuit noise does not bias the HDC convergence process.
This leaves distortion (from components other than the residue
amplifier) as the only potential nonideal circuit behavior that
can significantly affect the convergence of the HDC technique.
For example, if the DAC in a pipeline stage to which the
HDC technique is applied introduces nonnegligible, nonlinear
distortion, the HDC technique will not properly correct for the
residue amplifier distortion. Fortunately, with dynamic element
matching (DEM) to scramble component mismatches, the
DACs in a pipelined ADC can be implemented with extremely
high linearity [18], [23]. Moreover, segmentation techniques
can be used to create DEM DACs that handle the extra levels
required to accommodate the calibration sequences with very
little extra hardware complexity or latency [18], [24], [25].

In the examples presented so far, the HDC technique has
been applied only to the first pipeline stage, but in general it
can be applied simultaneously to as many of the pipeline stages
as necessary. As can be deduced from (3) and Fig. 1, for each

, the combination of pipeline stages through 7
and the associated digital logic is a pipelined ADC in its own
right with a resolution of approximately . There-
fore, by the reasoning presented above, the HDC technique can
be applied simultaneously to any of the first six pipeline stages
provided calibration sequences are used in each stage that are
independent of those used in the other stages. It follows from
the architecture of Fig. 1 that any distortion introduced by the

th pipeline stage is attenuated by a factor referred to the
output, so the distortion introduced by all but the first few stages
tends to be negligible. Consequently, in practice, it is only nec-
essary to apply the HDC technique to the first few stages.

IV. HDC IMPLEMENTATION EXAMPLE

An example is presented in this section in which the HDC
technique is applied to the first three stages of the pipelined
ADC shown in Fig. 1. The result is shown in Figs. 5–7. Fig. 5
shows a high-level view of the pipelined ADC, Fig. 6 shows the
pipelined ADC with expanded views of the first pipeline stage
and the associated HDC logic, and Fig. 7 shows the high-level
structure of the DEM DAC used in the first three pipeline stages.
The details are described below and computer simulation results
are presented to demonstrate the performance of the system.

The residue amplifier distortion for this example is modeled
after the behavior observed via transistor-level circuit simula-
tions in the pipelined ADC of [18] for a sample rate of 100 MHz.
Specifically, for each residue amplifier, the nonnegligible dis-
tortion terms in (5) are , ,

, and , where is the
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Fig. 5. High-level view of an example pipelined ADC incorporating the HDC technique.

Fig. 6. Example pipelined ADC incorporating the HDC technique with expanded views of the first stage and associated HDC logic.

step size of the flash ADC. It can be deduced for this case from
the results presented in Section II that only the first-order and
third-order residue amplifier distortion terms in the first three
pipeline stages need be cancelled to achieve 15-bit pipelined
ADC accuracy. Therefore, the HDC technique is applied in this
example to measure and cancel just these distortion terms.

The details of the first pipeline stage and associated HDC
logic are shown in Fig. 6. Three pseudorandom calibra-
tion sequences are added prior to the DAC, so the sum of the cal-
ibration sequences is a four-level sequence that can range from

to in steps of . The use of three
calibration sequences has two analog circuit implications. The
first implication is that the DAC must have a minimum step size
of (instead of as in the fourth through seventh pipeline
stages) and enough levels to accommodate the calibration se-
quences. To avoid exceeding the input range of the DAC, the
sum of the calibration sequences are forced to and the
HDC estimators for the pipeline stage are disabled when the

output of the flash ADC is either at its maximum or minimum
value. Therefore, the sum of the calibration sequences and the
flash ADC output can take on values of

(17)

where

and
if
if

so the DAC must be able to generate these output levels. The
second implication is that the calibration sequences occupy al-
most half of what would otherwise have been the over-range
margin. Specifically, it follows from the discussion in Section II
that the over-range margin for each of the first three stages is

. While this tightens the design constraints on the flash
ADC, it is not difficult to handle in practice [18].
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Fig. 7. Functional view of the DEM DAC.

As described above, the DAC in each of the first three stages
must be capable of generating the output levels specified by
(17). This is accomplished by the DAC architecture shown in
Fig. 7. It consists of a digital DEM encoder block and 15 1-bit
DACs. Each one-bit DAC outputs a nominal value of or

depending upon whether its input bit is 0 or 1, respectively,
where is a weighting factor that is fixed for a given 1-bit
DAC. There are three 1-bit DACs with , two with

, two with , and eight with . With
this 1-bit DAC weighting arrangement, for most of the pos-
sible input values, , there are multiple distinct bit vectors,

, that give rise to the desired nominal
output value. At each sample clock, the DEM encoder pseudo-
randomly selects one of these multiple, nominally equivalent
vectors.

If all the 1-bit DAC step sizes were ideal, the pseudorandom
selection algorithm in the DEM encoder would have no effect.
However, inadvertent component mismatches arise during cir-
cuit fabrication which causes the 1-bit step sizes to deviate from
their ideal values. If only one of the possible values of the 1-bit
DAC input vector, , were used for each
value of , the step-size errors would cause the overall DAC
to introduce harmonic distortion. By pseudorandomly choosing
among the different possible 1-bit DAC input vectors for each
input sample, the DEM encoder causes the overall DAC to intro-
duce white noise that is uncorrelated with the other sequences in
the pipelined ADC instead of harmonic distortion, and the white
noise can be removed in the digital domain by a background cal-
ibration technique [18], [23].

From a signal processing point of view the DEM encoder can
be viewed as a tree of digital logic blocks called switching blocks
as shown in Fig. 7. Each switching block is labeled or
in the figure, where and denote the position of the switching
block in the tree. The three switching blocks labeled in the

figure are called segmented switching blocks because in each
case their two outputs affect the input bits to 1-bit DACs with
different weighting factors. The ten switching blocks labeled

are called nonsegmented switching blocks because in each
case their two outputs only affect the input bits to 1-bit DACs
with equal weighting factors.

Each switching block operates on a digital input sequence and
generates two digital output sequences. The output sequences
generated by each segmented switching block, , are given
by

and

(18)

where is the input to the switching block and
is a pseudorandom sequence, called a switching sequence. The
switching sequence is generated as part of the switching block
logic as

if is even
otherwise(chosen pseudorandomly)

(19)

The output sequences generated by each nonsegmented
switching block, , are given by

(20)

where, as before, is the input to the switching block and
is a switching sequence given by (19). It can be verified

from the results presented in [24], [26], and [27] that the DEM
encoder ensures that output level errors in the 1-bit DACs from
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Fig. 8. Simulation results for HDC applied to first, second, and third stages.

component mismatches do not cause the overall DAC to intro-
duce harmonic distortion, which is a requirement of the HDC
technique.

It follows from (18)–(20) that the data paths through the
switching blocks are not clocked, so the DEM encoder could
be implemented directly as combinational logic. However, in
high-speed pipelined ADCs, latency from the output of the
flash ADC through the DAC in each pipeline stage must be
minimized because the larger the latency the less time is avail-
able for the residue amplifier following the DAC to settle. In
[18], this issue was addressed by implementing the function-
ality of both the calibration sequence adder and the DEM
encoder in parallel as a single layer of digital transmission
gates along with some digital logic gates through which la-
tency is not critical. This reduced the latency from the output
of the flash ADC through the DEM encoder to that of a
single transmission gate. Although the DEM encoder shown
in Fig. 7 is more complicated than that presented in [18], the
same approach has been taken in the computer simulated im-
plementation described below. Since the calibration sequences
are known in advance of the flash ADC output data, only
the combinational logic component through which latency is
not critical is increased in this example relative to the DEM
encoder presented in [18].

The practical version of the HDC logic shown in Fig. 6
is a direct implementation of ideal version shown in Fig. 4,
except without fifth-order distortion correction. The primary
differences between the practical and ideal versions are that
requantization is used to reduce the bit widths of various
data buses to reduce digital complexity, and the three aver-
agers are implemented with in the practical version.
Dithered requantizers are used to perform the requantization
as described in [23] to avoid introducing harmonic distor-
tion. Requantization is not necessary, but by reducing data
bus widths it greatly reduces the area and power consump-
tion of the HDC logic, yet the quantization noise it introduces
adds only slightly to the HDC convergence time. The random
dither sequences and calibration sequences in this example
were generated by a single linear feedback shift register of the
form described in [28].

At a sample rate of 100 MHz with , each HDC block
requires approximately 43 seconds to converge. However, the
accuracy of each HDC block depends on the accuracies of the
HDC blocks in the subsequent stages. Thus, the total conver-
gence time for this example implementation is approximately
2 min.

V. SIMULATION RESULTS AND HDC LIMITATIONS

TheexamplepipelinedADCwithHDCasdescribedabovewas
simulated with various nonideal circuit effects. The simulated
residueamplifierdistortion ineachstage includes thefirst through
seventh-order distortion terms described above. The 1-bit DAC
mismatches were chosen as independent Gaussian random vari-
ables; the standard deviations of the 1-bit DACs with step sizes
of , , and are 0.30%, 0.42%, 0.60%, 0.85%, of

, respectively. The flash ADC threshold errors
and residue amplifier offset voltages were chosen as independent
Gaussian random variables with standard deviations of 25 and
5 mV, respectively. A 10-nV white noise signal was added
at the input of each residue amplifier to model thermal noise.

Fig. 8(a) shows the power-spectral density (PSD) plot2 of the
output of the residue amplifier simulated alone with a 275 mV,
6.4-MHz sinusoidal input signal. The amplitude of the input
signal is nearly the maximum input that does not overload the
next stage of the pipeline. Hence, the output of the residue
amplifier consists of the 6.4-MHz fundamental tone plus the
residue amplifier distortion terms and thermal noise. The plot
demonstrates the nonlinear behavior of the residue amplifier.

Fig. 8(b) and (c) shows the PSD plots of the pipelined ADC
with a 1 dB relative to full-scale 6.4-MHz sinusoidal input
signal. Fig. 8(b) shows the case with the HDC technique dis-
abled, and Fig. 8(c) shows the case with the HDC technique en-
abled. Comparison of Fig. 8(b) and (c) indicates that the HDC
technique improved the simulated SNDR and SFDR by 26 and
30 dB, respectively. Numerous other simulations performed by
the authors with different input signals, and different random
mismatches, ADC thresholds, and DAC mismatches, exhibit
similar results.

Before computing the PSD estimates for the simulation re-
sults shown in Fig . 8(b) and (c), the components of the final
output signal corresponding to DAC mismatches and thermal
noise were removed so as not to obscure the effect of the HDC
technique. Removal of the components corresponding to DAC
mismatches can be achieved in a practical implementation via
the DNC technique presented in [18] and [23]. However, the
DNC technique is not necessary for the HDC technique to func-
tion provided DEM DACs are used to ensure that error intro-
duced by DAC mismatches does not contain significant har-
monic distortion.

One potential limitation of the HDC technique is not demon-
strated by the implementation example described above. The

2The PSDs were estimated using 16 Hanning windowed periodograms of
length 16384.
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Fig. 9. Example pipelined ADC incorporating the HDC technique with improved correction scheme for large distortion coefficients.

version of the correction scheme presented in Figs. 4 and 6 is not
accurate if the error is too big, i.e., if the coefficients in (5)
are too large—this could happen, for instance, if an open-loop
residue amplifier configuration as in [19] is used instead of a
classical closed-loop configuration. For example, if the distor-
tion function given by (5) can be written as

(21)

and the digitized residue in Fig. 6 is given by

(22)

the correction signal is

(23)

Subtracting (23) from the uncorrected output given by (6),
using (21), and assuming that , the pipeline output is

(24)

Comparing to (24) to (6), it is clear that HDC removes most of
the distortion provided the coefficients are sufficiently small.
However, in some applications this may not be the case, in which
case the remaining unwanted terms in (24) may not be negligible
for the given application. In such cases, the modified correction

technique shown in Fig. 9 can be used. A similar analysis to that
presented above indicates that the pipelined ADC output is now

(25)

Equation (25) shows that linear and third-order distortion has
been removed, while the remaining unwanted terms are smaller
than or comparable to the respective terms in (24). The price
paid for the accuracy improvement is increased complexity. Al-
though both schemes require the same number of multipliers,
the extension of the latter scheme to correct for higher order
harmonics would result in a more complex hardware.

Another limitation of the HDC technique has not been high-
lighted by the example presented in Section IV. Had it been
necessary to apply HDC to correct fifth-order residue amplifier
distortion, a problem would have arisen for the chosen pipelined
ADC architecture and target specifications. Specifically, the
fifth-order distortion term for this case is so small that high-order
distortion from the coarse quantization performed by the flash
ADCs in each stage becomes significant and distorts the HDC
technique’s estimate. Equation (12) represents the signal used
to estimate the first stage’s residue amplifier distortion terms
under the assumption that the following stages are either ideal
or perfectly corrected. A more accurate expression for is

(26)

where the is the amplitude ofuncanceledflashADCerror from
the th stage. Therefore, in the absence of perfect cancellation,
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every flash ADC contributes error in (26). The error is largely
quantization noise which tends to be highly correlated with
and therefore with the pseudorandom sequences. The smaller
the coefficients to be estimated by the HDC technique, the
more significantly the imperfectly cancelled flash ADC errors
distort the estimated coefficient values. Furthermore, the coarse
quantization performed by the flash ADCs is a hard nonlinearity,
so it can not be represented by a small number of Taylor series
terms. In conclusion, the HDC technique, as well as any other
scheme (e.g., [20]) that assumes the nonlinearity to be estimated
is well-modeled by a small number of Taylor series terms fails
to work well when the nonlinearity to be estimated is very small.
In principle, an analog dither signal can be added prior to the
flash ADCs to eliminate this problem in cases where very small
distortion terms must be measured by the HDC technique [29].
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