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Abstract—This paper suggests a stochastic approach to data 
conversion. It is applicable to serial, parallel, two-step as well 
as delta-sigma ADCs and DACs. In the serial implementation 
of this scheme, a sample-and-hold circuit, a noise source and a 
comparator are combined with an accumulate-and-dump 
digital stage to perform serial multibit A/D conversion. In the 
parallel ADC, M nominally identical primitive converter cells 
with the same input signal, x(t), but with different and 
uncorrelated random dither signals, di(t) (i = 1, 2, ..., M), are 
combined to perform the data conversion. Possible 
combination of the two methodologies is also outlined. 
 

I. INTRODUCTION 
In biological systems, often a large number of low-

complexity unit cells combine to perform a fairly exact 
function. Applying this idea to the circuits and systems 
domain, we propose to use a set of coarse quantizers (i.e. 2- 
or 3-level comparators) combined to obtain robust and 
highly linear multibit analog-to-digital (ADC) [1], and 
digital-to-analog (DAC) converters. 
Figure 1 shows the generalized stochastic quantizer. It has M 
branches, each one containing a one-bit quantizer, an 
independent identically distributed (i.i.d.) random noise 
source (di) added with the sampled and held input signal, 
x(t). Each digital output is followed with a digital integrator 
(up/down counter) controlled with a common modulo N 
counter. Those blocks will perform the accumulate and dump 
process (temporal averaging), while the parallel combination 
will provide a spatial averaging. Assuming the power of one 
individual quantizer to be q2, after averaging M times 
spatially and N times temporally, the equivalent quantizer 
noise power at the output, q2

av, will be: 
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Considering a linearized model, the output signal power will 
be equal to the input signal power, which means an increase 
in the signal to noise ratio (SNR) equal to N.M, or in other 

words, a reduction of the quantization noise power by the 
same factor.                              
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Figure 1: a) Time-Spatial averaging quantizer. The noise sources are 
uncorrelated and i.i.d. The integrators are up/down counters. Scaling factors 
are at the output. b) RMS noise as a function of the number of samples and 
the number of parallel branches. 
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The noise will decrease as the number of quantizer branches 
or the modulo of the counter increases, as depicted in Fig. 1-
b. The tradeoffs depend on speed and power/area relations. It 
should be noted that for a given complexity, the maximum 
reduction of quantization noise is achieved when N = M. 
  

II. SPATIAL AVERAGING – ANALYIS 
In the rest of the paper, we shall discuss only the spatial 

averaging idea (i.e., the counters will be disregarded in the 
mathematical development that follows). First, the 
application will be presented for an open loop configuration, 
but after that the emphasis will be put on delta sigma 
modulators.  

Based on the scheme of Fig. 1, and assuming no time 
averaging (N=1), the overall system becomes a parallel 
combination of M one-bit quantizer branches [1]. It should 
be pointed out that the simple sign(x) quantizer could be 
replaced with a 3-level (1.5 bit) quantizer, obtaining 
improved performance. Also, different pdfs (probability 
density functions) can be used to generate the random 
dithering and uncorrelating noise sources. The general case 
will be discussed next.  

Assuming a linear operation over a continuous random 
variable (r.v.) d, with pdf fd(d): 

 daxy  +=                                       (2) 
 
where a and x are constants1, then the pdf of the new r.v. y is 
given by [2] 
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Without loss of generality, considering a=1, it is known that 
fy(y) will be the convolution of fd(d) with a Dirac’s delta 
centered at x, i.e, the new pdf will be equal to the original 
one but shifted.  
On the other hand, the overall system output is given by 
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For large M, and using the law of large numbers, z tends to: 
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The mean value, or first moment, of a r.v. is defined as 
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1 Here, x is the sampled input value. 

Using the sign(arg) definition (+1 if arg ≥ 0, -1 otherwise), 
combined with the previous formulas [4],   
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results. 

From (7), it can be easily inferred that for a uniform 
distribution, the output is linearly related to the input. For 
other kind of distributions, look-up tables may be used to 
optimize the use of the quantizers.  

 

III. SIGMA DELTA MODULATORS USING THE  
SPATIAL QUANTIZER 

The first design to be presented is a delta sigma ADC, 
schematically depicted in Fig. 2-a. In this case, to avoid 
excessive delays, the fast feedback toward the input addition 
point is made individually from each comparator. The 
addition in the digital domain is performed out of the loop, 
where delays can be tolerated. The system was simulated 
using realistic models for the opamps (offsets in the order of 
+/-5mV, DC gains of 70~80dB, plus nonlinear 
characteristics were implemented in Simulink). The FFT 
output for a second order system using 16 3-level 
comparators is shown in Fig. 2-b, together with the results 
obtained using a conventional 3-bit second order sigma delta 
sigma ADC. It should be noted that the shape of the pdf in 
this case is of no importance (the high loop gain tends to 
linearize the nonlinear quantizer characteristic). Moreover, 
offsets are tolerated.  

For this example, the improvement in the signal-to-noise 
ratio (SNR) is evident using (1). The output V of the system 
for any bandlimited input U is then given by 
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Here STF and NTF stand for the signal- and for the 
noise-transfer functions, respectively, and q is the 
quantization noise of a 3-level quantizer [3]. 

A first modification could be to use, instead of a simple 
3-level quantizer, a first order delta sigma modulator for each 
branch. Figure 3 shows the system together with its 
simulation results. Again, nonideal effects were taken 
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into account (9 bit matching for all the components, offset 
and nonlinear Opamps, etc.). It is noteworthy in this case that 
because each element has a one-bit first order shaping, the 
overall response is highly linear (compare with the 
intermodulation tones in the 3-bit delta sigma modulator, 
with a 9-bits linear feedback DAC). For comparison 
purposes, the response of a one bit ADC is also shown. As a 
conclusion, an improvement in linearity is obtained without 
the use of DWA or any other mismatch shaping technique in 
the DAC. 

As a corollary, because of the linearity obtained, it is now 
possible to extend the concepts to a delta sigma DAC 
structure, as depicted in Fig. 4-a. The first step is to simplify 
the digital structures; hence, a first delta sigma (∆ΣA) is used 
to reduce the digital input word length. The dithering sources 
can be quantized and easily generated on-chip by means of 
pseudo random noise generators implemented with linear 
feedback shift registers (LFSR). The simulated response is 
shown in Fig. 4-b, together with a 3-bit and a one-bit systems 

for comparative purposes. Also, the integrated noise powers 
are plotted for the three different cases. Important points: 
error feedback can be used (resulting in reduced area and 
power consumption); no stability problems as long as each 
equal individual one-bit branch is stable (possibilities of high 
order noise shaping); current sources can be used (high speed 
developments) 

IV. CONCLUSIONS 
Analog-to-digital and digital-to-analog converters have been 
presented, which use coarse quantizers in order to get 
multibit responses. The idea behind this procedure can be 
explained as follows: under certain assumptions the 
quantization noise can be considered as a wide sense 
stationary stochastic process (generally considered uniformly 
distributed and with zero mean), with ergodicity in its mean 
and variance values (i.e., similar time and spatial statistical 
properties). Based on this fact, assuming zero correlation 
among all the individual outputs and successive samples, and 
using the law of the large numbers, we have concluded the 
previous results for a large number of comparators with large 
dithering sources.  
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Figure 2: Delta sigma ADC using spatial averaging. a) Simplified 
schematic. b) Frequency response for a second order system using a 3-bit 
conventional quantizer, and using a 16 1.5-bit spatial quantizer. Two tones 
(-6dBFS and -12dBFS) used to observe nonlinear behavior.  
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Figure 3: Delta sigma ADC using spatial averaging with embedded noise 
shaping. a) Simplified schematic. Two sets of 1-bit DACs are used to 
simulate a real system. b) Frequency response for a second order system 
using a 3-bit conventional quantizer, using 16 1.5-bit spatial quantizers, and 
using a one-bit quantizer delta sigma. Two tones (-4.5dBFS and -14dBFS) 
used to observe nonlinear behavior. All elements are 9 bits linear.  
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Both time and space constrains were taken into account, 
e.g., for the spatial ADC case, a log2(M) bits length word is 
obtained as the output of the system,  but with an equivalent 
quantization error of log2(M1/2). The tradeoff is clear: 
accuracy vs. time and/or area & power. 
On the other hand, an interesting and promising fact 
emerged from this research: highly linear devices can be 
devised using imperfect components. 

As it was already mentioned, all the one-bit 
inputs/outputs must be uncorrelated among themselves. The 
use of M noise sources at the inputs of the M comparators 
not only achieves this result, but also dithers the 
quantization noises, helping the loop filters to shape their 
power spectral densities (PSD). Generating the noise in 
digital domain is an easy matter, something that is not so 
trivial in the analog domain. 

 
As a result, circuit robustness is obtained, which comes 

from the fact that there is no need of accurate voltage 
dividers to get the quantizer reference chain. Another extra 
advantage is that if one comparator (or a reduced amount of 
them) fails, the system will still be functional, with a little 
degradation on its characteristics 
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Figure 4: Delta sigma DAC using spatial averaging with embedded noise 
shaping. a) Simplified schematic. Analog elements have 9 bits matching. 
Noise sources quantized to 3 levels. b) Frequency response for a second 
order system using a 3-bit conventional quantizer (black), using 16 1.5-bit 
spatial quantizers (red), and using a one-bit quantizer delta sigma (blue). 
Tone at -7dBFS. Also shown are the integrated noise powers for the three 
cases. 
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