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A Tight Signal-Band Power Bound on
Mismatch Noise in a Mismatch-Shaping

Digital-to-Analog Converter
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Abstract—Many applications employ digital-to-analog con-
verters (DACs) to obtain the advantages of digital processing (e.g.,
low power and physical size, resilience to noise, etc.) to generate
signals, such as voltages, that are analog in nature. Given the
appropriate numerical representation of its input, the DAC ideally
behaves as a linear gain element. However, as a result of inevitable
component mismatches, the output of a multibit DAC (i.e., a DAC
designed to output more than two analog levels) is a nonlinear
function of its input. The resulting distortion, called DAC noise,
limits the overall signal-to-noise ratio (SNR) and hence the
obtainable accuracy of the DAC. Mismatch-shaping DACs exploit
built-in redundancy to suppress the DAC noise in the input signal’s
frequency band. Although mismatch-shaping DACs are widely
used in commercial products, little theory regarding the structure
of their DAC noise has been published to date. Consequently,
designers have been forced to rely upon simulations to estimate
DAC noise power and behavior, which can be misleading because
the DAC noise depends on the DAC input. This paper addresses
this problem. It presents an analysis of the DAC noise power
spectral density (PSD) in a commonly used mismatch-shaping
DAC: the dithered first-order low-pass tree-structured DAC. This
design ensures that its DAC noise has a spectral null at dc (i.e.,
zero frequency) by generating digital, dc-free sequences using
the same techniques that have been developed for line codes. An
expression is derived for the DAC noise PSD that depends on the
statistics of these sequences and is used to show various properties
of the DAC noise. Specifically, an attainable bound is derived for
the signal-band DAC noise power that can be used to predict worst
case performance in practical circuits.

Index Terms—Analog-to-digital, data converters, dc-free se-
quences, delta–sigma (��), digital-to-analog, dynamic element
matching, mismatch shaping, multibit, sigma–delta, spectral
shaping.

I. INTRODUCTION

I N many applications, such as telecommunications, infor-
mation that is processed digitally must be converted to an

analog signal using a digital-to-analog converter (DAC). This
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device receives a digital input—i.e., an abstract element from
a given finite set called an alphabet—and produces an analog
physical quantity, such as a constant voltage, that is unique for
the provided input. For most DACs, each possible output is of
the same nature (e.g., only voltages and not currents) and are
only differentiated by a scalar multiplication. Therefore, the set
of possible DAC outputs can be characterized as

, where each is a unique, unitless constant,
and represents the physical quantity. Thus, from a mathemat-
ical point of view, the DAC provides a bijective mapping from
the digital input’s alphabet to a set of analog values.

Designers usually simplify this mapping by exploiting the ar-
bitrariness of the names or “values” of the digital inputs. As pre-
viously mentioned, each DAC output can be written as product
of an element in by the physical quan-
tity . By attributing the value to the digital input that pro-
duces , the ideal DAC can be considered a gain element
whose magnitude is . This representation of the DAC input’s
alphabet is not unique, so the designer typically uses one that is
most convenient for the application.

Most DACs are not built with the intent to perform a single
conversion. The DAC input is normally a temporal sequence of
digital values that are converted at specific instances in time,
which are typically periodic. Such a sequence will be denoted
by , where the dummy variable corresponds to the spe-
cific instance in time, called a sample time, that the sequence is
evaluated or converted, and represents either the value of
the sequence at that instant or the sequence in its entirety, de-
pending on the context. It is assumed that the st sample,

, always occurs after the the th sample, . In the
periodic case, each sample follows its previous sample by the
same amount of time. Thus, the DAC input, , is discrete in
both time and value.

The DAC output, on the other hand, is a continuous-time
physical quantity. It is assumed, without loss of generality, that
the DAC holds its output at a constant value from the time that
the given digital value is converted to the next sample time.
Thus, between the th and st sample times, the ideal
DAC output is . Any pulse shaping or interpola-
tion can be achieved by appropriately filtering this DAC output.
Even though the DAC output is a continuous-time signal, it is
uniquely determined at the sample times and therefore is more
conveniently represented as the sequence .

To understand the physical implementation of a DAC, it is
first necessary to understand how a digital sequence is imple-
mented with analog circuitry. The digital sequence is typically
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represented by means of a sequence of analog voltages that are
interpreted as discrete quantities by comparing them with given
thresholds. For instance, a zero-voltage threshold is used for a
binary sequence; thus, the values of the digital sequence are de-
termined by the polarities of its representative voltage signal at
each sample time. Samples that have positive and negative volt-
ages are referred to as high and low samples, respectively. If
the digital sequence’s alphabet has more than two elements, the
sequence is usually represented by a set of binary digital se-
quences (e.g., binary sequences can be used to represent a

-valued digital sequence).
In regards to the physical implementation of a DAC, first

consider the two-level (i.e., 1-bit) case. This DAC can be im-
plemented using a controllable current source. At each sample
time, the voltage polarity that constitutes the input 1-bit dig-
ital sequence determines whether the current source is to be
switched on or off for the entire sampling period. Ideally, the
current supplied by this source is held constant for the entire
sampling period. The current source is connected to a resistor
to generate the 1-bit DAC’s output voltage. Thus, during each
sample interval, the 1-bit DAC generates one of two voltages de-
pending on how the digital input switches the current source. If
the two output voltages are nominally volts, then the al-
phabet of the 1-bit DAC input can be chosen to be ,
where and correspond to high and low samples, re-
spectively, so that the ideal 1-bit DAC behaves as a gain element
whose magnitude is volts.

Multibit DACs (i.e., those whose outputs are designed to in-
clude more than two levels) are often constructed by summing
the outputs of several 1-bit DACs. In each case, the multibit
DAC input is mapped to a set of 1-bit sequences which drive
a bank of 1-bit DACs whose outputs are summed. This sum op-
eration can be achieved with current source 1-bit DACs by con-
necting all of the current source outputs to a common node. As
previously described, the multibit DAC is usually designed and
its input alphabet chosen so that its output is ideally a scalar mul-
tiple of its input: . However, mismatches among
the 1-bit DACs, which are inevitably introduced during fabrica-
tion, cause the actual DAC output to be a memoryless, non-
linear function of the input. The resulting error can be viewed,
without approximation, as a constant gain error and additive
offset, and an additive zero-mean sequence referred to as the
DAC noise. In other words, the DAC output can be written as

, where , are constants ( equals
multiplied by the constant gain error factor) and is the DAC
noise. In most cases, the performance criteria for the multibit
DAC are substantially more sensitive to the DAC noise than
to the gain error and offset. For example, the DAC noise usu-
ally limits the effective resolution of the DAC and can contain
spurious tones that limit the converter’s spurious-free dynamic
range (SFDR).

As an example, consider the case where a multibit DAC is
used in a delta–sigma ( ) analog-to-digital converter (ADC).
A ADC extracts a high-resolution digital version of its
input from a low-resolution version by ensuring that most
of the coarse version’s quantization noise power resides in a
separate frequency band from that of the ADC input so that it
can be removed by filtering. To accomplish this noise spectral

shaping, the coarse sequence is generated by quantizing a signal
that consists of both the ADC input and previous samples of
the coarse sequence that have been converted back to analog.
When a multibit DAC performs this conversion, it generates
DAC noise that shares the same signal path as the ADC input
and is thus not spectrally shaped like the quantization noise.
Consequently, much of the DAC noise cannot be removed, and
this noise, therefore, limits the obtainable resolution of the

ADC.
Mismatch-shaping DACs are commonly used to reduce the

harmful effects of DAC noise in such ( ) data converters
where the signal of interest is restricted to a signal band that is
narrow relative to the sample rate [1]–[6]. These DACs use dig-
ital logic to scramble the input sequences to the bank of 1-bit
DACs in an input-dependent fashion such that the DAC noise
is attenuated in the signal band. For example, if the input se-
quence’s power spectral density (PSD) is confined to a small
region around dc (i.e., zero frequency), then the digital logic can
be used to scramble the inputs to the 1-bit DACs so that the PSD
of the DAC noise has a high-pass shape with most of its power
outside of the signal band. By passing the DAC output through
a low-pass filter, most of the power from the DAC noise can be
removed while that from the DAC input is preserved, which in-
creases the DACs effective resolution. Such mismatch-shaping
DACs have facilitated multibit modulation [7]–[9] for data
conversion and have proven to be enabling components in most
of today’s high-performance data converters [10]–[16].

Nevertheless, despite the widespread commercial use of mis-
match-shaping DACs, few theoretical results have been pub-
lished to date that can be used to quantify their performance.
Most of the previously published theoretical analyses have been
limited to showing that the DAC noise PSD vanishes at some
frequency (e.g., see [17] and [18]). Consequently, designers rely
heavily on simulations to evaluate the power and tonal proper-
ties of the DAC noise. However, these simulations can be mis-
leading because the DAC noise depends on both the chosen
DAC input and mismatches.

This paper presents a theoretical analysis of the DAC noise in
two versions of a widely used mismatch-shaping DAC architec-
ture: the dithered first-order low-pass tree-structured DAC [6],
[15]–[21]. The DAC noise of this device is a linear combination
of digital sequences, called switching sequences, that are gener-
ated inside it. The two versions are distinguished by how these
sequences are implemented. In the analysis of both versions of
this device, expressions for the DAC noise PSDs are derived
as functions of the switching sequence statistics and 1-bit DAC
mismatches. These PSD expressions are used to derive a bound
on the signal-band DAC noise power for each of the two DAC
versions. These bounds are independent of the multibit DAC
input and can be used as a worst case estimate in the design of
data converters that employ these DACs. Moreover, each bound
is shown to be tight as there exist a set of DAC mismatches and
an input sequence that give rise to DAC noise that achieves the
bound.

The paper is divided into three main sections and an
Appendix. Section II reviews the operation of the dithered
first-order low-pass tree-structured DACs. This section shows
how line coding techniques are used to ensure that the DAC
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Fig. 1. A 9-level tree-structured DAC.

noise PSD has a spectral null at dc. Section III presents and
discusses the expressions for the switching sequence PSD
and signal band power. Section IV addresses the differences
between the two versions of the tree-structured DAC as it
presents and discusses the DAC noise signal-band power bound
for each. The Appendix presents the derivations of most of the
main results.

II. TREE-STRUCTURED DAC

An example 9-level tree-structured DAC is shown in Fig. 1.
In general, the -level tree-structured DAC, where is a
positive integer, consists of a bank of 1-bit DACs and a digital
encoder. The DAC input is a digital sequence whose values
belong to the alphabet
which is a set that consists of values that are designed
to be converted to the same number of analog levels. The digital
encoder converts into 1-bit sequences that are denoted

from bottom to top. Like the example in the
Introduction, each of these 1-bit sequences takes on values in the
alphabet . The th 1-bit DAC converts into an
analog sample as follows:

if
if

(1)

where is the nominal smallest step size of the tree-struc-
tured DAC, and and are the 1-bit DAC’s high and low
errors, respectively. These error terms result from inevitable in-
accuracies in the fabrication of the 1-bit DACs and are taken to
be arbitrary constants. The digital encoder consists of vertical
layers of switching blocks, labeled , where is
the layer number, and is the horizontal depth
within the layer. The switching blocks are described in more de-
tail later in this section.

Typically, consists of the sum of a data signal and noise.
The noise component’s power can be spread across all frequen-
cies while the data signal’s power is confined to the radial fre-
quencies in the interval , where is the over-
sampling ratio (OSR). This terminology was chosen because

the tree-structured DAC is most often used as a component in
converters where the data signal is oversampled. Thus, the

normalized radial frequency corresponds to the Nyquist fre-
quency of the data signal.

Ideally, the DAC output is a scaled version of the DAC input:
. To ensure that the DAC approaches this ideal

behavior when the 1-bit DAC error terms approach zero, the
digital encoder outputs must satisfy the following equality:

(2)

This equality must hold for any multibit DAC that is constructed
by combining 1-bit DACs of the same nominal step size with
a digital encoder as shown in Fig. 1. For each value of ex-
cept , there are several possible ways to choose which
digital encoder outputs are and which are under the
constraint that (2) is satisfied. For example, if , (2) is
satisfied when the number of digital encoder outputs that are
equals the number of outputs that are . This inherent re-
dundancy is exploited by the mismatch-shaping DAC to control
certain characteristics of its DAC noise. In the tree-structured
DAC, the processing of the switching blocks, as described next,
makes this relationship between the choices of digital encoder
and the DAC noise manifest.

Let denote the input to . With the digital encoder
outputs written as for ,
the switching blocks are interconnected so that the top and
bottom outputs of the switching block are
and , respectively. To ensure that (2) is satisfied and
that , it is sufficient, as proven in [6], that each
switching block satisfies the following two-part Number Con-
servation Rule: the two outputs of each switching block must
belong to the set ,
where is the layer number, and their sum must equal the input
to this switching block

(3)

When all the switching blocks comply with this rule, all the
switching block inputs are integer-valued sequences. This rule is
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Fig. 2. The signal processing performed by the switching block.

satisfied using the switching block architecture shown in Fig. 2,
which consists of a switching sequence generator, an adder, a
subtracter, and two divide-by-two elements. Fig. 2 indicates that

(4)

and

(5)

where is called the switching sequence. To motivate the
description of the switching sequence generator, the relationship
between the switching sequences and the DAC noise is shown
next.

As proven in [6], the DAC output can be written as

(6)

where is the DAC input, and are constants that are func-
tions of the 1-bit DAC errors, and , called the DAC noise, is
given by

(7)

where

(8)
and, as previously stated, and are the th 1-bit DAC’s high
and low errors, respectively, which are taken to be constants.
Thus, since each is a constant, the DAC noise is a constant-
coefficient linear combination of the switching sequences. At
each sample time, the collection of the switching sequences that
satisfy the Number Conservation Rule give rise to the different
choices for how the digital encoder selects its output values so
that (2) is satisfied. As shown next, the switching sequence gen-
erators choose their switching sequences to control characteris-
tics of the DAC noise.

In the dithered, first-order low-pass tree-structured DAC, the
switching sequence generator in selects its switching se-
quence under the following constraints:

1) It satisfies the following:

(9)

where , called the parity sequence of , is
when is odd and otherwise.

2) It is a dc-free sequence (i.e., it has a spectral null at dc).
3) It contains no tones for any choice of the switching block

input.

Condition 1 ensures that the switching block satisfies the range
requirement of the Number Conservation Rule, while Condi-
tions 2 and 3 ensure that the DAC noise is a dc- and tone-free
sequence, respectively. With these constraints, the switching se-
quence can be viewed as a pseudoternary line code for its re-
spective parity sequence. Since the switching sequence gener-
ator is a finite-state machine, it follows from [22] that provided
the parity sequence consists of independent and identi-
cally distributed (i.i.d.) bits, then is a dc-free sequence if
and only if its running digital sum, given by

(10)

takes on only a finite number of values for all . However, the
parity sequence is not necessarily a sequence of i.i.d. bits, but,
as shown in the Proposition in the Appendix, this necessary and
sufficient condition holds whenever the PSD of exists.

A common line code that satisfies the first two constraints
is the bipolar code [23] (where represents the data and

is the code). When it is used, the nonzero switching
sequence values always alternate between and ; thus,

takes on only two values. The undithered switching
block presented in [19] generates this switching sequence.
However, if for all , then ,
which implies that the bipolar code does not satisfy the third
constraint.

To satisfy all three conditions, the switching sequence is con-
structed by concatenating two types of symbols

(11)

and

(12)

the choice of which is made randomly by an approximated fair
coin toss. Using such symbols to generate ensures that

which implies that has a spectral
null at dc.

Fig. 3 shows the finite-state transition diagram (FSTD) for
the switching sequence generator where the states correspond
to the values of and the edge labels are the outputs
that occur with the associated changes of state. The state of
the switching sequence generator changes only at sample times
when the parity sequence is . Moreover, it changes from to
at sample times when a Type 1 symbol begins in the switching
sequence, and it changes from to at sample times when a
Type 2 symbol begins in the switching sequence; the choice of
which, as previously described, is random. Example implemen-
tations of this switching sequence generator using two D-type
flip-flops are presented in [15] and [19].
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Fig. 3. The FSTD for the switching sequence generator where the state
corresponds to the value of R (m).

If a symbol starts at the present sample time , the random
symbol type selection implies that, regardless of the parity se-
quence , the present and future samples of the switching
sequence are uncorrelated from the past samples

(13)

for all and . Since every other nonzero sample
of is the start of a new symbol, this implies that the
switching sequence does not contain tones regardless of its as-
sociated parity sequence.

The choice of the symbol type in is made randomly
with the 1-bit dither sequence . The dither sequence ap-
proximates a sequence of uniformly distributed, i.i.d. bits whose
values are taken from the alphabet . If a symbol
starts at sample time , then that symbol is a Type 1 symbol if

, and it is a Type 2 symbol if .
For (13) to hold, it is sufficient that be independent of

. Therefore, all the switching blocks in the same layer
can share the same dither sequence—i.e., for
each layer . Implementations utilizing this dithering scheme
require only dither sequences, which are realized by pseudo-
random sequence generators as demonstrated in [15]. As shown
in Section IV, a much tighter bound on the DAC noise power
is obtained when an independent dither sequence is employed
by each switching block; however, this implementation requires

dither sequences.

III. SWITCHING SEQUENCE SPECTRUM

As reviewed in the previous section, the DAC noise in the
tree-structured DAC is a linear combination of the switching
sequences. Thus, the DAC noise PSD is a function of the
switching sequence PSDs and cross spectra. This section
presents and discusses an expression for the switching se-
quence PSD and signal-band power. The switching sequence
cross spectrum is addressed in the Appendix. First, some
intuition behind the switching sequence PSD and its derivation
is provided along with some required terminology.

The dependence of the switching sequence on the parity
sequence in (9) prevents a conventional analysis of its PSD.
If were a sequence of i.i.d. bits, then could
be written as a function of the Markov chain , and
techniques such as those presented in [24] could be used to
analyze the PSD. If were periodic, then would
be a cyclostationary sequence, and its PSD could be determined
by the commonly known techniques (e.g., see [25]) that were
introduced in [26]. However, in general, is neither
periodic nor a sequence of i.i.d. bits, so a new technique must
be developed to determine the PSD of .

The technique presented in this paper relies on the random-
ness in the symbol type selection. As a consequence of this ran-
domness, samples of that are in different symbols are
orthogonal in the sense that if and are sample times such
that and are in different symbols, then

(14)

Therefore, the PSD of depends only on the correlation
between samples of that are within the same symbol.
These intrasymbol correlation statistics are conveniently
described using the terminology presented next.

Let the symbols described in (11) and (12) be divided into
two “halves” where the first segment is called the
head of the symbol, and the second such segment is called the
tail of the symbol. The head length of a symbol is defined to
be the number of samples of that constitute the head of
that symbol. Let the head-length process be the random
process that represents the head lengths of symbols in ;
thus, is the number of samples in the head of the th
symbol in . The definitions of tail length and the tail-
length process are analogous to those for the head length
and head-length process, respectively.

Theorem 1: The PSD of is

(15)

where , and the signal-band power of
is

(16)

where , and is the oversampling
ratio.

Proof: Presented in the Appendix.

Some properties of the above switching sequence PSD can
be discerned even though it depends on the switching sequence
head-length statistics and variance. For example, it is shown
next that this PSD has a continuous derivative, which implies
that the switching sequence cannot contain tones. Let

which implies that

where is the real-part operator. Therefore, it follows from
(15) that the switching sequence PSD can be written as

(17)

Provided , then has a continuous
derivative because it is the characteristic function of
[27]. Therefore, it follows from (17) that also has this
property in this case. However, if , then

and thus because, as proven in Lemma A1 in
the Appendix

(18)



598 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 4, APRIL 2004

Fig. 4. The function 1 � sinc(x).

Therefore, has a continuous derivative in this case too.
By the same reasoning, the real part of the cross spectrum of two
switching sequences, as given in Theorem A1 in the Appendix,
also has a continuous derivative. This implies that the DAC noise
PSD also has this property and thus contains no spurious tones

Properties of the switching sequence signal-band power can
also be derived using (16). Shown in Fig. 4 is a portion of
the function that is the argument of the expectation operator in
(16). Since this function approaches zero as its argument ap-
proaches zero, it follows from (16) that the switching sequence
power, and thus the DAC noise power, can be made arbitrarily
small by increasing the oversampling ratio . Additionally, for
a fixed , (16) and (18) imply that the signal-band switching
sequence power can be decreased by sufficiently decreasing or
increasing the head lengths of symbols in . This suggests
that, as proven in the next section, there is an upper bound for
the switching sequence signal-band power.

Consider the following simplified scenario. Let be a
sequence of i.i.d. Bernoulli trials with and

The desired switching sequence
statistics are then

(19)

and

(20)

Substituting (19) and (20) into (15) gives the following
switching sequence PSD:

(21)

Fig. 5(a) shows the switching sequence PSD given above for
varying values of . Additionally, Fig. 5(b) shows the switching
sequence signal-band power for varying values of and .

Fig. 5(b) shows that, for this simplified parity sequence, the
switching sequence signal-band power, as a function of , is
bounded above by a value that depends on the oversampling
ratio . As shown in the next section, this is true in general
as the switching sequence signal-band power is bounded by a
value that depends on regardless of the statistics of the parity
sequence.

IV. DAC NOISE POWER BOUND

A key part of the proof of the DAC noise power bound is
the derivation of the switching sequence power bound, which is
provided next.

Theorem 2: The signal-band power of is bounded as
follows:

(22)

and the bound is achieved if and only if and
almost surely (a.s.) (i.e., with probability one).

Proof: Since the tail length of every symbol is at least one
sample, it follows from (18) that

(23)

Additionally, for any positive integer , Lemma A2 in the
Appendix provides

(24)

where equality is obtained if and only if . Substituting
(23) and (24) into (16) proves (22), and equality is obtained if
and only if and are both .
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Fig. 5. The (a) PSD and (b) signal-band power of s [n] given its input parity sequence is an i.i.d. Bernoulli sequence with p = P (o [n] = 1).

Because the DAC noise is a linear combination of the
switching sequences as shown in (7), Theorem 2 implies that
a DAC noise power bound could be obtained as a function of
the oversampling ratio and the switching sequence coefficients
( for all and ). However, in practical circuits, the values

of these coefficients are not known, and the DAC noise power
is typically estimated as a function of the oversampling ratio
and matching statistics of the 1-bit DACs. Thus, to obtain a
more useful result, the DAC noise power bounds presented in
this paper are functions of the matching statistics of the 1-bit
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DACs and not the coefficients. Before the bounds are
presented, some additional definitions are required concerning
the matching characteristics of the 1-bit DACs.

Denote as the step-size error of the th 1-bit DAC.
Let the relative step-size error of the th 1-bit DAC be defined
as

(25)

Thus, is the difference between the step size of the th 1-bit
DAC, , and the sample average of the step sizes of the 1-bit
DACs

Let the sample variance of the step-size errors be denoted

(26)

As shown next, the DAC noise PSD is bounded by a function of
the oversampling ratio and the sample variance given above.

Theorem 3: If a dither sequence is shared by all the switching
blocks in each layer, the DAC noise power is bounded as fol-
lows:

(27)

and when , this bound is achieved if and only if the
following two conditions hold.

1. and a.s. for each
.

2. There exists a constant such that and
for each .

Moreover, if a unique dither sequence is used in each switching
block, then the DAC noise power is bounded as follows:

(28)

and when , the bound is achieved if and only if the first
condition from the previous case holds and the second condition
is relaxed to be the following:

2 . for each .
Proof: Presented in the Appendix.

Theorem 3 implies that, for either dithering scenario, the DAC
noise power bound is achieved if the relative mismatch errors
satisfy Condition 2, the states of the switching sequence gener-
ators in layer one are reset to at sample time , and the
DAC input is given by

if or
otherwise.

(29)

In this scenario, and for each
and all , which satisfies Condition 1 in the

theorem.

The DAC noise power bound is larger in the case where a
dither sequence is shared by switching blocks in the same layer
because the switching sequences can be correlated in this case.
If a symbol starts in and ( ) at the
same sample time, then the type of each symbol is chosen by
the same dither sequence because .
Therefore, these symbols are the same type, and this event gives
rise to correlation between the two switching sequences. Al-
though correlation between switching sequences can increase
or decrease the DAC noise power, it increases the DAC noise
power bound. By using an independent dither sequence in each
switching block, a smaller DAC noise power bound is obtained
at the cost of additional hardware.

Theorem 3 can be used to discern a guideline concerning
the circuit layout of the tree-structured DAC. To achieve either
power bound, for . Therefore, to
minimize either bound, the DAC should be laid out to optimize
the matching between the st and th 1-bit DACs. Typ-
ically, this is achieved by placing these 1-bit DACs as close as
possible to each other or, if possible, interlacing the components
of these 1-bit DACs on the integrated circuit. This guideline is
in conflict to the often-used practice of the common centroid
layout where the goal is to optimize matching amongst all the
1-bit DACs.

The DAC noise power bound can be used for noise bud-
geting in the design of circuits, such as data converters,
that employ the first-order tree-structured DAC. The worst case
matching among 1-bit DACs is often characterized by the “ ”
relative mismatch error, which represents a practical maximum.
This error is typically given as a percent, denoted here as ,
of the sample average of the step sizes . This implies that

, which, with (26), leads to .
Substituting this inequality into (27) and (28) gives

(30)

and

(31)

respectively. These upper bounds are shown as functions of
for in Fig. 6. Thus, the size of the

tree-structured DAC (i.e., ), the oversampling ratio, the worst
case matching percent, and the dithering scheme can be chosen
using (30) and (31) to ensure the DAC noise power is less than
the value budgeted to it in a given application.

V. CONCLUSION

Expressions for the switching sequence PSD and
signal-band power in the dithered first-order low-pass
tree-structured DAC have been derived. These expres-
sions have been used to obtain an attainable bound on the
signal-band DAC noise power for both versions of this DAC.
Necessary and sufficient conditions have been given for the
bound to be achieved in each case. Additionally, it has been
shown that by using an independent dither sequence in each
switching block as opposed to each layer, the DAC noise
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Fig. 6. DAC noise power bound relative to� as a function of percent mismatch and oversampling ratio with a unique dither sequence used in (a) each switching
block and (b) each layer.

power bound is smaller and achieved under less stringent
conditions on the mismatch errors. Therefore, this dithering
scheme is better suited in applications where the bound is
used as an estimate for the DAC noise power. It has also been
shown that, regardless of the dither scheme, the switching
sequence PSD has a continuous derivative, which implies that
the DAC noise in both implementations is void of spurious
tones.

APPENDIX

The following material provides most of the mathematics to
support the theory that is presented in this paper. It is tacitly
assumed throughout that all spectral densities considered exist
and all sequences are ergodic.

Proposition: Suppose 1) that is the output of a finite
sequential state machine driven by an input sequence which
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takes on a finite number of values for all , and 2) that has a
PSD. Then, has a spectral null at dc if and only if its running
digital sum

takes on a finite number of values for all .
Proof: First, suppose that takes on a finite number

of values for all . This implies is a bounded sequence:
i.e., there exists a constant such that for all

. Therefore, Lemma 1 in [18], which is a generalization of
Lemma 1 in [28] (the proof in this lemma does not require
that the underlying probability measure be a Markov measure)
proves that has a spectral null at dc.

Suppose has a spectral null at dc. Let represent the
state of the finite-state sequential machine at time . If the ma-
chine input is an i.i.d. sequence, then it follows from [22] that
there exists a complex-valued function such that

(32)

However, any sequence can be a sample path of an i.i.d.
sequence, so (32) must hold in general. Therefore,

, which implies that can take on only
a finite number of values for all .

Notation and Definitions: Given the layer number
and two depth values and , let and

. Two symbols in the switching sequences
are are called joint symbols if they start at the same

sample time. Let and represent the head lengths
of the th symbols in and , respectively. Let
and be the head lengths of the th joint symbols in

and , respectively.

Theorem A1. Switching Sequence Cross Spectrum: Given
and employ the same dither sequence, the real part

of the cross spectrum of and is given by

(33)

where and are the standard deviations of and ,
respectively, and and are the probabilities that symbols in

and , respectively, are joint.
Proof: For let be a window sequence

that equals one when is an element of the th joint symbol
and zero otherwise. Additionally, let

Therefore, each switching sequence can be written as

(34)

For any positive and with , and
, given and , are independent

zero-mean random variables for any and because the

signs of each are determined by independent, uniform dither
sequences. By the same reasoning, given and ,

is independent of for every , and
is independent of for every . This

implies

(35)

for any , , when either or is zero, or , where is
the conditional expectation operator given the switching block
inputs (i.e., only averages over the possible symbol type
choices).

The cross spectrum is derived below by taking the expected
value of a time-averaged estimate. Let and be the number
of samples of and , respectively, that include the first

joint symbols. Let . The time-averaged
cross-spectrum estimate can be written as

(36)
Since only joint symbols are included in this spectrum esti-
mate, it follows that

(37)

Let , which, upon rearranging
the sums in (37), can be written as

(38)

From (35), the cross terms, with respect to window indexes, in
the above expectation are all zero (i.e., the terms where ).
Moreover, any term in (38) that includes an index of or

is also zero. Therefore, (38) can be simplified to

(39)

Let denote the sample time of the start of the th joint
symbol , and be the dither sequence
sample that chooses the symbol type of the th joint symbol.
The sequences and (for )
are nonzero for only two samples (i.e., the first element of the
head and tail of the symbol), and so

(40)

and

(41)
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Substituting (40) and (41) into (39) gives

(42)
However, for each , which implies that there is
no randomness with respect to the dither sequence in the above
argument of the expectation operator; thus,

(43)

Let be the real part of ; it follows from the
linearity of the real-part operator that

(44)

Let and be the total number of symbols in and
up to and including the th joint symbol. Because a

switching sequence is nonzero only twice within a symbol,
the time-averaged estimate of the variance of and is

(45)

and

(46)

respectively. Additionally, after joint symbols, the fraction of
symbols in and that are joint is given by

(47)

and

(48)

respectively. Thus, (45)–(48) are substituted into (44) to give

(49)

With defined as the time-averaged expectation operator,
(49) becomes

(50)

Under the ergodicity assumption, the time averages in (50)
converge to ensemble averages as . Therefore, with

, (33) follows from (50).

Corollary A1. Cross Spectrum Area: Given an oversampling
ratio of , and and employ the same dither sequence,

the signal-band area of the real part of the cross spectrum of
and is given by

(51)

Proof: Given Theorem A1, the cross-spectrum area is

(52)

Because the argument of the expectation operator in (33) con-
sists of bounded functions, Fubini’s theorem [29] implies that
the integral and expected value, implied in (52), can be swapped.
Thus, (51) results upon evaluating this integral.

The above results are now used to prove Theorem 1.

Proof of Theorem 1: With ,
, and since every symbol in the same switching

sequence starts at the same sample time, and
. Substituting these values into

(33) and (51) leads to (15) and (16), respectively.

Theorem A2. DAC Noise PSD: Given each switching block
in the same layer shares a dither sequence, the DAC noise PSD
is given by

(53)

where is the switching sequence PSD for as
given by (15), and is the real part of the cross spec-
trum of and as given by (33). Moreover, if a
unique dither sequence is used in each switching block, the DAC
noise PSD is

(54)

Proof: First, suppose that switching blocks in the same
layer share the same dither sequence. Because switching
sequences in different layers employ independent dither se-
quences, these switching sequences are uncorrelated and so
they have zero cross spectrum. Therefore, only the cross spec-
trum from switching sequences in the same layer contribute to
the DAC noise power.

Let be the sequence

(55)

To apply mathematical induction, suppose for some
, that the PSD of is

(56)
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The PSD of can be written as

(57)

where is the real part of the cross spectrum of
and , which, given (55), is calculated to be

(58)

Substituting (56) and (58) into (57) gives

(59)

Therefore, it follows from mathematical induction that (56)
holds for each . Since the switching sequences in different
layers are uncorrelated, it follows from (7) and (55) that

(60)

Substituting (56) (with ) into (60) gives (53).
When an independent dither sequence is employed by each

switching block, all of the switching sequences are uncorrelated,
which implies that for all , , and .
Substituting this into (53) leads to (54).

Corollary A2. DAC Noise Signal-Band Power: If an inde-
pendent dither sequence is shared by all the switching blocks in
each layer, the signal-band DAC noise power is

(61)
where is the signal-band power of (as in (16))
and is the signal-band area of the cross spectrum of

and (as in (51)). If a unique dither is used in each
switching block, then the signal-band DAC noise power is

(62)

Proof: The proof follows directly from Corollary A1,
Theorem 1, Theorem A2, and the linearity of the integral.

Lemma A1: The switching sequence variance is

(63)

Proof: Let be the number of samples in the first
symbols . Given the ergodicity assumption, it follows that

(64)

Since twice within every symbol, (64) can be sim-
plified to

(65)

Additionally, the ergodicity assumption implies

(66)
However, is the total number of samples
comprising the first symbols, i.e., . This implies that

(67)

This and (65) imply (63).

Lemma A2: Given and are positive integers

(68)

where equality is obtained if and only if .
Proof: This proof is based on the analysis of the following

two functions:

(69)

and

(70)

where is a constant in the interval and . Upon
evaluating the derivative of and setting it to zero (i.e.,

), the First Derivative Theorem [30] indicates that
all local maxima of are less than for . Since

, this implies that for all , and
since , this also implies

(71)

for all .
Evaluating the derivative of (i.e., ) indicates that

this function is strictly increasing for and strictly
decreasing for . This implies that there is at least
one local maximum of this function in the interval .

Let . Evaluating the derivative of indi-
cates that is a strictly increasing function for .
Therefore, the expression , which is equivalent to

, has at most one solution for . The
First Derivative Theorem then implies that there is at most one
local maximum of the function in this interval. This and
the previous arguments imply that has exactly one local
maximum for , and because ,
this local maximum is the global maximum of for .

As shown next, this global maximum occurs for values of
in the interval . Evaluating at the values
and provides

(72)

Since for all , (72) implies that
. Therefore, , which is a strictly increasing function

for , must start decreasing for some value of .
This and previous arguments imply that the global maximum of

occurs for some value of between and .
Fix the value of , and consider the function ,

where is a positive integer. Since
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it follows from the previous arguments that the maximum of this
function is achieved at either or . However,
substituting into (72) indicates that

Therefore, the global maximum of is ,
which implies (68), and it is achieved only when .

Notation and Definitions: Let be a -length column
vector whose th component is defined to be

if

if
otherwise.

(73)
Moreover, let be the -length column vectors whose th com-
ponent is .

Lemma A3: Given is a nonnegative constant for each
and

(74)

and equality is obtained if and only if

(75)

where each is a constant, and

(76)

Proof: It follows from the definitions of , , and
as given in (8), (25), and (73), respectively, that

(77)

This and the distributive and associative properties of matrices
imply that the left-hand side of (74) can be written as

(78)

Given (and each are plausible layer num-
bers and depths) and without loss of generality, , it fol-
lows from (73) that is a constant function of for all
values of where . This implies that
because the set of nonzero values of consists of an equal
number of values that are and . Moreover,
(73) implies that for each and . Therefore, the

vectors, for all and , that compose the matrix
are orthonormal. This implies that the expression for the matrix

in (78) is the spectral decomposition of the matrix [31], and
each vector is an eigenvector of this matrix with an associ-
ated eigenvalue of which is given by

(79)

Since is a symmetric matrix, the Rayleigh–Ritz theorem [31]
implies that the quadratic expression on the right-hand side of
(78) is bounded above by , where is the max-
imum eigenvalue of . This and (79) imply that

(80)

which, given , proves (74). Additionally, it follows
from the Rayleigh–Ritz theorem that the bound is achieved if
and only if is a linear combination of the eigenvectors whose
associated eigenvalues are equal to as given in (75).

Lemma A4: The real-part of the signal-band area of
the cross-spectrum of the sequences and

satisfies

(81)
where equality is achieved if and only if or

a.s. and .
Proof: Let . By

computing the PSD of and integrating it across the range
of the signal band, the power of this sequence is found to be

(82)

Since , (81) follows from (82).
The bound is trivially achieved if ;

therefore, assume that this does not hold for the remainder of
the proof. If a.s., then
a.s. Therefore, in this case, and, upon substituting
this into (82), equality is obtained in (81). Because
and are both constrained to the range ,

a.s. if and only if
and a.s. However, two switching sequences
are only correlated when a symbol in each starts at the same
sample time and the same dither sequence is used to choose
their symbol types and, in such cases, the switching sequences
have positive correlation. Therefore, a.s.,
which implies that a.s. if and
only if and a.s.

If and a.s., then
a.s., and . This and (82)

imply equality is not achieved in (81) in this case.
Suppose a.s. Recall the notation used in

Theorem A1 and that represents the head length of the
th joint symbol in . Let be the head length of

the th nonjoint symbol in . By averaging the joint and
nonjoint symbols, it follows from (15) that the PSD of
can be written as

(83)

Furthermore, consider the analogous definition and result for
.
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Suppose, for purpose of contradiction, that . The
PSD of is

(84)

where is the real part of the cross spectrum of
and as given in (33). Since is contin-

uous, has no signal-band power if and only if
for all . Therefore, the second derivative of

is zero at . However, it follows from (33), (83),
and Fatou’s lemma [29] that

(85)
Since a.s., there is a finite probability that
symbols in both switching sequences are not joint: i.e.,
and . This and (85) imply that the second derivative of

, if it exists, is greater than which is a contradiction.
Therefore, in this case, which implies that equality
is not obtained in (81).

The above results are now used to prove Theorem 3.

Proof of Theorem 3: Consider the case where an indepen-
dent dither sequence is used only for each layer of the DAC.
Substituting the inequality in (81) into (61) indicates

(86)

Simplifying (86) gives

(87)

Substituting the power bound in (22) into (87) leads to

(88)

Applying Lemma A3 with , the inequality in
(74) is substituted into (88) to give

(89)

Since , (27) follows from (89).
Now, consider the case where an independent dither sequence

is used in each switching block. Substituting the power bound
from (22) into (62) gives

(90)

Applying Lemma A3 again but with , the inequality in
(74) is substituted into (90) to give

(91)

Since , (28) follows from (90) and (91).
For both dithering schemes, is achieved

with . Thus, Lemma A3 implies that the relative mismatch

error vector achieves equality in this case if and only if it is a
linear combination of the vectors for . From
(73), such a vector is characterized by having
for . With these relative mismatch errors, (8)
implies that, for , for each . In this case, the
DAC noise is solely a linear combination of switching sequences
in the first layer.

From Theorem 2, the signal-band power of is maxi-
mized only when and a.s. In order
for each switching sequence in layer to satisfy this condition,
each parity sequence in this layer must a.s. be a deterministic
function of the DAC input and thus not dependent on a dither
sequence. For this to hold, a.s. for each
and , and is a.s. not a deterministic sequence for each

and . Moreover, since is assumed to be greater than
, this condition holds only if a.s. for each

and .
The inequality given in (28) depends only on the inequalities

in Lemma A3 and Theorem 2. Therefore, it follows from the
previous arguments that equality is obtained in (28) if and only
if for each , and
and a.s. for each .

The inequality in (27) also depends on that in Lemma A4.
As previously discussed, if and
a.s. for each , then a.s. for each and

. Therefore, given this holds, equality is achieved in (81) for
every if and only if there exists a constant such that

for each . Given this condition holds,
(8) implies that

(92)

If, in addition, , as required to achieve the in-
equality in (74), then (92) implies that for
each . Therefore, the bound in (27) is achieved if and only if
this condition holds and and a.s. for
each .
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