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Necessary and Sufficient Conditions for
Mismatch Shaping in a General Class

of Multibit DACs
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Abstract—Multibit digital-to-analog converters (DACs) are
often constructed by combining several 1-bit DACs of equal or dif-
ferent weights in parallel. In such DACs, component mismatches
give rise to signal dependent error that can be viewed as additive
DAC noise. In some cases these DACs use dynamic element
matching techniques to decorrelate the DAC mismatch noise from
the input sequence and suppress its power in certain frequency
bands. Such DACs are referred to as mismatch-shaping DACs and
have been used widely as enabling components in state-of-the-art
�� data converters. Several different mismatch-shaping DAC
topologies have been presented, but theoretical analyses have
been scarce and no general unifying theory has been presented
in the previously published literature. This paper presents such a
unifying theory in the form of necessary and sufficient conditions
for a multibit DAC to be a mismatch-shaping DAC and applies the
conditions to evaluate the DAC noise generated by several of the
previously published mismatch-shaping DACs and qualitatively
compare their behavior.

Index Terms—Analog-to-digital (A/D), data converters, ��,
digital-to-analog (D/A), dynamic element matching, linearized
digital-to-analog converters (DACs), mismatch shaping,��,
spectral shaping.

I. INTRODUCTION

M OST multibit digital-to-analog converters (DACs) con-
sist of multiple 1-bit DACs. In each case, the digital input

sequence is decomposed into multiple 1-bit sequences each of
which drives a 1-bit DAC. Each 1-bit DAC generates one of two
analog output levels depending upon whether its input bit is high
or low. The outputs of the 1-bit DACs are summed to form the
output of the multibit DAC. The primary differences among the
various multibit DAC architectures reside in how the multibit
input sequence is mapped to the multiple 1-bit DAC input se-
quences, and how the output levels of the 1-bit DACs are scaled
relative to each other.
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In practice, component mismatches inevitably introduced
during circuit fabrication, most notably mismatches among
nominally identical unit capacitors or current sources, cause
the 1-bit DAC output levels to deviate from their ideal values.
The resulting error can be modeled, without approxima-
tion, as additive error and is referred to asDAC noise. In
present VLSI technology, the values of nominally identical
components can rarely be matched to better than a standard
deviation of 0.1%. In Nyquist-rate DACs, i.e., DACs that
convert digital signals with a passband from zero up to half
their sample-rate, this translates into DAC noise that limits the
achievable signal-to-noise-and-distortion ratio (SINAD) to less
than 70 dB. Moreover, without some form of dither or other
randomization technique, the DAC noise is a deterministic,
nonlinear function of the input sequence so it contains harmonic
distortion which can be problematic in many applications.

Dynamic element matching (DEM) techniques can be applied
to multibit DACs both to suppress the power of the DAC mis-
match noise in specific frequency bands and to eliminate the
harmonic distortion. Such multibit DACs are referred to asmis-
match-shaping DACs. They are particularly useful in applica-
tions that require high precision within relatively narrow fre-
quency bands. As such, in recent years they have become widely
used in high-performance delta–sigma () data converters.

Although numerous mismatch-shaping DAC architectures
have been developed, published mathematical analyses of these
DACs have been limited and disjoint to date. Most analyses
have been individually tailored to specific architectures, and
in most cases simulations have been relied upon to determine
the characteristics of the DAC noise, which can be misleading.
Consequently, there is no unifying theory that applies to
multibit DACs in general. This lack of theory has made it dif-
ficult to compare the merits of the different mismatch-shaping
DAC architectures, and likely has impeded the development of
new mismatch-shaping DAC architectures.

This paper provides a unifying theory in the form of nec-
essary and sufficient conditions for a general multibit DAC to
be a mismatch-shaping DAC. Unlike previous analyses [1] the
conditions do not rely on properties of the component mis-
matches. The utility of the conditions is demonstrated by using
them to analyze and qualitatively compare most of the widely
used mismatch-shaping DAC architectures published to date:
first-order, lowpass implementations of the vector feedback
[2], data-weighted averaging (DWA) [3], [4], butterfly shuffler
[5], tree structured [6], segmented butterfly shuffler [7], and
partitioned DWA [8] DACs.
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Fig. 1. The general multibit DAC.

II. THE GENERAL MULTIBIT DAC

The general multibit DAC shown in Fig. 1 consists of a digital
encoder and a bank of 1-bit DACs. The output of theth 1-bit
DAC is given by

if is high

if is low
(1)

where is the nominal step size of theth 1-bit DAC, and
and are its high and low errors, respectively. In many

applications, the 1-bit DAC errors result from component
mismatches introduced during fabrication of the 1-bit DACs.
As such, they are modeled here as arbitrary constants. The
digital encoder output is a vector, , of 1-bit sequences,

. The value of each 1-bit sequence is taken
to be 1/2 when it is high and 1/2 when it is low. Ideally, a
DAC’s output is a scaled version of its input. To ensure that the
multibit DAC approaches this ideal behavior when the 1-bit
DAC errors approach zero, the digital encoder determines its
output sequences under the following restriction:

(2)

where is the nominal smallest step size of the multibit DAC.
Thus, if the 1-bit DAC errors were all zero, (1) and (2) imply that
the DAC output would be given by

(3)

However, in practice the 1-bit DAC errors are nonzero, and,
as a result, the multibit DAC output is a nonlinear function of
the multibit DAC input. The error from this nonlinearity can be
written as additive error

(4)

The error sequence often contains a constant offset and
scaled version of the input; therefore, it is convenient to write
(4) as

(5)

where and are constants, and is called theDAC noise. In
a well-designed system, the DAC noise is a zero mean sequence

that is uncorrelated from the multibit DAC input, and the con-
stants and depend only on the 1-bit DAC errors.

Mismatch-shaping DACs are designed such that the digital
encoder has several possible output vector values,, that sat-
isfy (2) for most DAC input values. For example, in a multibit
DAC in which all the 1-bit DACs have the same nominal step
size, a nominal output value of zero is obtained for any output
vector with an equal number of high and low bit values. By ex-
ploiting this flexibility, the DAC noise can be tailored so that its
power spectral density (PSD) has desired properties regardless
of the values of the 1-bit DAC errors. This leads to the following
definition for mismatch shaping.

Definition: A multibit DAC is said toproduce DAC noise
with a given set of PSD propertiesif, for any DAC input and
collection of 1-bit DAC errors, there exist constantsand ,
and a sequence with the given set of PSD properties such
that .

Various DAC noise PSD properties can be obtained by mis-
match-shaping DACs. In some DACs, the digital encoder oper-
ates such that the DAC noise is white; i.e., its PSD is constant
with respect to frequency. In such DACs, the power of the white
noise depends upon the 1-bit DAC errors (e.g., larger 1-bit DAC
errors tend to increase the power of the DAC noise), but the DAC
noise is white for any choice of the 1-bit DAC errors. In other
DACs, the digital encoder operates such that the DAC noise PSD
is continuous with a value of zero at zero frequency: 0. In
such cases, the power of the DAC noise tends to reside predomi-
nantly at high frequencies. Again, the overall power of the DAC
noise depends upon the 1-bit DAC errors, but the zero at
0 and the weighting of the PSD toward high frequencies occurs
for any choice of 1-bit DAC errors. Various other DACs are pos-
sible that achieve different DAC noise properties. In each case,
specific properties (e.g., zero location) of the DAC noise PSD
are preserved regardless of the 1-bit DAC errors.

Most mismatch-shaping DACs known to the authors adhere
to the general DAC architecture shown in Fig. 1. The results
presented in this paper apply to this class of DACs with the
definition for mismatch shaping provided above. However, it
should be noted that there exist mismatch-shaping DACs which
do not adhere to this general architecture (e.g., see [9] and [10]),
and the results presented in the paper are not directly applicable
to them.

III. CONDITIONS FORMISMATCH SHAPING

The theorem below presents a necessary and sufficient con-
dition for the general multibit DAC to produce DAC noise with
a given set of PSD properties.

Theorem: The multibit DAC in Fig. 1 produces DAC noise
with a given set of PSD properties if and only if there exist

sequences such that: a) each digital
encoder output is given by

(6)

where and are constants, and b) for any selection of the
constants , there exist two constantsand
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, and a sequence with the given set of PSD properties such
that

(7)

Proof: Because is interpreted as 1/2 when high and
1/2 when low, (1) can be written as

(8)

where and . Given
, (8) implies that

(9)

where .
Sufficiency: Assume that the sequences,

, exist and satisfy a) and b) in the theorem.
Substituting (6) into (9) gives

(10)
Condition b) implies that the second summation in (10) can be
decomposed as in (7). Thus, substituting (7) into (10) gives

(11)

where has the given set of PSD properties, so the multibit
DAC produces DAC noise with the given set of PSD properties.

Necessity:Let be an invertible matrix whose
values are denoted (where and are the row and
column numbers, respectively) and whoseth row satisfies

for each . Furthermore, for ,
let

(12)

Using matrix notation, (12) can be written as .
Because for each , (2) and (12) imply that

. Let , whose value in itsth row and th column
is denoted , be the inverse matrix of . This implies that

and, for each

(13)

With , (13) is identical to (6) because .
Therefore, the sequences satisfy
condition a) in the theorem.

To show that the sequences satisfy condition b) in the
theorem, assume the multibit DAC produces DAC noise with
the given set of PSD properties. In (9),and are arbitrary
constants because each DAC error is an arbitrary constant. Thus,

by assumption,for any selection of the constants ,
and , there exist constantsand , and a sequence with
the given set of PSD properties such that

(14)

It follows from (12) that

(15)

for any selection of constants, . Since (14)
is satisfied for any selection of and , suppose for
each , and . In this case, the left-hand side of (14) is the
same as the right-hand side of (15), which implies (7). Thus, the

sequences satisfy condition b) in the theorem.
Therefore, in mismatch-shaping DACs, there are un-

derlying sequences that, given the DAC input, determine the
digital encoder outputs and, when linearly combined, produce
a sequence that has the same form as the DAC output, i.e.,

, where the gain and offset depend on the co-
efficients in this linear combination, and the sequence has
the same PSD properties as the DAC noise.

The theorem can be used to show that the DAC noise from
a given architecture has certain PSD properties. However, the
corollary presented next is more convenient for this application.

Corollary 1: Given the multibit DAC shown in Fig. 1, let
be an invertible matrix whose values are denoted
(where and are the row and column numbers, respectively)
and whose th row satisfies . Then, given

(16)

for , the multibit DAC produces DAC noise
with a given set of PSD properties if and only if, for any selection
of the constants , there exist two constants

and , and a sequence with the given set of PSD properties
such that

(17)

Proof: The proof follows directly from that of the theorem
as the sequences in the corollary are formed the same way
as in the proof of the theorem.

Therefore, to show that the DAC noise PSD from a given
multibit DAC has a certain property, derive the sequences,

, as described in the corollary and show
that any linear combination of these sequences can be written
as in (17). The sequences in the corollary result from
linear combinations of the digital encoder outputs, and there are
many possible choices for these sequences. However, for a given
multibit DAC, these sequences can often be chosen to minimize
the effort required to show they satisfy (17). Several examples
of this application are presented in the following section.
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Fig. 2. The first-order, lowpass vector feedback DAC.

In efficientmismatch-shaping DACs (i.e., those for which it is
not possible to achieve equivalent performance with fewer 1-bit
DACs), none of the underlying sequences are constant for
all DAC input sequences. To verify this assertion using Corol-
lary 1, suppose for all , where is some constant.
Substituting this into (16) indicates

(18)

For to be invertible, there must be some valuesuch that
. This and (18) imply that

(19)

where and . As a conse-
quence of this linear dependence, anequivalentmultibit DAC
could be implemented using fewer than1-bit DACs; the only
difference between the original and equivalent implementations
would result from the 1-bit DAC errors in each. For example,
if were given by (19), then the th 1-bit DAC could
be removed by changing the nominal step sizes of the other
1-bit DACs according to the following: for ,

.
The following corollary is more convenient than the theorem

or the first corollary for proving that the DAC noise from a given
architecturedoes nothave certain PSD properties.

Corollary 2: The multibit DAC in Fig. 1 produces DAC
noise with a given set of PSD properties if and only if, for any
selection of constants, , there exist constants
and , and a sequence with the given set of PSD properties
such that

(20)

Proof: Sufficiency: Assume (20) holds. Let be an
invertible matrix as described in Corollary 1. With

and , (16) and (20) imply (17). Thus,

by Corollary 1, the multibit DAC produces DAC noise with the
given set of PSD properties.

Necessity: Let be the sequences
as described in the theorem and assume (6) and (7) hold. Sub-
stituting (6) into the left-hand side of (20) gives

(21)

Upon substituting (7) into (21) and setting , (20)
follows.

Therefore, to show that the DAC noise does not have the given
PSD properties, it is sufficient to find a linear combination of
the digital encoder outputs that cannot be expressed as in (20).
An example of this application is also shown in the following
section.

IV. A RCHITECTUREANALYSIS

The theorem and corollaries presented in the previous sec-
tion are used in this section to analyze and compare several of
the previously published multibit DAC architectures. Specifi-
cally, vector feedback, DWA, butterfly shuffler, tree structured,
segmented butterfly shuffler, and partitioned DWA DAC archi-
tectures are considered.

A. Vector Feedback

A five-level (i.e., 4) example of the vector feedback
DAC is shown in Fig. 2 [2]. Its input range is

. Its 1-bit DACs all have the same nominal step
size (i.e., for each ). The digital encoder consists of
avector quantizer, asmallest-elementblock, two vector adders,
and a vector unit delay. The vector consists of elements,
the th of which is associated with theth output bit of the digital
encoder. At each sample timethe vector quantizer determines
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Fig. 3. The DWA DAC.

the largest elements of , and sets the associ-
ated output bits of the digital encoder high. It sets the remaining
output bits low. The digital encoder calculates each element of

as

(22)

where

(23)

and , i.e., it is equal to the smallest
element of .

To show that the feedback system within the digital encoder
is stable, it is sufficient to show that and are bounded
sequences for each value of. Suppose that at some sample time,

, the largest element of has a value of . It follows
from (22) that for each and one element of
equals zero for each. The operation of the vector quantizer
implies that only when .
So (23) implies that

(24)

It follows from (22) that
, and since one element of is zero, (24) implies

that for each . By induction, must be a
bounded sequence for each, and, therefore, (23) implies that

must also be a bounded sequence for each.
To apply Corollary 1, the invertible matrix must be

chosen under the constraint that itsth row is given by
for each since for each . For , let

if

if

otherwise

(25)

which implies that

(26)

for . To show that is invertible as required
by the corollary, it is sufficient to show that only when

, where is an -length column vector andis the vector

consisting of only zeros. With theth component of denoted
, 0 implies that

(27)

for , and

(28)

The difference equations characterized by (27) indicate that
for each and . Upon substituting this into (28), it

follows that 0, which implies that 0 for each .
Therefore, is an invertible matrix.

It is next shown that the choice of given by (26) satisfies
(17) with 0, 0, and an whose PSD is zero at 0.
By virtue of Corollary 1, this implies that the PSD of the DAC
noise also has a zero at 0, and, therefore, that the vector
feedback DAC shown in Fig. 2 is a first-order mismatch-shaping
DAC.

Substituting (22) into (23) gives
. With (26) this implies

Therefore

(29)
The partial sum in (29) is bounded for all because is
a bounded sequence for each value of. As shown in the Ap-
pendix, this implies that the PSD of is zero at 0. It
is also shown in the Appendix that any linear combination of
such sequences has a PSD equal to zero at0. Therefore, by
Corollary 1, the DAC noise has this property too. A PSD plot of
the DAC noise from behavioral simulations is provided in [2].

B. DWA

A five-level example of the DWA DAC is shown in Fig. 3
[3], [4]. Like the vector feedback DAC, its input range is

, and all of its 1-bit DACs
have the same nominal step size. The digital encoder consists
of a thermometer encoder and a barrel shifter. Additionally,
it consists of a modulo- block, a unit delay, and an adder
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Fig. 4. The butterfly shuffler DAC.

that constitute amodulo- accumulator. At each sample
time the thermometer encoder, whoseoutputs are binary
sequences, selects its bottom outputs high and its
remaining outputs low. The modulo- accumulator output,

, controls the operation of the barrel shifter as follows:
with its inputs and outputs labeled 1 to from bottom to top,
the barrel shifter, at sample time, routes input to output

. Thus, the digital encoder outputs are
generated by performing a modulo-shift of the thermometer
encoder outputs.

The values of and determine the digital encoder out-
puts at sample time, and

. If , then the high digital encoder outputs
at time are those numbered ,
and the remaining outputs are low. However, if ,
then the low digital encoder outputs at timeare those num-
bered , and the remaining
outputs are high. If , then , and all
of the digital encoder outputs are either high or low at time.
Therefore, at each sample time,, there is a contiguous segment
of either high or low outputs of the digital encoder, and and

determine the segment’s starting and ending points.
To analyze the DAC noise using Corollary 1, let

for . As shown previously,
these sequences are related to the digital encoder output
sequences by an invertible matrix as required by the corollary.

As in the previous analysis, to show that the DAC noise PSD
is zero at 0, it is sufficient to show that the partial sum of

is a bounded sequence. To show this, note that the
sequences detect the edges—i.e., starting
and ending points—of the contiguous segment of high or low
digital encoder outputs. If , there are no edges to
detect and 0 for each . However, if ,

is nonzero only when corresponds to an edge of the
contiguous segment

if

if

otherwise.

(30)

This implies that the nonzero samples of alternate between
1 and 1, and the partial sum of is a bounded sequence

(31)

Therefore, the DAC noise PSD is also zero at 0. An example
PSD plot of the DAC noise is provided in [4].

C. Butterfly Shuffler

An example of a five-level butterfly shuffler DAC is shown in
Fig. 4 [5]. Like the previously analyzed DACs, its input range
is , and all of its 1-bit DACs
have the same nominal step size. Unlike the previously ana-
lyzed DACs, the butterfly shuffler DAC requires that be a
power of 2; i.e., , where is a positive integer. The dig-
ital encoder consists of a thermometer encoder andswapper
cells, which are labeled and positioned in a matrix with

, and , corresponding to the
row and column numbers, respectively. The input and output
sequences of each swapper cell are 1-bit sequences; the values
of each are taken to be 1/2 and1/2 at sample times when the
sequence is high and low, respectively. At each sample time,,
each swapper cell determines its outputs by routing its inputs
either straight through or swapped. The thermometer encoder,
whose operation is described in the previous subsection, is not a
necessary component as it can be replaced by any encoder that
has 1-bit outputs and ensures that exactly of its
outputs are high at each sample time,.

Let and denote the top and bottom in-
puts of , respectively. Using in Fig. 4 as an example

(32)

and

(33)

where is called aswapper sequence. This sequence is
generated within and is restricted to be 0 when

and 1 otherwise. When , the sign of the
swapper sequence determines whether the swapper cell inputs
are routed straight through or swapped. When , both
swapper cell inputs are the same; therefore, both outputs are the
same regardless of how the swapper cell routes its inputs. Thus,
each swapper cell uses its swapper sequence, , as in
(32) and (33) to determine its outputs. In the first-order butterfly
shuffler DAC, each swapper cell alternates between swapping
and not swapping so that

(34)
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Fig. 5. The tree structured DAC.

which, as shown in the Appendix, implies that the PSD of each
swapper sequence is zero at .

Generalizing (32) and (33) to the other swapper cells in Fig. 4,
the top digital encoder output in the figure can be written as

(35)
Since of the thermometer encoder outputs are high
at time , it follows that . This and (35)
imply

(36)

Therefore, the top digital encoder output is a linear combina-
tion of and the swapper sequences. It follows by similar
reasoning that this holds for every digital encoder output, and in
general with

(37)

where each is a constant that is either or 0.
To apply Corollary 1, once again let

for . As previously shown, the matrix that
relates these sequences to the digital encoder outputs is
invertible as required by the corollary. It follows from (34) and
(37) that, for each , is a linear combination of swapper
sequences whose PSDs are zero at 0, which, as shown in
the Appendix, implies that the PSD of is zero at 0.
Therefore, the DAC noise PSD is also zero at 0. An example
DAC noise PSD plot from this DAC is provided in [11].

D. Tree Structured

An example of a five-level tree structured DAC is shown in
Fig. 5 [6]. Like the previously analyzed DACs, its input range
is , and all of its 1-bit DACs
have the same nominal step size. This DAC requires that
be a power of two: , where is a positive integer. The
digital encoder consists ofswitching blocks, which are labeled

, where , denotes the layer number, and
, denotes the depth in the layer. If the input

to is denoted and each sequence is also
denoted , the switching blocks are interconnected

such that the top and bottom outputs of are
and , respectively. The outputs of are given by

(38)

and

(39)

where is called theswitching sequenceand is generated
within .

Analogously to the butterfly shuffler DAC, the switching
blocks in the first-order tree structured DAC ensure that

(40)

which, as shown in the Appendix, implies that the PSD of
is zero at 0. By recursively solving the switching

block outputs in (38) and (39) as functions of the switching
sequences and the DAC input , it follows that

(41)

where each is a constant that is either or 0.
Once again, Corollary 1 can be applied by using the

sequences for .
As previously shown, the sequences are generated by
an invertible matrix as required by the corollary. The PSD
of each sequence is zero at 0 because, from (41),
each sequence results from a linear combination of switching
sequences whose PSDs are zero at 0. Therefore, the DAC
noise PSD is also zero at 0, which is illustrated in the PSD
plots provided in [6] and [12].

E. Qualitative Comparisons

Comparisons among mismatch-shaping DACs can be made
using the necessary and sufficient condition presented in the the-
orem. One comparison can be made concerning how easily each
of the four previously analyzed DACs combat harmonic distor-
tion in its DAC noise. In the butterfly shuffler and tree struc-
tured DACs, the DAC noise is a linear combination of shaped se-
quences—i.e., swapper and switching sequences—that are gen-
erated within their digital encoders. Therefore, as shown in the
Appendix, if these shaped sequences have bounded PSDs, then
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their DAC noise PSDs are also bounded and thus do not contain
spurious tones. This can be accomplished by incorporating ran-
domness in the shaped sequences to prevent any tonal behavior.
The relative ease for which this is accomplished is shown in [12]
where pseudorandom sequences are employed by the switching
blocks in both first- and second-order lowpass tree structured
DACs to eliminate harmonic distortion in the DAC noise.

However, the vector feedback and DWA DACs obtain DAC
noise with the given set of PSD properties without explicitly
generating sequences with these properties. This indirect ap-
proach for spectrally shaping the DAC noise makes it more dif-
ficult to eliminate or reduce spurious tones. To remove spurious
tones in the vector feedback DAC, randomness must somehow
be incorporated into the vector quantizer’s operation, but, to the
knowledge of the authors, no such vector quantizer has been
demonstrated to date. To remove or reduce spurious tones in
the DWA DAC, its architecture must be changed. Most variants
of the DWA DAC are designed to reduce, relative to the DWA
DAC, the harmonic distortion in the DAC noise. Examples of
such DWA variants are presented in [8], [13], and [14]. To suc-
cessfully reduce harmonic distortion, each of these published
first-order architectures requires that the multibit DAC input in-
cludes a random component—e.g., the quantization noise from
a modulator. This is not required in the previously men-
tioned first-order, tree structured DAC whose DAC noise PSD
is bounded regardless of the DAC input [15].

Another comparison can be made concerning the ease for
which a mismatch-shaping DAC obtainshigher order—i.e.,
greater than first order—spectral shaping of the DAC noise.
Such DACs are desirable because the DAC noise in a higher
order DAC usually has less signal-band power. This comparison
does not include DWA because it is inherently a first-order
DAC. The theorem states that, given the DAC input,
sequences are required to generate the digital encoder outputs
in a mismatch-shaping DAC. However, with , where
is a positive integer, the butterfly shuffler DAC requires
swapper sequences, which, for , are more than necessary
as . Additionally, as increases, the number
of extra sequences utilized by the DAC grows at a faster rate
than an exponential function. Each swapper sequence depends
on its swapper cell input, which depends on the DAC input.
This dependence and the extra swapper sequences makes it
difficult to ensure that each swapper sequence has the desired
PSD properties in higher order implementations.

For example, to implement a second-order, lowpass butterfly
shuffler DAC, it follows from [12] that each swapper sequence
must satisfy the following:

(42)

where is a constant. Because the value of each swapper cell
output is either 1/2 or 1/2 at each sample time,, it follows
that

if

if .
(43)

Therefore, if the inputs to the column-one swapper cells are
thermometer encoded as in Fig. 4, then the column-one swapper
sequences are restricted as follows:

if

otherwise.
(44)

At each sample time, at most one of the swapper sequences
in the first column is nonzero; the choice of which is deter-
mined by the DAC input. As increases, this dependence on
the DAC input makes it more difficult for these swapper se-
quences to satisfy (42) and has prohibited the implementation
of the second-order, lowpass butterfly shuffler DAC.

However, the vector feedback and tree structured DACs
process and internal sequences, respectively, to
generate their digital encoder outputs. Because, for ,
these DACs process fewer internal sequences than the butterfly
shuffler DAC, their internal sequences and DAC noise have less
dependence on the DAC input, which enables the implementa-
tion of higher order DACs. For example, in the tree structured
DAC, the layer that directly processes the DAC input, layer,
only has one switching block as opposed to the swapper
cells in the first column of the butterfly shuffler DAC. For the
switching blocks presented in [12], the switching sequence is
restricted as follows:

if is odd

if is even.
(45)

Therefore, the switching sequence in layerdepends only on
the parity of the DAC input, which is much less restrictive than
the dependence exhibited by the column-one swapper sequences
shown in (44). Examples of second-order lowpass implementa-
tions of the vector-feedback and tree structured DACs are pre-
sented in [16] and [17], respectively.

F. Segmented Butterfly Shuffler

The 65-level segmented butterfly shuffler DAC [7] shown in
Fig. 6 uses 1-bit DACs with different nominal step sizes to re-
duce the complexity of the digital encoder relative to a nonseg-
mented 65-level butterfly shuffler DAC. The input to this DAC is
in the range . The digital encoder consists of 9-
and 17-level butterfly shuffler digital encoders, a first-order dig-
ital modulator, a subtractor, and a gain element. The nom-
inal step sizes of the 1-bit DACs that are driven by the 9- and
17-level butterfly shuffler digital encoders are and ,
respectively. The digital modulator quantizes with a step
size of 4, and its output can be written as

(46)

where is thequantization error(i.e., the difference between
the output and the input of the quantizer in the modulator).
The DAC in Fig. 6 requires only 44 swapper cells compared to
the 192 swapper cells required to implement a regular 65-level
butterfly shuffler DAC.

To apply Corollary 1, must be derived
using a 24 24 invertible matrix whose 24th row must
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Fig. 6. The segmented butterfly shuffler DAC.

satisfy . This implies that for
, and otherwise. Let

if

otherwise
(47)

and for , define as in (25). This implies that, for

if

otherwise.

(48)

As previously described, is invertible if holds only
when . Given , it follows that

(49)

(50)

and, for

(51)

Substituting (49) into (50) yields

(52)

From previous analysis, (49), (51), and (52) imply that 0
for each , which proves that is invertible as required by the
corollary.

It is shown next that, for each, the PSD of is 0 at 0,
which, by virtue of Corollary 1 and the results in the Appendix,
implies that the DAC noise also has this property. For , it

follows from (48) and the analysis of the butterfly shuffler DAC
that is a linear combination of swapper sequences whose
PSDs are zero at 0. As shown in the Appendix, this implies
that the PSD of is also zero at 0.

Because the 1-bit DACs of a butterfly shuffler DAC have the
same nominal step size, (2) implies that the sum of the outputs
of a butterfly shuffler digital encoder equals its input. Therefore,

, as given in (48), equals the input to the 9-level butterfly
shuffler DAC, which, as shown in Fig. 6, is . The
partial sum of then is a telescoping sum

(53)

which is a bounded sequence because is the quantization
error. As shown in the Appendix, this implies that the PSD of

is zero at . Therefore, for each, the PSD of
is zero at , and the DAC noise also has this property.

G. Partitioned DWA

The partitioned DWA (P-DWA) DAC, shown in Fig. 7, was
designed to not only suppress the DAC noise power near0,
but to reduce, in comparison to the DWA DAC, the spurious
tones in the DAC noise . Its input range is .
All of its 1-bit DACs have the same nominal step size. The dig-
ital encoder consists of two 17-level DWA digital encoders and a
divide-by-twoblock. The top output of the divide-by-two block
is rounded up to the nearest integer (i.e., ), and
the bottom output is rounded down to the nearest integer
(i.e., ).

Corollary 2 is applied next to show that the DAC noise PSD
is not zero at . Since the difference between the outputs
of the divide-by-two block is one when is odd and zero
otherwise, it follows that

(54)
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Fig. 7. The partitioned DWA DAC.

By Corollary 2, if the above linear combinationcannot be
written as , where and are constants and
the PSD of is zero at , then the DAC noise PSD is
not zero at . Therefore, from (54), it is sufficient to show
that, for some , the PSD of the sequence

(55)

is not zero at for any choice of the constantsand .
Since

(56)

Equation (55) can be written as

(57)

The DAC input, , can be chosen so that and
in (57) are uncorrelated sequences whose PSDs are

not zero at . For example, suppose is a sequence of
independent and identically distributed (i.i.d.) random variables
that are uniformly distributed in the range . In this
case, and are independent sequences that
consist of i.i.d. random variables that are 0 or 1 with equal prob-
ability. For this , (57) implies that the PSD of is not zero
at 0 for any selection of the constantsand . Therefore,
by Corollary 2, the DAC noise PSD is also not zero at 0.

Fig. 8 displays the output noise PSD from a behavioral sim-
ulation of a second-order, analog modulator that employs
the P-DWA DAC. The modulator input was a 1 dB (rela-
tive to full scale) sinusoid with frequency , where is
the sample rate. The PSD units are dB relative to, where
is the step size of the analog-to-digital converter within the
modulator. The frequency axis is normalized with respect to the
sample rate. The 1-bit DAC errors were chosen as independent
Gaussian random variables with a standard deviation of 1% of
the 1-bit DACs nominal step size.

The output noise in the simulation includes the DAC noise
and quantization noise. The simulation shows that, as a result of
the DAC noise, the output noise PSD is not zero at 0. How-
ever, the simulation suggests that, compared to conventional

Fig. 8. The output noise PSD from a simulation of a second-order, analog��

modulator using the partitioned DWA DAC.

DWA, the DAC noise in this implementation has less harmonic
distortion. The reduced harmonic distortion is a result of the ran-
domness in , which causes to act as an ad-
ditive and subtractive dither sequence that, as shown in Fig. 7,
is fed into top and bottom DWA DACs, respectively.

V. CONCLUSION

Necessary and sufficient conditions for mismatch shaping
with a general multibit DAC have been presented, proved, and
discussed. For the DAC noise to have certain PSD properties,
the conditions show that there must be underlying
sequences in the general multibit DAC that, when linearly
combined, produce a sequence that consists of an offset, a
scaled version of the multibit DAC input, and another sequence
that has the given PSD properties. As example applications, the
conditions have been used to show that the DAC noise PSDs of
five widely-used lowpass DACs are zero at and that the
DAC noise PSD of another lowpass DAC is not zero at .
Additionally, the theory has been used to compare the ease for
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which several DACs combat spurious tones in their DAC noise
and obtain higher order shaped DAC noise.

APPENDIX

Two lemmas are presented below that supplement the
analyses in Section IV. The first lemma proves that if a se-
quence has a partial sum that is a bounded sequence,
then the PSD of is zero at 0. The second lemma
proves an inequality for the PSDs that is used to show that an
arbitrary linear combination of sequences whose PSDs are zero
or bounded at a given frequency gives rise to a sequence whose
PSD is also zero or bounded, respectively, at that frequency.
It is assumed throughout that the PSDs exist for all sequences
considered.

Lemma 1: Let be a sequence whose partial sum is
bounded in magnitude by a constantfor all ; i.e.

(58)

for all . Then, the PSD of (if it exists) is zero at 0.
Proof: As proved in [18], the PSD of is given by

(59)

where is the expectation operator, and is the
-point Fourier transform of

(60)

Evaluating the PSD at 0 gives

(61)

However, from (58), the partial sum of in the above expres-
sion is bounded in magnitude by; therefore

(62)

Because is nonnegative for all , (62) implies that
.

Lemma 2: If and are the PSDs of
and , respectively, and , then

(63)

where is the PSD of .
Proof: Let , , and be the

-point Fourier transforms of , , and , respec-
tively—i.e.

(64)

and likewise for the Fourier transforms of and . The
Cauchy–Schwartz inequality implies that

(65)

where and are complex numbers. Therefore, it follows from
the linearity of the Fourier Transform that, for every

(66)

As shown in [18]

(67)

and likewise for PSDs of and , where is the ex-
pectation operator. Therefore, (66), (67), and the linearity of the
expectation operator imply (63).

Therefore, it follows from (63) that if, at some frequency,
, and , then

because the PSD is always nonnegative. Thus, the sum of two
sequences whose PSDs are zero at some frequency gives rise to a
sequence whose PSD is also zero at that frequency. Additionally,
if the PSDs of and are bounded functions—i.e., there
exists a constant such that , and

for all —then (63) implies that the PSD of is also a
bounded function: . Therefore, by mathemat-
ical induction, any linear combination of sequences whose PSDs
are zero or bounded at a given frequency give rise to another se-
quence whose PSD is also zero or bounded, respectively, at that
frequency.
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