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Necessary and Sufficient Conditions for
Mismatch Shaping in a General Class
of Multibit DACs

Jared WelzMember, IEEEand lan GaltonMember, IEEE

Abstract—Multibit digital-to-analog converters (DACs) are In practice, component mismatches inevitably introduced
often constructed by combining several 1-bit DACs of equal or dif- during circuit fabrication, most notably mismatches among
ferent weights in parallel. In such DACs, component mismatches o minaly identical unit capacitors or current sources, cause

gx%”ﬁgi;% s;gnigﬂqeg ecn;;nst ?rr]rgsrethaDtA(?; Eﬁg '%V;re]grﬁ; agg';'qveemthe 1-bit DAC output levels to deviate from their ideal values.

matching techniques to decorrelate the DAC mismatch noise from The resulting error can be modeled, without approxima-
the input sequence and suppress its power in certain frequency tion, as additive error and is referred to B&C noise In

bands. Such DACs are referred to as mismatch-shaping DACs and present VLS| technology, the values of nominally identical
have been used widely as enabling components in State'Of'the'artcomponents can rarely be matched to better than a standard

AY data converters. Several different mismatch-shaping DAC - . .
topologies have been presented, but theoretical analyses havedevIatlon of 0.1%. In Nyquistrate DACs, i.e., DACs that

been scarce and no general unifying theory has been presentedconvert digital signals with a passband from zero up to half
in the previously published literature. This paper presents such a their sample-rate, this translates into DAC noise that limits the
unifying theory in the form of necessary and sufficient conditions  achievable signal-to-noise-and-distortion ratio (SINAD) to less
for a multibit DAC to be a mismatch-shaping DAC and applies the a1 70 gB. Moreover, without some form of dither or other
conditions to evaluate the DAC noise generated by several of the . - L o
randomization technique, the DAC noise is a deterministic,

previously published mismatch-shaping DACs and qualitatively . ) ; . ; .
compare their behavior. nonlinear function of the input sequence so it contains harmonic

Index Terms—Analog-to-digital (A/D), data converters, A, distortion which can be problematic in many applications.

digital-to-analog (D/A), dynamic element matching, linearized Dyna_mjic element matching (DEM) techniques can be app!ied
digital-to-analog converters (DACs), mismatch shaping, A, to multibit DACs both to suppress the power of the DAC mis-

spectral shaping. match noise in specific frequency bands and to eliminate the
harmonic distortion. Such multibit DACs are referred toras-
match-shaping DACsThey are particularly useful in applica-
tions that require high precision within relatively narrow fre-
OST multibit digital-to-analog converters (DACs) conquency bands. As such, in recent years they have become widely
sist of multiple 1-bit DACs. In each case, the digital inputised in high-performance delta—signisX) data converters.
sequence is decomposed into multiple 1-bit sequences each gfithough numerous mismatch-shaping DAC architectures
which drives a 1-bit DAC. Each 1-bit DAC generates one of twhave been developed, published mathematical analyses of these
analog output levels depending upon whether its input bit is hi@inCs have been limited and disjoint to date. Most analyses
or low. The outputs of the 1-bit DACs are summed to form thieave been individually tailored to specific architectures, and
output of the multibit DAC. The primary differences among thén most cases simulations have been relied upon to determine
various multibit DAC architectures reside in how the multibithe characteristics of the DAC noise, which can be misleading.
input sequence is mapped to the multiple 1-bit DAC input s€onsequently, there is no unifying theory that applies to
quences, and how the output levels of the 1-bit DACs are scal@dltibit DACs in general. This lack of theory has made it dif-
relative to each other. ficult to compare the merits of the different mismatch-shaping
DAC architectures, and likely has impeded the development of
new mismatch-shaping DAC architectures.
Manuscriptreceived March 24, 2002; revised November 12, 2002. The revieWThis paper provides a unifying theory in the form of nec-
process for this paper was administered by Associate Editor G. Temes, indegggsary and sufficient conditions for a general multibit DAC to

dently from the Editor-in-Chief and other editorial staff of thRANSACTIONS  pe g mismatch-shaping DAC. Unlike previous ana|yses [1] the
This work was supported in part by the University of California Communica-

tions Research Program under Grant Core 00-10069 and in part by the Natigrnditions do n(_)_t rely on prop_e_rties. of the component m.is-
Science Foundation under Grant CCR-0073552. matches. The utility of the conditions is demonstrated by using

J. Welz was with the Department of Electrical and Computer Engineeringhem to ana|yze and qualitatively compare most of the widely

University of California, San Diego, La Jolla, CA 92093-0407 USA. He is now . . . . .
with the Custom IC Design Group, Northrop Grumman Space Technology, Féésed mlsmatCh'Shapmg DAC architectures pUb“Shed to date:

dondo Beach, CA 90278 USA (e-mail: jwelz@ece.ucsd.edu). first-order, lowpass implementations of the vector feedback
I. Galton is with the Department of Electrical and Computer Engineerin%], data-weighted averaging (DWA) [3], [4], butterfly shuffler

University of California, San Diego, La Jolla, CA 92093-0407 USA (e-mail
g;%irggc‘;_uc";‘g,_‘;rgﬁ_ an biego, La Jola (e-mai [5], tree structured [6], segmented butterfly shuffler [7], and

Digital Object Identifier 10.1109/TCSI1.2002.807269 partitioned DWA [8] DACs.

I. INTRODUCTION

1057-7130/02$17.00 © 2002 IEEE



WELZ AND GALTON: NECESSARY AND SUFFICIENT CONDITIONS FOR MISMATCH SHAPING 749

an] P 1-Bit | yyln] that is uncorrelated from the multibit DAC input, and the con-
DAC stantsae and3 depend only on the 1-bit DAC errors.
xyalnd | | 1-Bit | yyalnd Mismatch-shaping DACs are designed such that the digital
{n) Digital . DAC yn] encoder has several possible output vector valtje$, that sat-
Encoder | . . isfy (2) for most DAC input values. For example, in a multibit
. o . DAC in which all the 1-bit DACs have the same nominal step
%l | [ 1Bt |yl size, a nominal output value of zero is obtained for any output
"1 DAC vector with an equal number of high and low bit values. By ex-
ploiting this flexibility, the DAC noise can be tailored so that its
Fig. 1. The general multibit DAC. power spectral density (PSD) has desired properties regardless

of the values of the 1-bit DAC errors. This leads to the following
definition for mismatch shaping.
Definition: A multibit DAC is said toproduce DAC noise

The general multibit DAC; shown in Fig. 1consists.ofadi.gita}vith a given set of PSD propertié for any DAC input and
encoder and a bank of 1-bit DACs. The output of théth 1-bit  cojiection of 1-bit DAC errors, there exist constantsand 3,

Il. THE GENERAL MuLTIBIT DAC

DAC is given by and a sequencgn] with the given set of PSD properties such
A thaty[n] = ax[n] + 5 + e[n].
— +en,, if z;[n]is high Various DAC noise PSD properties can be obtained by mis-
yiln] = 2A (1) match-shaping DACs. In some DACs, the digital encoder oper-
_72 + e, if z4[n] is low ates such that the DAC noise is white; i.e., its PSD is constant

with respect to frequency. In such DACs, the power of the white

where A; is the nominal step size of thigh 1-bit DAC, and noise depends upon the 1-bit DAC errors (e.g., larger 1-bit DAC
en, ande; are its high and low errors, respectively. In man§Tors tend to increase the power of the DAC noise), but the DAC
applications, the 1-bit DAC errors result from componed”tOise is white for any choice of the 1-bit DAC errors. In other
mismatches introduced during fabrication of the 1-bit DACSACS, the digital encoder operates such that the DAC noise PSD
As such, they are modeled here as arbitrary constants. Th&ontinuous with a value of zero at zero frequeney= 0. In
digital encoder output is a vecta#[n], of N' 1-bit sequences, such cases, the power pf the DAC noise tends to reside predomi-
z1]n], ..., zx[n]. The value of each 1-bit sequence is takeﬂa_ntly at high frequencies. Agam, the overall power of the DAC
to be 1/2 when it is high and-1/2 when it is low. Ideally, a NOis€ depends upon the 1-bit DAC errors, but the zeto at
DAC's output is a scaled version of its input. To ensure that tife2nd the weighting of the PSD toward high frequencies occurs
multibit DAC approaches this ideal behavior when the 1-bfprany choice of 1-bit DAC errors. Various other DACs are pos-
DAC errors approach zero, the digital encoder determines sible that achieve different DAC noise properties. In each case,

output sequences under the following restriction: specific properties (e.g., zero location) of the DAC noise PSD
are preserved regardless of the 1-bit DAC errors.

N Most mismatch-shaping DACs known to the authors adhere
Z A -zi[n] = Ap - z[n] (2) to the general DAC architecture shown in Fig. 1. The results
i=1 presented in this paper apply to this class of DACs with the
whereA p is the nominal smallest step size of the multibit DAC(.jE'\ﬂmt'On for mismatch shap_lng prowded aboye. However, .'t
! X . hould be noted that there exist mismatch-shaping DACs which
Thus, if the 1-bit DAC errors were all zero, (1) and (2) imply tha?1 . .
. o not adhere to this general architecture (e.g., see [9] and [10]),
the DAC output would be given by . . .
and the results presented in the paper are not directly applicable
hem.
yln] = Apafn]. (3 ‘omem
However, in practice the 1-bit DAC errors are nonzero, and, lll. CONDITIONS FORMISMATCH SHAPING
as a result, the multibit DAC output is a nonlinear function of The theorem below presents a necessary and sufficient con-
the multibit DAC input. The error from this nonlinearity can belition for the general multibit DAC to produce DAC noise with

written as additive error a given set of PSD properties.
Theorem: The multibit DAC in Fig. 1 produces DAC noise
y[n] = Apz[n] + é[n]. (4) with a given set of PSD properties if and only if there exist
N — 1 sequence[n], ..., ¢n—1[n] such that: a) each digital

The error sequenceln| often contains a constant offset anéncoder output is given by
scaled version of the input; therefore, it is convenient to write
(4) as

wiln] = mianl + Y di s - 6ln] 6)

J=1

yln] = awln] + § + e[n] (5)

wherea andg are constants, and| is called theDAC noiseln  whered; ; andm; are constants, and b) for any selection of the
a well-designed system, the DAC noise is a zero mean sequefnte 1 constants, ..., cy_1, there exist two constantsand
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b, and a sequencgn] with the given set of PSD properties suctby assumptionfor any selection of the constants, ..., &,
that andg,, there exist constantsandb, and a sequenagn] with
N—1 the given set of PSD properties such that
3 ¢ bjln] = axln] + b+ efn]. W) N
J=1 Z &ixi[n] + Bo = azn] + b+ €[n]. (14)
Proof: Becauser;[n] is interpreted as 1/2 when high and =1
—1/2 when low, (1) can be written as It follows from (12) that
yiln] = &miln] + i ®) N-1 N [ND
¢ - ¢in] = Ci-aji | xin 15
where&; = A; + (en, — e;,) andy; = (en, + e,,)/2. Given ; i+ diln] ; Jz:; T ] (19)
yln] = XL, wiln], (8) implies that ~
N — "
y[n] = Z&'xi[n] + B, (9) forany selectionofV —1 constants¢y, ..., cy—1. Since (14)
P is satisfied for any selection @f andg,, suppose; = d; for
~ eachi, andg, = 0. In this case, the left-hand side of (14) is the
wheref, = > i, 7. same as the right-hand side of (15), which implies (7). Thus, the
Sufficiency: Assume  that the N-1 sequences, N — 1 sequences satisfy condition b) in the theorem.  m
¢1[n], ..., dn-1[n], exist and satisfy a) and b) in the theorem. Therefore, in mismatch-shaping DACs, there Ate- 1 un-
Substituting (6) into (9) gives derlying sequences that, given the DAC input, determine the
N N_i /N digital encoder outputs and, when linearly combined, produce
y[n] = gimi | xn] + &ody i | d:[n] + B,. @ sequence that has the same form as the DAC output, i.e.,
] (; ) ] JZ:; (kz_:l ‘ ’”) il az[n] + b + ¢[n], where the gain and offset depend on the co-
= e efficients in this linear combination, and the sequerie# has
=aq, =c;

(10) the same PSD properties as the DAC noise.

Condition b) implies that the second summation in (10) can be The theorem can be used to show that the DAC noise from

decomposed as in (7). Thus, substituting (7) into (10) gives @ given architecture has certain PSD properties. However, the
corollary presented next is more convenient for this application.

y[n] = (a+ a,) z[n] + b+ Bo +eln] (11) Corollary 1: Given the multibit DAC shown in Fig. 1, let
=0 =3 be anN x N invertible matrix whose values are denoted,

(wherej andk are the row and column numbers, respectively)
wheree[n] has the given set of PSD properties, so the multibiind whoseVth row satisfiesiy 1, = Ar/Ap. Then, given
DAC produces DAC noise with the given set of PSD properties. '

Necessity:Let A be anN x N invertible matrix whose
values are denoted; , (wherej and k are the row and $iln] = _ aj k- wxln] (16)
column numbers, respectively) and whao¥eh row satisfies k=1
an,r = Ar/Ap for eachk. Furthermore, foj = 1,..., N, forj =1, ..., N — 1, the multibit DAC produces DAC noise

N

let with a given set of PSD properties if and only if, for any selection
N of the NV — 1 constants, ..., cy_1, there exist two constants
biln] = Z aj 1 - Tx[n). (12) aandb, and a sequenegn| with the given set of PSD properties
b1 such that
Using matrix notation, (12) can be written 5 = AZ[n]. =
Becauseiy,, = Ay/Ap for eachk, (2) and ({ﬁ) imply[trlat Z ¢; - diln] = ax[n] + b+ en]. (17)
én[n] = x[n]. Let D, whose value in itsth row andjth column =t
is denotedd; ;, be the inverse matrix aft. This implies that Proof: The proof follows directly from that of the theorem
#[n] = D@[n] and, for each astheN —1 sequences in the corollary are formed the same way
~ as in the proof of the theorem. [ |
zin] = Z di - bin] (13) Therefore, to show that the DAC noise PSD from a given
' . EEREAE multibit DAC has a certain property, derive the-1 sequences,
=t ¢1[n], ..., ¢n—1[n], as described in the corollary and show
With m; = d;, n, (13) is identical to (6) becausey[n] = z[n]. that any linear combination of these sequences can be written
Therefore, theN — 1 sequence®[n], ..., ¢n_1[n] satisfy as in (17). TheN — 1 sequences in the corollary result from
condition a) in the theorem. linear combinations of the digital encoder outputs, and there are

To show that theV — 1 sequences satisfy condition b) in thenany possible choices for these sequences. However, for a given
theorem, assume the multibit DAC produces DAC noise witlhultibit DAC, these sequences can often be chosen to minimize
the given set of PSD properties. In (9),and 3, are arbitrary the effort required to show they satisfy (17). Several examples
constants because each DAC error is an arbitrary constant. Traighis application are presented in the following section.
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Fig. 2. The first-order, lowpass vector feedback DAC.

In efficientmismatch-shaping DACs (i.e., those for which iti9y Corollary 1, the multibit DAC produces DAC noise with the
not possible to achieve equivalent performance with fewer 1-gitven set of PSD properties.
DACs), none of théV — 1 underlying sequences are constant for Necessity: Letp;[n], ..., ¢n—1[n] be theN — 1 sequences
all DAC input sequences. To verify this assertion using Coraks described in the theorem and assume (6) and (7) hold. Sub-
lary 1, supposeé;[n] = K for all n, whereK is some constant. stituting (6) into the left-hand side of (20) gives
Substituting this into (16) indicates

N Z fi-xiln] = i: (Z fi di,j) 4’1’[”]

Z aj, k- vk[n] = K. (18) j=1 \i=1
k=1 ECJ'
For A to be invertible, there must be some valuyesuch that N f
a; k, # 0. This and (18) imply that n ; k" T o). (21)
N
A =a
T[] = Z dy - zi[n] + K (29) 0
E Upon substituting (7) into (21) and settimg = a + ag, (20)
’ follows. ]
whered, = —a;j /a1, and K = K/aj,. As a conse-  Therefore, to show that the DAC noise does not have the given

guence of this linear dependence,emuivalentmultibit DAC  PSD properties, it is sufficient to find a linear combination of
could be implemented using fewer thAhl-bit DACs; the only the digital encoder outputs that cannot be expressed as in (20).
difference between the original and equivalent implementatioAs example of this application is also shown in the following
would result from the 1-bit DAC errors in each. For exampleection.

if z1,[n] were given by (19), then thiyth 1-bit DAC could

be removed by changing the nominal step sizes of the other IV. ARCHITECTUREANALYSIS

1-bit DACs according to the following: fok # ko, AF™ = e theorem and corollaries presented in the previous sec-

old . Aold . . . -
Alirh+fdﬁ A.ko ) lary i ient than the th tion are used in this section to analyze and compare several of
€ following corollary 1s more conveniént than the theorery, previously published multibit DAC architectures. Specifi-

or the first corollary for proving that the DAC noise froma giVe'?:ally, vector feedback, DWA, butterfly shuffler, tree structured,

architecturedoes nohave certain PSD properties. o X
) o N segmented butterfly shuffler, and partitioned DWA DAC archi-
Corollary 2: The multibit DAC in Fig. 1 produces DAC tectures are considered.

noise with a given set of PSD properties if and only if, for any

selection of N constantsfi, ..., fn, there exist constant® A \ector Feedback
andb, and a sequen with the given set of PSD properties _ )
such that quencgn] J prop A five-level (i.e., N = 4) example of the vector feedback
DAC is shown in Fig. 2 [2]. Its inputrange {s-N/2, —N/2+
N 1, ..., N/2}. Its 1-bit DACs all have the same nominal step
Z fi - wiln] = ma[n] + b+ e[n]. (20) size (i.e.A; = Ap for eachi). The digital encoder consists of
=1

avector quantizerasmallest-elemertlock, two vector adders,

Proof: Sufficiency: Assume (20) holds. Let be anN x  and a vector unit delay. The vect@m] consists ofV elements,

N invertible matrix as described in Corollary 1. With = theith of which is associated with thigh output bit of the digital
S ¥itej - aj; anda = m, (16) and (20) imply (17). Thus, encoder. At each sample timethe vector quantizer determines
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Fig. 3. The DWA DAC.

the z[n] + N/2 largest elements ai[n], and sets the associ-consisting of only zeros. With thigh component of denoted
ated output bits of the digital encoder high. It sets the remaining, A¢ = 0 implies that
output bits low. The digital encoder calculates each element of

in] as cj+1— ¢ =0 (27)
where ci+--+eny=0. (28)
The difference equations characterized by (27) indicate that
viln] = @i[n] — u;[n] (23)

¢; = ¢; for eachi andj. Upon substituting this into (28), it
andz[n] = min;{—v;[n — 1]}, i.e., it is equal to the smallest follows thatV - ¢; = 0, which implies that; = 0 for eachy.
element of—3[n — 1]. Therefore,A is an invertible matrix.

To show that the feedback system within the digital encoder !t nextshown that the choice ¢f [n] given t_’y (26) satisfies
is stable, it is sufficient to show that[»] andv;[n] are bounded (17) witha =0,b = 0, and are[n] whose PSD is zero at = 0.
sequences for each valueioSuppose that at some sample timé?’y virtue of Corollary 1, this implies that the PSD of the DAC
no, the largest element @fno] has a value of > 1. It follows noise also has a zero at = 0, and, therefore, that the vector
fro’m (22) thatu;[n] > 0 for eachi and one element of[n] feedback DAC shown in Fig. 2 is a first-order mismatch-shaping
equals zero for each. The operation of the vector quantizerDAC' o ) )
implies thatz ;[no] — z:[n] = 1 only whenu;[ng] > u;no].  Substituting (22) into (23) gives;[n] = vi[n] — vi[n —1] -
SO (23) ImplleS that Z[TL] W|th (26) thIS ImplleS

[olna] — vyfno]] < max {uilno] — wsfoll, 1} < P @4y Pl = vaald = ogaln AT = wle el =)
It follows from (22) thatu;[ng + 1] — u;[no + 1] = vi[ne] — Therefore
v;[no], and since one element @fn, + 1] is zero, (24) implies
thatu;[no + 1] < P for each:. By induction,u;[n] must be a

> %[m]‘ = [vj1ln] = vi[n] = vy [—1] +v;[-1]|.

m=0

bounded sequence for eathand, therefore, (23) implies that (29)
v;[n] must also be a bounded sequence for each The partial sum in (29) is bounded for all becausey;[n] is
To apply Corollary 1, the invertibl& x N matrix A mustbe 5 pounded sequence for each value.oks shown in the Ap-
chosen unde.r the constraint that/Msh row is given byuy, , = pendix, this implies that the PSD @f;[n] is zero atv = 0. It
1 for eachk sinceA; = Ap for eachi. Forj < N, let is also shown in the Appendix that any linear combination of
1, ifh=j+1 such sequences has a PSD equal to zero-aD. Therefore, by

Corollary 1, the DAC noise has this property too. A PSD plot of

aj = —1, ifk=j (25)  the DAC noise from behavioral simulations is provided in [2].

0, otherwise

e B. DWA
which implies that A five-level example of the DWA DAC is shown in Fig. 3
¢;[n] = zj41[n] — z;[n] 26) [3, [4]. Like the vector feedback DAC, its input range is
{-N/2, =N/2 + 1, ..., N/2}, and all of its 1-bit DACs
forj=1,..., N — 1. To show that4 is invertible as required have the same nominal step size. The digital encoder consists

by the corollary, it is sufficient to show thaté = 0 only when of a thermometer encoder and a barrel shifter. Additionally,
¢ = 0, wherecis anN-length column vector an@lis the vector it consists of a modul@v block, a unit delay, and an adder
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Fig. 4. The butterfly shuffler DAC.

that constitute amoduleN accumulator At each sample Therefore, the DAC noise PSDis also zer@at 0. An example
time n the thermometer encoder, whoBeoutputs are binary PSD plot of the DAC noise is provided in [4].

sequences, selects its bottarm] + N/2 outputs high and its

remaining outputs low. The moduld- accumulator output, C. Butterfly Shuffler

z[.n],.co.ntrols the operation of the barrel shifter as follows: ap example of a five-level butterfly shuffler DAC is shown in
with its inputs and outputs labeled 1 2 from bottom to top, Fig. 4 [5]. Like the previously analyzed DACs, its input range
the barrel shifter, at sample time routes inputi to output g {=N/2, =N/2 + 1, ..., N/2}, and all of its 1-bit DACs
1+ (2[n]+i—1) mod N.Thus, the digital encoder outputs arg,aye the same nominal step size. Unlike the previously ana-
generated by performing a modulé-shift of the thermometer lyzed DACs, the butterfly shuffler DAC requires that be a
encoder outputs. power of 2; i.e.,N = 2°, whereb is a positive integer. The dig-

The values ot[n] andz[n] determine the digital encoder out-jta| encoder consists of a thermometer encodersrawapper
puts at sample time, andz[n + 1] = (2[n] + z[n] + N/2)  cells which are labeled;, ,, and positioned in a matrix with
mod N. If z[n] < z[n+1], then the high digital encoder outputs _ 1,...,2>=' andm = 1, ..., b, corresponding to the
attimen are those numberegn] + 1, z[n]+2, ..., z[n+ 1], row and column numbers, respectively. The input and output
and the remaining outputs are low. Howeverif] > z[n+1],  gequences of each swapper cell are 1-bit sequences; the values
then the low digital encoder outputs at timeare those NnUM- ¢ aach are taken to be 1/2 and/2 at sample times when the
beredz[n +1] +1, z[n +1] +2, ..., z[n], and the remaining sequence is high and low, respectively. At each sample time,
outputs are high. I£[n + 1] = z[n], thenz[n] = +N/2,and all each swapper cell determines its outputs by routing its inputs
of the digital encoder outputs are either high or low at time gjther straight through or swapped. The thermometer encoder,
Therefore, at each sample time there is a contiguous segmeniyhose operation is described in the previous subsection, is nota
of either high or low outputs of the digital encoder, afid] and  ecessary component as it can be replaced by any encoder that
z[n + 1] determine the segment’s starting and ending points.n5s N 1-bit outputs and ensures that exaety] + N/2 of its

To analyze the DAC noise using Corollary 1, lﬁ}[@] = outputs are high at each sample time,
zjy1[n] — z;n] for j =1, ..., N — 1. As shown previously, | et #91_1.m[n] andis, ., [n] denote the top and bottom in-
theseN — 1 sequences are related to the digital encoder outpyyiis of$; m’, respectively. Usingﬁl L in Fig. 4 as an example
sequences by an invertible matrix as required by the corollary. ’ ’

As in the previous analysis, to show that the DAC noise PSD &1, 0[n] =
is zero atw = 0, it is sufficient to show that the partial sum Ofand
¢;[n] is a bounded sequence. To show this, note thaithel A Lo ) .
sequences [n], ..., ¢y_1[n] detect the edges—i.e., starting @3,2[n] = 3 (Z1,1[n] + &2,1[n] = 51,1[n])
and ending points—of the contiguous segment of high or Iovv\\llhereA [n] is called aswapper sequenc@his sequence is
digital encoder outputs. t[n] = £N/2, there are no edges to 51,11 S PP g g

. . enerated withirb; ; and is restricted to be 0 when [n] =
detect andp;[n] = O for eachj. However, ifz[n] # £N/2, g " "~ >
¢,[n] is nonzero only whery corresponds to an edge of the' 2 1[#] and=£1 otherwise. Whe,, 1[n] = +1, the sign of the
contiguous segment swapper sequence determines whether the swapper cell inputs
are routed straight through or swapped. Wken[n] = 0, both
=1, ifj=z[n] swapper cell inputs are the same; therefore, both outputs are the
biln] =< 1 if j = 2[n + 1] (30) same regardless of how the swapper cell routes its inputs. Thus,
! ’ each swapper cefl; ,,, uses its swapper sequengg,, [r], asin

(32) and (33) to determine its outputs. In the first-order butterfly

This implies that the nonzero samplegofn] alternate between shuffler DAC, each swapper cell alternates between swapping
—1 and 1, and the partial sum ¢f[n] is a bounded sequence and not swapping so that

S 6ilm] S 41l

N[

(331,1[71] +:f72,1[n] +§1,1[7‘L]) (32)

(33)

0, otherwise.

<L (1) <1 (34)




754 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2002

=[xl [ 1-Bit
"| DAC
| xln] | 1-Bit
=il | DAC yn]
— | %l [ 1-Bit
i DAC
| x[ [1-Bit
- | DAC

Fig. 5. The tree structured DAC.

which, as shown in the Appendix, implies that the PSD of easluch that the top and bottom outputsSif ,. arexy_1, 2,—1[n]

swapper sequence is zera.at 0. andzr_1, 2r[n], respectively. The outputs 6f , are given by
Generalizing (32) and (33) to the other swapper cellsin Fig. 4, )
the top digital encoder output in the figure can be written as Tp-1,2r-1[n] = 3 (Tk,+[n] + sk, [n]) (38)
. and
z4n] = = <Z Zp,1[n] + 81,1[n] + S2, 1[n]> 5 81,2[n]. wk-1,20[n] = § (xx,»[n] — sk, [n]) (39)
k=1

(35) wheres;, ,.[n] is called theswitching sequencand is generated
Sincez[n] + N/2 of the thermometer encoder outputs are higiithin Sk T

at timemn, it follows thatZk 1 &k, 1[n] = z[n]. This and (35) Analogously to the butterfly shuffler DAC, the switching
imply blocks in the first-order tree structured DAC ensure that
wa[n] =  (an] + $1,1[n] + 82,1 [n]) + 5 51,200]. (36) S sl <1 (40)
m=0

Therefore, the top digital encoder output is a linear combina-
tion of z[n] and the swapper sequences. It follows by similawhich, as shown in the Appendix, implies that the PSD of
reasoning that this holds for every digital encoder output, andsdp ,.[n] is zero atw = 0. By recursively solving the switching
general withNV = 2° block outputs in (38) and (39) as functions of the switching
sequences and the DAC inptjn], it follows that

251 p
x;[n] = z[n]/N + c@n - 81, m([n] (37) ob—k
;m; b tn]—m]/N+ZZd cskeln]  (41)

k=1 r=1
where each!”) is a constant that is either1/2°—™+1 or 0.

To apply Corollary 1, once again lgt[n] = z;41[n] —z;[n] where eachl( ) is a constant that is either1 /2" or 0.
forj = 1,..., N — 1. As previously shown, the matrix that Once agam Corollary 1 can be applied by using the
relates thesw — 1 sequences to the digital encoder outputs & —1sequenceg;[n] = z,1[n]—z;[n]forj=1, ..., N—1.
invertible as required by the corollary. It follows from (34) andAs previously shown, théVv — 1 sequences are generated by
(87) that, for eacly, ¢;[n] is a linear combination of swapperan invertible matrix as required by the corollary. The PSD
sequences whose PSDs are zero at 0, which, as shown in of each¢;[n] sequence is zero at = 0 because, from (41),
the Appendix, implies that the PSD ¢f[n] is zero atv = 0. each sequence results from a linear combination of switching
Therefore, the DAC noise PSD is also zerwat 0. An example sequences whose PSDs are zero at 0. Therefore, the DAC
DAC noise PSD plot from this DAC is provided in [11]. noise PSD is also zero at= 0, which is illustrated in the PSD

plots provided in [6] and [12].

D. Tree Structured

An example of a five-level tree structured DAC is shown iff- Qualitative Comparisons
Fig. 5 [6]. Like the previously analyzed DACSs, its input range Comparisons among mismatch-shaping DACs can be made
is {—N/2, —N/2+1, ..., N/2}, and all of its 1-bit DACs using the necessary and sufficient condition presented in the the-
have the same nominal step size. This DAC requires Mat orem. One comparison can be made concerning how easily each
be a power of twoN = 2°, whereb is a positive integer. The of the four previously analyzed DACs combat harmonic distor-
digital encoder consists afwvitching blockswhich are labeled tion in its DAC noise. In the butterfly shuffler and tree struc-
Sk,r» Wwherek = 1, ..., b, denotes the layer number, andured DACs, the DAC noise is a linear combination of shaped se-
r =1, ..., 2% denotes the depth in the layer. If the inputiuences—i.e., swapper and switching sequences—that are gen-
to Sk, » is denotedzy .[n] and each sequenceg(n] is also erated within their digital encoders. Therefore, as shown in the
denotedr, y+1-:[n], the switching blocks are interconnectedhppendix, if these shaped sequences have bounded PSDs, then
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their DAC noise PSDs are also bounded and thus do not cont@rerefore, if thelV inputs to the column-one swapper cells are
spurious tones. This can be accomplished by incorporating rélmermometer encoded as in Fig. 4, then the column-one swapper
domness in the shaped sequences to prevent any tonal behas@mjuences are restricted as follows:

The relative ease for which this is accomplished is shown in [12] ]

where pseudorandom sequences are employed by the switching sualn] = { +1, ifzn]=N/2—-(20-1) (44)
blocks in both first- and second-order lowpass tree structured ’ 0, otherwise.

DACs to eliminate harmonic distortion in the DAC noise.

However, the vector feedback and DWA DACs obtain DA®t each sample time, at most one of te! swapper sequences
noise with the given set of PSD properties without explicithin the first column is nonzero; the choice of which is deter-
generating sequences with these properties. This indirect apgned by the DAC input. A$ increases, this dependence on
proach for spectrally shaping the DAC noise makes it more difie DAC input makes it more difficult for these swapper se-
ficult to eliminate or reduce spurious tones. To remove spurioggences to satisfy (42) and has prohibited the implementation
tones in the vector feedback DAC, randomness must somehekihe second-order, lowpass butterfly shuffler DAC.
be incorporated into the vector quantizer’s operation, but, to theHowever, the vector feedback and tree structured DACs
knowledge of the authors, no such vector quantizer has bggacessN and N — 1 internal sequences, respectively, to
demonstrated to date. To remove or reduce spurious toneg@merate their digital encoder outputs. Becausepfas 2,
the DWA DAC, its architecture must be changed. Most variantdese DACs process fewer internal sequences than the butterfly
of the DWA DAC are designed to reduce, relative to the DWahuffler DAC, their internal sequences and DAC noise have less
DAC, the harmonic distortion in the DAC noise. Examples olependence on the DAC input, which enables the implementa-
such DWA variants are presented in [8], [13], and [14]. To su#on of higher order DACs. For example, in the tree structured
cessfully reduce harmonic distortion, each of these publishBAC, the layer that directly processes the DAC input, layer
first-order architectures requires that the multibit DAC input inenly has one switching block as opposed to 2fe' swapper
cludes a random component—e.g., the quantization noise frégils in the first column of the butterfly shuffler DAC. For the
a AY modulator. This is not required in the previously menswitching blocks presented in [12], the switching sequence is
tioned first-order, tree structured DAC whose DAC noise PS@stricted as follows:
is bounded regardless of the DAC input [15].

Another comparison can be made concerning the ease for sk r[n] = {
which a mismatch-shaping DAC obtaimsgher order—i.e., ’
greater than first order—spectral shaping of the DAC noise.

Such DACs are desirable because the DAC noise in a higHdterefore, the switching sequence in layetepends only on
order DAC usually has less signal-band power. This comparisthe parity of the DAC input, which is much less restrictive than
does not include DWA because it is inherently a first-ordéhe dependence exhibited by the column-one swapper sequences
DAC. The theorem states that, given the DAC inphit,— 1  shown in (44). Examples of second-order lowpass implementa-
sequences are required to generate the digital encoder outfigrs of the vector-feedback and tree structured DACs are pre-
in a mismatch-shaping DAC. However, wiffi = 2°, whereb  sented in [16] and [17], respectively.

is a positive integer, the butterfly shuffler DAC requitesV/2

swapper sequences, which, for- 1, are more than necessarnyf. Segmented Butterfly Shuffler

asb- N/2 > N — 1. Additionally, asb increases, the number  The g5-level segmented butterfly shuffler DAC [7] shown in
of extra sequences utilized by the DAC grows at a faster ratgy ¢ yses 1-bit DACs with different nominal step sizes to re-
than an exponential function. Each swapper sequence dep the complexity of the digital encoder relative to a nonseg-
on its swapper cell input, which depends on the DAC inpYhented 65-level butterfly shuffler DAC. The input to this DAC is
This dependence and the extra swapper sequences makg$tie range{—32, ..., 32}. The digital encoder consists of 9-
difficult to ensure that each swapper sequence has the desygd 17-level butterfly shuffler digital encoders, a first-order dig-
PSD properties in higher order implementations. ital AY modulator, a subtractor, and a gain element. The nom-

For example, to implement a second-order, lowpass butterfha| step sizes of the 1-bit DACs that are driven by the 9- and
shuffler I?AC, it follows. from [12] that each swapper sequencey_evel butterfly shuffler digital encoders ate, and4 - Ap,
must satisfy the following: respectively. The digita > modulator quantizes with a step

size of 4, and its output can be written as

SN smlk]| < B (42) uln] = z[n] + e[n] — e[n — 1] (46)

=0 k=0

+1, if 2 .[n] + 2"~ 1 is odd

45
0, if zx .[n] +2F"1is even. (45)

wherezs[n] is thequantization erroi(i.e., the difference between
where 3 is a constant. Because the value of each swapper ek output and the input of the quantizer in th& modulator).
output is either-1/2 or 1/2 at each sample time, it follows The DAC in Fig. 6 requires only 44 swapper cells compared to
that the 192 swapper cells required to implement a regular 65-level
butterfly shuffler DAC.
) {il, if £o1—1,m[n] # 21, m[n] ( To apply Corollary 1,¢1[n], ..., ¢23[n] must be derived

mln] = 43 : : . .
St.mln 0, if £o—1,m[n] = £21, m[n]. ) using a 24x 24 invertible matrixA whose 24th row must
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Fig. 6. The segmented butterfly shuffler DAC.

satisfy ass 1 = Ar/Ap. This implies thatass , = 1 for follows from (48) and the analysis of the butterfly shuffler DAC

k < 8, andasgs, 1, = 4 otherwise. Let that¢,[n] is a linear combination of swapper sequences whose
) PSDs are zero at = 0. As shown in the Appendix, this implies
- { 1, ifk<8 (47) that the PSD of;[n] is also zero at = 0.
’ 0, otherwise Because the 1-bit DACs of a butterfly shuffler DAC have the

same nominal step size, (2) implies that the sum of the outputs

and fork 8, 24, definea;, . as in (25). This implies that, for of a butterfly shuffler digital encoder equals its input. Therefore,

J=1...,23 ¢s[n], as given in (48), equals the input to the 9-level butterfly
8 shuffler DAC, which, as shown in Fig. 6,d$n — 1] — ¢[n]. The
zr[n], if j =8 partial sum ofpg[n] then is a telescoping sum
¢jln] = ; (48)

zjy1[n] — zj[n], otherwise. i ¢g[m] = e[—1] — €[n] (53)
m=0

As previously describedd is invertible if A¢ = § holds only o ) o
whené = 0. Given AZ = 0, it follows that which is a bounded sequence becatisg is the quantization

error. As shown in the Appendix, this implies that the PSD of
8 ¢s[n] is zero atw = 0. Therefore, for eacli, the PSD ofp;[n]
Z Cj (49) s zero at = 0, and the DAC noise also has this property.
=1
4-¢

0
0

¢+ (50)  The partitioned DWA (P-DWA) DAC, shown in Fig. 7, was
1 1=9 designed to not only suppress the DAC noise power aeal0,
but to reduce, in comparison to the DWA DAC, the spurious
tonesin the DAC noise . Its inputrang€is 16, —15, ..., 16}.
(51) Allofits 1-bit DACs have the same nominal step size. The dig-
ital encoder consists of two 17-level DWA digital encoders and a
Substituting (49) into (50) yields divide-by-twablock. The top output of the divide-by-two block
is z[n]/2 rounded up to the nearest integer (ije:jn]/2]), and
the bottom output ig[n]/2 rounded down to the nearest integer
> =0 (52) (e, L2[n]/2]).
Corollary 2 is applied next to show that the DAC noise PSD
From previous analysis, (49), (51), and (52) imply that= 0 is not zero atw = 0. Since the difference between the outputs
for eachj, which proves that! is invertible as required by the Of the divide-by-two block is one when[r] is odd and zero

J

8 24 G. Partitioned DWA

and, forj # 8

Cjr1 — C5 = 0.

corollary. otherwise, it follows that
Itis shown next that, for eachthe PSD of;[n] is O atw =0, 32 16
which, by virtue of Corollary 1 and the results in the Appendix, Z zi[n] — Z zj[n] = z[n] mod 2. (54)

implies that the DAC noise also has this property. fef 8, it i=17 j=1
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Fig. 7. The partitioned DWA DAC.

By Corollary 2, if the above linear combinatioczannot be 20— T
written asaz[n] + b + ¢[n], wherea andb are constants and SRR
the PSD ofc[n] is zero atw = 0, then the DAC noise PSD is =
notzero atw = 0. Therefore, from (54), it is sufficient to show &
that, for somex[n], the PSD of the sequence

of

|
n
[=]

e[n] = (z[n] mod 2) — (az[n] + b) (55)

is not zero atv = 0 for any choice of the constantsandb.
Since

|
I
(=]

o] = 2 {@J + (2[n] mod 2). (56)

Power (dB relative to Delta squ

|
D
(=]
T

Equation (55) can be written as

e[n] = (1 — a)(2[n] mod 2) — <2a {MJ —|—b>. G7) gl .
2 107 10 o107 10
The DAC input,z[n], can be chosen so thafn] mod 2 and Normalized Frequency

L$[n]/2J in (57) are uncorrelated sequencgs whose PSDs ﬁr&& The output noise PSD from a simulation of a second-order, afgibg
not zero atv = 0. For example, SuppOSf{n] is a sequence of modulator using the partitioned DWA DAC.
independent and identically distributed (i.i.d.) random variables

that are uniformly distributed in the range, ..., 3}. In this DWA, the DAC noise in this implementation has less harmonic

case;z[n] mod 2 and|x[n]/2] are independent sequences thEistortion. The reduced harmonic distortion is a result of the ran-

consist of i.i.d. random variables that are 0 or 1 with equal pro omness inc[n], which causegz[n] mod 2)/2 to act as an ad-

ditive and subtractive dither sequence that, as shown in Fig. 7,
is fed into top and bottom DWA DACs, respectively.

ability. For thisz[n], (57) implies that the PSD efn] is not zero
atw = 0 for any selection of the constantsandb. Therefore,
by Corollary 2, the DAC noise PSD is also not zeraat 0.
Fig. 8 displays the output noise PSD from a behavioral sim-
ulation of a second-order, analdg® modulator that employs
the P-DWA DAC. TheAY modulator input was a1 dB (rela- Necessary and sufficient conditions for mismatch shaping
tive to full scale) sinusoid with frequenéy0015 f,, wheref, is  with a general multibit DAC have been presented, proved, and
the sample rate. The PSD units are dB relativa\fp whereA  discussed. For the DAC noise to have certain PSD properties,
is the step size of the analog-to-digital converter withinA¥ the conditions show that there must Bé — 1 underlying
modulator. The frequency axis is normalized with respect to tsequences in the general multibit DAC that, when linearly
sample rate. The 1-bit DAC errors were chosen as independeninbined, produce a sequence that consists of an offset, a
Gaussian random variables with a standard deviation of 1%safaled version of the multibit DAC input, and another sequence
the 1-bit DACs nominal step size. that has the given PSD properties. As example applications, the
The output noise in the simulation includes the DAC noiseonditions have been used to show that the DAC noise PSDs of
and quantization noise. The simulation shows that, as a resulfieé widely-used lowpass DACs are zerouat= 0 and that the
the DAC noise, the output noise PSD is not zero at 0. How- DAC noise PSD of another lowpass DAC is not zerawat 0.
ever, the simulation suggests that, compared to conventioAalditionally, the theory has been used to compare the ease for

V. CONCLUSION
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which several DACs combat spurious tones in their DAC noisend likewise for the Fourier transforms gfr] and z[n]. The
and obtain higher order shaped DAC noise. Cauchy-Schwartz inequality implies that
la +b]* <2 (|a]* + |b]?)

APPENDIX (65)

Two lemmas are presented below that supplement th .
. . ; . wherea andb are complex numbers. Therefore, it follows from
analyses in Section IV. The first lemma proves that if a se-_ . . .
e linearity of the Fourier Transform that, for every

qguencey[n] has a partial sum that is a bounded sequence,

then the PSD ofy[n] is zero atw = 0. The second lemma o\ 12 PN o |2

proves an inequality for the PSDs that is used to show that an |ZM (e )| <2 (lXM (e )| +|Yar (e )| ) - (66)
arbitrary linear combination of sequences whose PSDs are zero .

or bounded at a given frequency gives rise to a sequence whf§esshown in [18]

PSD is also zero or bounded, respectively, at that frequency. ’ 1 o

It is assumed throughout that the PSDs exist for all sequences S...(9) = A}iflo i E {|ZM (e]“’)| } (67)

considered.

Lemma 1:Let 1[n] be a sequence whose partial sum ignq |ikewise for PSDs af[n] andy[n], where E{-} is the ex-
bounded in magnitude by a constahfor all n; i.e. pectation operator. Therefore, (66), (67), and the linearity of the
expectation operator imply (63). ]

Therefore, it follows from (63) that if, at some frequengy,

Sy, z(e39) = 0, andS, ,(e/*°) = 0, thensS, .(e/**) = 0
because the PSD is always nonnegative. Thus, the sum of two
sequences whose PSDs are zero at some frequency givesriseto a
sequence whose PSD is also zero at that frequency. Additionally,
if the PSDs ofi[n] andy[n] are bounded functions—i.e., there
exists a constan® such thatS,. . (e’“) < B, andS, ,(e/*) <

B for all w—then (63) implies that the PSD afr] is also a
bounded functionSZ7z(eJ’°’) < 4B. Therefore, by mathemat-
icalinduction, any linear combination of sequences whose PSDs
are zero or bounded at a given frequency give rise to another se-
guence whose PSD is also zero or bounded, respectively, at that

n

> Alm]

m=0

<B (58)

for all n. Then, the PSD of[n] (if it exists) is zero atv = 0.
Proof: As proved in [18], the PSD of[n] is given by

37 P {1 ()}

where E{-} is the expectation operator, add,(e’*) is the
M-point Fourier transform of[n]

= lim
M —oo

(59)

Sy.y (ejw)

M-1
Do () = Y Alnle7m. (60) frequency.
n=0
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