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ABSTRACT

Mismatch-shaping digital-to-analog converters (DACs) are
enabling components in most of today’s high performance
delta-sigma data converters. These multi-bit DACs ensure
that the noise created by static component mismatches in
the DAC is spectrally shaped so that most of its power re-
sides outside of the signal band. Although most mismatch-
shaping DACs adhere to a common architecture consisting
of a digital encoder and a bank of 1-bit DACs, the theo-
retical analysis of the DAC noise has been tailored to the
specific implementations. This paper presents a necessary
and sufficient condition for a general multi-bit DAC to pro-
duce DAC noise that has desired properties in its PSD. As
an example application, this paper uses the condition to
analyze and compare several mismatch-shaping DACs.

I. INTRODUCTION

The mismatch-shaping DAC has made multi-bit AL mod-
ulation feasible by attenuating the signal-band portion of
its resulting DAC noise. This noise is a consequence of the
inevitable device mismatches that result from process vari-
ations in VLSI circuit fabrication and cause the multi-bit
DAC to be a nonlinear device. By reducing the signal-band
DAC noise, mismatch-shaping DACs have engendered most
of today’s high-performance AX data converters.

There are many mismatch-shaping DAC architectures
presented in literature, but most are variants of four types:
vector feedback (1], butterfly shuffler (2], tree structured
[3], and data-weighted averaging (DWA) [4]. Each of the
four architectures has been mathematically shown to pro-
duce DAC noise with certain desired properties in its power
spectral density (PSD). The mathematics developed for the
results are tailored to the specific architecture even though
each DAC shares a common structure composed of a dig-
ital encoder and a bank of 1-bit DACs. Most designers
have relied on these mathematics to create other architec-
tures and have used simulations or circuit tests to show the
DAC noise has the desired spectral properties, which can
be misleading.

This paper provides a necessary and sufficient con-
dition for a general multi-bit DAC to obtain DAC noise
with given properties in its PSD. Unlike previous analysis
for generalized DACs [5], the condition does not rely on
properties of the circuit fabrication errors; the condition
applies solely to the algorithm executed by the digital cir-
cuitry that enables mismatch shaping. Given a multi-bit
DAC implementation, the condition can be used to eval-
uate whether this DAC produces DAC noise certain PSD
properties. As an example of this application, this paper
uses the condition to show that a lowpass implementation
of each of the four previously introduced DACs produces
DAC noise whose PSD is zero at dc. Additionally, this

' paper uses the condition to make some qualitative com-
parisons between the four main DAC architectures and to
show that the DAC noise PSD of a lowpass architecture
called partitioned DWA (P-DWA) [6] is not zero at dc.
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II. THE GENERAL MULTI-BIT DAC

The general multi-bit DAC shown in Figure 1 consists of a
digital encoder and a bank of N 1-bit DACs. The output
of the ith 1-bit DAC is given by

] = %‘ +en;, if zi[n} is high;
v —8ipey, if 2i[n] is low;

ey

where A; is the nominal step size of the ith 1-bit DAC,
and ep; and e;; are its high and low errors, respectively.
The 1-bit DAC errors result from inevitable inaccuracies
in the fabrication of the 1-bit DACs and are taken to be
arbitrary constants. The multi-bit DAC input, z[n], is a
sequence whose range depends on the specific implemen-
tation. The digital encoder output is a vector, Z[n}, of N
1-bit sequences, z1[n],...,z~[n]. The value of each 1-bit
sequence is taken to be 1/2 and -1/2 at sample times when
it is high and low, respectively. Ideally, a DAC’s output is
a scaled version of its input. To ensure that the multi-bit
DAC approaches this ideal behavior when the 1-bit DAC
errors approach zero, the digital encoder determines its out-
put sequences under the following restriction:

N

> (8i/80) - ziln] = el @
i=1
where Ap is the nominal step size of the multi-bit DAC.
Thus, if the 1-bit DAC errors were all zero, (2) implies that
the DAC output would be given by

y[n] = Apz[n]. ®3)
However, the 1-bit DAC errors are not all zero, and, as
aresult, the multi-bit DAC output is a nonlinear function of

the multi-bit DAC input. The error from this nonlinearity
can be written as an additive error:

yln] = Apaln] +&[n]. @)
The error sequence &[n] often contains a constant offset

and scaled version of the input; therefore, it is convenient
to write (4) as

y[n] = az(n] + B + e[n], (5)
where a and 8 are constants, and e[n] is called the DAC
noise. In a well-designed system, the DAC noise is a zero-
mean sequence that is uncorrelated from the multi-bit DAC
input, and the constants & and # depend only on the 1-bit
DAC errors.

Mismatch-shaping DACs are designed such that the
digital encoder has several possible output vector values,
Z[n], that satisfy (2) for most DAC input values. For ex-
ample, in a multi-bit DAC in which all the 1-bit DACs
have the same nominal step size, a nominal output value
of zero is obtained for any output vector with an equal
number of high and low bit values. By exploiting this flexi-
bility, the DAC noise is tailored so that its PSD has desired
properties regardless of the values of the 1-bit DAC errors.
Therefore, a multi-bit DAC is said to produce DAC noise
with a given set of PSD properties if, for any collection of
1-bit DAC errors, there exist constants @ and 8, and a se-
quence e[n] with the given set of PSD properties such that
y[n] = ox[n] + B + e[n].



III. THE MISMATCH-SHAPING CONDITION

The theorem below presents a necessary and sufficient con-
dition for the general multi-bit DAC to produce DAC noise
with a given set of PSD properties.

Theorem: The multi-bit DAC in Figure 1 produces DAC
noise with a given set of PSD properties if and only if there
exist N — 1 sequences ¢1[n], ..., ¢~-1[n] such that:

(a) each digital encoder output is given by

N-1
ziln} = mizln] + Y di; - 4ilnl, (6)
i=1
where d; ; and m; are constants, and
(b) for any selection of the N — 1 constants ci,...,en-1,

there exist two constants a and b, and a sequence e[n] with
the given set of PSD properties such that

N-1

> ;- ¢iln] = azln] + b + e[n]. )

j=1
Proof: Because z;[n] is interpreted as 1/2 when high and
-1/2 when low, (1) can be written as

yiln} = &ziln] + i, (8)
where £ = A; — (en, —ei;) and v; = (en,; +er;) /2. Given
y[n] = Z:V:I yi[n], (8) implies that

N
yln) =) &iln] + Bo, )
i=1
_ N
where 8, = Zi=l Yi-
Sufficiency: Assume that the N — 1 sequences, denoted

¢1[n),. .., dn-1[n], exist and satisfy (a) and (b) in the the-
orem. Substituting (6) into (9) gives

N N-1 N
yln] = (Z Eimi) z[n] + ) (Z §kdk,j) s[n] + Bo.
i=1

i=1 \k=1

il

Qo =cj

(10)
Assumption (b) implies that the linear combination of the
N —1 sequences in (10) can be decomposed as in (7). Thus,
given assumption (b), (7) substituted into (10) gives

y[n] = (a + ao) z[n] + b + B, +e[n], (11)
=« = ﬁ

where £[n] has the given set of PSD properties. Therefore,
the multi-bit DAC produces DAC noise with the given set
of PSD properties.
Necessity: To reduce wordiness, all “linear combinations”
discussed hereafter are assumed to have constant coeffi-
cients. Let ¢1[n},...,¢~[n] be N sequences that result by
taking N linearly independent, linear combinations of the
digital encoder outputs with ¢n[n] = E,N:I (A:/Ap) zi[n],
which, by (2), implies that ¢~[n] = =z[n]. Therefore, if
#[n] and ¢[n] are the N-length column vectors of the dig-
ital encoder outputs and the ¢;[n] sequences, respectively,
then there exists an invertible matrix A = {a; };V k=1 With
ankx = Ag/Ap such that J[n} = AZ[n). This matrix equa-
tion implies that, for each j,
N
slnl = 3 aj - waln). (12)

k=1
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Let D = {di,;j}Y;, be the inverse matrix of A. This implies
that #[n] = D@[n] and, for each i,

N
ziln] = di; - ¢jln]. (13)

With m: = di,~, (13) is identical to (6) because ¢n([n] =
z[n]. Therefore, the N — 1 sequences ¢1[n],...,dn-1[n}
satisfy (a) in the theorem.

To show the N—1 sequences satisfy (b) in the theorem,
assume the multi-bit DAC produces DAC noise with the
given set of PSD properties. In (9), §; and B, are arbitrary
constants because each DAC error is an arbitrary constant.
Thus, by assumption, for any selection of the constants
&1,...,€n, and B,, there exist constants a and b, and a
sequence ¢[n] with the given set of PSD properties such
that

N
> &iln] + Bo = azln] + b +¢[n]. (14)
i=1
Because the N — 1 sequences are linear combinations of
the digital encoder outputs as given by (12), the linear
combination of the N — 1 sequences in (7) can be written

as
N-1 N [/N-1
ICRACEDS (Z ¢ - aj, i) zi[n],  (15)
i=1 i=1 j=1
N s
=d;
for any selection of the N —1 constants ¢;,...,cn—1. Since

(14) is satisfied for any selection of §; and §,, suppose &; =
d; for each i, and B, = 0. With this selection of &1,...,¢én,
and fB,, the left-hand side of (14) is the same as the right-
hand side of (15), which implies (7). Thus, the N -1
sequences satisfy (b) in the theorem.

| ]

IV. ARCHITECTURE ANALYSIS

As an example application of the condition for mismatch
shaping, this section analyzes and compares several mis-
match-shaping DACs, all of which consist of 1-bit DACs
that have the same nominal step size. It is first shown that
the DAC noise PSDs are zero at dc in first-order implemen-
tations of the vector feedback, DWA, butterfly shuffler, and
tree-structured DACs, while the DAC noise in the lowpass
P-DWA DAC is not zero at dc. The N — 1 sequences,
¢i[n] = zjt1[n] — zj[n] for j = 1,...,N — 1, are used to
analyze the four first-order DACs as it can be shown that
these IV — 1 sequences satisfy (6). It is shown below that
the PSD of each of the N — 1 sequences is zero at dc. This
is sufficient to satisfy (7) because, as can be shown, any
linear combination of sequences whose PSDs are zero at dc
gives rise to a sequence whose PSD is also zero at de.

An example 5-level (i.e., N = 4) vector feedback DAC
is shown in Figure 2. The digital encoder consists of a vec-
tor quantizer, a smallest element block, two vector adders,
and a vector unit delay. The vector #[n] consists of N el-
ements, the ith of which is associated with the ith output
bit of the digital encoder. At each sample time, n, the vec-
tor quantizer determines the z[n} + N/2 largest elements
of i[n], and sets the associated output bits of the digital
encoder high and sets the remaining output bits low. The
output of the smallest element block, z{n], is the minimum
value of its vector input. In [1] it is shown that each digital



encoder output can be expressed as z;[n] = —z[n] + &i[n],
where the PSD of ¢;[n] is zero at dc. Therefore, the PSD
of ¢;[n] = g;41[n} — £;[n] is also zero at dc because it is
a linear combination of sequences whose PSDs are zero at
de.

An example 5-level DWA DAC is shown in Figure 3.
The digital encoder consists of a thermometer encoder, a
barrel shifter and a modulo-N accumlator that consists of
an adder, a unit delay, and a modulo-N block. The ther-
mometer encoder selects its bottom z{n] + N/2 outputs
high and the remaining outputs low. The modulo-N accu-
mulator output, z[n], controls the operation of the barrel
shifter as follows: with its inputs and outputs labeled 1
to N from bottom to top, the barrel shifter routes input
i to output 1 + (2[n] + ¢ —1)mod N. For |z[n]| = N/2,
#i[n] = 0 for each j. For |z[n]| < N/2, it can be shown
that ¢j[n] =1 if j = 2[n], ¢j[n] = =1 if j = 2[n + 1], and
#i[n] = O otherwise. Therefore, for each j, the nonzero
values in ¢;[n] alternate between 1 and -1, which implies

|Z;=o ¢j[m]f < 1, for all n. It can be shown that this
property implies that the PSD of ¢;[n] is zero at dc.

An example 5-level butterfly shuffier DAC is shown in
Figure 4. The digital encoder consists of a thermometer
encoder and swapper cells, which are labeled Si,.. The
inputs, uo[n] and u1[n}, and outputs, vo[n] and vi[n], of a
swapper cell are 1-bit sequences whose values are taken to
be -1/2 at sample times when low and 1/2 at sample times
when high. The outputs of the swapper cell are given by

wln] = 3 (uln] +3{a)), and vi[n] = 3 (uln] - 3fn)

(16)
where u[n] = uo[n] + ui[n], and &[n] is called the swap-
per sequence whose PSD is zero at dc. Let 3;,m[n] be the
swapper sequence of the swapper cell Si,». For the DAC
in Figure 4, it can be shown that ¢s[n] = 31,1[n], ¢2[n} =
3 (32,1[n] + 32,2[n] — 31,1[n] — 31,2[n]), and ¢1[n] = 31,2[n].
For each j in this case and in general, the PSD of ¢;[n]
is zero at dc because it is a linear combination of swapper
sequences whose PSDs are zero at dc.

An example 5-level tree-structured DAC is shown in
Figure 5. The digital encoder consists of switching blocks,
which are labeled Sk,-. If the input to a switching block is
denoted u[n], then the two outputs are given by

voln] = 5 (uln] + s[nl) , and vi[n] = 3 (uln] ~ sfr])

(17)
where s[n] is called the switching sequence whose PSD is
zero at dc. Let sx ,[n] be the switching sequence for the
switching block Sk .. For the DAC in Figure 5, it can be
shown that ¢3[n] = s1,1[n], ¢1[n] = s1,2[n], and ¢2[n] =
1 (s2,1[n] — s1,1[n] = s1,2[n]). For each j in this case and in
general, the PSD of ¢;[n] is zero at dc because it is a linear
combination of switching sequences whose PSDs are zero
at dc.

The P-DWA DAC shown in Figure 6 consists of two
17-level DWA digital encoders and a divide-by-two block
whose top output is z[n]/2 rounded up to the nearest in-
teger, and its bottom output is z[n]/2 rounded down to
the nearest integer. The motivation behind the design of
this architecture is to not only suppress signal-band DAC
noise power near dc but to reduce the spurious tones in
the DAC noise. Since the difference between the outputs
of the divide-by-two block is one when z[n] is odd and zero
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otherwise, it follows that

D aln] =Y z5(n] = zfn] mod 2. (18)
i=17 j=1

Since z[n] mod 2 cannot be written as &x[n] + 3 + &[n],
where the PSD of &[n] is zero at dc, (7) cannot be satisfied
for this PSD property. Therefore, the PSD of the DAC
noise is not zero at dc.

Figure 7 displays the output noise PSD from a be-
havioral simulation of a second-order, analog AY modu-
lator that employs the P-DWA DAC. The AY modulator
input was a -1dB (relative to full scale) sinusoid with fre-
quency 0.0015f,, where fs is the sampling frequency. The
PSD units are dB relative to A%, where A is the ADC step
size. The 1-bit DAC errors were chosen as Gaussian ran-
dom variables with a standard deviation of 1% of the 1-bit
DAC'’s nominal step size. The output noise in the simula-
tion includes the DAC noise and quantization noise. The
simulation shows that, as a result of the DAC noise, the
noise PSD of the AY modulator output is not zero at dc.
However, the simulation suggests that, compared to con-
ventional DWA, the DAC noise in this implementation has
less harmonic distortion, but this spectral property relies
on the randomness of the DAC input.

Using the condition for mismatch-shaping, qualitative
comparisons can be made concerning the four main DAC
architectures. One such comparison can be made regarding
how easily each architecture combats harmonic distortion
in its DAC noise. The butterfly shuffler and tree-structured
DAGC:s generate sequences with the desired spectral proper-
ties. If the digital encoder for each DAC ensures that these
sequences have bounded PSDs and thus do not contain spu-
rious tones, it can be shown that the resulting DAC noise
also does not contain spurious tones. The relative ease for
which this is accomplished is shown in [7] where pseudo-
random sequences are employed by the switching blocks in
both first- and second-order, lowpass tree-structured DACs
to eliminate harmonic distortion in the DAC noise. How-
ever, the vector feedback and DWA DACs do not generate
such sequences, which makes it more difficult to ensure the
resulting DAC noise has no spurious tones.

Another comparison can be made concerning the flex-
ibility of each architecture to perform higher-order mis-
match shaping. Given N = 2b, where b is a positive in-
teger, the butterfly shufler DAC generates b- N/2 swapper
sequences, each of which is required to have the desired
PSD properties. Since b- N/2 > N —1 for all b > 1, the
theorem implies that this digital encoder is generating more
sequences than are necessary, all of which are dependent on
the DAC input. The dependence on the DAC input makes
it difficult to produce swapper sequences and thus DAC
noise with higher-order shaping. For example, in a second-
order lowpass DAC, it can be shown that each swapper
sequence §[n] is required to satisfy

n i
PIPIEL
=0 m=0
where M is a constant. The more dependence each swap-
per sequence has on the DAC input, the more difficult it
is to keep the magnitude of the double sum bounded. On
the other hand, the tree-structured DAC generates N — 1
switching sequences with the desired spectral properties,
while the vector feedback DAC processes N internal se-
quences. In comparison to the butterfly shuffler DAC with

< M,




b > 2, the vector feedback and tree-structured DACs pro-
cess less internal sequences that have less dependence on
the DAC input. This reduced dependence makes it easier
to produce DAC noise with higher-order spectral shaping.
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