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Abstract—Mismatch-shaping digital-to-analog converters
(DACs) have become widely used in high-performance delta–sigma
data converters because they facilitate delta–sigma modulators
with multibit quantization. Relative to single-bit quantization,
multibit quantization significantly relaxes the analog circuit
performance necessary to achieve a given level of data converter
precision, but significant digital logic is required to perform
the mismatch shaping. In modern very large scale integration
processes optimized for digital circuitry, this tends to be a good
tradeoff in terms of both area and power consumption. It is
nonetheless desirable to minimize the digital complexity as much
as possible. Moreover, in delta–sigma analog-to-digital con-
verters the mismatch-shaping logic is in the feedback path of the
delta–sigma modulator, so it is essential to maintain a sufficiently
small propagation delay through the mismatch-shaping logic. This
paper presents and analyzes several variations of the switching
blocks within a tree-structured mismatch-shaping DAC that result
in the most hardware-efficient first-order and second-order mis-
match-shaping DAC implementations yet known to the authors.
The variations presented allow designers to tradeoff complexity
for propagation-delay reduction so as to tailor designs to specific
applications.

Index Terms—Analog-to-digital conversion, delta–sigma modul-
tation, digital-to-analog conversion, mismatch shaping, tree-struc-
tured digital-to-analog converter.

I. INTRODUCTION

I N DATA CONVERTERS, both analog-to-digital
converters (ADCs) and digital-to-analog converters

(DACs), coarse quantization is used in conjunction with quan-
tization-noise shaping and filtering to achieve high-precision
data conversion. In both cases, coarse DACs are required.
Unlike the error introduced by the coarse quantization, the error
introduced by at least one of the coarse DACs in a data
converter is not attenuated inside the data converter’s signal
band. In switched-capacitor implementations, most of the DAC
error arises from static capacitor mismatches, which give rise
to step-size mismatches in the multibit DAC. The resulting
step-size mismatches are memoryless functions of the DAC
input, so the DAC can be viewed as an ideal DAC followed by a
memoryless nonlinear function. The nonlinearity tends to fold
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out-of-band quantization noise into the signal band, thereby
limiting the overall accuracy of the data converter.

To avoid this problem, many data converters employ 1-bit
quantization. With 1-bit quantization, the coarse DAC is im-
plemented by a 1-bit DAC. Since a 1-bit DAC only generates
two levels, it only has one step, and so it is inherently linear.
However, with 1-bit quantization in the modulator, quanti-
zation-noise shaping must be limited to maintain the mod-
ulator’s stability. Additionally, the power of the quantization
noise in the 1-bit modulator exceeds that of its input, so

data converters with 1-bit quantization are extremely sensi-
tive to any nonlinearity or timing error, such as op-amp slewing
or clock jitter, which can fold this quantization noise into the
signal band.

To avoid these problems, multibitmismatch-shapingDACs
have been developed [1]–[52]. In these DACs, digital logic is
used to scramble the DAC capacitor or current-source connec-
tions in such a fashion that the error introduced by the device
mismatches, referred to asDAC noise, is suppressed within the
data converter’s signal band. For low-pass mismatch-shaping
DACs, the DAC noise is suppressed near dc so that its power
spectral density (PSD) is shaped like the magnitude response
of a first-order, or in some cases, second-order high-pass filter.
The five main classes of mismatch-shaping DACs include
individual-level averaging (ILA) [11], [12], vector feedback
[13]–[16], data-weighted averaging (DWA) [17]–[31], butterfly
shuffler [32]–[37], and tree structured [38]–[44]. The criteria
used to compare these DACs include complexity, propagation
delay, spurious-tone avoidance, and the order, or degree, of
DAC noise suppression.

In [40], a tree-structured mismatch-shaping DACs is intro-
duced that has led to the most efficient implementations of
dithered first-order and second-order mismatch-shaping DACs
known to the authors [43], [44]. Moreover, the first-order
tree-structured DAC is the only one for which dither is known
to completely eliminate spurious tones in its DAC noise [46].
This paper furthers the development of this DAC by presenting
new implementations of its digital logic that are more hardware
efficient and have less propagation delay than those presented
in [40]. The digital logic is first partitioned into functional
blocks, one of which determines the shape of the DAC noise’s
PSD and another that is responsible for the digital logic’s prop-
agation delay. The hardware for the digital logic is presented
through interchangeable variations of these functional blocks
so that the DAC can be tailored to meet varying specifications
for signal-band DAC noise power, propagation delay, and
complexity. Efficient first and second-order mismatch-shaping
logic are presented and the resulting DAC noise from each is
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Fig. 1. An example of a second-order, 33-level, low-pass analog�� modulator realized with switched capacitors.

Fig. 2. A 33-level mismatch-shaping DAC with switched capacitor DAC elements.

analyzed to show it has the desired spectral shape. Additionally,
medium-speed and high-speed implementations of the DAC
are presented that offer a tradeoff between propagation delay
and complexity.

This paper is divided into six sections. Section II reviews the
tree-structured DAC and presents the functional partitioning of
its digital logic. Additionally, this section presents an example
application of a 5-bit second-order ADC modulator that is
used throughout the paper to illustrate the DAC performance
and complexity. Section III presents and analyzes the first-order
and second-order mismatch-shaping logic, while Section IV
presents the medium-speed and high-speed implementations of
the DAC. Section V presents a hardware comparison between
the different tree-structured DAC implementations and other
mismatch-shaping DACs presented in literature.

II. THE TREE-STRUCTUREDDAC

A. The Modulator Application

The 5-bit ADC modulator presented in [43] is shown in
Fig. 1. It consists of two delayed switched-capacitor integrators,
a 33-level flash ADC, and two 33-level DACs. As shown in
Figs. 1 and 2, each 33-level DAC consists of a bank of 32
DAC elementsand a shared digital encoder whose outputs,

, are 1-bit sequences. Each DAC element
can be viewed as a 1-bit DAC whose analog output is a charge
packet applied to the summing node of an integrator. A DAC
element is said to be “selected high” when its input is high;
otherwise, it is said to be “selected low.” For convenience,

the output of the ADC, , is interpreted as an integer
between 0 and 32. For each ADC output sample, the digital
encoder chooses which of the DAC elements to select
high and which of the DAC elements to select
low. In other words, if is interpreted numerically as one
when high and zero when low, the DAC encoder ensures that

.
Mismatches among the capacitor values of the DAC elements

cause the output of each multibit DAC to be a nonlinear function
of its input. The resulting nonlinear error is represented, without
approximation, as an additive noise source referred to asDAC
noise. As shown in Fig. 1, an output from one of the DACs is
added to the modulator’s input. Thus, the modulator
does not attenuate any of the signal-band noise power from this
DAC. However, the digital encoder can select the DAC elements
such that most of the DAC noise power resides outside of the
signal band.

To demonstrate the improvements that are realized by
mismatch shaping, the DAC presented in [44] was tested with
and without mismatch shaping. The input for each test was a
1.5 kHz, dB (relative to full scale) sinusoid. With mismatch
shaping, the resultant signal-to-noise-and-distortion ratio
(SINAD) was 100 dB, whereas without mismatch shaping,
the resultant SINAD was 64 dB. In general, the tradeoff for
the improved performance is the additional hardware and
propagation delay incurred by the digital encoder. However, the
propagation delay of the digital encoder only affects the design
of high-speed data converters. Examples of commercially
available data converters that employ mismatch-shaping DACs
to a similar advantage are presented in [47]–[52].
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Fig. 3. The 33-level tree-structured digital encoder.

B. The Tree-Structured Digital Encoder

The architecture for a 33-level, tree-structured digital encoder
is shown in Fig. 3. The nodes of this digital encoder are called
switching blocks. Each switching block is labeled , where

and represent the switching block’s layer number and po-
sition within the layer, respectively. Each switching block
has a single input, which is denoted , and two outputs.
If each digital encoder output sequence is also denoted

, then the switching blocks are interconnected such that
the top output of is and the bottom output is

. Theswitching sequence is defined as the dif-
ference between the top and bottom output sequences of

(1)

Fig. 4 illustrates the input and output sequences of along
with the relationship between its switching sequence and output
sequences.

As shown in [40], the DAC noise is a linear combination of the
switching sequences. In general, for a DAC of the type shown
in Fig. 3 with DAC elements, the output can be written as

(2)

Fig. 4. The switching blockS .

where

(3)

and , and are constants that are functions of the in-
evitable, static errors that result from process variations during
VLSI circuit fabrication.

Therefore, if the switching sequences are all uncorrelated and
share the same characteristics in their PSDs (e.g., first-order
high-pass shaping), the DAC noise also possesses these char-
acteristics. The problem of shaping the PSD of the DAC noise
reduces to the problem of creating switching sequences with the
desired spectral shaping. Unfortunately, this problem is compli-
cated by the constraints on the switching sequence described
next.

C. Constraints on the Switching Sequence

The switching sequence is generated within the switching
block to obtain the desired spectral properties of the DAC noise.
However, the switching sequences must be constrained to sat-
isfy restrictions inherent to the digital encoder. As previously
described, each of the digital encoder’s outputs,

, is limited to the set and their sum must equal
the DAC input: . It is shown in [40]
that these conditions are met if each switching block satisfies the
following two-partNumber Conservation Rule:the two outputs
of each switching block must be in the range
where is the layer number, and their sum must equal the input
to the switching block

(4)

From (1) and (4), the input/output relationships of switching
block are

and

(5)

The above expressions are implemented by the block diagram
shown in Fig. 5.

It can be shown that the number conservation rule is satisfied
by each switching block if

if is even
if is odd

(6)

This is more restrictive than necessary; however, it significantly
simplifies the switching block’s hardware. In Fig. 5, this restric-
tion is reflected by the switching sequence generator’s depen-
dence on the input sequence .
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Fig. 5. The signal processing performed in the switching block.

Fig. 6. A functional partitioning of the switching block, where SN is thesplitting network, PL is theparity logic, and SL is thesequencing logic.

D. Implementation of the Switching Block

The switching sequence is a ternary sequence, and
so it can be represented as two single-bit sequences. It follows
from (6) that the magnitude of the switching sequence is entirely
determined by the input to the switching block, so the switching
block can only control the sign of the switching sequence. To
separate the magnitude and sign of the switching sequence, let

and represent as

if
if
if

(7)

where

if is odd
if is even

(8)

The sequence represents the sign of . It is chosen
by the switching block to ensure the switching sequence is ap-
propriately shaped as described in Section III. The se-
quence is referred to as theparity sequenceand represents the
magnitude of .

Fig. 6 displays a convenient functional partitioning of the
switching block. The parity logic determines the parity of
the switching block’s input and generates the parity sequence

. The sequencing logic produces the sign sequence
and is responsible for the spectral shaping of the

switching sequence. The combination of the sequencing logic
and parity logic constitute the switching sequence generator
shown in Fig. 5. Given and the binary representation

of (i.e., and ), the role of the splitting
network is to perform the arithmetic operations shown in Fig. 5
that generate the switching block’s two output sequences.

III. L OW-PASS SEQUENCINGLOGIC

A. High-Pass Switching Sequences

In low-pass mismatch-shaping DACs, the signal band is near
dc, so the mismatch-shaping logic is designed such that most
of the DAC noise power resides at higher frequencies. In other
words, in a low-pass mismatch-shaping DAC, the PSD of the
DAC noise resembles the magnitude response of a discrete-time
high-pass filter. Sequences of this type are calledhigh-pass se-
quences. Thus, the sequencing logic blocks in a low-pass tree-
structured DAC create high-pass switching sequences.

To meaningfully characterize the spectral properties of the
high-pass switching sequences, a quantitative definition of an

th-order high-pass switching sequence is required. In a
modulator with a quantization-noise transfer function that con-
tains zeros only at dc, the order of the modulator corre-
sponds to the number of dc zeros. Letquantization noisedenote
the component of the modulator output arising from the
errors induced by quantization. In anth-order low-pass
modulator, the quantization noise is commonly calledth-order
high-pass noise. A key property of this high-pass noise is that
it can be processed by cascaded accumulators such that the
values in the accumulators remain bounded. Thedc poles
from the accumulators “cancel” the dc zeros in the noise
transfer function. However, if one more accumulator were cas-
caded, its output would become unbounded regardless of the
accumulators’ initial values.
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In contrast to the quantization noise, the switching sequence,
as a result of its constraints in (6), cannot be generated by
filtering a causal, bounded sequence by a system withdc
zeros. Therefore, the concept of the switching sequence’s order
is vague without a more applicable definition. By defining the
high-pass order of a switching sequence using the accumulator
property described above, a transfer function is associated with
this sequence, and the desired properties of its PSD are implied.

Definition: Let be the “ th-sum sequence” of

L Summations

(9)

The sequence is an th-order high-pass switching se-
quence if its th-sum sequence is abounded sequence—i.e.,
there exists a number such that for all

—, and its st-sum sequence is an unbounded sequence.
If is an th-order high-pass switching sequence, then

it can be shown that the slope of its PSD is dB/decade near
dc provided the PSD of is continuous and nonzero in a
neighborhood of dc. This definition provides a means to create
switching sequences that areth-order high-pass shaped and
conform to (6).

B. First-Order Low-Pass Sequencing Logic

To produce a switching sequence that is a first-order
high-pass switching sequence, the switching block ensures that
its partial sum, , is a bounded sequence. Suppose the
input to switching block is always odd and thus, from (6),

for all . One method for ensuring that is a
bounded sequence is by choosing to be the alternating
sequence: . With this switching
sequence, the resulting partial sum sequence is bounded in
magnitude by 1

(10)

and the resulting switching sequence is a single tone of normal-
ized frequency . For many applications, it is desirable to
have DAC noise and, thus, switching sequences that do not con-
tain any tones.

One way to eliminate tones in this scenario and yet obtain a
first-order high-pass switching sequence is to construct
by randomly choosing between the following two types ofsym-
bols: “ ” and “ ”. When is even (i.e., ),
one of the two symbols is chosen randomly by a fair coin toss,
and the chosen symbol is placed in the switching sequence.
With this construction, the switching sequence can be written
as and . Thealter-
nating property—i.e., —ensures that
the partial sum sequence satisfies (10), while the random symbol
type selection prevents from containing any periodici-
ties. Therefore, the resulting switching sequence is a first-order
high-pass switching sequence that does not contain tones.

This method of using symbols to construct the switching
sequence can be generalized to include even inputs to the
switching block. When the switching block’s input is even, it
follows from (6) that the switching block has no choice but to
force the switching sequence to be zero. To include potential
zero runs in the switching sequence, the two symbols described
above are generalized to be

(11)

Each symbol begins in the switching sequence with a nonzero
value that corresponds to an odd switching block input. The only
other nonzeroelementwithin a symbol has the alternate sign of
the first element. For a switching sequence composed of
these symbols, this alternating property ensures that its partial
sum satisfies (10), which implies that the resulting switching
sequence is a first-order high-pass switching sequence. Addi-
tionally, by randomly choosing between the two symbol types,
the resulting switching sequence cannot contain tones.

As an example, consider the following segment of the input
sequence to the switching block

where the segment starts with the value “1” and ends with the
value “2”. The parity sequence for this input is

The parity sequence dictates the magnitude of the
switching sequence ; therefore, the zeros in the parity
sequence correspond to zeros in the switching sequence. Given
this parity sequence, the symbols “ ” and “ ”
are used to construct the switching sequence

The choice of the symbol “ ” over “ ”
and “ ” over “ ” is arbitrary as any combination
of these symbols ensure that . In this example, the
resulting partial sum sequence is

Fig. 7 displays an example of sequencing logic that generates
these symbols in the switching sequence. This sequencing logic
contains two D flip-flops with enables and a 2:1 multiplexer.
Additionally, a pseudorandom sequence is used to select
between the two symbol types and is generated by logic that is
not shown in the figure.

Each symbol type from (11) must be further decomposed into
two “halves” to describe how the sequencing logic in Fig. 7
generates the desired switching sequence. The first half of the
symbol—i.e., the first “ ”—is called theheadof the
symbol, and the second half is called thetail. The four states of
the D flip-flops correspond to the two symbol types in
and the two segments, head and tail, of the symbol. The bit
in the leftmost flip-flop represents the value of . Since

when is an element of a symbol’s head,
and when is an element of a symbol’s tail,
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Fig. 7. The first-order low-pass sequencing logic with dither.

the bit in the leftmost flip-flop tracks whether is an ele-
ment of the head or the tail of a symbol. The rightmost flip-flop
contains the sequence that dictates the symbol types.

The symbol types are chosen randomly according to the
pseudorandom sequence so that there are no tones in the
switching sequence. This pseudorandom sequence is called the
dither sequence, and a switching block that uses a dither se-
quence to select its symbol types is called aditheredswitching
block. Ideally, the dither sequence is a sequence of bits that are
uniformly distributed and independent. In this implementation,
each switching block in a given layer shares the same dither
sequence.

Unditheredswitching blocks may also be utilized to reduce
hardware complexity and potentially decrease signal-band
DAC noise power. In an undithered switching block, the same
symbol type is used throughout the switching sequence, and
the sequencing logic can be reduced to a single D flip-flop with
enable. The resulting switching sequence can contain tones that
lower the noise floor of its PSD relative to the dithered case.
This reduced noise floor can give rise to less signal-band DAC
noise power. However, the resulting spurious tones in the DAC
noise can be prohibitive for a given application. To optimize
this tradeoff, some combination of dithered and undithered
switching blocks may be employed.

Fig. 8 displays the PSDs of the DAC noise and quantization
noise from behavioral simulations of the 5-bit modulator
that was introduced in Section II. The units of the PSDs are dB
relative to , where is the step size of the ADC. The ca-
pacitor errors in the DAC banks were modeled as independent
Gaussian random variables with standard deviations of 1% of
their nominal value. This isnot equivalent to “1% matching”
which implies that adjacent capacitors in a given IC are matched
within 1%. The input to the modulator was a 1 dB (rel-
ative to full-scale), 1 kHz sinusoid. To illus-
trate the effects of dither, a dither sequence was applied to se-
lected switching blocks in the simulated modulator. The
noise PSDs in Fig. 8 illustrate how the dither sequences either
eliminate or reduce spurious tones in the DAC noise depending
on which switching blocks are dithered.

The total hardware required for the sequencing logic in a
-level digital encoder depends on how many switching

blocks are dithered. When all switching blocks are dithered,
D flip-flops with enables, 2:1 multiplexers,

and pseudorandom sequences are required. When none of the
switching blocks are dithered, D flip-flops with enables
are required. For the implementation of the modulator in
[43], the 2:1 multiplexer in the sequencing logic is realized by

threeNAND gates, and the pseudorandom sequences are con-
structed using a pseudorandom number generator with 28 D
flip-flops and 7XOR gates. The total hardware required for the
sequencing logic (not including the pseudorandom number gen-
erator) in the digital encoder presented in [43] is 62 D flip-flops
and 93NAND gates.

C. Second-Order Low-Pass Sequencing Logic

The first-order low-pass sequencing logic generates a
first-order high-pass switching sequence regardless of the
values in the switching block’s input sequence. However, the
restrictions on given by (6) prevent an analogous claim
for the second-order low-pass sequencing logic. For to
be a second-order high-pass switching sequence, the switching
block attempts to bound the magnitude of itsdouble sum
sequence by a constant for all

Because the parity of dictates when is zero, the
sequence can be made arbitrarily large by applying the
appropriate . For example, suppose , and

for all . Given , then
and for all . However,

if is odd with some regularity (as is the case when the
DAC is used in a modulator), a switching sequence can be
constructed whose double sum is a bounded sequence, thereby
giving rise to second-order high-pass shaped DAC noise.

One method for creating such a switching sequence is to again
use symbols of the form in (11), but with the symbol type chosen
to minimize the magnitude of the double sum sequence, .
In this case, the magnitude of is bounded by one, so the
switching sequence is at least a first-order high-pass switching
sequence. At any time within a symbol’s head,
, and it follows that

(12)

Thus, increments or decrements by one at each sample
time within a symbol’s head. However, at any timewithin a
symbol’s tail, and . It fol-
lows that the symbol’s type and the length of its head determine
the values in : if a symbol starts at time and its head’s
length is samples, it can be shown using induction that

(13)

where the sign of is determined by the symbol type. To min-
imize , the sign of in the above expression
should be the opposite of the sign of .

To construct such a switching sequence, each switching block
ideally calculates with which it selects between the two
symbol types. However, when implemented with finite register
sizes, the switching block can only estimate . This esti-
mate, which is denoted , has a maximum and
minimum which are determined by the number of
states in a finite-state machine. Therefore, the estimate
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(a) (b)

(c)

Fig. 8. DAC noise and quantization noise from a simulation of a 5-bit��modulator with the first-order low-pass sequencing logic. (a) Dither in all of switching
blocks. (b) Dither in none of the switching blocks. (c) Dither in the switching blocks in layers 3, 4, and 5.

equals only as long as does not exceed the esti-
mate’s range (i.e., ). The switching
block uses the sign of to determine the symbol types.
To approximate , the sequence saturateswhen it
reaches or

if
if
otherwise

(14)
The effect of saturation in the above equation can be repre-

sented as an accumulated additive error

(15)

where is called thesaturation error. The behavior of the
saturation error determines whether the switching sequence is a
second-order high-pass switching sequence. Since is con-
strained to the set , it follows that is also con-
strained to this set. Let . For to
be nonzero, there must be a run of at leastzeros in the parity
sequence . Thus, must be even for consecutive
samples to cause any saturation error. If the switching block’s

input is odd at least once within every-length segment, the
saturation error is always zero. From (15), it follows that

The sequence is the partial sum of ; thus, it follows
that

(16)

Because is a bounded sequence, is a bounded
sequence if and only if the partial sum of is a bounded
sequence. Therefore, is a second-order high-pass
switching sequence if and only if the partial sum of is a
bounded sequence.

The second-order low-pass sequencing logic is shown in
Fig. 9. The 3-state accumulator produces and the

-state accumulator produces . Therefore, the sign
of the value in the -state accumulator is used to choose
the symbol types. However, when the-state accumulator’s
value and hence is zero, the dither sequence is



WELZ et al.: SIMPLIFIED LOGIC FOR FIRST-ORDER AND SECOND-ORDER D/A CONVERTERS 1021

Fig. 9. The second-order, low-pass sequencing logic with dither.

used to choose the symbol type randomly as a means of
reducing the spurious tones in . The 3-state accumulator
tracks the intrasymbol information for the switching sequence:

when is an element of the symbol’s
head, and when is an element of the
symbol’s tail. When is in the head of a symbol, the sign
of the 3-state accumulator’s value is the sign of the tail’s first
element.
The following is a more detailed description of each element
in Fig. 9:

1) 3-State Accumulator:A state machine that implements
an accumulator restricted to the following three states:

.
• and control the state transitions of the

3-state accumulator as follows:

if
if
otherwise

(17)

where is the accumulator’s state at time.
The feedback prevents from incrementing or
decrementing beyond its three states.

• is the magnitude of the accumu-
lator.

• represents the sign of

if
if

don't care if
(18)

2) -State Accumulator:A state machine that implements
a saturating accumulator restricted to theintegers in
the set .

• and control the state transitions of the
-state logic as follows:

if
if
otherwise

(19)

where is the accumulator’s state at time
, and

;
• “ ” is high when and low

when ;
• represents the sign of and is analogous

to in the 3-state accumulator.
3) Decision Logic: Combinational logic that generates

and its complement, , as follows:

if
if
otherwise

(20)

where is a pseudorandom sequence that approxi-
mates a sequence of bits that are uniformly distributed and
independent.

Fig. 10 displays DAC noise PSDs from behavioral sim-
ulations of the 5-bit modulator presented in Section II
with the second-order low-pass sequencing logic. Except
for the sequencing logic, all other characteristics of these
simulations were the same as those for the first-order low-pass
case described previously. Various-state accumulators were
implemented with counters of different sizes. For smaller
values of , the saturation error contributes more power to
the DAC noise. In the limit when “no counter” is used (i.e.,
when and for all ), the sequencing logic
reduces to the first-order low-pass sequencing logic. When the

-state accumulator is implemented with a 4-bit counter, the
power of the signal-band DAC noise decreases relative to the
“no counter” noise, but the saturation error prevents the DAC
noise from being second-order high-pass shaped. However,
with the -state accumulator realized by an 8-bit counter, the
DAC noise in Fig. 10 has the spectral shape of a second-order
high-pass sequence.

The additional hardware required to implement the
second-order sequencing logic relative to the first-order
sequencing logic includes the decision logic, which can be
implemented by two 2:1 multiplexers and an inverter, and the

-state accumulator. If and the -state accumulator
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Fig. 10. DAC noise from a simulation of an analog�� modulator with the
second-order, low-pass sequencing logic with dither and varying counter sizes
for theM -state logic.

is implemented with a -bit up/down counter, then is
the MSB of the counter and “ ” can be realized by
an OR gate with a fan-in of bits. The second-order
sequencing logic for the implementation of this switching
block in [44] uses a 4-bit counter and requires 25 total gates
and flip-flops.

IV. SPLITTING NETWORK AND PARITY LOGIC

In an ADC modulator as in Fig. 1, the delay of the feed-
back DAC must be small enough so that its output is available
well before the next modulator input is clocked in. There-
fore, the delay introduced by the switching blocks can limit
the maximum sample rate of the ADC modulator. The se-
quencing logic blocks presented in Section III do not contribute
to the switching block’s propagation delay because their out-
puts can be set before their next input is available. However, the
splitting network and parity logic do cause propagation delay.

If the input to the switching block were a binary encoded
number, the splitting network could be implemented with bi-
nary adders as shown in Fig. 5, and the parity logic would re-
quire no hardware as the input’s parity bit would be its LSB.
However, the propagation delay introduced by the adders could
be significant. In this section, splitting networks are presented
that avoid using conventional adders by employing alternative
coding schemes for the switching blocks’ input and output se-
quences. Without conventional adders, these splitting networks
tend to introduce less propagation delay. The two splitting net-
works in this section constitute the medium-speed and high-
speed switching blocks that offer a tradeoff between complexity
and propagation delay. Additionally, efficient implementations
of the parity logic blocks are presented for both switching block
types.

A. Medium-Speed Switching Block

Fig. 11 displays the medium-speed switching block. The
parity logic consists of anXOR gate and the splitting network
consists of two 2:1 multiplexers. In this section, the sequence

“ ” represents both the input of and its numerical
value; the appropriate representation can be determined by its
context. The switching block employs “extra-LSB encoding” of
its input and output sequences. Motivated by [39] and detailed
in [42], the extra-LSB code of consists of bits
that are denoted , each of which take
on a value of one or zero. The numerical value of is
interpreted as

(21)

Thus, the extra-LSB code contains two LSBs, and

, both with unity weighting. A conventional unsigned
binary encoded number can be converted to an extra-LSB
encoded number by appending the 0th bit and setting it low.

With this coding technique, the arithmetic performed by the
splitting network only modifies the two LSBs of . As de-
scribed in Section II, the switching sequence is nonzero
only when is odd. It follows from (22) that whenever

is odd, one of its LSBs is one and the other is zero. Thus,
the splitting network adds to when only one of its
LSBs is high, which implies that the carry bit can never prop-
agate beyond the two LSBs. When is odd, the splitting
network adds one to by setting both of its LSBs high, or
subtracts one from by setting both of its LSBs low. Since
the sequences and are always
even valued, both LSBs are equal in each of these sequences.
The splitting network performs the divide-by-two operation by
right shifting the MSBs of and using one of the
LSBs of as the second LSB of each output.

The two LSBs of determine its parity. The value of
is odd only when one of its LSBs is one and the other

is zero; otherwise, it is even. Therefore, the parity logic imple-
ments

(22)

where represents theXOR operation.
The hardware in each switching block is independent of its

location in the digital encoder; therefore, the -level dig-
ital encoder requires 2:1 multiplexers for its splitting
networks and XOR gates for its parity logic. The effi-
ciency of this implementation increases as the number of bits
are increased because the complexity of each switching block
does not depend on the bit width—i.e., number of bits—of its
input. The medium-speed switching block is used in the 33-level
digital encoder presented in [43] wherein the two multiplexers
of each splitting network are realized by fiveNAND gates. The
splitting networks and parity logic blocks for this implementa-
tion require a total of 186 logic gates. For the shown
in Fig. 1, additional hardware is required to convert the ther-
mometer coded output of the flash ADC to an extra-LSB code.

The delay performance for the digital encoder is determined
by the digital encoder’scritical path, which is defined as the
longest path that an input bit must traverse in a given clock pe-
riod to set an output bit. Within the medium-speed switching
block, the longest path from its input to its outputs consists of
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Fig. 11. The medium-speed switching block.

Fig. 12. The splitting network for a high-speed switching block and the CMOS implementation of a transmission gate.

an XOR gate and a 2:1 multiplexer. Therefore, the critical path
of the -level digital encoder consists of XOR gates
and 2:1 multiplexers. HSPICE 0.5-m CMOS simulations of
the 33-level digital encoder presented in [43] showed that this
digital encoder has a delay of approximately 5.7 ns. This does
not include the propagation delay of the thermometer-to-binary
conversion performed in the ’s digital common-mode
rejection flash ADC.

B. The High-Speed Switching Block

Fig. 12 displays an example high-speed switching block
whose splitting network consists entirely of switches imple-
mented by CMOS transmission gates. In this architecture, the
parity logic does not physically reside within the switching
block. The parity sequences are generated by anXOR tree as
shown in Fig. 13. The high-speed switching block employs
thermometer encoding of its input and output sequences. The
sequence is thermometer encoded if it has bits

that are assigned as follows:

if
else

(23)

Thus, with thermometer encoding

(24)

With thermometer encoding, the splitting network performs
the desired arithmetic by routing the odd indexed bits of
to one output and the even indexed bits of to the other
output, or vice versa, depending upon . It can be shown
that the numerical values of the sequences that comprise the
even indexed bits and odd indexed bits of are

(25)

and

(26)

respectively. Because is limited to the set , it
follows that

if

if
(27)
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Fig. 13. The parity logic for the high-speed switching block.

and

if

if
(28)

Therefore, by routing the input’s even and odd indexed bits to
separate outputs based on , the splitting network real-
izes the arithmetic in (27) and (28). Moreover, by preserving
the order of these bits, the splitting network ensures its outputs
are thermometer encoded.

Since the splitting network does not rely on to route
the bits of , the current sample of can be deter-
mined after the outputs of the digital encoder are set. The parity
logic block in this section exploits this flexibility to minimize its
hardware. The number of gates required to directly determine
the parity of a thermometer encoded number is proportional to
its bit width. However, using theXOR tree as shown in Fig. 13,
each parity logic block accounts for only oneXOR gate.

TheXOR tree is a consequence of the functional relationship
between the outputs of a switching block and its input. From (4),
the values of the output sequences of a switching block must
add to the value of the input. Thus, the parity of can be
determined by the parities of and

(29)

The outputs of each switching block in layer one are 1-bit se-
quences. This implies that . By recursively im-
plementing (29), theXOR tree generates the parity bits for each
switching block.

The hardware counts in the medium-speed and high-speed
switching blocks differ only in their splitting networks. With the
high-speed switching block, the number of transmission gates in
the splitting network depends on the bit width of the switching
block’s input. However, the number of transmission gates per
layer is independent of the layer number: each bit of a switching
block’s input is processed by two transmission gates—one on
and one off—and the total number of input bits is constant for
each layer. Thus, with the high-speed switching block, the

-level digital encoder requires transmission gates for
its splitting networks and XOR gates for its parity logic. A
33-level implementation of this digital encoder for the
shown in Fig. 1 requires 320 transmission gates for its splitting
network and 31XOR gates for its parity logic. If the input to the
digital encoder were a binary encoded number, as in the case
of a , a binary-to-thermometer encoder would also be
required to implement this digital encoder.

The high-speed switching block tends to have less propa-
gation delay than the medium-speed switching block because
the parity logic in the high-speed switching block does not
contribute to its delay. As previously mentioned, the sequencing
logic does not require the current sample of to produce

. Therefore, can be calculated and used to set
the transmission gates before is clocked into the digital
encoder. Additionally, theXOR tree processes the output bits
of the digital encoder and does not contribute to the digital
encoder’s critical path. Therefore, the critical path of the

-level digital encoder, which is experienced by each of
its input bits, consists of preset transmission gates. HSPICE
0.5- m CMOS simulations of a 33-level digital encoder with
high-speed switching blocks showed that this digital encoder
has a delay of approximately 1.1 ns, which is approximately
a five-times improvement over a 33-level digital encoder with
medium-speed switching blocks. This delay does not include
the propagation delay of a binary-to-thermometer encoder
that would be required in a . An implementation that
uses the high-speed switching blocks for its minimal delay is
presented in [45].

V. HARDWARE COMPARISON FORVARIOUS

MISMATCH-SHAPING DACS

To compare the hardware complexity of the tree-structured
mismatch-shaping DAC encoders presented here to other im-
plementations, Tables I and II give estimated hardware require-
ments for mismatch-shaping DAC encoders appropriate for use
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TABLE I
ESTIMATED HARDWARE REQUIREMENTS FORUNDITHERED MISMATCH-SHAPING DAC ENCODERS FORUSEWITHIN A 5-bit��ADC

TABLE II
ESTIMATED HARDWARE REQUIREMENTS FORMISMATCH-SHAPING DAC ENCODERSWITH DITHER OR OTHER HARMONIC DISTORTION

COMPENSATION FORUSE WITHIN A ��ADC OF SPECIFIEDSIZE

in a . When possible, the DAC encoder hardware is es-
timated for an implementation in the 5-bit shown in
Fig. 1. In both tables, the abbreviations “INV,” “ MUX,” “ XOR,”
and “XNOR” stand for inverter, 2:1 multiplexer, exclusive-or, and
exclusive-nor, respectively. The abbreviation “T-gate” denotes
a two-transistor CMOS transmission gate, and the abbreviation
“T/B encoder” denotes a thermometer-to-binary encoder. A D
flip-flop, denoted “DFF,” is assumed to have true and comple-
mented outputs available; the D flip-flop with enable, shown in
Fig. 7, is implemented using a D flip-flop and a 2:1 multiplexer.

The mismatch-shaping DAC encoders shown in Table I
provide no hardware to eliminate or reduce spurious tones
and the hardware differences are not as pronounced. However,
when extra hardware is utilized to combat harmonic distortion,
Table II shows that both the Bidirectional DWA (BiDWA) and
tree-structured DAC encoders contain the least hardware. The
BiDWA DAC encoder requires minimal hardware because it
depends entirely on the randomness of its input to reduce tones
in its resulting DAC noise. Any dc input to a -level
BiDWA DAC, besides the trivial inputs of 0 and , causes
its DAC noise to be tonal. On the other hand, the dithered
tree-structured DAC has been mathematically proven to pro-
duce no tones in its DAC noise [46]. In the Butterfly Shuffler
architecture, it is assumed that the logic driving the swapper
cells is implemented as the sequencing logic for the tree-struc-
tured DAC and only one random bit is used for eachcolumnin
the swapper cell matrix. For the second-order tree-structured
DAC, the hardware difference becomes more pronounced as
the 5-bit implementation presented in [44] requires only 988

gates while the 3-bit second-order architecture presented in
[15] requires 3500 gates.

VI. CONCLUSION

This paper has presented various implementations of
the tree-structured mismatch-shaping DAC. First-order and
second-order low-pass sequencing logic have been presented
that provide a tradeoff between DAC-noise power and hardware
complexity. High-speed and medium-speed implementations of
the splitting network and parity logic have been presented that
offer a tradeoff between the digital encoder’s propagation delay
and hardware complexity. By appropriately choosing between
medium-speed, high-speed, first-order dithered or nondithered,
or second-order implementations, the tree-structured DAC
can be optimized for hardware complexity, propagation delay,
signal-band DAC-noise power, and DAC-noise harmonic
distortion.
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