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A Low-Complexity Dynamic Element
Matching DAC for Direct Digital Synthesis
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Abstract—This paper presents and analyzes a new dynamic
element matching technique for low-harmonic distortion digital-
to-analog conversion. The benefit of this technique over the
prior art is a significantly reduced hardware complexity with
no reduction in performance. It is particularly appropriate for
applications such as direct digital synthesis (DDS) in wireless
communications systems, where low hardware complexity and
low harmonic distortion are essential.

Index Terms—DAC, data-converter, digital-to-analog, direct
digital synthesis, dynamic element matching, harmonic distortion,
mismatch shaping, noise-shaping.

I. INTRODUCTION

A S A LARGELY digital technique for generating high
spectral-purity sinusoidal analog signals, direct digital

synthesis (DDS) is increasingly used in wireless communi-
cations systems. The main limitation in most DDS systems is
imposed by the front-end digital-to-analog converter (DAC)
required to convert the digitally synthesized sinusoidal se-
quence into an analog waveform. In particular, nonideal circuit
behavior causes the DAC to introduceDAC noise. At least a
component of the DAC noise is a nonlinear function of the
input sequence, so harmonic distortion is introduced that places
an upper bound on the achievable spurious-free dynamic
range (SFDR) of the overall system. As shown in [1], DDS
applications typically require only moderate resolution (e.g.,
5–12 bits), provided that the harmonic distortion introduced by
the DAC is low. For example, an extremely low-complexity
digital portion of an 8-bit DDS system has demonstrated that it
is capable of achieving a minimum SFDR of 90 dB, provided
that the minimum SFDR of the DAC is 90 dB or greater.

Thus, a remaining problem is to develop moderate-
resolution DAC’s that achieve such low levels of harmonic
distortion. In the past,dynamic element matching(DEM)
techniques have been successfully applied to decorrelate the
DAC noise from the input signal in various DAC topologies.
A particularly promising topology involves the use of a
bank of 1-bit DAC’s, the outputs of which together yield
a single multibit DAC [2]–[4]. For most digital input values,
there are many possible input codes to the bank of 1-bit
DAC’s that nominally yield the desired analog output value.
Thus, the DAC noise arising from errors introduced by the
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1-bit DAC’s can be “scrambled” by randomly selecting
one of the appropriate codes for each digital input value.
Although DAC’s based on this approach have been shown
experimentally [2], [3] and through quantitative analysis [4]
to achieve excellent SFDR’s, the presented DAC’s suffer from
excessive digital hardware complexity. For example, an 8-bit
DAC based on the approach used in [2] requires 1024 binary
switches and 1024 independent random control bits.

This paper presents a new DEM technique suitable for
DAC’s applicable to DDS. The DEM technique scrambles the
DAC noise such that conversion performance similar to that
of the prior art is achieved, but with much lower hardware
complexity. The proposed DEM technique allows for a varying
degree of scrambling, providing a tradeoff between harmonic
distortion suppression and hardware complexity. Two versions
of the architecture are considered separately: a version with the
full degree of scrambling, referred to asfull randomization
DEM, and a version with a reduced degree of scrambling,
referred to aspartial randomizationDEM. With full ran-
domization DEM, the DAC noise is white and the SFDR is
optimal (infinite, in principle). Theoretical results quantifying
the performance of full randomization DEM are presented and
closely supported by simulation results. Simulations indicate
that very good SFDR performance is achieved with partial
randomization DEM, and while both DEM versions have much
lower hardware complexity than the prior art, the greatest
hardware-efficiency is offered by partial randomization DEM.
To illustrate these results, example 8-bit DAC’s with 0.5%
static-analog mismatch errors are considered in detail; 502
binary switches and 8 independent random bits are required to
implement full randomization DEM, whereas merely 46 binary
switches and 3 independent random bits are required with par-
tial randomization DEM to provide more than 97 dB of SFDR.

The remainder of the paper is divided into sections as fol-
lows. Section II reviews the architectures of the low-harmonic
distortion DAC’s presented in [2]–[4] and presents the two
versions of the proposed architecture. Section III presents
performance details for full randomization DEM. Section IV
provides an IC-fabrication yield estimate for full randomiza-
tion DEM, based on the results of the theoretical analysis.
In Section V, it is demonstrated, by means of simulation
results, how partial randomization DEM can significantly sup-
press harmonic distortion while offering additional hardware
reductions. A quantitative discussion of the hardware require-
ments of full randomization DEM and partial randomization
DEM is given in Section VI. The theoretical results stated in
Section III are derived in detail in the Appendixes.

1057–7130/98$10.00 1998 IEEE
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Fig. 1. The high-level topology of the low-harmonic distortion DAC’s presented in [2] and [4].

II. L OW-HARMONIC DISTORTION DAC APPROACHES

A. Background and Prior Art

The high-level topology shared by the DAC’s presented in
[2] and [4] is shown in Fig. 1. The digital input, is a
sequence of unsigned-bit binary numbers less than i.e,

The DAC consists of adigital encoder, 1-bit DAC’s referred
to asunit DAC-elements, and an analog output summing node.
At the high level of Fig. 1, the digital encoder maps each input
sample to output bits, such that

(1)

The unit DAC-elements operate according to:

if
if

(2)

where denotes the analog output of theth unit DAC-
element, and and are errors in the analog output
levels arising from inevitable nonidealities in the IC fabrication
process. Throughout the paper, these errors are assumed to be
time-invariant, but otherwise arbitrary [2], and are referred to
as static DAC-element errors. The th unit DAC-element is
said to beselectedwhen The DAC output is
formed by the analog output summing node such that

(3)

It follows from (1)–(3) that in the absence of
static DAC-element errors. However, as shown in [5], with
nonzero static DAC-element errors, the DAC output has the
form

(4)

where is a constant gain, is a DC offset, and
is a conversion-error term referred to asDAC noise. The
purpose of the digital encoder is to scramble the DAC noise

by randomly selecting the unit DAC-elements such that
is white and uncorrelated with To accomplish this
objective, the digital encoders of the prior art employ a
thermometer-encoderand a scrambler. During each clock
period, the thermometer-encoder deterministically sets
of its output bits to “1” and the remaining of
its output bits to “0.” The scrambler randomly permutes the
resulting bits, thereby selecting of the unit DAC-
elements at random. As explained in [2], the effect is to
randomly modulate the DAC noise without modulating the
signal component of the DAC output. The random modulation
effectively converts the harmonic distortion, i.e., spurious
tones, into white noise.

The scrambler implements the random permutation using
a network ofbinary switches, each controlled by arandom
control bit. The binary switch is a simple 2-input 2-output
device that, depending upon the value of the random control
bit, either passes the inputs directly through to the outputs or
connects the inputs to the outputs in reverse order. The random
control bit of each binary switch is, ideally, a white random
bit-sequence, statistically independent of the random control
bits applied to the other binary switches. Thus, implementing
the digital encoders presented in [2] and [4] requires as many
random control bits as binary switches. The digital encoder in
[4] is capable of randomly connecting its-bit inputs to its -
bit outputs in any of the possible combinations. The digital
encoder in [2] implements only a subset of all combinations,
being capable of randomly connecting its inputs to its outputs
in possible combinations. As will be seen, the digital
encoder proposed in this paper implements significantly fewer
random input-output mappings than the prior art, yet provides
white DAC noise, nonetheless.

B. Proposed DAC Topology

The proposed dynamic element matching DAC architecture
is shown in Fig. 2. To simplify the figure, a 3-bit example is
shown. The DAC is of the general topology introduced in [5].
The tree-structured digital encoder consists of three layers of
switching blocks, each labeled where denotes the layer
number and denotes the position of the switching block in
the layer.
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Fig. 2. A 3-bit version of the proposed DAC architecture.

(a)

(b)

Fig. 3. Details of (a) the switching blockSk; r; and (b) the binary switch.

Fig. 3(a) shows the functional details of the switching block
The switching block has one -bit input, two -bit

outputs, and a random control bit input The random
control bit is common toall the switching blocks within the

th layer (for clarity, the random control bits are not shown
in Fig. 2). The switching block operates such that when

is high, the most significant bit (MSB) of the input is
mapped to all bits of the top output, and the remainingbits

of the input are mapped directly to thebits of the bottom
output. When is low, the situation is as above, except
that the mappings are interchanged. Thus, it follows that
can be implemented usingbinary switches all controlled by

Fig. 3(b) shows the binary switch controlled by
The process of randomly mapping the input to the outputs is
referred to asrandom switching. At the outermost layer, i.e.,

the DAC input is assigned to the input bits
– and a zero is assigned to the input bit as indicated

in Fig. 2. It is shown in Appendix A that the digital encoder
obtained by interconnecting the switching blocks of Fig. 3(a)
as shown in Fig. 2 indeed satisfies (1).

Motivated by the results of the simulated performance
presented in Sections III and V, two versions of the proposed
architecture are now defined.full randomizationDEM refers
to a DAC with random switching inall layers, i.e., layers 1
through partial randomizationDEM refers to a DAC with
random switching in a limited number of layers, i.e., in layers

through where As an example of partial
randomization DEM, consider the 8-bit DAC of Fig. 4, where
random switching is performed in layers 6–8. Layers 1–5 have
no effect on the scrambling of the DAC noise, so it follows
that these layers can be eliminated and substituted by eight
nominally identicalDAC banks, each with a 6-bit input. The
details of the DAC bank are shown in Fig. 5. The LSB of
the input controls a unit DAC-element, whereas the remaining
five bits control a 5-bit conventional DAC.

III. PERFORMANCEDETAILS FOR FULL RANDOMIZATION DEM

A. Simulation Results

The simulated performance of an example 8-bit DAC with
the proposed architecture is presented in Fig. 6. Each graph in
the figure shows the simulated power spectral density (PSD)
relative to of a particular signal of the DAC, driven
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Fig. 4. An 8-bit DAC with partial randomization DEM.

by a dithered and DC-offset sinusoid. Specifically, was
formed by adding dither to the sequence
where and and
then quantizing the result to 8 bits. The dither added to
the sinusoidal input, was a white sequence with a triangular
probability density function supported on so the
quantization error was white noise [6].

Fig. 6(a) corresponds to of an ideal DAC (i.e., a DAC
with no static DAC-element errors, so Fig. 6(b)
corresponds to with no random switching (the digital
encoder thus being equivalent to a thermometer-encoder),
Fig. 6(c) corresponds to with full randomization DEM,
and Fig. 6(d) corresponds to the signal with full
randomization DEM. The static DAC-element errors were
chosen randomly from a normal distribution with a standard
deviation of 0.5%. This represents a conservative estimate
relative to the static DAC-element errors expected in practice,
but serves to demonstrate the robustness of the proposed DEM
technique [2], [7].

As is evident from the numerous spurs distributed across
the spectrum in Fig. 6(b), rather severe harmonic distortion
results from the static DAC-element errors in the absence
of random switching. The maximum-amplitude spur occurs
at a frequency of approximately 1.5rad, and has power

69.86 dB below the power of the desired sinusoidal signal
of frequency Numerous additional simulations performed
by the authors show that the DAC exhibits similar behavior
when driven by inputs of different frequencies. It follows
that merely 69.86 dB of SFDR is provided. The data in
Fig. 6(c) indicates that harmonic distortion is not visible with
full randomization DEM. As demonstrated by the simulation
results and confirmed in the following section, the DAC easily
provides 90 dB of SFDR, and is thus applicable to the DDS
system mentioned in Section I.

Additional details of the simulation results are as follows.
The PSD’s were each estimated by averaging 16 length-

Fig. 5. Details of the DAC bank.

periodograms [8]. The frequency scales were normalized such
that corresponds to half the clock rate of the DAC.

B. Performance Equations

A detailed theoretical performance analysis of full ran-
domization DEM is given in Appendix B and Appendix C.
However, for the purpose of comparing simulation results and
theory, the main results of the analysis will be stated in the
following.

For a -bit version of the proposed DAC architecture, let
be a deterministic input sequence and let denote

the th bit of In accordance with the usual
definitions, let thetime-average meansof and

be defined as

and
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(a) (b)

(c) (d)

Fig. 6. Simulated PSD’s relative tox2
max

of an example 8-bit DAC of (a) the ideal DAC outputy[n]; (b) the DAC outputy[n] with no random switching,
(c) the outputy[n] with full randomization DEM, and (d) the signaly[n] � x[n] with full randomization DEM.

respectively, and let thetime-average autocorrelationof
be defined as

The time-average autocorrelation of is defined analo-
gously with replaced by in the above definition. The two
main theoretical results of this paper can now be stated as
follows:

Result 1: The output of the proposed DAC with full ran-
domization DEM can be written as

(5)

where is a zero-mean, white random process of the form

(6)

and each is a zero-mean, white random process.
Appendix A provides exact formulas for the constantsand

in (5), and expressions for in (6) are developed in
Appendix B. For now, it suffices to know that the random
processes depend only upon the static DAC-element
errors and are zero-mean, white, and uncorrelated with
Notice that the above results hold for any underlying statistical
distribution or correlation properties of the static DAC-element
errors.

Result 2: If and exist, then

(7)

and

(8)

with probability 1, where

(9)

and

(10)
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Appendix B provides formulas for the constant coefficients
and in (10). For now, it suffices to know that these

coefficients depend only upon the static DAC-element errors.
As before, this result holds for any underlying statistical
distribution or correlation properties of the static DAC-element
errors.

C. Comparison of Simulation Results and Theory

To summarize, (8) states that consists of a scaled
version of a DC-offset, and white DAC noise. This
general conclusion is similar to the corresponding result in [4],
and is clearly supported by the simulation results of Fig. 6.

It follows from (5) that a nonunity value of causes a term
corresponding to to occur in the signal
This scaled version of occurring in therefore
has power

dB (11)

relative to the power of Similarly, it follows from (5)
that the DC component occurring in has power

dB (12)

relative to To compare these predictions with the
simulation results, the randomly chosen static DAC-element
errors of the example 8-bit DAC were summed according to
the formulas for and given in Appendix A, and resulted in

and respectively.
Evaluating (11) and (12) with these values ofand results
in dB and dB. Measuring
the offsets corresponding to and using the data of
Fig. 6(a) and (d) yields 63.82 and 85.96 dB, respectively,
in agreement with the theory. Furthermore, evaluating (10)
for the simulated values of static DAC-element errors yields
a power of the DAC noise of dB relative to

Numerically integrating the DAC noise component of
the PSD of Fig. 6(d) results in 75.44 dB, in agreement with
the theory. As an additional comment pertaining to the details
of Fig. 6, it is evident from a comparison of Fig. 6(c) and
(d) that is negligible relative to the power of the white
quantization error and dither term of

D. An Interpretation of the Performance Equations

The most significant performance equations in the above
are (8) and (10), which state that the DAC noise is white and
give a formula for the power of the DAC noise, respectively.
As is evident from (10), is a linear combination of the
time-average means of the individual bits of plus a linear
combination of the time-average means of the products of
pairs of bits of If is the quantized version of
a sinusoid it follows that depends on both
amplitude and frequency This is different from the
architecture presented in [4] for which only depends on
signal amplitude. To demonstrate typical behavior of

Fig. 7(a)–(d) shows plots of in decibels relative to for
four nominally identical 8-bit versions of the proposed DAC.
The DAC’s differed only in the static DAC-element errors,
which were randomly chosen from a normal distribution with
a standard deviation of 0.5%. In each case, the DAC was
driven by a sinusoidal input and the plot showscomputed
using (10) as a function of input amplitude and frequency.
In general, only minor dependency on frequency is observed,
whereas dependency on amplitude is stronger. Notice that there
is no clear trend in as a function of amplitude, which is
in contrast to the behavior of in [4] wherein decreases
with increasing amplitude.

Fig. 8(a)–(d) shows plots of in dB relative to
for the same four example 8-bit DAC’s as in Fig. 7 when
driven by the sum of two DC-offset sinusoids, i.e.,
being the quantized version of
where and In
each plot, the amplitude of each sinusoidal component was
fixed at and computed using (10) is
shown as a function of and Again, exhibits little
dependency on input frequency and attains average values of

74.82, 77.84, 73.02, and 74.33 dB, respectively. Thus,
the random variation of the static DAC-element errors of the
example DAC’s causes a spread in the average value of
of 4.82 dB.

IV. IC FABRICATION YIELD ESTIMATION

With knowledge of the statistical distribution of the static
DAC-element errors, an IC-fabrication yield estimate of the
proposed DAC architecture with full randomization DEM can
be performed using (10). IC-fabrication yield estimation data
provides a means by which to estimate the percentage of
fabricated DAC’s that will result in a value of less than any
value of interest. The IC-fabrication yield estimation procedure
used in the following was first introduced in [4] and is based
upon the idea of computing a large number of samples of
for a given level of static DAC-element errors, thereby gen-
erating data that closely resemble the corresponding statistical
distribution of

For example, Fig. 9(a)–(d) shows IC-fabrication yield es-
timation data corresponding to 4-, 6-, 8-, and 10-bit DAC’s,
respectively. In each case, from top to bottom, the curves show
the largest of the smallest 95, 65, 35, and 5% ofvalues
in decibels relative to respectively, when driving the
DAC by a maximum-amplitude DC-offset sinusoidal input of
frequency Each figure shows versus increasing
standard deviation of the static DAC-element errors, and each
yield estimation is based upon 5000 calculated values. The
static DAC-element errors were chosen as samples of indepen-
dent, normally distributed random variables with a standard
deviation ranging from 0.05 to 2%. This particular choice
of static DAC-element errors was made for demonstration
purposes only; any other distribution could have been used
without changing the yield estimation procedure.

For example, with a standard deviation of 0.5%, the data of
Fig. 9(c) predicts that 95% of all 8-bit DAC’s will satisfy

dB relative to and that 5% will satisfy
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(a) (b)

(c) (d)

Fig. 7. Plots of�2 in decibels relative tox2
max

for four nominally identical 8-bit versions of the proposed DAC. The DAC’s in (a)–(d) differed only in the
static DAC-element errors, which were randomly chosen from a normal distribution with a standard deviation of 0.5%. In each case, the DAC was driven
by a sinusoidal input and the plot shows�2 computed using (10) as a function of input amplitude and frequency.

dB relative to Thus, 90% of all 8-bit DAC’s
fabricated satisfy

dB dB

relative to This conclusion is supported by the
data of the simulated example 8-bit DAC of Fig. 6, for
which dB relative to and by the
four example 8-bit DAC’s of Fig. 7, for which equals

and dB, respectively, all
relative to

As mentioned previously, when driving the DAC by a
sinusoidal input, depends on both amplitude and frequency.
With a strong dependency, this property would limit the
usefulness of the IC-fabrication yield estimation technique in
that the resulting data only would be applicable to DAC’s
driven by a particular sinusoid. However, as was demonstrated
in Fig. 7, is largely independent of sinusoidal frequency,
and repeating the yield estimate calculations with maximum-
amplitude sinusoidal inputs of several different frequencies
gives results very close to the data presented in Fig. 9. As
was also demonstrated with the data in Fig. 7, no clear trend

in as a function of sinusoid amplitude is observed, and
repeating the yield estimate calculations with sinusoids of
different amplitudes gives results very close to the data in
Fig. 9. Consequently, when computing a large number of
values of the spread of caused by varying amplitude is
largely absorbed in the spread of caused by varying random
static DAC-element errors. It follows that Fig. 9 represents IC-
fabrication yield estimation data valid for sinusoidal inputs of
any amplitude and frequency.

V. PERFORMANCE DETAILS FOR

PARTIAL RANDOMIZATION DEM

In practice, a number of factors other than the static DAC-
element errors limit the SFDR achievable by the DAC. Non-
ideal circuit behavior such as clock-skew, clock coupling, and
finite slew-rates inevitably contributes to harmonic distortion
of the DAC output. Thus, the total amount of harmonic
distortion of the DAC can be viewed as the effects of two
components, namely a component caused by the static DAC-
element errors and a component caused by all other nonideal
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(a) (b)

(c) (d)

Fig. 8. Plots of�2 in decibels relative tox2
max

for the same four example 8-bit DAC’s as in Fig. 7 when driven by the sum of two sinusoids. In each plot,
the amplitude of each sinusoidal component was fixed, and�

2 computed using (10) is shown as a function of the frequencies of the sinusoidal components.

circuit behavior. To the extent that the latter component is
below—or can be attenuated to—the maximum allowable level
of harmonic distortion for a given DAC application, a better
“engineering solution” to mitigate the effects of the static
DAC-element errors might be to merely attenuate the resulting
harmonic distortion to the maximum allowable level, thereby
possibly reducing the hardware requirement of the DEM
technique. The simulation results presented in the following
indicate that partial randomization DEM indeed offers such
an option.

A. Simulation Results

Simulation results for partial randomization DEM are shown
in Fig. 10. In particular, Fig. 10(a)–(c) correspond to the signal

with random switching in layer 8, layers 7 and 8,
and layers 6–8, respectively. Fig. 10(d) corresponds to
with random switching in layers 6–8. In all cases, the DAC
input and static DAC-element errors were identical to those
used for the full randomization DEM example of Fig. 6.
The simulation results indicate that the harmonic distortion
is gradually attenuated as the number of layers with random

switching is increased. The maximum-amplitude spurs of
Fig. 10(a)–(c) have powers73.55, 89.47, and 97.49 dB,
respectively, relative to the power of the desired sinusoidal sig-
nal of frequency Several simulations using other sinusoid
frequencies and amplitudes similarly support these findings.
Consequently, the SFDR’s provided by the DAC are 73.55,
89.47, and 97.49 dB, respectively. The parameters used to
compute the PSD’s were identical to the parameters used to
compute the PSD’s of Fig. 6.

To summarize the simulation results of Fig. 10, partial ran-
domization DEM increasingly suppresses harmonic distortion
as the number of layers with random switching is increased,
and may suffice to provide the necessary dynamic range for
a given application. For example, three layers of random
switching would suffice to provide the desired minimum 90
dB of SFDR for an 8-bit DAC applicable to the DDS system
mentioned in Section I. As quantified in the next section, the
hardware complexity of the digital encoder is greatly reduced
with partial randomization DEM.

Additional research is needed to theoretically quantify the
performance of partial randomization DEM. Among the goals
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(a) (b)

(c) (d)

Fig. 9. IC-fabrication yield estimation data for (a) 4-, (b) 6-, (c) 8-, and (d) 10-bit versions of the proposed DAC. The static DAC-element errors werechosen
from a normal distribution with a standard deviation ranging from 0.05 to 2%. In each case, from top to bottom, the curves show the largest of the smallest
95, 65, 35, and 5% of�2 values in decibels relative tox2

max
; respectively, when driving the DAC by a sinusoidal input.

for such research would be a determination of a guaranteed
minimum SFDR given a specific degree of randomization.

VI. HARDWARE COMPLEXITY OF THE DIGITAL ENCODER

The hardware complexity of the digital encoder is a function
of both the required number of binary switches and the
required number of random control bits. As will be shown
in the following, the proposed architecture has much lower
hardware complexity than the prior art.

A. Full Randomization DEM

To determine the number of required binary switches, recall
that the switching block requires binary switches. From
this, it can be shown that the total number of binary switches
required by the digital encoder of a-bit DAC is It
can furthermore be shown that the number of required binary
switches of the digital encoders presented in [2] and [4] is

and respectively. The number of random
control bits required for the proposed digital encoder is simply

whereas the digital decoders in [2] and [4] require the same
number of random control bits as binary switches.

It follows that the number of required random control bits
has been reducedexponentiallyin compared to the prior
art, and that the number of required binary switches has
been reducedlinearly in As an example, an 8-bit DAC
with the digital encoder architecture presented in [2] requires
approximately twice as many binary switches as the proposed
architecture, whereas 128 times as many random control bits
are required.

A detailed comparison of the hardware complexity of
moderate-resolution DAC’s is shown in Fig. 11. It shows
the hardware complexity of the digital encoder presented in
[2] and the proposed architecture for bit-resolutions 6–12. The
table entries are given as pairs where is the number
of binary switches and is the number of random control
bits, respectively.

B. Partial Randomization DEM

As discussed previously, very low hardware complexity
is achievable with partial randomization DEM. To obtain a
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(a) (b)

(c) (d)

Fig. 10. Simulated PSD’s relative tox2
max

of an example 8-bit DAC with partial randomization DEM of (a)y[n]�x[n] with random switching in layer 8, (b)
y[n]�x[n] with random switching in layers 7 and 8, (c)y[n]�x[n] with random switching in layers 6–8, and (d)y[n] with random switching in layers 6–8.

Fig. 11. Digital hardware required to implement the digital encoders presented in [2] and of the proposed architecture versus the DAC bit-resolution. The
table entries are given as pairs(x=y); wherex is the number of binary switches andy is the number of random control bits.

precise count of the hardware requirement, suppose that the
digital encoder implements random switching in layers
through It can be shown that the number of required binary
switches is The required number of
random control bits is simply (i.e., the number of
layers with random switching).

As an example, it follows that the 8-bit DAC with random
switching in layers 6–8 requires binary
switches and merely three random control bits. This should
be compared to the requirement of 502 binary switches and

eight random control bits for full randomization DEM and the
requirement of 1024 binary switches and 1024 random control
bits for the digital encoder in [2]. To further illustrate the
reduction of hardware complexity when using partial random-
ization DEM, the hardware complexity of an 8-bit example
DAC versus the range of layers with random switching is
tabulated in Fig. 12.

Finally, it should be mentioned that the reduction in hard-
ware complexity obtained with the proposed digital encoder
architecture also yields a major simplification in very large
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Fig. 12. Hardware complexity versus the range of layers with random switching of an example 8-bit digital encoder. The table entries are given as pairs
(x=y); wherex is the number of binary switches andy is the number of random control bits.

Fig. 13. The signal processing equivalent of the switching blockSk; r:

scale integration (VLSI) layout; generating and routing 1024
random control bits is significantly more difficult than gener-
ating and routing 8 or fewer random control bits.

VII. CONCLUSION

A new hardware-efficient dynamic element matching DAC
architecture appropriate for DDS has been presented. The
proposed architecture is significantly more hardware efficient
than the prior art, yet provides similar performance with
respect to suppression of harmonic distortion.

For full randomization DEM, quantitative results giving
the power of the white conversion noise have been stated
and proven, and yield estimates have been presented for
selected bit-resolutions and VLSI process statistics. Computer
simulation results have been presented that fully support the
theoretical results for an example 8-bit DAC applicable to a
certain DDS system.

Simulation results show that harmonic distortion is greatly
suppressed with partial randomization DEM, which offers
considerable additional reduction in hardware complexity. It
has been shown that for an 8-bit DAC with partial random-
ization DEM, merely three layers of random switching suffice
to provide greater than 90 dB of SFDR, as desired for the
DDS application in question. Additional research is needed to
theoretically quantify the performance of partial randomization
DEM. Of particular interest would be the determination of
a guaranteed minimum SFDR given a specific degree of
randomization.

Nonideal circuit behavior such as clock-skew, clock-
coupling, and finite slew-rates inevitably contributes to
harmonic distortion of the DAC output. Such nonideal circuit
behavior is typically quite implementation dependent, and
research to quantify and mitigate its effects must be performed
on a case-by-case basis. Nevertheless, the results presented in
this paper are still applicable to such situations. In particular,
partial randomization DEM promises to offer the option of
reducing the hardware complexity of the DEM technique to a
minimum, while still attenuating harmonic distortion resulting

from static DAC-element errors below the level of inevitable
harmonic distortion.

APPENDIX A

The purpose of this appendix is to verify that the output
of the proposed DAC architecture with full randomization

DEM or partial randomization DEM is of the general form
stated in [5], which will be repeated shortly for convenience.
Then, in Appendix B, the general form of the DAC noise

given here is rewritten to the form stated in Result 1
of Section III, and an expression for the variance of is
derived.

Before stating the general form of the DAC output as
derived in [5], a few definitions are first presented. The DAC’s
considered in [5] have switching blocks that perform the signal
processing operations depicted in Fig. 13, and, as is shown
below, the switching blocks of the DAC architecture proposed
in this paper can also be viewed as shown in Fig. 13. The-
bit input of is denoted and the two -bit outputs
are denoted and respectively. The
th bit of is denoted The sequence is

generated within the switching block, and as can be verified
from the figure,

(13)

The results in [5] giving the general form of the DAC output
can now be stated as follows.

Claim A: The output of a -bit version of the proposed
DAC architecture with full randomization DEM or partial
randomization DEM is of the form

(14)

where

(15)

(16)
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and

(17)

In (17)

(18)

and is defined by (13). These results do not depend
upon any particular form or statistical property of the static
DAC-element errors.

Proof: As shown in [5], to prove the above claim for the
DAC with full randomization DEM, it suffices to verify

(19)

even, if is even
odd, if is odd

(20)

and

(21)

To accomplish this, a definition of the numerical value of
is needed.

Definition: The numerical value of the input and outputs of
the switching block proposed in this paper must be interpreted
according to

(22)

Thus, is the sum of a conventional-bit unsigned
binary number and an “extra LSB,”

First, to verify (19), recall that the input to the switching
block was defined in Section II according to

Inserting this in (22) yields (19).
Next, it will be shown that the switching blocks presented

in this paper perform signal processing according to Fig. 13
such that

if
if

(23)

where

(24)

and is the random control bit of theth layer. Then, (23)
and (24) will be used to verify (20) and (21).

Suppose It follows from Fig. 3, (13), and (22)
that

(25)

Collecting and rearranging terms using (22) yields
Similarly, it follows that when

This verifies (23) and (24).
To verify (20), notice that the term in (24) is

even because is a positive integer. Thus, if is even,
is even, and if is odd, is odd.

To verify (21), notice that if (22) implies
Thus, from (23) and (24)

Similarly, if (22) implies
and thus

which verifies Claim A for full randomization DEM.
The digital encoder with partial randomization DEM em-

ploying random switching in layers through is equivalent
to the digital encoder of full randomization DEM for which

Thus, it follows that Claim
A also holds for partial randomization DEM.

APPENDIX B

The purpose of this appendix is to verify that the DAC
noise has the form stated in Result 1 of Section III, and
to provide an expression for the variance of

Claim B1: For a -bit version of the DAC architecture with
full randomization DEM, the DAC noise is a zero-mean, white
random process of the form

(26)

where each is a zero-mean, white random process of
the form

(27)

In (27),

(28)

and

(29)

The above results do not depend upon any particular form or
statistical properties of the static DAC-element errors.

Proof: By virtue of Claims A and B, it is sufficient to
show that (17) is equivalent to (26), which will be accom-
plished by induction. First, notice that substituting (22) into
(23) and (24) with and using gives
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which, combined with (18), yields

(30)

To establish the induction basis, let Then, from (17),

(31)

and inserting (30) yields

This can be written as

(32)

where

and

so has the form of (26) for Since is a white
random process with possible values 0 and 1, it follows that

is a white random process with possible values 1 and 2.
But determines the value of to be either or

and thus is a white random process. It follows
from (32) that is a white random process. Furthermore,
(23) and (31) show that is zero-mean, and it follows from
(32) that is zero-mean.

Next, suppose the claim holds for It will be
shown that the claim holds for Notice that (17) may
be written as

(33)

where

(34)

and

(35)

It will next be argued that if and
that if Suppose
Since is either 0 or 1, it follows from Fig. 3 and
(22) that is either 0 or Consequently, all the

are either 0 or Thus,
by (24) and (34), Similar reasoning verifies that

if

Using (30) and invoking the induction hypothesis, (33) may
be written as

(36)

From (33), it follows that

if
if

where is calculated from (27) with The desired
result can now be shown by comparing the coefficients of

in (36) with the coefficients determined
from (26) with The coefficient of in
(36) is

(37)

which equals as asserted. Next, suppose
The coefficient of in (36) is then

Inserting the definition of with and rearranging
terms yields

which equals with For it can
similarly be shown that the coefficient of in (36) is

as asserted. It follows from (37) that is a white
random process. Thus, by the induction hypothesis, is a
white random process. Also by the induction hypothesis,
and in (33) are each zero-mean. It then follows from
(23) and (24) that and are zero-mean random
processes.
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Claim B2: The variance of is given by

where

(38)

and

(39)

Proof: Since is zero-mean,
where denotes the statistical expectation operator. Using
(26) and rearranging terms results in

(40)

where use was made of the equality To
evaluate (40), consider first By the definition
in (29), can be viewed as the value associated with a

-bit binary number, offset by 1, where the values
of the bits are determined by The
two possible values of are equiprobable and is
independent of so it follows that the
different values of are equiprobable. It then follows
from (27) that the different values of are
equiprobable, i.e., with probability
Thus

(41)

as asserted.
It will next be shown that

(42)

As derived in the above, depends on
and depends on

Thus, it follows that assumes one of equiprobable
values depending upon the value of Specifically, for
a given value of (27) may be rewritten as

(43)

where is the value of As can be verified from (29),
the possible values of can then be specified in terms
of and an integer parameter according to

(44)

where each value occurs with probability Combining
(43) and (44) yields

(45)

To proceed with the verification of (42), it will be shown in
the following that

(46)

From (28) it follows that (46) can be verified by establishing
the appropriate limits for the summation of the terms

The lower summation limit on the left-hand side
of (46) can easily be found to be

(47)

Similarly, the upper summation limit on the left-hand side of
(46) can be found to be

(48)

Then (46) follows from (28) using (47) and (48). Furthermore

and (45) reduces to (42). Claim B2 follows from (40)–(42),
and the definitions of and

APPENDIX C

The purpose of this appendix is to verify the time-average
properties of the DAC output with full randomization DEM
as stated in Section III by Result 2, given here in its complete
form as

Claim C: If and exist, then

(49)

and

(50)

with probability 1, where is given by (15), is given by
(16),

(51)

and

(52)

In (52), and are given by (38) and (39), respectively.
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Proof: From Result 1 it follows that

and consequently

To deduce that (49) holds with probability 1, it suffices to
show that obeys the strong law of large numbers. By the
Kolmogorov Criterion, it suffices to show that has finite
variance. This follows immediately because and the static
DAC-element errors are bounded.

To verify (50), consider first the statistical autocorrelation
of defined as From Result
1 it follows that

Expanding, collecting terms, and making use of the facts
that is a zero-mean, white random process and is
deterministic, results in

where

Then using Claim B and the definitions ofand ,

An argument identical to that presented for the corresponding
result in [4] establishes (50) with probability 1.
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