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ABSTRACT

Recently, a delta-sigma frequency-to-digital con-
verter (FDC) capable of 14-bit audio bandwidth cata
conversion at a 10MHz intermediate frequency (IF) was
presented. The nonuniform-to-uniform decimation fil-
ter, a key component of this FDC, corrects for the nonuni-
form sampling inherent to the FDC and performs deci-
mation filtering. This paper contains a detailed descrip-
tion of the nonuniform-to-uniform decimation filter and
measured performance results for the entire FDC.

1. INTRODUCTION
D IGITAL signal processing is increasingly used in
<

place of analog processing in wireless communi-
afion systems to reduce manufacturing costs, improve
reliability, and allow programmability, particularly in
high-volume, consumer-oriented systems. In receivers,
the requisite A/D conversion is usually performed after
the radio frequency (RF) signal has been down-converted
to an IF in the zero to 100MHz range, and the demod-
ulation is performed digitally. Although conventional
ADCs are most commonly used for this purpose, the ma-
jority of wireless signal formats are based on frequency
or phase modulation. In these cases, an alternative ap-
proach is to use a delta-sigma frequency-to-digital con-
verter (AXFDC)—a device that digitizes instantaneous
frequency rather than amplitude—instead of an ADC.

Recently, a CMOS delta-sigma phase-locked loop
(AXPLL) has been demonstrated [1] that promises to
make this an attractive approach. The AYPLL is the
key front-end component of a high-performance AXFDC
capable of 14-bit audio bandwidth data conversion at a
10MHz IF. To the knowledge of the authors, this level
of performance has yet to be achieved using other FDC
or bandpass ADC architectures in CMOS circuit tech-
nology (2], [3].

A high-level block diagram of the AYXPLL-based
AYFDC is shown in Figure 1. It consists of a hard lim-
iter, a AXPLL, a digital lowpass filter, a digital
nonuniform-to-uniform downsampler, and a conven-
tional digital decimation filter. The theory underlying
the AYPLL has been presented in [4], and the imple-
mentation details of the CMOS prototype mentioned
above have been presented in [1]. The components fol-
lowing the A¥YPLL in Figure 1 are collectively referred
to as the nonuniform-to-uniform decimation filter. The
details of the nonuniform-to-uniform decimation filter
have not been presented previously and are the focus of
this paper.

The AXPLL performs an instantaneous frequency
estimate each time that a positive going zero-crossing of
the input signal occurs. Thus, the sampling rate of the
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AYPLL is determined by the input frequency, so a fre-
quency modulated (FM) input signal results in nonuni-
form sampling intervals.

Many techniques for reconstructing a signal from
nonuniformly spaced samples have been described, such
as generalized sampling theorems and Lagrange interpo-
lation [5]. However, most of these methods are compu-
tationally expensive. Moreover, the quantization noise-
shaping inherent to the AXPLL is not generally present
in other nonuniform-to-uniform conversion applications.
The approach described herein achieves high-precision
with very low implementation complexity by combining
the nonuniform-to-uniform conversion operation with
the decimation filtering required to remove the out-of-
band quantization noise. The specific nonuniform-to-
uniform decimation filter described is compatible with
the AXPLL prototype of [1] and gives rise to the above-
mentioned AXFDC performance, but the results are
easily generalized to other AXPLL configurations and
AYFDC specifications.

2. BACKGROUND

The AXFDC input signal is assumed to have the
form z(t) = A.sin(w.t + 6(t)), where A, is the ampli-
tude, w, is the carrier frequency, and 8(t) is the instan-
taneous phase of z(t) relative to w.t. The instantaneous
frequency of z(t) relative to w, is 1(t) = 9. For the
system considered in the paper, it is assumed that (%)
is an audio bandwidth signal.

The AYPLL converts the instantaneous frequency
of its input signal into a digital output sequence with
shaped quantization noise in a manner analogous to the
way that a AY modulator converts the amplitude of its
input signal into a digital output sequence. A functional
diagram of the specific ALPLL prototype presented in
[1] is shown in Figure 2. It it clocked by an 80 MHz uni-
form master clock, clk,,, and operates on a hard limited
version of the input signal, z, (¢). The y[n] output signal
is a quantized, nonuniformly sampled estimate of the in-
stantaneous frequency of z(t) with quantization noise-
shaping as will be described shortly. The clk, output
signal is a clock signal wherein each rising edge indi-
cates that new valid data bits are available at the y[n]
output.

The internal timing of the AXPLL is controlled by
two events: 1) The rising edge of z,(t), and 2) the rising
edge of the “carry” signal. The 4-bit counter is driven
by clk,,, and the “carry” signal goes high on its termi-
nal count. In normal operation, the output of the XOR
gate goes high when z,(t) goes high. This switches the
positive current source, I,, on until the “carry” signal
goes high at which time it is switched off. The negative
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current source, I, is switched on for a fixed duration
each time the “carry” signal goes high. Two clk,, cycles
after the “carry” signal goes high, filtered ADC data is
loaded into the counter, effectively setting the time until
the next carry. The “carry” signal and its time-shifted
derivatives are synchronized to the actual sample times
of the AYXPLL, and the “carry+1” signal is brought out
from the AYXPLL as clk,. From the results in [4] it can
be shown that the AXPLL of Figure 2, with an appro-
priate LSB normalization, produces the output sequence

vl = Z30n] + eaf, (1

where e,[n] is 2nd-order shaped quantization noise with
power spectral density (PSD) proportional to sin®(w/2),

and J [n] is an estimate of instantaneous frequency corre-
sponding to the change in instantaneous phase between

adjacent samples. That is ,@[n] = [ 4(r)dr, where

tn—1
t, is the time of the n*" sample of z(t).

It can also be shown from the theory in [4] that y[n]
can be written in terms of the sample times, t,, as

yln) = 8(1- ) + ealn), )

c

where T, = 27/w, is the nominal period of the input
signal, and 6, =t, — t,_1.

The average sample-rate of the AYXPLL is equal to
the center frequency of z(t) which can range between
8.9MHz and 10MHz, but the sampled signal, ¢ (t), is an

o~

audio-bandwidth signal. Therefore, 1[n] is oversampled
by a factor of approximately 200, and resides at very low
frequencies in the discrete-time spectrum. In contrast,
due to its sin*(w/2) PSD shape, most of the quantization
noise power resides at high frequencies.

The AYPLL is similar to a AY modulator in that
both quantize an oversampled version of the input signal
such that the quantization noise is spectrally shaped to
reside at high frequencies. However, an important dif-
ference is that the nonuniform sampling of the AXPLL
causes a slight spectral spreading of the oversampled sig-
nal. As discussed below, this spreading effect places a
design constraint on the passband flatness of the subse-
quent filter stage. The nonuniform sampling and result-
ing spreading effect are corrected for by the nonuniform-
to-uniform decimation filter.

3. DECIMATION ARCHITECTURE

The nonuniform-to-uniform decimation technique
takes advantage of the property that the output se-
quence from the AYPLL can be used to estimate both
3, and ¥[n]. From the sequence of ¢,, values, the actual
sample times can be estimated, and from the sequence
[n], frequency estimates for desired sample times can
be calculated by 2 point interpolation about actual sam-
ple times.

3.1 Comb Filtering

The AYXPLL output sequence, y[n], is filtered by
H(z). For this implementation, H(z) is a comb? filter

with a transfer function H(z) = [8:;::;]2 Its purpose

is to remove as much of the out-of-band quantization
noise as practical without significantly distorting the
components of the oversampled signal that underwent
spectral spreading as a result of the nonuniform sam-
pling. Thus, passband flatness and stopband attenua-
tion are both design constraints. In addition, since the
discrete-time frequency of the desired stopband shifts
with instantaneous carrier frequency, a wide stopband is
desired. The particular choice of H(z) represents a good
compromise with respect to these tradeoffs. Moreover,
it can be implemented efficiently using a multiplier-free
recursive structure.

The filtered sequence, y¢[n], still contains the low-
frequency signal information, but with much of the high-
frequency quantization noise removed [6]. Thus, from
(1), (2), and the frequency response implied by H(z),

iln] = S00] + el )

and

ys[n] =128 (1 - g?) + e;(n), (4)

c

where e;[n] is the residual quantization noise remain-
ing after e,[n] is filtered by H(z). The passband droop
associated with H(z) has been neglected.

3.2 Nonuniform-to-Uniform Downsampler

The two sub-blocks comprising the nonuniform-to-
uniform downsampler of Figure 1 are shown in detail in
Figure 3. The uniform clock generator extracts the sam-
ple time information from y;[n] to determine which pairs
of actual sample times straddle the desired sample times.
The interpolating downsampler performs frequency esti-
mation at the desired sample times by two-point inter-
polation about these actual sample times. The desired
sample times are defined to occur at uniform intervals of
T,, where T, = PT,, and P is the average downsampling
ratio. For the implementation described in this paper,
P =4

From Figure 3 and equation (4), it follows that

On

r[n] = -128<TC

) 256 + e[n]. (5)

The purpose of the register ¢[n] shown in Figure 3 is to
accumulate time interval estimates. During normal op-
eration, ¢[n] stores the value of the actual time estimate
relative to the desired sample time. This value can be
either positive or negative. If ¢[n] is initially negative,
it can be seen from Figure 3 that the scaled output of
the hard limiter (clk,) is —256, which cancels the +256
DC offset of r[n] from (5), and causes a value propor-
tional to 8, to be added to t[n — 1] thereby obtaining
t{n]. Since 4, is always positive by definition, t[n] will
monotonically increase while clk, is -1. After ¢[n] ex-
ceeds zero, the output of the hard limiter switches from
-1 to +1, so the scaled hard limiter output will combine
with the 4256 DC offset of r[n], insuring that the next
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value of ¢[n] is negative. This effectively sets a new de-
sired sample time. Thus, each rising edge of clk, occurs
when the accumulated time estimate first exceeds each
desired sample time. At this time, from (5) and Figure 3
the relation between the actual time estimate and the
desired sample time is

128
TC

tln] = = (t. — Ti) + e[n], (6)

where t,, is the actual sample time, T}, is the desired sam-
ple [tir]ne, and e;[n] is the quantization noise remaining
at t|n/.

The interpolating downsampler processes the infor-
mation contained in y[n] to extract uniformly spaced
estimates of the instantaneous frequency of z(t). The
first processing stage in the interpolating downsampler

accumulates y¢[n] to obtain 8[n]. The n'* sample of the
resulting sequence is the nonuniform phase estimate at
time ¢,. Interpreting the LSB value to be 7 /64, the
sequence of nonuniform phase estimates can be wrirten
as

) = o Dy lk) + 0], (7)

where 6[0] is an arbitrary initial value.

As described above, the rising edge of the uniform
clock clk, occurs when the actual sample time first ex-
ceeds the next desired sample time, T},. The actual sam-
ple times £,_;, and t, thus straddle the desired sample
time. From the nonuniform phase estimates at t,,_; and
t., two-point interpolation is used to find the uniform
phase estimate, 8,[k], at time Tj. This is similar to
the two-point interpolation method introduced in [7], in
which it was shown that the interpolation error is small
provided the modulation frequency is much smaller than
the carrier frequency, as is the case here.

The two-point interpolation expression is

6ulk = ln] — (] - - 1) (257 ) @

tn - tn—l

which is depicted graphically in Figure 4. An expres-
sion equivalent to (8) can be derived from Figure 3, the
definition for §,, and equations (4), (6), and (7). Ne-
glecting the LSB normalization in (7), and neglecting
quantization noise,

n

5 . t[n]
0u[k] = 6[n] — To¢ <m

The system of Figure 3 implements this form of the two-
point interpolation expression.

It follows from (9) that one multiply and one di-
vide are required for every set of P =4 AYXPLL output
samples. For the specific implementation described in
this paper, it follows that the multiplication and divi-
sion rates are no greater than 2.5MHz each. Moreover,
the numbers of bits used for y[n] and t[n] are low (6
and 10, respectively). Consequently, the computational
requirements of the interpolation are not excessive.

As seen in Figure 3, the 1— 27! operation performed
upon 6, [k] produces uniform frequency estimates, 1, [k].
Ignoring quantization noise and interpolation error, it
follows that 1, [k] = 6,[k] — 8,[k — 1], which is propor-
tional to the phase difference between times Tj_, and

T,. Thus, the sequence {b\u [k] corresponds to frequency
estimates at uniformly spaced sampling intervals.

3.3 Conventional Decimation Filter

The final processing block shown in Figure 1 is a
conventional 50-fold lowpass decimation and equaliza-
tion filter. It removes the remaining out-of-band quan-
tization noise and reduces the output sequence to the
final desired sampling rate. Equalization filtering is in-
corporated in the block to compensate for the passband
droop of H(z) as well as that imposed by the effective
moving average of the desired signal performed by the
nonuniform-to-uniform conversion processing.

4. EXPERIMENTAL RESULTS

The performance of the AXFDC with nonuniform-
to-uniform decimation was measured by combining the
existing AYPLL prototype [1] with a software imple-
mentation of the nonuniform-to-uniform decimation fil-
ter. The bus widths and other processing details were
implemented exactly as shown in Figures 1 and 3, so
identical results would be expected from a fully inte-
grated VLSI implementation.

The signal to noise and distortion ratio (SINAD)
and spurious free dynamic range (SFDR) measurements
were made using an input signal with a sinusoidal instan-
taneous frequency function: (t) = 2w AF sin (27 fit).
Thus z(¢) was a sinusoidally modulated FM signal with
a peak frequency deviation of AF and a modulation fre-
quency of f,. Measurements were taken with numerous
values of AF' and f;. The worst case results for peak
SINAD and peak SFDR were 85dB and 88dB, respec-
tively, indicating 14b worst-case performance.

Representative examples of the measured data are
shown in Figures 5 and 6. Figure 5 shows the PSD

of @d[m] corresponding to AF = 1MHz and f; = 8kHz.
The measured (non-peak) SINAD and SFDR for this ex-
ample are 85dB and 88dB, respectively. Figure 6 shows
measured values of SINAD and SFDR as a function of
AF (recall that AF is to the AXFDC what amplitude
is to a A¥XADC) again for f; = 8kHz. In this case, the
measured peak SINAD and peak SFDR are 89dB and
94dB.

An intermodulation measurement was made using
an input signal with a two-tone instantaneous frequency
function of the form: () = 2rAF sin (2nft)+
2 AF, sin (27 fot). Figure 7 shows data corresponding
to the PSD of ¢,[m] with AF, = AF, = 250kHz, f; =
22.1kHz, and f, = 24.3kHz. As shown in the figure,

the maximum in-band intermodulation (IM) product for
this test was —87dB.
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