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Spectral Shaping of Circuit Errors in
Digital-to-Analog Converters
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Abstract—Recently, various multibit noise-shaping digital-to-
analog converters (DAC’s) have been proposed that use digital
signal processing techniques to cause the DAC noise arising
from analog component mismatches to be spectrally shaped.
Such DAC’s have the potential to significantly increase the
present precision limits of �� data converters by eliminating
the need for one-bit quantization in delta-sigma modulators.
This paper extends the practicality of the noise-shaping DAC
approach by presenting a general noise-shaping DAC architecture
along with two special-case configurations that achieve first- and
second-order noise-shaping, respectively. The second-order DAC
configuration, in particular, is the least complex of those currently
known to the author. Additionally, the paper provides a rigorous
explanation of the apparent paradox of how the DAC noise can be
spectrally shaped even though the sources of the DAC noise—the
errors introduced by the analog circuitry—are not known to the
noise-shaping algorithm.

Index Terms—ADC, analog-to-digital, DAC, data converter,
delta–sigma, digital-to-analog, mismatch shaping, noise-shaping,
sigma–delta.

I. INTRODUCTION

DELTA–SIGMA analog-to-digital converters ( ADC’s)
and digital-to-analog converters ( DAC’s), collec-

tively referred to as data converters, are widely used
in high-precision, low bandwidth applications such as digital
audio processing. Through the use of oversampling, coarse
internal quantization, and quantization noise-shaping they are
able to perform high-precision data conversion yet can be
implemented in VLSI technology optimized mainly for digital
circuitry [1]. The coarse quantization simplifies the analog
processing, but most of the resulting error is kept out of the
signal band as a result of the quantization noise-shaping and
oversampling. The primary impediment to their use in higher-
rate applications such as digital radio and video processing is
the oversampling requirement. Oversampling necessitates the
use of circuitry with a significantly higher bandwidth than the
signal to be converted, and in higher-rate applications this is
often not practical.

In principle, the oversampling requirement can be reduced
by increasing the order of the quantization noise-shaping.
However, practical issues such as analog component matching
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and system stability have so far limited the extent to which
the noise-shaping order can be usefully increased [2]–[7]. For
example, in theory it is possible to design a data converter
with multibit quantization that achieves any given order of
quantization noise-shaping. Unfortunately, the application of
such data converters has been limited to date because of
their high sensitivity to analog component mismatches in their
internal DAC’s. Typically, the internal DAC in a data
converter operates on a highly quantized digital sequence, so
it does not require a large number of output levels. However,
it must be nearly linear and introduce very little signal-band
circuit noise if high-precision data conversion is required of the
overall data converter. In principle, this can be achieved
if the stepsbetween adjacent output levels of each DAC have
very nearly the same magnitude. Unfortunately, the required
matching precision is on the order of the desired precision
of the overall data converter and this is often beyond the
practical limits of present VLSI technology. For this reason,
the majority of data converters use two-level (i.e., one-
bit) DAC’s; in this case, there is only one step so matching
the sizes of multiple steps is not an issue. While one-bit
DAC’s effectively avoid the step matching problem, they
necessitate one-bit quantization in data converters and this
forces design tradeoffs to be made that, for a given level of
oversampling, significantly reduce data conversion signal-to-
noise ratios (SNR’s) below what would be possible if multibit
quantization could be used [2]–[4], [8].

With this in mind, a number of investigators have recently
proposed various multibit noise-shaping DAC’s for use in

data converters [9]–[17]. The noise-shaping DAC’s all
use digital signal processing techniques to cause the error
resulting from step-size mismatches to lie outside of the
data converter signal band. Thus, instead of trying simply to
minimize mismatches through improvements in the design or
layout of the analog circuits, the mismatches are accepted
as inevitable, but their negative effects are largely avoided
though a signal processing innovation. Consequently, the
noise-shaping DAC’s allow for multibit quantization within

data converters but do not suffer from the extreme match-
ing problems associated with conventional multibit DAC’s.

This paper presents a general noise-shaping DAC architec-
ture along with two special-case configurations that achieve
first-order and second-order noise-shaping, respectively. The
first-order DAC configuration has similar complexity to that
presented in [11], but offers the advantage that it can be
used in conjunction with a simple dithering technique that
suppresses spurious tones. The second-order DAC is by far
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Fig. 1. Example of an oversampling 3-bit��DAC and (an artist’s rendition of) typical power spectral densities of selected signals in the processing chain.

the least complex of those currently known to the author.
Additionally, the paper provides rigorous theory that explains
the apparent paradox of how it is possible to spectrally shape
the DAC noise even though the sources of the DAC noise—the
errors introduced by the analog circuitry—are not known to
the noise-shaping algorithm. As part of the derivation, a set
of sufficient conditions for achieving any given noise-shaping
characteristics is developed.

The paper consists of two main sections and an Appendix.
The general DAC architecture along with the first and second-
order configurations are described in detail in Section II. In
Section III, the goal is to provide an intuitively appealing,
yet mathematically complete, explanation of the noise-shaping
phenomenon. The results of Section III are extended in the
Appendix to develop an expression that quantifies noise-
shaping performance in terms of specific circuit errors.

II. THE NOISE-SHAPING DAC
ARCHITECTURE AND PERFORMANCE

A. The Noise-Shaping DAC Approach

To illustrate the concepts outlined above and define terms
that will be used throughout the paper, consider the example

DAC shown in Fig. 1. It consists of a digital interpolator,
a third-order digital delta-sigma modulator, a three-bit DAC,
and an analog lowpass filter (usually implemented as a chain
of analog filters). As illustrated by the upper power spectral
density (PSD) plot in the figure, the three-bit output of the

modulator consists of a signal component restricted to a
low frequencysignal bandand high frequency quantization
noise, most of which falls outside of the signal band. Thus,
in the absence of any errors introduced by the 3-bit DAC,
the analog filter would remove most of the quantization noise,

Fig. 2. The high-level architecture of most of the noise-shaping DAC’s to
date.

and the result would be a high-precision analog representation
of the original digital input sequence. However, as illustrated
in the lower left PSD plot in Fig. 1, step-size mismatches in
conventional multibit DAC’s result inDAC noiseof which a
substantial component resides within the signal band. Thus,
even though the analog filter removes the components of the
quantization and DAC noise outside the signal band, much of
the DAC noise remains and spoils the overall conversion pre-
cision. In contrast, noise-shaping DAC’s result in DAC noise
that resides primarily outside the signal band as illustrated in
the lower right PSD plot of Fig. 1, so the analog filter removes
much of the DAC noise along with the quantization noise.

Most of the noise-shaping DAC architectures presented to
date have the general form shown in Fig. 2 [9]–[15], [17]. Each
consists of adigital encoderand one-bit DAC’s referred
to asunit DAC-elements. The digital input sequence, , is
taken to be a sequence of nonnegative integers less than or
equal to . The digital encoder maps each input sample to
output bits such that the sum of the bits is equal to :

(1)

The unit DAC-elements operate according to

if ;
if

(2)
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Fig. 3. The DAC architecture at the switching block level shown for the case of a 3-bit DAC.

where denotes the analog output of theth unit DAC-
element, and and are errors in the analog output
levels.1

The coarse DAC’s required for data converters are
typically implemented using switched-capacitor unit DAC-
elements that each dump an ideally fixed amount of charge into
the summing node of an op-amp based integrator during each
sample interval in which the input bit is high [1], [18]–[22].
To a large extent, the relative errors introduced by the unit
DAC-elements arise from mismatches in fabricated capacitor
dimensions. Consequently, and are generally assumed
to be time-invariant, but otherwise arbitrary, and are referred
to asstatic DAC-element errors.

It follows that the DAC noise is a function of both
and the set of static DAC-element errors. All of the noise-
shaping DAC architectures exploit the fact that the digital
encoder has many ways that it can choose its output bits and
still satisfy (1). Thus, the digital encoder can modulate the
DAC noise component of without affecting the signal
component. The noise-shaping DAC’s are able to perform this
modulation such that the DAC noise is spectrally shaped as
in the example associated with Fig. 1. Amazingly, they do
this without requiring any knowledge of the specific static
DAC-element error values.

B. The Switching Block DAC Architecture

A high-level view of the noise-shaping DAC architecture
proposed in this paper is shown in Fig. 3. For simplicity, a 3-
bit version is shown, but the architecture and all of the results
outlined below are easily generalized to any number of bits.2

The architecture is a special case of that shown in Fig. 2.

1The choice of one and zero as the ideal output levels of the unit DAC-
elements is arbitrary. Any other distinct pair of numbers could be used. The
choice simply affects the gain and offset of the overall DAC.

2The DAC shown is actually a 9-level DAC because there are 8 unit
DAC-elements. Thus, its input is slightly wider than 3-bits.

The digital encoder consists of threelayersof digital devices
calledswitching blockseach of which is labeled , where

denotes the layer number anddenotes the position of the
switching block in the layer.

The details of the switching blocks will be described shortly,
but at the high level of Fig. 3, each digital input sample, ,
is mapped by the three layers of switching blocks to 8 bits,

, that satisfy (1) with 8. It can be
easily verified that this will happen provided each switching
block satisfies the followingnumber conservation rule:

Number Conservation Rule:The two outputs of each
switching block must be in the range0, 1, , 2 where

is the layer number, and their sum must equal the input to
the switching block.

For example, if 6, then the number conservation
rule is satisfied by the Layer 3 switching block if its two
outputs at time are any of the following pairs: (3, 3), (4,
2), or (2, 4). For this example, provided all of the switching
blocks satisfy the number conservation rule, then six of the
bits: , would equal one, and two would
equal zero.

From a signal processing point-of-view, the switching
blocks perform the operations shown in Fig. 4, wherein,

is a sequence that is generated within each switching
block and will be described shortly. It follows from the figure
that

and

(3)

Because the sequence determines the difference be-
tween the two outputs of the switching block, it follows
that must satisfy certain conditions for the number
conservation rule to be satisfied. Specifically, it can be easily



GALTON: SPECTRAL SHAPING OF CIRCUIT ERRORS 811

Fig. 4. The general form of all the switching blocks.

verified that if

even if is even
odd if is odd

(4)

and

(5)

for every and , then the switching blocks all satisfy the
number conservation rule.

As derived in Section III and the Appendix, for a-bit
version (i.e., a -layer version) of the DAC architecture shown
in Fig. 3, wherein all the switching blocks operate as described
by (3)–(5), the output of the DAC has the form

, where

(6)

and , , and are constants that depend only upon the
static DAC-element errors. Specifically

(7)

and

(8)

Thus, represents a constant gain,represents a constant
offset, and can be viewed as the DAC noise. It follows
from (6) that if each switching block calculates as
an th-order shaped sequence that is uncorrelated from the

sequences of the other switching blocks, then the
DAC noise will be an th-order shaped sequence. The main
difficulty here is that the sequences must also be
chosen to satisfy (4) and (5) in order to satisfy the number
conservation rule.

C. The First- and Second-Order DAC Configurations

Structures that can be used to generate the se-
quences for first- and second-order DAC’s are shown in
Fig. 5. Together with the structure in Fig. 4, the structures in
Fig. 5(a) and (b) represent the signal processing operations

performed by the complete switching block for first-
order and second-order noise-shaping DAC configurations,
respectively. As will be demonstrated shortly, simple gate-
level implementations of these switching blocks exist, but the
two structures shown in Fig. 5 will first be explained at the
signal processing level.

The switching block associated with the first-order
DAC generates as shown in Fig. 5(a). The structure
differs from a first-order modulator only in that it has
no signal input and the hard limiter is followed by a least-
significant-bit (LSB) multiplier that forces to be zero
whenever the LSB of the input to the switching block is zero
(i.e., when the input is even). Because of the hard limiter,

is bounded in magnitude by unity, and the LSB
multiplication causes (4) and (5) to be satisfied. Together, the
hard limiter and LSB-multiplier can be viewed as introducing
additive error, and the error is bounded in magnitude by unity
because 1. Consequently, the structure behaves
like a nonoverloading first-order modulator, so
is a first-order shaped version of the additive error. It follows
from (6) that the resulting DAC noise is also first-order shaped
noise.

The switching block associated with the second-order
DAC generates as shown in Fig. 5(b). The structure
consists of two discrete-time integrators, a quantizer, and an
amplitude limiter enclosed in a double feedback loop. The
quantizer has a step-size of 2 and performs midtread
quantization when the LSB of the input to the switching block
is zero and midrise quantization otherwise. In other words, the
quantizer rounds to the nearest even integer when is
even and to the nearest odd integer otherwise. This quantizer
arrangement forces to satisfy (4). The amplitude limiter
clips the output of the quantizer if necessary to force
to satisfy (5).

The limiter and quantizer together can be viewed as intro-
ducing additive error. An analysis of the filtering performed
by the structure of Fig. 5(b) indicates that is a second-
order shaped version of this error. However, note that aside
from the unusual quantizer and limiter, the structure differs
from a conventional second-order modulator in that it has
a 1/4 gain element preceding the quantizer and an extra feed-
forward path between the outputs of the two integrators. The
purpose of these modifications is to reduce the variance of
the input to the quantizer so as to reduce the likelihood of
exceeding the range of the limiter at any given time.
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(a)

(b)

Fig. 5. Switching block calculation ofsk; r[n] for (a) the first-order noise-shaping DAC, and (b) the second-order noise-shaping DAC.

Although the structures of Fig. 5 used by the switching
blocks to generate the sequences are similar to
modulators, they differ in that they have no input sequences,
so the discrete-time integrator inputs are always small integer
values. If integer initial conditions are used, it follows that the
state variables of the structures are always bounded integer
values. Consequently, the structures can be implemented with
low bit-width registers and arithmetic.

For example, one of many possible gate-level implementa-
tions of the switching block for the first-order DAC is shown
in Fig. 6. It consists of two flip-flops, and two LSB-adders
(i.e., adders that each calculate the sum of a 1-bit number and
a 1-bit number). The LSB of the input to the switching
block is used to gate the clock input of the two flip-flops which
are connected in a four-state configuration. Each output of the
switching block is taken as the most-significant-bits of the
sum of the input to the switching block and either theor
output of the right-most flip-flop. Although the output of each
adder is an odd number whenever the LSB of the input to the
switching block is different from the corresponding output of
the right-most flip-flop, the switching block outputs are never
fractional because the divide-by-two operation is performed
by the equivalent of right-shifting each adder output by one
bit. Therefore, (4) is satisfied in effect.

It can be verified that the switching block performs the
function of the system shown in Fig. 4 with generated
by the system shown in Fig. 5(a) for the appropriate choice
of initial conditions. The two flip-flops in Fig. 6 play the
role of the discrete-time integrator in the system of Fig. 5(a).
Denoting the outputs of the two flip-flops as and ,
respectively, it can be verified that the state ( 1,
1) corresponds to an integrator state of 1, the state ( 0,

0) corresponds to an integrator state of1, and the states
( 0, 1) and ( 1, 0) both correspond
to an integrator state of 0.

D. Spurious Tone Generation

From (6) it follows that any spurious tones contained in
the switching block sequences, , will appear in the
DAC noise. In the case of the second-order noise-shaping
DAC, numerous simulations run by the author (an example
of which is presented below) indicate that the spurious tones
have extremely low amplitudes. However, the first-order noise-
shaping DAC tends to generate larger-amplitude spurious
tones for some inputs. A practical approach to suppressing
these tones is as follows. For the structure of Fig. 5(a) with an
initial condition of 0, it is easily verified that at each sample-
time the input to the hard-limiter is either a 0, 1, or1. By
definition the output of the hard limiter is a 1 when its input is
positive, and a 1 when its input is negative. Consequently,
quantization error is introduced only when the input to the
hard limiter is a 0 in which case the quantization error has
a magnitude of 1. An input of 0 is midway between the two
possible output values of the hard limiter. Thus, the total mean-
squared error would not be changed if the hard limiter were
replaced by a device that operates according to

if ;
if ;
if

(9)

where is the output of the device, is the
input of the device, and is a random 1 sequence
that is white, independent of , and uncorrelated with the

sequences in the other switching blocks. When the
hard limiters in all the switching blocks are replaced by these
devices, all spurious tones are eliminated.

In practice, thisdithering scheme is relatively easy to im-
plement. For example, in the switching block implementation
shown in Fig. 6 an exclusive-OR gate with inputs and

can be used to detect the equivalent of a discrete-time
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Fig. 6. A hardware-efficient implementation of the switching block for the first-order DAC.

integrator output of 0. When the output of the gate is high,
simple logic can be used to randomly invert or not invert

and . Random 1 sequences that well-approximate the
desired statistics are simple to generate using feedback shift
registers [23].

A partial implementation of the dithering scheme can be
used as a compromise between hardware complexity and
spurious tone suppression. Specifically, if dithering is used
in only some of the switching blocks, then some tone
suppression is achieved and the resulting DAC is more
hardware efficient than had dithering been used in all the
switching blocks. For example, in the first-order noise-shaping
DAC simulated below, only the switching block was
dithered.

D. Simulation Results

The above claims will now be demonstrated via simulation
results. For comparison, aconventional DACand anideal DAC
are also simulated. The conventional DAC has the form of
Fig. 2 with the digital encoder implemented as a so-called
thermometer encoder. Hence, in the conventional DAC

if ;
otherwise.

The ideal DAC is introduces no DAC noise whatsoever.
Fig. 7(a) shows simulation results representing the output

PSD’s of a conventional DAC, a first-order noise-shaping
DAC, a second-order noise-shaping DAC, and an ideal DAC,
all driven by the same 3-bit third-order digital modulator
with a sinusoidal excitation. All but the ideal DAC had the
same set of static DAC-element errors which were chosen from
a Gaussian distribution with a standard deviation of 1%.3 The
PSD’s are in units of dB relative to the nominal LSB value
of the DAC’s (this is also the quantization step-size of the

modulator), and the frequency scale is normalized such
that unity corresponds to half the sample rate of the DAC
output.

3The choice of a Gaussian distribution here is incidental. As proven in
Section III and the Appendix, the noise-shaping does not depend upon the
distribution or correlation properties of the static DAC-element errors.

No DAC noise was introduced by the ideal DAC, so the
PSD of the ideal DAC output is equal to that of the 3-
bit, third-order digital modulator output. Accordingly,
the PSD consists of third-order shaped quantization noise
with a discrete spectral frequency component corresponding
to the sinusoidal excitation of the modulator. As expected
from well-known modulator results, the quantization
noise component decreases by 18 dB per octave decrease
in frequency. Each of the PSD’s associated with the other
three DAC’s differs from that of the ideal DAC because of
an additional component corresponding to the DAC noise.
As is evident from Fig. 7(a), for the conventional DAC this
component gives rise to a flat noise-floor at about45
dB with a considerable spurious tone content. For the first-
order and second-order DAC’s the component gives rise to
noise-floors that decrease by 6 and 12 dB per octave de-
crease in frequency, respectively, with very little spurious tone
content. Thus, the simulations clearly support the assertions
made above that the first-order and second-order DAC’s
give rise to first-order and second-order shaped DAC noise,
respectively.

Fig. 7(b) shows attainable bit precisions versus oversam-
pling ratios between 2 and 200. As shown schematically in
the figure, each bit precision curve was obtained by driving
the modulator followed by one of the four DAC’s with a
constant input, subtracting the constant input and DAC offset
from the DAC output (using the expressions forand given
above), and then calculating the power within the signal band
of the resulting sequence for the range of oversampling ratios.
A constant input was used to calculate the achievable bit preci-
sions only to avoid causing the conventional DAC to introduce
spurious tones. Other input sequences, e.g., sinusoidal input
sequences, would have yielded very similar results for all but
the conventional DAC.

III. T HEORETICAL EXPLANATION

OF THE NOISE-SHAPING DAC’S

In this section, the basic theoretical idea underlying the
noise-shaping DAC’s of this paper is explained. Although the
presentation is mathematically rigorous, the objective of this
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(a) (b)

Fig. 7. (a) Simulated PSD’s of conventional, first-order noise-shaping, second-order noise-shaping, and ideal DAC’s all driven by the same 3-bit third-order
digital �� modulator. (b) The corresponding bit precision limits versus oversampling ratio.

section is to provide intuition and insight into the theory. The
results of this section are further developed in the Appendix
to arrive at (6)–(8).

A functionally equivalent version of the DAC architecture
of Fig. 3 is shown in Fig. 8(a) from which the recursive
nature of the system is evident. Each subsystem enclosed in
a dashed box is a DAC in its own right and, thus, is referred
to as DAC where and are the indexes of the left-most
switching block in DAC . The recursive form of DAC in
terms of DAC and DAC is shown in Fig. 8(b).
From a comparison of the notation in Figs. 3 and 8, it follows
that DAC is the th unit DAC-element, and DAC is the
3-bit DAC itself.

By analyzing the recursive form of the DAC shown in
Fig. 8(b) and using the principle of induction, the noise-
shaping operation of the DAC can be explained and quantified.
Although the analysis is not difficult, the subscripts become
confusing so it is convenient to temporarily redraw the recur-
sive DAC structure of Fig. 8(b) using the simplified notation
shown in Fig. 9. The boxes labeled, DAC , and DAC
in Fig. 9 correspond to those labeled , DAC ,
and DAC in Fig. 8(b). Thus, ,

, and so on. With this simplified notation, (3) implies

(10)

and the number conservation rule implies

(11)

Any nonideal DAC (or any single-input, single-output de-
vice, for that matter) can be viewed from a signal processing
point-of-view as a device that introduces a constant gain, a
dc offset, and zero-mean DAC noise. For convenience in the
derivation that follows, the dc offset and zero-mean DAC noise
are lumped together and referred to asadditive noise. Thus,
the outputs of the two DAC’s in Fig. 9 can be written as

(12)

for 1 and 2, where and are the gain and
additive noise, respectively, associated with DAC.

From (12) and Fig. 9, it follows that

which can be written as

By applying (10) and (11), and collecting terms, this becomes

(13)
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(a)

(b)

Fig. 8. (a) A redrawn but functionally equivalent version of the DAC shown in Fig. 2. (b) The contents of each dashed box in (a).

Fig. 9. The recursive DAC structure of Fig. 8(b) drawn with simplified notation.

where

(14)

and (15)

At this point, the key observation can be made.4 Equation
(14) indicates that the DAC noise of the recursive DAC

4An excellent alternative explanation of this observation that applies to a
three-level noise-shaping DAC is presented in [13].

of Fig. 9 consists of the DAC noise introduced by its two
component DAC’s and a component arising from the mismatch
between the gains of its component DAC’s. Suppose that
Fig. 9 corresponds to DAC in Fig. 8(a). That is, suppose

, DAC , and DAC in Fig. 9 correspond to and the
first and second unit DAC-elements in Fig. 8(a), respectively.
From (12) and the definition of the static DAC-element errors,
it is easily verified that for this case and

for 1 and 2 so the additive noise from
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each unit DAC-element is just a dc offset. Consequently, from
(14), it follows that the only nonconstant component of the
additive noise introduced by DAC is contributed by the
term . But is a constant, so if is an

th-order shaped sequence, it follows that the DAC noise will
be an th-order shaped sequence regardless of the values of
the static DAC-element errors. The same argument applies to
DAC , DAC , and DAC in Fig. 8(a).

Now suppose that Fig. 9 corresponds to DAC. That
is, suppose , DAC , and DAC in Fig. 9 correspond to

, DAC , and DAC in Fig. 8(a), respectively. By
the argument made above, provided and are
uncorrelated th-order shaped sequences, then the sum of
the second two terms in (14) will also be anth-order
shaped sequence. Consequently, provided
is an th-order shaped sequence that is uncorrelated with

and , then , or, equivalently, the DAC noise
introduced by DAC , is also an th-order shaped sequence.
By induction, this argument applies to the entire DAC of
Fig. 8(a), and more generally to DAC’s of arbitrary size having
the switching block architecture wherein all the switching
blocks satisfy the number conservation rule.

IV. CONCLUSION

This paper presents a general DAC architecture that can
be used to spectrally shape DAC noise arising from analog
circuit mismatches, and practical first and second-order noise-
shaping DAC configurations that are special cases of the
general architecture. Additionally, it presents a theoretical
derivation that explains the apparent paradox of how an all-
digital algorithm that has no knowledge of the values of the
analog circuit mismatches can result in well-controlled spectral
shaping of the DAC noise caused by the mismatches.

The results of the paper extend the practicality of noise-
shaping DAC’s for use in data converters, and pro-
vide a theoretical foundation for the further development
of noise-shaping DAC’s. The first-order DAC configuration
is as hardware-efficient as those presented previously, but
offers the advantage that it is amenable to a simple dithering
technique capable of eliminating spurious tones. The second-
order DAC configuration is the most hardware-efficient of
those currently known to the author, and generally introduces
very little spurious tone content even without dithering. The
theory presented provides sufficient conditions for achieving
any given noise-shaping characteristics using the general ar-
chitecture. Additional research is necessary to determine the
extent to which these conditions can be satisfied for higher
than second-order noise-shaping.

APPENDIX

The purpose of this appendix is to derive (6)–(8) starting
from the results of Section III. Specifically, (13)–(15) which
were derived in Section III using the simplified notation of
Fig. 9, are used to develop the nonrecursive formulations of
the constant gain, dc offset, and DAC noise.

The first step is to rewrite (13)–(15) using the full notation
of Fig. 8(b) as

(16)

(17)

and

(18)

It will now be shown that recursively applying the expres-
sion for beginning with 1 and keeping fixed
gives

(19)

That this is true for follows directly from (18). Suppose
that (19) holds for some particular value of 1. In this
case, applying (18) gives

which reduces to (19) for 1. Consequently, by the
principle of induction, (19) must hold for each positive integer
.
As mentioned above, is just the gain introduced by

the th unit DAC-element which can be written as
, so (19) becomes

(20)

Substituting this into the expression for above gives

(21)
Finally, recursively applying (17) beginning with 1 gives

(22)

This can be verified by an induction argument similar to that
used above to prove (19).

Equations (20)–(22) directly imply (6)–(8).
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