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ABSTRACT

This paper presents results that allow for a yield es-
timation analysis of a particular 1%-order noise-shaping
digital-to-analog converter. While various dynamic ele-
ment matching techniques for noise-shaping DACs have
recently been proposed and their efficiency in AX data
converter applications demonstrated with simulation data,
no work that allows for an exact theoretical prediction
of the noise-shaping performance has been published so-
far. As the main result of this paper, the power spectral
density (PSD) of the DAC noise of a 1**-order noise-
shaping DAC can be predicted and used to generate
yield estimation data of the power of the signal-band
DAC noise given knowledge of the statistics of the static
DAC-element errors.

1. INTRODUCTION

As is well-known, mismatches in the analog output
levels cause conventional multi-bit DACs employed in
AY data converters to introduce DAC noise that resides
in the signal-band and thus drastically reduce the overall
conversion precision compared to ideal performance. A
number of investigators have recently proposed multi-bit
noise-shaping DAC architectures in an on-going effort
to develop practical multi-bit DACs for use in AY. data
converters. By moving most of the DAC noise away from
the signal-band, noise-shaping DACs do not significantly
deteriorate the performance of the AY data converters.
While all publications of proposed noise-shaping DAC
architectures have presented simulation data that indi-
cate promising noise-shaping properties, no work that
theoretically quantifies the performance has been pub-
lished previously.

The results of this paper allow for a theoretical pre-
diction of the PSD of the DAC noise of the 1%-order
noise-shaping DAC proposed in [1]. Specifically, a 2-bit
version of the DAC employed in a 2"¢-order AZADC
with a 2-bit quantizer is considered in detail. The per-
formance of the 1°*-order noise-shaping DAC and the
AYXADC is demonstrated with simulation data, and a
comparison between simulated and predicted PSDs is
provided. IC fabrication yield estimation data of the
power of the DAC noise computed by integrating the
predicted PSD of the DAC noise over the signal-band is
presented. This data is subsequently used to generate an
IC fabrication yield estimation of the overall conversion
precision of the 2"-order ALADC.

2. THE DAC AND AYXADC ARCHITECTURES

To first review the architecture of the 1%t-order noise-
shaping DAC proposed in [1], consider the 2-bit version
shown in Fig. 1. The DAC input, 2 ([n], is a sequence of
unsigned 2-bit binary numbers in the range 0 through 3.
The DAC consists of 2 layers of digital devices, each de-
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vice referred to as a switching block, followed by 4 one-bit
DACs, each referred to as a unit DAC-element, and an
analog output summing node to generate the DAC out-
put yp[n]. Each switching block is labeled S, ..., where k
denotes the layer number and m denotes the position of
the switching block in the layer. The signal-processing
details of the switching block are shown in Fig. 2a. It
has one k 4 1-bit input, z; .[n], and two k-bit outputs,
Zp-1,2-—1[n] and xj_i2.[n], respectively. The outputs
are formed according to

Tp-1,20-1[0] = ;;(xk,r[n] + 8k,.[n])

and

Tp1,2.[n) = %(rck,r [n] = sk [n]),

where s, .[n] is a switching sequence generated according
to the signal-processing algorithm of Fig. 2b. The struc-
ture of Fig. 2b closely resembles a 1%*-order AY modu-
lator with no input signal, except for the LSB multiplier
and the dithered hard {imiter. The dithered hard limiter
operates according to

1, if ug .[n] = 1;
-1, if up . [n] = -1,
T (n], if ug . [n] = 0;

Vk,r [n] =

where vy, ,.[n] is the output of the device, u; ,[n] is the
input of the device, and 7 .[n] is a random +1 sequence
that is white, independent of z[n], and uncorrelated with
the ry .[n] sequences in the other switching blocks. A
hardware-efficient gate-level implementation of the sig-
nal processing algorithms of Fig. 2 is given in [2].

Fig. 3a shows the functional details of the 2°9-order
AYADC. The analog input and the digital output are
denoted z[n] and y[n%, respectively. The coarsely quan-
tized AXADC output is generated by a 4-level uniform
quantizer with quantization levels 0,1, 2, and 3. For the
purposes of this paper, z[n] is assumed to be amplitude-
limited such that the quantizer operates within the no-
overload range. The 2-bit 1%*-order noise-shaping DAC
of Fig. 1 is employed in the feed-back path of the AZ
modulator loop.

3. PERFORMANCE DETAILS

The unit DAC-elements of the noise-shaping DAC

operate according to
_Jl+e.,, ifz[n]=1;
velnl = {e,r, if z.[n} = 0;
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where y,[n] denotes the analog output of the 7" unit
DAC-element, and e,, and e;, are errors in the ana-
log output levels. The errors are assumed to be time-
invariant, but otherwise arbitrary, and are referred to as
static DAC-element errors.

As shown in [2], interconnecting the switching blocks
and unit DAC-elements in the network of Fig. 1 re-
sults in a DAC for which yp[n] = zp[n] in the ab-
sence of static DAC-element errors. However, with non-
zero static DAC-element errors, the DAC output has the
form

ypin] = azpln] + 5 + ep[n], (1)

where « is a constant gain, 8 is a DC offset, and ep[n]
is the DAC noise. Formulae for o and f are given
in {2]; here it suffices to know that they depend only
on the static DAC-element errors. The DAC of Fig. 1
achieves first-order noise-shaping by decorrelating ep[n)
from zp|n] and spectrally shaping ep[n] such that its
PSD ideally resembles that of white noise filtered by
the highpass filter H(z) =1 —z71.

The quantization noise, eg[n], introduced by the
quantizer is commonly modeled as an additive white-
noise process, uncorrelated with z[n]. Applying this
model, it follows that the signal-processing equivalent
of the ATADC of Fig. 3a is given by Fig. 3b, where the
signals z[n}, eg[n], and ep[n % are uncorrelated. With a
linear systems analysis it can be shown that the trans-
fer functions between the ASADC output y[n] and the
signals z[n], eg[n], and ep[n], are given by

f(((z)) = Nx(2)D(z) = 27" D(2), (2)
Y(2) _ —1y2
o) = Ne(@)D() =1 -=")D(), ()
and
Y(2) - -1
m_ND(z)D(z)—(z —2)z7'D(2), (4

respectively, where the term

D()=[1+2(a—1z""+(1-a)27%"t  (5)
can be viewed as a distortion of the ideal transfer func-
tions Nx(z), Ng(z), and Np(z), resulting from a non-
unity value of . The importance of D(z) will be con-
sidered in the next section.

It follows from the above that both of the noise-
sources eg(n] and ep[n] contribute to the overall con-
version error at the output of the AXADC. This error
will subsequently be referred to as the AXADC noise,
eapcin]. It follows from (2) and (5) that the ALADC
noise can be written in the form
eacln] = yink+2(a—Uyln=1]+(1-clyln=2)-sln-1|
While this particular form is not very useful for a statis-
tical analysis, it does provide a simple formula to com-
pute e 4p[n] for simulation purposes, as will be demon-
strated shortly.

1997 IEEE International Symposium on Circuits and Systems

442

For a statistical analysis of e, pc[n], notice that (3)
and (4) imply that the PSD of eqpc([n] is given by

=8.heq (€9) | No(e’*)D(e7)|?
+ Sepep (€7)[Np () D(e’)?

SEADCeADC (e]w)

(7)

where Se,.,(¢’*) and S.,.,(e¥) denote the PSDs of

eg[n] and epln], respectively. For the model of eg[n]
used in Fig. 3b,

AQ

Seqeal€) = 35, ®)

where A is the step-size of the quantizer (in Fig. 3, A =
1). To evaluate (7), it remains to develop an expression
for S.,.,(e’). This is done in detail in [3]; for the
purposes of this presentation, the core of the derivation
from [3] will be stated without rigorous proofs, although
the theoretical results will be supported by simulations.
In accordance with the usual definitions, let the sta-
tistical auto-correlation of a sequence xz[n] be given by
Roon, m] = E{z[n]z[n + m]},
where E{-} denotes the statistical expectation operator,
and let the time-average autocorrelation of z[n] be given
by
1 &
R,.[m] = lim 5 Z:c[n]:c[n +m].

P—oo
n=1

As shown in [2], the DAC noise has the form

2 22—k
€p [n] = Z Z Ak,TSk’T[’I’L]. (9)
k=1 r=1
It follows that
Repepn,m] = E{e[nle[n + m]}
2 22 k 2 22 k
ZZAkrskr[n (ZZAkrskrn+m]}

k=1 r=1 k=1 r=1

As shown in [3], the switching sequences, s, .[n], are
uncorrelated with each other, and thus

2 22—k

=) 2 ALR

k=1 r=1

Repepln,m) fn,m.

Sk, rSk,r

The autocorrelations of the switching sequences within
each layer are identical [3], i.e., R [n,m] = Ry[n,m],
and it follows that

Sk,r Sk,

R. . [n,m]=

Z Vi R[n, m],



where

22—L¢
M= A% (10)
r=1
Then, as argued in [3],
2 pu—
R.pep[m] =Y vRi[m] (11)
k=1

with probability 1. In (11), Ri[m] depends only on

zp[n], and a method for calculating Ry[m] is derived
in [3]. The PSD of the DAC noise is then given by the
Fourier-transform of (11), i.e.,

Sepen(€) =D 1Sk(e’). (12)

To summarize, the above results allow for a theoreti-
cal computation of the PSDs of the DAC noise and the
AX.ADC noise.

Simulated performance of the 2°4-order AXADC of
Fig. 3a is presented in Fig. 4. Each plot in the figure
shows the PSD in dB relative to A? of a particular sig-
nal of the AYADC with a sinusoidal excitation. The
frequency scales are normalized such that unity cor-
responds to half the sample rate of the AXADC out-
put. The static DAC-element errors of the 2-bit DAC
were chosen randomly from a normal distribution with
a standard deviation of 1%. Specifically, Fig. 4a shows
the AXADC output y[n], Fig. 4b shows the DAC noise
ep[n] formed using (1), Fig. 4¢ shows the AZADC noise
eapc|n] formed using (6) and plotted against a logarith-
mic frequency scale, and Fig. 4d shows ep[n] plotted
against a logarithmic frequency scale.

The data of Fig. 4 clearly demonstrate spectral shap-
ing of e4po[n] and ep[n], respectively. From Fig. 4d, it is
seen that the DAC noise exhibits 1%¢-order behavior, i.e.,
a decrease by 6 dB of the noise-floor per octave decrease
in frequency. Because of a considerable difference in
the power-levels at high frequencies between eg[n] and
ep[n], the AXADC noise of Fig. 4c exhibits both 1%-
order and 2°¢-order behavior. Specifically, while eg[n]
and epln] contribute with comparable powers at fre-
quencies around w, = 1072, the AXADC noise exhibits
dominant 1%*-order behavior for frequencies less than w,
and dominant 2"¢-order behavior for frequencies higher
than w,.

Fig. 5 presents the theoretically computed PSDs of
the AXADC noise and the DAC noise. Fig. 5a shows
eapc[n] as computed using (7), and Fig. 5b shows ep[n]
as computed using (12). The plots are in agreement with
the simulation data of Fig. 4c and Fig. 4d, respectively.

4. CONVERSION PRECISION
A standard measure of the AXADC conversion pre-
cision is the power of the AXADC noise with the restric-
tion that the sighal component of the AXADC output
y[n] be an undistorted version of the ASADC input z[n].
As found in the previous section, z[n] is subjected to the
linear distortion D(z) given by (5), whose deviation from
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unity depends only on a. For practical values of ¢, the
effects of D(z) on the AZADC conversion precision is
vanishingly small, but it will be taken into account here
for completeness. From (7} it follows that power of the
AXADC noise residing in the signal-band after signal
equalization is given by

1 [F 4 .
Pravo = Poo+ 5 | Sugra(@)INo(e) do (13
N

where N denotes the oversampling ratio, and P., de-
notes the power of the DAC noise residing in the signal-
band after signal equalization. From (4), it follows that

PeD = %/N SeDeD(ejw)l‘]\]D(ejw)l2 dw. (14)
-F

5. YIELD ESTIMATION

With knowledge of the statistical distribution of the
static DAC-element errors, (13) and {14) allow for an IC
fabrication yield estimation of the AXADC conversion
precision and the power of the signal-band DAC noise,
respectively. The IC yield estimation procedure used
in the following is based upon the idea of computing
a large number of samples of the parameter of interest
for a given level of static DAC-element errors, thereby
generating data that closely resemble the corresponding
statistical distribution of the parameter.

An example of yield estimation data of P, is shown
in Fig. 6. Specifically, the figure shows P._ in dB rel-
ative to A? of the 2-bit DAC as a function of N and
the static DAC-element errors. The oversampling ra-
tio ranged from 16 to 512, and the static DAC-element
errors were chosen randomly from a normal distribu-
tion with a standard deviation ranging from 0.05% to
2%. Fig. 6a and Fig. 6b show the largest of the small-
est 95% and 5% values, respectively. For example, with
N = 128 = 27 and static DAC-element errors with a
standard deviation of 1%, the data of Fig. 6a predicts
that 95% of all 2-bit DACs have signal-band noise pow-
ers less than —89.2 dB, while the data of Fig. 6b predicts
that merely 5% of all 2-bit DACs have signal-band noise
powers less than —102.6 dB. Thus, 90% of all DACs sat-
isfy —1026dB < P, < —89.2dB.

Yield estimation data of the AXADC conversion
bit-precision is shown in Fig. 7. For the same example as
in the above, the data of Fig. 7a predicts that 95% of all
22d_order AXADCs have conversion precisions less than
14.8 bits, while the data of Fig. 7b predicts that merely
5% of all 2*4-order AXADCs have conversion precisions
less than 13.0 bits. Thus, 90% of all 2°¢-order ALADCs
provide a conversion precision of greater than 13.0 bits,
but less than 14.8 bits.

6. CONCLUSION

Novel results that allow for a theoretical computa-
tion of the PSD of the DAC noise of the 15*-order noise-
shaping DAC originally proposed in [1] have been pre-
sented. The results have been applied in a detailed per-
formance analysis of a 2"-order ALADC employing a
2-bit version of the DAC. It has been demonstrated how
knowledge of the statistics of the static DAC-element
errors can be used to generate IC fabrication yield es-
timation data of the power of the DAC noise and the
overall conversion precision of the ALADC.



REFERENCES

1. I. Galton, “A hardware-efficient noise-shaping D/A

converter,” Proceedings of the IEEE International

Symposzum on Clircuits and Systems, May, 1996.

I. Galton, “Spectral shapmg of circuit errors in dlgltal

to-analog converters,” IEEE Trans. on Circuits and

Systems II: Analog and Digital Signal Processing,

accepted for publication.

. H.T. Jensen, I. Galton, “Yield estimation of a second-
order ALADC employing a noise-shaping DAC,”
IEEE Trans. on Circuits and Systems II: Analog
and Digital Signal Processing, in preparation.

xy[n]

2.

xpinl

Figure 1: The 2-bit noise-shaping DAC.
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Figure 2: (a) The switching block Sy,
of the switching sequence s; . [n].
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Figure 3: (a) The second-order ALADC and (b) its
signal-processing equivalent.
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Figure 6: (a) and (b) Yield estimation data.
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