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Oversampling Parallel Delta—Sigma
Modulator A/D Conversion
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Abstract—Conventional delta—sigma analog-to-digital convert-
ers (AXADC’s) are widely used in low-bandwidth applications
such as high-fidelity audio processing because they offer high-
precision conversion yet are amenable to implementation using
fine-line. VLSI processes optimized for digital circuitry. How-
ever, their oversampling requirement so far has prevented their
widespread application to higher bandwidth applications such
as video processing. This paper extends a recently developed
delta-sigma ADC architecture called the pi-delta—sigma ADC
(IIAXADC) that consists of multiple A modulator channels
operating in parallel without time-interleaving. The extension
developed in this paper allows for oversampling to be com-
bined with parallelism such that an A -channel system with an
oversampling ratio of V can achieve a conversion performance
close to that of a conventional AXADC with an oversampling

ratio of M x N. Thus, for a given conversion precision, the.

architecture offers relaxed oversampling relative to conventional
AYADC’s in return for increased analog circuit area. Moreover,
as will be shown, the IIAYXADC retains much of the robustness of
conventional AXADC’s with respect to nonideal circuit behavior.

I. INTRODUCTION

N APPLICATIONS REQUIRING precise analog-to-digital

(A/D) conversion with bandwidths less than a few mega-
hertz, delta—sigma analog-to-digital converters (AXADC’s)
have enjoyed widespread application [1]. Their popularity
derives from their reduced analog processing and relaxed
sensitivity to analog circuit errors relative to other A/D con-
version approaches. These advantages come. at the expense
of a relatively large amount of digital processing and the
requirement that much of the circuitry must run at clock speeds
that are significantly higher than the A/D conversion rate.
These tradeoffs make them particularly well-suited for imple-
mentation in VLSI processes optimized for digital circuitry
wherein analog accuracy tends to be sacrificed in favor of
increased circuit density and speed.

Typically, ATADC’s consist of a AX modulator followed
by a decimation filter. The A modulator samples the input
signal at many times the Nyquist rate—a process referred to
as oversampling—and performs very coarse A/D conversion
on the resulting narrow-band sequence. Through the use of
coarse D/A conversion and feedback, the quantization'error
introduced by the coarse A/D converter is spectrally shaped—a

process referred to as quantization noise shaping—so that its

power resides primarily outside the signal band. The decima-
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tion filter removes the out-of-band portion of the quantization
error and reduces the output rate to.the Nyquist rate of the
input signal. ,

Oversampling, in conjunction with quantization noise shap-
ing and decimation filtering, thus results in the effect of
high-precision A/D conversion despite the use of coarse A/D
and D/A converters. In particular, 1 b A/D and D/A converters
are often used which have the added benefit that static errors
in their analog levels only affect the gain and offset of the
overall system. Moreover, other types of error originating from
nonideal circuit behavior such as analog circuit noise are at
least partially removed by the decimation filter. Oversampling
also permits the use of simple, low-order analog antialiasing
filters because much of the required antialiasing functionality
can be included in the digital decimation filter.

The primary drawback is that oversampling requires the AY
modulator and part of the decimation filter to operate at a
significantly higher clock-rate than the desired A/D conversion
rate. Therefore, the maximum A/D conversion rate is usually
much lower than the maximum clock-rate for a given circuit
technology. Most approaches to reducing the oversampling
requirement have involved either increasing the order of the
AY: modulator so as to improve its noise-shaping capability,
increasing the number of coarse A/D converter bits, or a
combination ‘thereof. Unfortunately, increasing the order of
the AY modulator without increasing the number of coarse
A/D converter bits generally results in systems that are only
marginally stable and have reduced usable input ranges [2], .
[3] or that are sensitive to component matching errors [4]-[6].
Similarly, increasing the number of coarse A/D converter bits
generally gives rise to systems that are highly sensitive to D/A
converter errors in the AY, modulator feedback paths [1], [4].

Another approach to reducing the oversampling requirement
is to operate multiple AY modulator channels in parallel. To
date, two different classes of parallel AXADC’s have been
proposed. One class is based on time interleaving wherein the
input signal is sampled at the full rate, but most of the AY
modulator processing is performed by M coupled channels
that each operate at an Mth of the full rate [7], 8]. Although

‘this does not eliminate the need for a high-rate sample-and-

hold circuit, it does relax the speed requirements for much
of the circuitry by a factor of M. The parallel AXADC’s
in the other class—referred to as ITAYXADC’s—avoid the
oversampling requirement altogether through the use of multi-
ple nontime-interleaved A modulator channels that process
Hadamard modulated versions of the input signal sampled at
the Nyquist rate [9], [10]. As shown in [9], in addition to
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avoiding oversampling the approach retains many of the ad-
vantages associated with conventional AXADC’s. Its primary

drawback is that it requires significantly more circuit area than

the conventional AYADC. Moreover, although it eliminates
the problems associated with oversampling, it also eliminates
some of its benefits such as the reduced anti-aliasing filter
requirement and attenuation of out-of-band circuit noise.

This paper presents an extension of the IIAXADC that
allows for oversampling as a means of mitigating the above-
mentioned ‘drawbacks. ‘As ‘will be shown, with the proper
choice of Hadamard modulation and filtering, an A/-channel
system with N-fold oversampling performs close to that of a
conventional AXADC with M x N-fold oversampling. For ex-
ample, a four-channel, tenfold oversampling TAYADC with
fourth-order AY modulators is considered in detail and shown
to have a theoretical conversion precision of 18 b. In contrast,
to -obtain ‘this precision using a conventional fourth-order
AYADC would require approximately thirtysixfold oversam-
pling. Furthermore, the digital processing required for- the
example IIAYADC has about the same complexity ‘as that
required for the corresponding A¥ADC; and the two systems
are similarly robust with respect to nonideal circuit behav-
ior. : '

The paper is divided into three main sections. Section I
presents - the architecture of the oversampling ITAYADC.
Section I extends the previously presented nonoversampling
HAYADC theory to allow for oversampling, considers the
performance and complexity of hardware-efficient digital dec-
imation filters and equalizers, presents numerous graphs indi-
cating the quantization error performance as a function of M,
N, and AY. modulator order, and presents expressions for the
additional error caused by arbitrary gain and offset deviations
introduced by nonideal analog circuitry. Section IV applies
the results of the previous section to a detailed analysis of the
four-channel system mentioned above.

II. ARCHITECTURE

The oversampling [IAXADC architecture is shown in
Fig. 1. The structure is related to that of an M-path digital
filter '[11]. On each channel, the analog input sequence
x[n] is modulated by an analog +1 sequence v,[n], AX
modulated, decimation: filtered, and modulated by a digital
+1 sequence wu;[n]. The outputs of the A channels are
summed to produce the IIAXADC. output y[n|. The part
of -the. IIAYADC that contains the analog modulators and
the A3 modulator is referred to as the ITA Y modulator. The
part of the IIAXADC. that includes the decimation filters,
digital' modulators, and the channel summers is referred to
as the decoder.

~The AY. modulators, in prlnc1ple can be of any type
Independent of the type, the output of a AX modulator
can be viewed as the sum of a signal component and a
quantization error component. To simplify the analyzes that
follow, it is assumed that the AY modulators are such that
the signal component is just an [-sample delayed version of
the AY modulator input sequence and that the quantization
error component is well modeled as the output ‘of a filter

x{n}

yn]

thy 0]

Y- (0]

I1A%. Modulator Decoder

Fig. 1. The oversampling IIAY A/D.converter architecture.
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Fig. 2. Example Hadamard modulation sequences for the IATADC with
M =4, N-=3, and ky = 3. The diamonds correspond to v,[n] and the
squares correspond to. ur[n]. The graphs are plotted against time; the tick
marks represent sample-times of the input sequence. Each graph corresponds
to one channel.

N(z) = (1 — 271)¥ driven by white noise. Thus, N(z) is
referred to as the AY modulator nroise filter, P is referred
to-as the order of the A}Y medulator, and S(2) = 7L
is referred to as the AY modulator signal filter. Most of
the multiloop AY modulator architectures as well as the
multistage AY modulator architectures fit this paradigm [1],
[12]. Notably, interpolative AY. modulator architectures .do
not fit this paradigm, but the results of this paper can be
modified without introducing new ideas to accommodate such
AY. modulators.

The decimation filters are identical and perform the function
of a low-pass filter H(z) followed by an N-fold downsampler.
The purpose of the low-pass filters is to remove as much
as possible of the quantization error component of the A
modulators subject to certain restrictions, as detailed in the
next section. The next section also presents FIR low-pass filters
that are efficient in filtering the quantization error component
and have low hardware complexity.

The modulation sequences u,.[n] and v, [n] are derived from
an M x M Hadamard matrix A [13). Accordingly, they
are referred to as Hadamard sequences, and the process of
multiplying by these sequences is referred to as Hadamard
modulation. A Hadamard matrix consists exclusively of plus
and minus ones and has the property that ATA = M1I, where
I is the identity matrix. With a(j, k) defined as the element
in'the jth row and kth column of A, 0 < j,k < M — 1, the
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Hadamard sequences are

ur[n] = a(r,n mod M)

and
veln]=u n+ ko
r — T N
where kg = ZE¥ _ 1 4+ L and J is the length of H(z).

Fig. 2 shows an example of the Hadamard sequences for
M =4, N = 3, and kg = 3. Hadamard modulation is thus a
simple process; for the sequence v,.[n] it requires the capability
of analog sign inversion, and for the sequence u..[n] it requires
the capability of digital sign inversion.

III. THEORETICAL PERFORMANCE

In this section, the performance of the oversampling
ITAYADC is analyzed in detail. Because the nonoversampling
ITAXADC has been presented in [9], the presentation in this
section refers to the results in [9] whenever possible. For
instance, a simple example that explains the heuristics of the
IIAYADC idea is presented in [9], so no similar example is
presented here. Similarly, some of the results in this section

are straightforward extensions of corresponding results in [9],.

so they are simply stated without derivation. However, several
of the results are unique to the oversampling ITAXADC, and
are derived fully.

A. The Overall Signal and Quantization Error Components

As with the nonoversampling IIAXADC, the output of the
oversampling. [IAYADC can be viewed as the sum of an
overall signal component and an overall quantization error
component, i.e.,

yln] = wn] + egln}

where w[n] denotes the overall signal component and e,[n]
denotes the overall quantization error component. Using an
analysis similar to that presented in [9], it can be shown
that w(n] is a linear time-invariant (LTI) filtered and N-fold
downsampled version of the input sequence. In the following,
H'(2) denotes the LTI filter to which z[n] is subjected before
downsampling, i.e., the transfer function from z[n] to w{n]
ignoring downsampling. For the special case where H(z) is a
length-.J FIR filter; a straightforward extension of the analysis
in -[9] leads to

7o iMN+IEN 1

H'(z) = Mz Z Z

i=—T f—;

hlk)z " (1)

where J and N must either both be even or both be odd
integers. The summing limit T' equals [2 ]V; ~ | if J and N are

odd, and T equals |' z N] if J and N are even.

The distortion of w(n] resulting from the roll-off of H’(e’)
can be compensated with an equalization filter placed after the
IIAXADC. As will be shown, a practical equalization filter
can be obtained provided H'(e’*) does not have zeros within
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the interval (— %, %) In this case, the ideal equalization filter
has frequency response

F(e™) = Wl <7 ¥))

_ L
(%)

which, in general, is a noncausal IIR filter with a nonlinear
phase response. A practical equalization filter must have a
frequency response that closely approximates (2) aside from
a delay factor. An example of such a filter is presented in
Section IV.

An important property that is unique to JIAXADC’s rel-
ative to conventional AYADC’s follows from (1). For both
ITAXADC’s and conventional AXADC’s, the purpose of the
low-pass filtering is to attenuate the quantization error as
much as possible without distorting the signal component
beyond repair. For conventional AYADC’s, the low-pass filter
must not have zeros within the interval (— %, %) because it
also filters the input sequence. In the JIAXADC architecture,
however, different filters are applied to the input sequence
and the quantization error components; namely, H'(z) and
H(2), respectively. Notice from (1) that H'(z) is independent
of many of the samples of the impulse response of H(z).
Specifically, the equation indicates that H'(z) only depends
on every length-N band of h[n] symmetric about every M Nth
sample relative to the center sample. Consequently, the low-
pass filter can be chosen to have a considerably narrower
passband than (— %, %), resulting in more efficient filtering
of the quantization error components than in conventional
AYADC’s, while still allowing for signal recovery. This is
demonstrated in the next section.

B. The Equalized Overall Quantization Error Component

A meaningful measure of the [IAXADC quantization error
performance is the power of the overall quantization error
component after perfect equalization, which can be written as

1 ™

P, = o | Sée(ej“’)dw 3)

where S..(e’?) is the power spectral density (PSD) of the
overall quantization error component after ideal equalization.
Thus,

SeE(ejw) = Seqeq (ejw)!F(ejwﬂz C))

where S._.,(e?*) is the power spectral density of the over-
all quantization error component. The IIAYXADC without
equalization can be viewed as a perfectly equalized A/D
converter with quantization error power P, followed by H'(z).
Therefore, P, is a measure of A/D converter performance
that is independent of whether or how accurately the equal-
ization filter is implemented (which depends on the applica-
tion).

To evaluate (3), it is necessary to derive an expression for
Se,e,(€9). This has been done in [9] for the special case of
N =1, and a straightforward generalization of the derivation
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leads to

Seq eq (ejw)

where A .is the quantization step-size of the coarse A/D
converters in the AY modulators. Substituting (5) into (3)
and integrating over the interval (—, 7) eventually yields the
following simplified expression for the power of the overall
quantization error component after equalization

x M=1

0 :

N (3 | (9 F)) PN Pdw. (6)
This expression is used to numerically calculate P. in - the
following subsections.

C. CombT*! Filtering

As is apparent from (6), P. depends on H (ej“’), S0 it 1is
essential to choose channel filters that result in as small a
value of P, -as is practical. The practicality constraint is that
the filters also must be simple to implement in hardware.
As will now be shown, the use of comb” ! filters [14],
[15] results in very small values of P.. Moreover, hardware-
efficient structures with which to implement these filters are
well known [14].

A general form of the comb”t! filter transfer function is

-z i\ 1= =\ P
H(z)“<1—z—1> (1—z—1> ™
where Jy = J1+1 and P+1 = P; + P5. The reason for using
this two-factor form of the comb” ! transfer function is that it
does not place any restrictions on the impulse response length;
filters of any length J can be obtained with the. appropriate
choice of Py, Ps, and Jy. In particular, it is easy to verify that
J = Pl(Jl -1)+P2J1+1.
Fig. 3 shows the dependence of P, in dB relative to A? on
comb®*! filter length for the specific case of a four-channel
ITAYADC with tenfold oversampling and fourth-order AX

modulators (i.e., M = 4, N = 10, and P = 4). The data were "

numerically calculated using (6) with H(e“) corresponding
to (7). As is evident from the figure, P, decreases initially with
filter length, eventually reaching a minimum, P,_,_. Thereafter
it begins to increase. This behavior of the dependency of
P, on comb®*! filter length J can be explained as follows.
First, recall that' P, is the power of the ‘quantization -error
component’ of the equalized IIAYXADC output. For small
values of J; H(e/*) is a poor low-pass filter and a relatively
large amount of quantization error passes through to y[n].
In this case, the gain of F(e’*) is close to unmity, and
therefore does not appreciably affect the overall quantization
error component. As J is increased, H(e’*) increasingly
attenuates the quantization error while the gain’ of F(e?*)

20 i T ! ! i {

Pe (dB)

_mL ............ R b B — T T S _

140 ; ; ; i ; i
50 100 150 200 250 300 350
Comb-filter length

Fig. 3. Dependence of P, in dB relative to A2 on comb” T filter length
for the ‘example four-channel [IAXADC.

remains moderate. The net result is to decrease P.. As J
increases further, signal distortion becomes considerable and
no net reduction of F. is possible because of the large gain
of F(ej“’). At this. point, the minimum value of P, has been
reached. Increasing J further results in a net increase of P,
caused by the ever increasing gain of F(e’*).

The minimum attainable P, for this example is —118 dB
relative to A? when employing the length-248 comb® filter
with transfer function given by (7) for P, = 3, P, = 2,
J1 = 50, and Jo; = 51. As a comparison, the power of
the quantization error introduced by a conventional AYXADC
with a fortyfold oversampling, fourth-order AY modulator is
approximately —124 dB relative to A2, as can be verified
from the analysis presented in [1].

Fig. 4 shows F._, as a function of M and N on log base-
two scales for AY modulators of orders two through six.
Each plot corresponds to different A3 modulator. orders. Each
plotted line corresponds to the loci of equal values of P,
as a function of log, M and log, N. As can be inferred from
the data, for every doubling of the oversampling ratio, P._, -
decreases by (6P + 3) dB which corresponds to (P.+ 1)
additional bits of conversion precision [16], independent of
the number of channels in the architecture. This result is
analogous to the performance increase of AXADC’s when
doubling the oversampling ratio. As can also be inferred from

“the figures, for every doubling of the number of channels,

F. .. decreases by 6P dB, corresponding to F additional bits
of conversion precision, independent of oversampling ratio.
Thus, aside from a 3 dB difference, the performance increase
resulting from doubling M is equivalent to the performance
increase resulting from doubling N. This difference of 3 dB is
related to the doubling of the power of the overall quantization
error component that results when the number of uncorrelated
quantization error components added in the decoder is doubled,
as further described in [9].

The above findings result in the conclusion that an N-fold
oversampling, M-channel IIAY.ADC performs equivalently
to an' M x N-fold oversampling AYADC, aside from a
% log,(M)-b penalty associated with the parallel structure.
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Fig. 4. Minimum attainable P. in dB relative to A% when using comb®+1 low-pass filters versus M and N on log base-two scales of the IIATADC
with (a) second-order, (b) third-order, (c) fourth-order, (d) fifth-order, and (e) sixth-order AY¥ modulators.

Although the filters used to generate the data of Fig. 4 were
of the general form (7), typically a performance equal or close

to P can be obtained using a comb®t! filter with the
simpler transfer function
1— z~kN P
Hz)= | ——— 8
®= (=) ®

where k is a small positive integer. This property holds because
the dependence of P. on comb® ! filter length exhibits a “flat
region” in which P, is approximately constant and equal to
P, .., allowing for the use of a filter of the form (8) that
happens to lie within this region. For the example four-channel
IIAYADC, it is evident from Fig. 3 that the “flat region”

occurs for the filters with lengths between 180 and 300. In
particular, a P, of —117 dB relative to A? is obtainable with
the length-196 filter

&
} — p=4x10\®
()

i.e., a filter of the form (8) where k = 4.

H(z) = ©

D. Equalizing the IIAY ADC Output

For applications in which the roll-off associated with H'(z)
is not a problem or in which equalization can be incorpo-
rated into subsequent signal processing stages, it may not be
necessary to actually implement the equalization filter. For

i
By
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other applications, where signal equalization must be part of
the ADC, an equalization filter may be cascaded with the
IHAYADC. Although the ideal equalization filter F'(e?*) of
(2) is a noncausal IIR filter, a delayed version of it can
be well-approximated using a causal FIR equahzatlon filter
().
Applying the Parks-McClellan algorithm [17], (ejw) can
be designed optimally in the sense that the overall signal filter
H' (77 F' (7% (10)
is equiripple and linear phase. As demonstrated in the next
section, the ripple decreases with increasing filter length, and
equalization filters (€7 that result in arbitrarily small peak
ripple can be designed.

E. Sensitivity fo- Nonideal Circuit Behavior

In practice, nonideal circuit behavior reduces the conversion
precision below that predicted by the theoretical analysis
presented above. As discussed in [9], it is convenient to distin-
guish between two types of errors caused by nonideal circuit
behavior: those that are common to conventional ASADC’s,

and those that are unique to the IIAXADC. This allows

existing results concerning nonideal circuit behavior in con-
ventional AXADC’s to be applied directly to IIAXADC’s.
Specifically, the error arising from nonideal circuit behav-
ior can be considered the sum of two subcomponents: the
conversion error subcomponent, denoted as eax[n], and the
reconstruction error subcomponent, denoted as er[n]. The
conversion error subcomponent is the result of all types of
nonideal AY modulator performance except for AY modulator
signal component gain and offset errors. The reconstruction
error subcomponent is the aggregate of all A/D conversion
errors arising from nonideal circuit behavior that are not
part of the conversion error subcomponent such as channel
gain and offset errors, Hadamard level errors, etc. With these
definitions, the IIAXADC output can be written as

yln] = win] + e4[n] + eax[n] + enln].

Each channel of a ITIAYXADC contains the equivalent of a
conventional AYADC with a low-pass filter appropriate for an
oversampling ratio of close to M x N. Thus, the component
of the sequence just prior to Hadamard modulation in the
decoder arising from nonideal A% modulator behavior has ap-
proximately the same power as the corresponding component

* of the output of a conventional AXADC with oversampling
ratio M x N. In general, the M. such error components are

correlated. However, they originate from sources located after

the analog Hadamard modulators in the IIAY modulator, so
they are decorrelated by the subsequent digital Hadamard
modulators. As a result, they add in power_, not amplitude;
the power of the conversion error subcomponent is simply
the sum of the powers of the low-pass filtered errors from
the M nonideal AY. ‘modulators. It follows that the power of
eax[n] is approximately equal to the power of the error arising
-from nonideal circuit behavior at the output of a conventional
AYADC with oversampling ratio V.

. Fig. 5.

4 [n]

)

Signal equivalent cifcuits of the rth channel for (a) ideal circuit
behavior and (b) nonideal circuit behavior.

Unlike the conversion error subcomponent, the reconstruc-
tion error subcomponent er[n] does not have a direct analogy
in conventional AYXADC’s. It results from nonideal analog
Hadamard modulator behavior and from mismatches among
the signal component gains and offsets of the AY modulators.
Fig. 5(a) shows the ideal processing performed on the input
sequence by each channel neglecting quantization error and
Fig. 5(b) shows the same thing except with all possible error
sources that contribute to ey[n]. As shown, (B represents
an offset prior to analog Hadamard modulation, a1, and
Bo, represent the amplitude and offset, respectively, of the
Hadamard sequence, and «, and (33 represent the gain and
offset, respectively, of the AY. modulator. In the general case,
ai,, e, , B, P2, and B, could all be time-varying functions.
It follows that all circuit errors specific to the IIAYXADC can
be included in the equivalent circuit of Fig. 5(b). Together,
these circuit errors give rise to ep[n].

From Fig. 5(a), it follows that the ideal signal component
of the output of the rth AY modulator is

z[n — Llv.[n — L].

However, Fig. 5(b) indicates that with nonideal circuit behav-
ior corresponding to erg[n], the signal component of the output
of the AY. modulator is .

(1+ar)z[n ~ Llv.[n — L] + byz[n — L] + c,ve[n — L] + d.,

Where ar = oy e, — 1, b, = s B, ¢ = a1, a9 1., and
dr = a2, 031,02, + B3,
A straightforward extension of the analysis presented in [9]
leads to the following expression for the reconstruction érror
subcomponent

M oo
en[n] = Z a,v-[nN — klu,[n] Z B [k]lz[nN — ]
r=0 =—oo
M ' *
+> beugln Z K [Kle[nN — k]
r]:wO k=—oc0
+ Z Crvp[nN — klu,[n Z B[k
r=0 =—00
M oo *
+ > detigln] > H[E] (11)
r=0 k=—cc

Thus, en[n] is linear in each of ‘a,,bs,c., and dy, from
which it follows that the effect of each term on ep[n] can
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x{n}

N nl

F(z)

Fig. 6. The example TIAXADC architecture with an equalization' filter
following the output. -

be considered separately and summed to obtain the net effect.
This is demonstrated for the design example presented in the
next section. '

From (11) it is evident that the terms associated with ¢, and
d, do not depend upon z[n|. Indeed, in the case of the design
example presented in the next section, the term associated with
¢, reduces to a dc offset, and the term associated with d,.
reduces to the sum of a dc offset, a half-rate sinusoid, and a
full-rate sinusoid.

IV. A DESIGN EXAMPLE

A. The Example ITAXADC Parameters

The example IIAXADC to be considered in detail in this
section is shown followed by an equalization filter in Fig. 6. It
is a four-channel system with tenfold oversampling and fourth-
order AY. modulators (i.e., M =4, N = 10, and P = 4). In
all the calculations and simulations performed in this and the
next section, the AY. modulators are taken to each consist of
two cascaded second-order double-loop AY. modulators [1],
[5] each with three-level A/D and D/A converters [6]. The
low-pass filters have the transfer function given by (9).

Because of the tenfold oversampling, there are two system
clock frequencies. These will be referred to as the input
sample-rate f; and the output sample-rate f,, respectively.
In this example, it follows that f; = 10 - f,. (for example,

.reasonable values might be f; =20 MHz and f, = 2 MHz).
All of the circuitry corresponding to the portion of Fig. 6 to the
left of the tenfold downsamplers is clocked at the input sample-
rate and all that to the right of the tenfold downsamplers is
clocked at the output sample-rate.

The Hadamard sequences are generated by the three length-
4, f,-rate shift registers. Only three shift registers are neces-
sary because the Hadamard sequence for the top channel in
Fig. 6 is the all-ones sequence. The timing is such that each
analog Hadamard modulator multiples 10 samples of z[n] by
one shift register sample during the same time that each digital
Hadamard modulator multiplies one decimation filter- output
sample by one shift register sample.

The magnitude responses associated with H(z) and H'(z)
are shown in Fig. 7(a) as solid and dashed curves, respectively.
The characteristic property of the [TAYXADC that the passband
of H(z) can be made considerably narrower than that of H'(z)
is evident from the figure. In this case, the lowest frequency
zeros of H(e#*) and H'(e?“) occur for w = + 75 radians and
w = i% radians, respectively.
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Fig. 7. (a) Magnitude response in dB-of the low-pass filter H (e7*) (solid
line) and the signal filter H'(e/%) (dashed line). (b) Maximum ripple in
percentage of the ideal IIAXADC overall signal filter passband: amplitude
versus equalization filter length. (¢) Magnitude response in dB of the length-81
equalization filter. (d) Equiripple magnitude response of the overall signal filter
shown for the frequency range (0, T) radians.

The dependence of the peak passband rippie of the overall
signal filter on the length of the optimal equalization filter
is shown in Fig. 7(b). The datum for each filter length was
obtained by generating an optimal equalization filter of the
desired length, as outlined in the previous section, and then
finding its maximum ripple value. As an example, the mag-
nitude response of a length-81 optimal equalization filter is
shown in Fig. 7(¢), and Fig. 7(d) shows a magnified view of a
portion of the passband magnitude of the corresponding overall
signal filter. As expected, the overall signal filter magnitude
response is equiripple. Its peak ripple is 0.004% of the ideal
passband value, corresponding to 0.0003 dB.

B. The Ideal A/D Conversion Performance

Fig. 8 shows both calculated and simulated data for the
example IIAY.ADC. Fig. 8(a) shows the theoretical PSD of
the overall quantization error component after equalization,
See(e7), calculated using the results of the previous section.
Fig. 8(b) shows the estimated PSD of the equalized output
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Fig. 8. (a) Calculated PSD in dB relative to A2 of the equalized eq[n] of
the example ITAXADC as found by evaluating (5). (b) PSD of the equalized
simulated output the example IIAXADC corrésponding to a s1nus01dal input
and ideal circuit behavior.

of the IIAXADC as obtained by computer simulation for a
sinusoidal input sequence of amplitude 0.40A and frequency
18072547r radians. The spectral estimation was performed by
averaging 15 periodograms correspending to half-overlapping
Hanning windowed length-216 -segments of the simulated
IIAXADC output, and scaling the result by |F(e*)|? to
achieve equalization. Because the input sequence was a si-
nusoid, it is easy to visually separate the equalized overall
signal component—the large spur—ifrom the equalized overall
quantization error component—everything else—in the data
shown.in Fig. 8(b). With this in mind, it is evident from Fig. 8
that the theoretically calculated PSD matches the PSD obtained
by simulation extremely well. For instance, numerically in-
tegrating the two sets of PSD data to obtain values of P,
corresponding to theory and simulation yield —118 and —117
dB, respectively, relative to A2,

Simulations indicate that a conservative estimate of the
usable input range of the fourth-order AY. modulators with
3-level quantizers is (—0.4A,0.4A). Therefore, the obtained
value of P, corresponds to an A/D conversion precision of
18 b [15].

C. Digital Hardware Complexity

The example IIAYXADC decoder employs 4 comb® filters
and 3 adders to sum the channels. A hardware efficient
structure that implements the functionality of the comb® filter
with. transfer function given by (9) followed by a tenfold
downsampler is shown in Fig. 9 [14]. Evidently, each filter
requires 5 f;-rate adders and 5 f,-rate adders. Referring the
rate of additions to f; (i.e., one unit of time is considered to be
1/£5), this corresponds to 5.5 additions per unit time (APU’s).
Furthermore, 20 delay elements are required. Considering all
4 channels, the decoder requires a total of 22.3 APU’s and 80
delay elements. The example equalization filter is of length
81 with symmetric coefficients. Therefore, the implementation
requires § APU’s, 4 multiplications per unit time (MPU’s),
and 80 delay elements.

DT TP O
[ERERERARALUE SF gr av v

Fig. 9. A commonly used hardware efficient structure that performs the
function of the comb® transfer function given by (9) followed by tenfold
downsampling in the example IIAXADC.

It follows that the total requirement for the decoder and
equalization filter is 30.3 APU’s, 4 MPU’s, and 160 delay
elements. By comparison, the corresponding digital hardware
complexity for a conventional fourth-order AYX.ADC [5] is
58.42 APU’s and 12.3 MPU’s where, to facilitate comparison,
a unit of time has been taken to be one-tenth of the reciprocal
of the A/D conversion rate. ‘

It follows, in this case, that the digital complexity-of the
IIAYADC actually is lower than that of the corresponding
AYADC. In the general case, all M of the channel filters
in a IIAXADC together tend to require approximately the
same amount of digital processing as the first stage of the
decimation filter typically used in a conventional AXADC
with comparable A/D conversion performance. This occurs
because even though the IIAXADC requires M times as many
filters as the conventional AXADC they run at approximately
an Mth of the rate of the first-stage filter in the conventional
AYADC.

D. Nonideal Circuit Behavior

Recall from the previous section that only the two terms of
(11) corresponding to a, and b, depend on the input sequence.
It can be verified from (11) that for this example system,
the error term- corresponding to ¢, reduces to a dc offset,
and the error term . corresponding to d, reduces to the sum
of a dc offset, a sinusoid -of frequency f,/2 (i.e., a scaled
version of the sequence --:1,—1,1,~1,:.+), and a sinusoid
of frequency f,/4 (i.e., a linear combination of the sequence

++0,1,0, 1,0, - and its one-sample shifted counterpart).

Figs. 10 and 11 present simulation data that demonstrate
the effect of the four terms of (11) on the spurious-free
dynamic range of the equalized example IIAXADC -out-
put and the power of e,[n] + en[n], respectively. Recall
from the previous section that each of these: four terms
are affected only by the set of M wvalués- corresponding
to one of ar,b.,c., or d,.. -Thus, for each plot in both
figures, only one' set of these values was nonzero, thereby
isolating the effect of each of the four terms in (11). The
data were generated by simulating ITAYXADC’s wherein these
nonzero values were chosen randomly within the ranges of
+1078A, £107°A, £107%A, +1073A, and +1072A. Each
point type -+, *, o, or X, corresponds to a different IALADC
simulation in which the random values ‘were chosen with
a different random number seed. The solid lines represent
averages of the plotted data.

The data of Figs. 10 and 11 indicate that the error- is not
highly sensitive to the values of «, and b, and is independent
of the values of ¢, (which makes sense because the error
term corresponding to ¢, is simply a dc offset). For example,
the data indicate that provided the values of a, and b, are
within about 1072A then the corresponding spurious-free
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dynamic range is greater than 100 dB and the noise power is
below —100 dB relative to A2. The resulting A/D conversion
performance for the example system is about 16-b. This
requires about + 0.1% gain matching and analog Hadamard
level matching. v
Unfortunately, the error is quite sensitive to the values of
d,.. For example, to maintain.the 16-b level of performance
mentioned above, the values of d, must be within about
+5-107®A. This corresponds to AY modulator offsets that
are less than about 5:10~6A. However, in most cases it should
not be necessary to actually achieve such small offsets for the
following two reasons. First, many applications may not be
sensitive to the error introduced by the d, error term because
it is independent of the input sequence and consists of only
a dc term and two simple sinusoid terms. For example, a
digital notch filter subsequent to the A/D’ converter can be
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used to remove this error at the expense of a partial loss of
useable bandwidth. Second, if necessary, the amplitude and
phase of the two tones can easily be digitally measured during

" an autocalibration phase of operation and the tones can be

digitally subtracted from the IIAY.ADC output during the
normal phase of operation. For example, an autocalibration
phase starting at time n = 0.can be performed by setting the
input sequence to zero and calculating the values A, By, and
Bg defined as

24

Y (=L*ylk],

k=21
24

Br = % S cos(rk/2)ylH]

k=21

A=

| =

and
24

Bo = % S sin(rk/2)ylk]

k=21 :
Then, the digitally corrected output during the normal phase
of operation is
ye[n] = y[n] — A(—1)" — By cos(wn/2) — Bgsin(rn/2).

Both the cos(rk/2) and sin(#k/2) sequences consist of only
the values {—1,0, 1}, so the digital complexity of this scheme
is very low. Only four samples of each of the sequences
(—=1)*y[k], cos(nk/2)y[k], and sin(rk/2)y[k] are necessary
because, as easily can be verified, they are all periodic with
period-4 and the goal is to measure their dc components.
The  whole ' autocalibration- phase requires 24 - f,-rate clock
periods. The first 20 periods are necessary for the channel
filters to settle (recall that the channel filters have length-196
and the oversampling ratio is 10), and the remaining 4 periods
are necessary to perform the measurement. As demonstrated

~ below, the accuracy of the system after autocalibration is

essentially as high as would have been achieved had the values
of d, been zero. ‘

Fig. 12 shows the estimated PSD’s of the simulated equal-
ized output of the example IIAXADC with nonideal circuit
behavior. The parameters for the spectral estimation  were
the same as for Fig. 9(b). For Fig. 12(a), the circuit errors
were chosen so as to obtain random values of a, and b,
to within £1072A with ¢, = d, = 0. For Fig. 12(b),
ar,b., and d, were chosen randomly to within +1072A
with ¢, = 0 (recall that the term corresponding to ¢, is
simply a dc offset). ‘A comparison of the figures reveals that
the term of ep[n] involving d, consists of a dc offset plus
sinusoids of frequencies f,/4 and f,/2, as expected. Fig. 12(c)
shows simulation data with the parameters used to obtain the
data in Fig. 12(b) except that the autocalibration scheme and
subsequent digital correction described above was employed.
As expected, the corrected system performs as well as the
system with d,, = 0 for 0 < r < 3, except for thedc offset.

V. CONCLUSION

The IIASADC architecture, originally presented as a
Nyquist rate A/D converter architecture, has been extended
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Fig. 12 (a) PSD of the equalized simulated output of the example
IIAXADC with a sinusoidal input and nonideal circuit bebavior corre-
sponding to randomly chosen values of a, and b, to within +10~2A while
¢r = dr = 0. (b) Same as (a) except d,- randomly chosen to within £1072A,
(c) Same as (b) except with autocalibration and subsequent digital correction.

to allow for time-oversampling in return for increased
precision and reduced analog processing. Through extensions
of the theory developed previously for the nonoversampling
TTAYADC and through computer- simulations, it has been
shown that an M-channel system with N-fold oversampling
has performance close to that of a conventional ALADC with
M x N-fold oversampling.- The hardware complexity of the
digital filtering. circuitry of the ITIAXADC has been shown
to be comparable to that of the corresponding, conventional
AYADC. The error suffered by the ITATADC as a result
of nonideal circuit behavior has been characterized as the
sum of two components: a component of the type suffered by
conventional AXADC’s and a component that is unique to the

IIAYADC. An explicit expression for the latter component
has been - presented ‘and supported by simulation data. A

four-channel IIASADC with fourth-order AY modulators
and. tenfold oversampling has been considered in detail as a
design example. The system hag been shown to.achieve 18-b
A/D conversion performance under-the assumption of -ideal
circuit behavior, and 16-b A/D. conversion performance with
0.1% gain matching errors. - '
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