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Delta-Sigma Modulator Based A/D
Conversion without Oversampling

Tan Galton, Member, IEEE, and Henrik T. Jensen, Student Member, IEEE

Abstract— Although AY modulators are widely used for low
to moderate rate analog-to-digital conversion, the time oversam-
pling requirement has discouraged their application to higher
rate converters. This paper presents an architecture wherein
multiple AY modulators are combined so that neither time
oversampling nor time interlacing are necessary. Instead, the
system achieves the effect of oversampling from the multiplicity
of AY modulators. For a system containing M P'—order AY
modulators, approximately P bits of accuracy are gained for
every doubling of M. A major benefit of the architecture is that
it retains much of the robustness of the individual AY modu-
lators to nonideal circuit behavior. As a result, the architecture
offers the potential of integrating high-precision, high-speed A/D
converters together with digital signal processing functions using
VLSI processes optimized for digital circuitry. The paper presents
the general architecture and provides a performance analysis
closely supported by computer simulations.

1. INTRODUCTION

RIMARILY because of advances in VLSI technology,

oversampling AY modulator A/D converters have be-
come popular in applications requiring high precision. Al-
though they employ complicated digital circuitry, their rela-
tively simple analog circuitry tends to be robust with respect
to nonideal circuit behavior [1]. They generally do not require
the trimmed components necessary in conventional high-
precision A/D converters. Consequently, high-precision AX
modulator A/D converters can be implemented using high-
density VLSI processes optimized for digital circuitry. This
allows integration of the A/D converter with other digital
signal processing components. Such integration gives rise to
smaller, more reliable, and less expensive systems.

One of the drawbacks of the approach is that time over-
sampling is required. Typically, to achieve a given precision,
the input sample-rate of a AY modulator A/D converter must
be significantly higher than the A/D conversion rate. For
A/D conversion rates below a few MHz, the oversampling
requirement has generally not been a significant problem.
However, in higher-bandwidth applications such as video
processing and digital radio the oversampling requirement has
been prohibitive [1].

This paper presents a AY modulator-based A/D converter
architecture, referred to as the IIAY modulator A/D con-
verter, that avoids the time oversampling requirement, but
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retains many of the attractive properties of conventional AX
modulator A/D converters {2], [3]. The system achieves the
effect of oversampling from the use of multiple noninterlaced
AY. modulators. For example, as will be shown, a system
consisting of 16 sixth-order AY modulators with three-level
quantizers in which all components are clocked at the A/D
conversion rate can ideally achieve greater than 16 b of A/D
conversion precision. In general, for a system containing M
Pth-order AY modulators, approximately P bits of accuracy
are gained for every doubling of M.

The remainder of the paper is divided into four main
sections. Section II presents the A/D converter architecture.
Section III provides a heuristic explanation of how the A/D
converter works. Section IV in conjunction with two ap-
pendices presents the theory behind the A/D converter, and
quantifies the ideal performance of the system. It also presents
a design example with simulations and a hardware complexity
estimate of the system. Section V presents an analysis of
the A/D conversion error that can arise from nonideal analog
circuit behavior and presents a modification of the architecture
that digitally compensates for the error.

II. ARCHITECTURE

The ITAY. modulator A/D converter architecture is shown
in Fig. 1. It consists of M parallel channels that all operate
on the input sequence, z[n]. On each channel, the input
sequence is multiplied by a channel-specific +1 sequence,
delta-sigma modulated, lowpass filtered, and multiplied by
a delayed version of the channel-specific £1 sequence. The
outputs of the channels are added to produce the overall output,
y[n].

The +1 sequences are called Hadamard sequences and are
denoted in Fig. 1 as u,[n], 0 < r < M — 1. They are derived
from an M x M Hadamard matrix, H.! Specifically, u.[n] is
just the rth row of a Hadamard matrix repeated over and over
again. Thus,

&)

where m/[j, k] is the element in the jth row and kth column
of H.

Because Hadamard sequences are £1 sequences, each mul-
tiplier shown in Fig. 1 need only change the sign of its input
depending upon whether the current value of the Hadamard

sequence is one or minus one, respectively. For the bank
1995 IEEE
! A Hadamard matrix, H, consists exclusively of plus and minus ones and
has the property that HT H = MT where I is the identity matrix [4]

u[n] = m[r,n mod M],
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Fig. 1. The IIAY modulator A/D converter architecture.

of multipliers prior to the AY modulators, this requires the
capability of analog sign inversion. For those following the
H(z) filters it requires the capability of digital sign inversion.
In general, the multipliers on one of the channels can be
eliminated because one of the Hadamard sequences is typically
an all-ones sequence.

The use of Hadamard sequences requires that A be chosen
such that there exists an M x M Hadamard matrix. A sufficient
condition for this to occur is that M be a positive power of two.
Several simple circuits for generating Hadamard sequences
when M is a power of two have been presented [5]-[8].
Hadamard matrices also exist for which M is not a power of
two. A necessary (and conjectured to be sufficient) condition
for an M x M Hadamard matrix to exist is that M be a
multiple of four, and Hadamard matrices for every multiple of
four less than 428 are known [4].

As in conventional AY modulator A/D converters, various
AY modulators can be used in the IIAY. modulator A/D con-
verter, but the specifics of the application and the constraints of
the circuit technology determine which type of AY: modulator
is best for a given application. The channel filters, H(2),
depend on the type of A modulators used. As will be shown,
optimal channel filters can be found, but for Pt"-order AY
modulators, hardware-efficient comb®*! filters work almost
as well.

Throughout the paper, the following terminology is used.
The portion of the system containing the analog +1 multipliers
and the A3 modulators is referred to as the ITAX modulator,
and the portion containing the digital filters, digital +1 mul-
tipliers, and channel summers is referred to as the decoder.
The full TIAY modulator A/D converter is referred to as
the ITAXADC. The process of multiplying by a Hadamard
sequence is referred to as Hadamard modulation, and the
multipliers are referred to as Hadamard modulators.

1. HEURISTICS

In general, the output of a AY modulator is a coarsely
quantized sequence (rarely more than a few bits) that, in the
absence of circuit errors, can be viewed as the sum of a signal

e(lr[n]

E ®

Fig. 2. The AXY modulator quantization error model.
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Fig. 3. The IIAYADC quantization error model.

component and a quantization error component. Therefore, as
depicted in Fig. 2, a AY, modulator is ideally equivalent to
a linear time-invariant (LTI) filter, shown as S(z), plus an
additive quantization error source, shown as e,_[n]. The signal
component is x.[n] * 5[n], where s[n] is the impulse response
of §(z), and the quantization error component is e, [n)].

With this AY modulator model, the ITAXADC can be
viewed as a linear system to which the M AX modulator
quantization error components are added as depicted in Fig. 3.
Accordingly, the IIAXADC output is a digital sequence that
is the sum of an overall signal component and an overall
quantization error component. That is,

y[n] = win] + e[n],

where w[n]| denotes the overall signal comporent and e[n]
denotes the overall quantization error component. By super-
position, the overall signal component can be calculated by
considering the quantization error components from the AY
modulators to be zero.

As an example, consider a four channel IIAYXADC with
HIR filters of length-7. For simplicity, suppose that the AX
modulators have S(z) = 1, so the overall signal component
can be calculated by considering the ITAY. modulator without
the AY modulators. Fig. 4 shows the IIAXADC at time n =
n’ with the AY modulators omitted. From top to bottom in the
figure, the first four boxed subsystems are the H(z) filters, and
the fifth boxed subsystem generates the Hadamard sequences
for channels 1-3 (the Hadamard sequence for channel-0 is an
all-ones sequence).

As is evident from the values in the channel-0 H(z) shift
register, the value of z[n] at time n = n’ is 7, and the previous
six input values were 6, 5, 4, 3, 2, and 1, respectively. Notice
that the values in the other H(z) shift registers have these
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Fig. 4. An example of the processing performed by a four channel
IIAYADC in the absence of quantization error.

same magnitudes because the Hadamard sequences are +1
sequences. The Hadamard sequences in the decoder happen to
all be positive at time n = n/, so w[n’], is just the sum of all the
H(z) outputs. That is, w[n'] is the sum of the first taps of the
four shift registers times A[0] plus the sum of the second taps
of the four shift registers times ~[1] and so on. However, as is
evident from the figure, only the fourth taps of the four shift
registers add to a nonzero number, so w[n'] = 4-h[3)z[n’—3].

Now consider the system of Fig. 4 at the next time instant,
n = n’ +1. Bach H(z) shift register will be shifted one to the
right, and its first tap will be loaded with z{n’+ 1] because each
Hadamard sequence in the IIAY. modulator will be positive.
The Hadamard sequences in the decoder will not all be
positive, so w[n’+1] is not just the sum of all the filter outputs.
Instead, it is the sum of the zeroth and third filter outputs minus
the sum of the first and second filter outputs. From the figure, it
is easy to verify that w[n/+1] = 4-h[3]z[n’+1-3]. Continuing
in this fashion it is evident that w[n] = 4 - h(3]z[n — 3] for
all n, so the overall signal component is simply a delayed and
scaled version of the input sequence. A particularly important
feature of this system is that the overall signal component
only depends on the center coefficient of H(z), namely h[3].
Even though the signal component from each AY modulator
is filtered by H (2), the Hadamard modulation evidently causes
the effect of the filtering to be “undone.”

The overall quantization error component, on the other hand,
depends on all the coefficients of H(z). This is because each
AY. modulator quantization error component is introduced just
prior to H(z), so the overall quantization error component
is the sum the M AY modulator quantization error com-
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ponents after they have been filtered by H(z) and digitally
Hadamard modulated. Since the AY modulator quantization
error components were not Hadamard modulated prior to
filtering, the effect of the filtering is not undone as in the
case of the AY modulator signal components. If the AYX
modulator quantization error components have most of their
power at high frequencies, the use of lowpass H(z) filters
can result in a significant attenuation of the quantization error
contributed by each channel. As discussed in the next section,
the quantization etror contributed by each channel is typically
uncorrelated with that of the other channels, so the power
of the overall quantization error component is just M times
the power of the quantization error contributed by one of the
channels.

One obvious limitation of the IIAXADC of this example is
that the filters only have length-7. Indeed, if longer filters were
used, it would be possible to better attenuate the quantization
error from each channel, although the overall signal compo-
nent, in general, would not be simply a delayed version of the
input sequence. For instance, if length-11 filters were used,
an extension of the argument above indicates that the overall
signal component would have the form w(n] = 4(h[3]z[n —
3] + h[7]z[n — 7]). In this case, the TAXADC would act as
an LTI filter with transfer function 4z~3 (h[3] + A[7]z™*) with
respect to the input sequence. This filtering can be avoided
by constraining H(2) such that h[7] = 0 and h[3] # 0 (or
vice versa) and choosing the nine remaining coefficients so
as to minimize the power of the overall quantization error
component. Of course, the approach is not limited to length-
11 filters. Filters of any length can be used, and for each length
a method of optimally choosing the unconstrained coefficients
for various AY modulators is presented in Appendix A.
The minimum overall quantization error component powers
obtainable as a function of filter length for various A
modulators are calculated in the next section. As might be
expected, increasing the filter length continues to reduce the
power of the overall quantization error component, but a
point of diminishing returns is reached at filter lengths beyond
approximately 2P M where P is the AY modulator order and
M is the number of channels. As will be quantified shortly,
these optimal filters give rise to highly attenuated quantization
error, but require noninteger coefficients; at lengths of 2PM
they may be prohibitively expensive to implement with current
circuit technology.

An alternate approach is to use so-called comb” ! filters
for which extremely hardware-efficient recursive structures
are known. As will be shown, they result in quantization
error attenuation that is almost as good as that obtainable
with optimal filters. However, their impulse responses are not
constrained in the fashjon described above, so they result in
an overall signal component that is an LTI filtered version of
the input sequence.

In some applications, filtering of the overall signal com-
ponent may not present a problem provided the filter has
no zeros near the umit circle. For example, such filtering
imposed by the A/D converter in a spectrum analyzer would
not pose a significant problem because the output spectrum
estimate could be adjusted digitally to account for the filtering.
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Alternatively, an equalization filter following the HAYXADC
could be used to compensate for the filtering. For instance,
in the example above, provided none of the zeros of h[3] +
h[7]z~* are on the unit circle, the overall signal component
could be converted to a delayed version of the input sequence
with arbitrary accuracy (as a function of filter complexity).

IV. THEORETICAL PERFORMANCE

A. The Overall Signal Component

As shown by example in the previous section and proven
in Appendix A, the overall signal component is an LTI
filtered version of the input sequence. That is, the overall
signal component can be written as w(n| = h'[n] * z[n], or,
equivalently, W(z) = H'(2)X(z). A general expression for
h'[n] as a function of the channel filter impulse response,
h[n], the AY: modulator signal component impulse response,
s[n], and the delay, ko, between the Hadamard sequences
in the IIAY modulator and those in the decoder is derived
in Appendix A. However; most of the discussion below is
restricted to the case where the AY modulators only impose a
delay on their signal components, the channel filters are odd-
length FIR; and kg is a specific function of AY modulator
delay and channel filter length. Specifically, s[n] = §ln — L]
where L is an integer, hln] = 0 when n < 0 or n > N where
N is an odd integer, and ko = &L + L.

With these restrictions, it follows from Theorem Al of
Appendix A, that

7 —k <t N-1 -mM
H(Z)ZMZ 0 Z h[——2—~+mM]z m s (2)
. om=—K

where K = [%j&—lJ Therefore, win] only depends on every
[

Mt value of h n). In this sense, the effect of the filtering
performed by H(z) on each channel is at least partially
negated. If H(z) is further restricted such that

4, whenn ==L
hn] =
0, whenn=2=4mM,m=0%+1,.--£ K
(3)
then it follows that w[n] = =z[n — ko] so the effect of

the filtering performed by H(z) is completely negated. The
coefficients not specified by (3) have no effect on the overall
signal component, so they may be chosen to minimize the
power of the overall quantization error using the results
presented in Appendix B.

Alternatively, comb?*! or other types of filters that are
not constrained according to (3) but are perhaps simpler to
implement than the optimal filters of Appendix B can be used.
In such cases H'(z) is not a simple delay, but so long as it does
not have any zeros on the unit circle an equalization filter with
a frequency response that approximates (a delayed version of)

1

K
M 3 h[B5 4 mM)emiomn
m=—K

F(e¥) = C))

can be used to compensate for the filtering performed by the
IIAXADC.

B. The Equalized Overall Quantization Error Component

A meaningful measure of the IIAXADC quantization error
performance is the power of the overall quantization error
component after equalization, which can be written as

_1 S (ei® jwy|? 5

_ﬂ/ e (7) | F(e™) " do, ®)

—T

where S..(e’*) is the power spectral density of the over-
all quantization error component.? When h[n] satisfies (3),
|FP(e7)| = 1 so P. is just the power of the overall quantization
error component. When h[n] does not satisfy (3) the overall
signal component is not just a delayed version of the input
sequence. In such cases, the IIATXADC without equalization
can be viewed as a perfectly equalized A/D converter with
quantization error power P, followed by H'(z). Therefore,
P, is a measure of A/D converter performance that is inde-
pendent of whether or how accurately the equalization filter is
implemented (which depends on the application).

To evaluate (5), it is necessary to calculate S, (e/*). From
Fig. 3 it follows that

M-1
ur[n — koler[n],

(6)

r=0

where e,[n] = e, [n]xh[n] is the quantization error contributed
by the 7" AY modulator as measured at the output of
H(z). The autocorrelation of e[n] is defined as R..[k] =
E(e[n]e[n + k]). Substituting (6) into this definition and in-
terchanging the expectation and summations results in
M—1M-1 ‘
K=Y " urln—kolug[n—ko+kE(e[nleg[n+k]).
7=0 ¢=0
)
It is shown in [2] that for many of the known A modulators
and most practical input sequences that do not overload the
AY modulators, e,[n] and eq[n+ k] are uncorrelated when r

g, and R, . [k], the autocorrelation of e.[n], is independent
of r. It follows that (7) reduces to

Ree[k] = MCy KR, [K], (8)
where

M Mzur

r=0

ko’urn—ko—l—k]

From the definition of the Hadamard sequences, Cys[k] can
be written as:

Cralh] = { 1 if k is a multiple of M ©

0 otherwise,

2 Throughout the paper, the input sequence, z[n], is assumed to contain an
arbitrarily small additive independent identically distributed random term. As
shown in [2], with this assumption See(e’“) is sure to exist and equal .the
corresponding time-average power spectral density in probability. In practice,
this assumption is realistic in that thermal noise in the analog circuitry is
modeled well by such a random term.
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which is a well-known sequence in the field of multiraté signal
processing and is called the comb sequence.

Taking the Fourier transform of (8) using the comb sequence
modulation formula derived in [9] results in

) M-1
Sec(ejw) = Z SE’I‘e’V‘ (ej(w——ZWk/M))'
k=0

where S, .. (e?*) is the power spectral density of e,.[n].

The most common method of analyzing AY. modulators
involves modeling the coarse A/D converters within the
AY modulators as additive uniformly distributed white
‘noise sources [1]. This method of analysis is widely used,
and is actually an exact method in terms of calculating
average quantization error power [10]. Applying the model
gives S, .. (e9%) = %21]N(e’"")f—I(ej“’)]2 where N(z) is the
effective filter imposed on the white quantization noise by the
AY. modulators, and A is the quantization step-size. Thus,
the power spectral density of the overall quantization error
component can be written as

) AQ M~-1 ) ) 2
See(ejw) — E Z }N(ej(w—27rk/M))H(e](w—Zwk/M))‘ )
= (10)

This expression in conjunction with (5) is used to calculate P,
in the subsections below.

C. Optimal Filters

Figs. 5 and 6 show the ideal performance obtainable using
the optimal channel filters derived in Appendix B. Each shows
plots of P, in dB relative to A? (i.e., 10log(P./A?)) as a
function of AY modulator order, number of channels, and
filter length. For each AY modulator, N(z) = (1 — 271)P
were P is the AY modulator order. In both figures, data are
shown for AY¥ modulators of orders 2,3,4,5, and 6.

Fig. 5 consists of five parts each of which shows plots of
P, versus filter length for a particular A¥ modulator order.
For each AY. modulator, seven curves are shown; from top
to bottom the curves correspond to M = §8,12,16, 20, 24, 28,
and 32, respectively. For a given M, filter length, and AX
modulator order, P, can be determined using Fig. 4. For
example, for a sixteen channel IIAYXADC with sixth-order
AY. modulators and filters of length-100, Fig. 5 indicates that
P, is less than —100 dB; as the filter length is increased, P,
asymptotically approaches a value of approximately —107 dB.

Fig. 6 shows the minimum attainable P, as a function
of M on a log scale for each AY modulator order. From

top to bottom the curves shown correspond to second, third, .

fourth, fifth, and sixth-order AY modulators, respectively. For
each P, calculation, the filter length was sufficiently long (at
least 2P M) that an increase in length would not significantly
decrease P.. Note that in each case the curve is approximately
straight and that for every doubling of the number of channels
P, decreases by approximately 6P dB. This implies that
doubling the number of channels increases the conversion
accuracy of the IIAXADC by approximately P bits.
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Fig. 5. P. in dB relative to A2 versus filter length, N, for optimal
H(z) with M = 8,12,16,---,32 for (a) second-order, (b) third-order, (c)
fourth-order, (d) fifth-order, and (e) sixth-order AX. modulators.
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Fig. 6. P. in dB relative to A2 for optimal H(z) versus number of
channels on a log scale. From top to bottom, the curves correspond to
TIASADC’s employing second, third, fourth, fifth, and sixth-order AY
modulators, respectively.

D. CombT*! Filters

Figs. 7 and 8 show data that are analogous to those shown
in Figs. 5 and 6, respectively, except that they correspond to
to channel filters with transfer function

1— 2N o 1— 2N P
H(z)-(\l—z_l) (l_z_1> ) (11)
where Py + P, = P +1, and Ny = Ny + 1. Such filters have
come to be known as comb® ! filters. It is easy to verify that
H(z) is FIR with length N = P{(N1 — 1) + Po(N, — 1) + L.
Thus, it is always possible to choose P; and P, for given
values of P and N.

As is evident from Fig. 7, for each AY modulator order
and number of channels, there is a particular filter length
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Fig. 7. P, in dB relative to A2 versus filter length, N, for comb?+!

H(z) with M = 8,12,16,---,32 for (a) second-order, (b) third-order, (c)
fourth-order, (d) fifth-order, and (e) sixth-order AX modulators.
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Fig. 8. P. in dB relative to A? for combP+1 H(z) versus number of
channels on a log scale. From top to bottom, the curves correspond to
IIAYADC’s employing second, third, fourth, fifth, and sixth-order AX
modulators, respectively.

for which P, is minimized. Interestingly, in each case the
minimum P. value is very close to that which occurs for the
optimal filters. However, in contrast to the case of the optimal
filters, as the filter length is increased, P, eventually begins to
increase. Fig. 8 shows the minimum attainable P, as a function
of M on a log scale for each AY modulator order. The figure
indicates that, as in the case of the optimal filters, doubling
the number of channels increases the conversion accuracy of
the ITAXADC by approximately P bits.

E. A Design Example

As an example, consider a 16-channel IIAYXADC with"

sixth-order A modulators and comb” channel filters. Suppose
that each AY modulator consists of three cascaded second-

DOk e

-80}-

Fig. 9. Power spectral density in dB relative to A? of the equalized output
of the IAXADC. ‘

order AY, modulator stages each with three-level quantizers
{11]. Ideally, the AS modulators are such that S(z) = 272
and N(z) = (1 — 27)%. Suppose the channel filters ate of
the comb? ! type with transfer function (11) where Ny =19,
Ny =20, P, = 3,and P, = 4, so that N = 131. As indicated
by the data shown in Fig. 7, these parameters result in P, ~
~107 dB relative to A2, Given that the A modulators have
a usable input range of approximately (—0.4A,0.4A), this is
equivalent to approximately 16 b of A/D conversion precision.

Fig. 9 shows the estimated power spectral density of the
equalized output of the IIAXADC as obtained by computer
simulation. The input to the simulated IIAXADC was a
sinusoid of amplitude 0.30A and frequency %ﬂ' radians.
The spectral estimation was performed by averaging 16 pe-
riodograms corresponding to %—Iength—overlapping Hamning
windowed length-16384 segments of the simulated IIAXADC
output, and then scaling the result by fF(ej“’)lzto achieve
equalization.

Fig. 10(a) shows the simulation data of Fig. 9 with the over-
all signal component removed, namely Se.(ei“)|F (ej‘”jlz,
and Fig. 10(b) shows the corresponding data as predicted
by theory (calculated using (4) and (10)). It is evident that
for the case shown, the simulation data closely supports  the
theory. Numerous other simulation experiments petformed by
the authors are similarly supportive of the theory.

In a conventional AY. modulator A/D converter, the circuit
area required for the decimation filter is typically more than an
order of magnitude larger that required for the AX modulator.
Similarly, in a IIAXADC, it is likely that most of the circuit
area will be occupied by the decoder and, if implemented,
the equalization filter. Therefore, it is of interest to gauge the
hardware complexity of these components. ‘A rough indication
of complexity can be obtained by estimating the number of
multiplies and additions performed per sample interval, and
the number of delay elements required.

For the current example, the decoder must implemerit 16
comb’ filters, and fifteen adders to sum the channels. From
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®)

Fig. 10. (a) Power spectral density in dB relative to A2 of the overall
quantization error component corresponding to the simulation data of Fig. 9.
(b) The corresponding theoretical power spectral density.

the results presented in [12], it follows that each of the
comb’ filters requires 14 adders, no multipliers, and 144
delay elements. Therefore, a direct implementation of the
decoder performs 14 - 16 + 15 = 239 additions and no
multiplications per sample interval, and requires 144 - 16 =
2304 delay elements. Additional logic is required to implement
the digital Hadamard modulation, but the Hadamard sequences
are all-ones sequences so no real multiplications are required;
the additional hardware required to generate the Hadamard
sequences is on the order of 100 logic gates.

An efficient equalization filter can be implemented using
the Parks-McClellan algorithm [13]. By setting the desired
magnitude response to be IF(ej“)l, choosing the weighting
function to be lH’ (e’“)|, and optimizing over (—m,), the
resulting equalization filter is such that the response of the
IIAYADC with respect to the overall signal component is
equiripple with linear phase.

Fig. 11(a) shows the magnitude response in dB of an equal-
ization filter designed for the current example, and Fig. 11(b)
shows the corresponding response of the IIAXADC with
respect to the overall signal component. As indicated by
Fig. 11(c), the maximum magnitude ripple imposed by the
equalized ITAYADC on the input signal is only about 4.1 -
1074, corresponding to 3.6- 1072 dB. Although this particular
equalization filter has length-656, only 41 samples of its
impulse response are nonzero (a consequence of the 27/16
periodicity of [F(e’)|). Moreover, the filter coefficients are
symmetric. Therefore an implementation of the filter would
require 40 additions and 20 multiplications per sample interval
and 655 delay elements.

In summary, an example IIAYADC has been considered
and shown to achieve approximately 16 b of A/D conversion
precision. Decoder and Equalization filter implementations
have been considered that, together, require the equivalent
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Fig. 11. (a) Magnitude response of equalization filter in dB. (b) Overall
response of the TATADC with respect to the input signal in dB. (c) Selected
range of data from Fig. 11(b) in a linear plot showing the equiripple property
of the overall response of the IIAXADC.

0.15

of 279 adders, 20 multipliers, and 2959 delay elements all
clocked at the A/D conversion rate. While this is not a trivial
amount of digital processing, it is within the limits imposed
by current digital VLSI technology. Moreover, in estimating
the decoder complexity, no use was made of the symmetry
inherent in the decoder structure, so it may be possible to
design a more hardware-efficient decoder. In particular, multi-
rate block filtering techniques [9] should allow a significant
reduction in the number of delay elements required.

V. SENSITIVITY TO NONIDEAL CIRCUIT BEHAVIOR

In practice, nonideal circuit behavior reduces the conversion
accuracy of the IIAYADC below that predicted by the analysis
above. Common types of nonideal circuit behavior arise from
electronic noise, errors in the nominal values of components
such as capacitors and resistors, finite op-amp gain and band-
width, nonzero op-amp settling time, comparator hysteresis,
and clock timing jitter. In AY modulators, these nonideali-
ties manifest themselves as analog gain mismatches, a high
electronic noise floor, integrator leak, integrator nonlinearity,
nonuniform quantization levels in the coarse A/D converters,
and nonuniform reference levels in the D/A converters. In the
I1IAY: modulator, the nonidealities additionally manifest them-
selves as channel gain and offset mismatches and Hadamard
modulation level errors.

The presence of nonideal circuit behavior causes the output
of the IIAXADC to contain an overall circuit error component
in addition to the overall signal and and overall quantization
error components discussed above; the output is the sum .
of the three components. It is convenient to distinguish be-
tween two types of errors that make up the overall circuit
error component: those that are commor to conventional AY
modulator A/D converters, and those that are unique to the
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IIAYADC. This allows existing results concerning nonideal
circuit behavior in conventional AY modulator A/D converters
to be applied directly to the IIAXADC. Specifically, the
overall circuit error component can be considered the sum
of two subcomponents: the conversion error subcomponent,
and the reconstruction error subcomponent. The conversion
error subcomponent is the result of all types of nonideal
AY. modulator performance arising from nonideal circuit
behavior except for AX modulator signal component gain and
offset errors. The reconstruction error subcomponent is the
aggregate of all A/D conversion errors arising from nonideal
circuit behavior that are not part of the conversion error
subcomponent.

The conversion error subcomponent is analogous to the
error caused by nonideal circuit behavior in conventional A,
modulator A/D converters. Although down-sampling is not
performed, each IIAXADC channel contains the equivalent
of a conventional AY. modulator A/D converter because each
AY modulator is followed by a lowpass filter. Hence, on each
channel the component of the sequence just prior to Hadamard
modulation in the decoder arising from nonideal AY modula-
tor behavior has the same characteristics as the corresponding
component of the output of a conventional AY modulator
A/D converter (aside from down-sampling). In general, the
M such error components are correlated. However, like the
quantization error components from the AY modulators, the
error components caused by nonideal AY modulator behavior
are generated after the analog Hadamard modulators in the
IIAY modulator. Consequently, they are decorrelated by the
digital Hadamard modulators in the decoder, so they add
in power, not amplitude; the power of the conversion error
subcomponent is simply the sum of the powers of the lowpass
filtered errors from the M nonideal AY modulators. For each
H (z) considered in this paper,

el J ew;dw<-_/

so the conversion error subcomponent typically is less than M
times as powerful as the corresponding etror at the output of
a conventional AY modulator A/D converter.

Unlike the conversion error subcomponent, the reconstruc-
tion error subcomponent does not have a direct analogy
in conventional AY modulator A/D converters. It results
from nonideal analog Hadamard modulator behavior and from
mismatches among the signal component gains and offsets
of the AXY modulators. Ideally, the signal component of the
r*® A modulator in the IIAY modulator is w,[n] = z[n —
L]u,[n — L]. However, nonideal Hadamard modulation levels
and nonideal gains and offsets in the analog circuitry on either
side of the Hadamard modulator give rise to a nonideal signal
component of the form

|H(e7) () dw < 1,

Wr[n] =wr[n] + arz[n — Lluy[n — L]
+ b.z[n — L] + ¢rurn — L]+ dy
where ar, b., ¢, and d, are not all zero and may vary

in time. For example, a, is nonzero when the gain of the
signal component of the r** AY modulator deviates from

IKl+ay)
>

(i+a,)

]/(I+a,,_,)

) yin}
DD

4, [n-k] o fn]

Fig. 12. A modified decoder structure that digitally compensates for channel )
gain, offset, and Hadamard sequence level mismatches.

unity. This type of deviation can be caused directly by gain
errors in the analog circuitry, and indirectly by -errors in'the
Hadamard modulation levels. Similarly, b. is nonzero when
the Hadamard modulation levels are not symmetric about zero,
¢, is nonzero when the analog circuitry prior to the Hadamard
modulator introduces a nonzero offset, and d,. is nonzero
when the analog circuitry following the Hadamard modulator
introduces a nonzero offset.

Through a straightforward modification of Theorem Al, the
reconstruction error subcomponent can be written explicitly as

'r[n] =

M-1 '
Zh[k zln — k — L] Z ur[n — kol [arucln — k = L]+ b,
k=0 =0

oo M-1
+Zh[k Zurn~ko Hervr[n —k-L+d,]. (12

r=0

It can be verified from (12) that random deviations of a,, b,
¢y, and d, from zero translate to A/D conversion errors with
the same order of magnitude. Therefore, matching the gains
and offsets introduced by each channel could be a limiting
practical problem with the IIAXADC approach. )

In cases where a,, b, ¢, and d,. are nonzero but do not vary
rapidly with respect to the input signal, digital techniques can
be used to significantly mitigate the problem. To the extent
that a.., b., ¢, and d, are known, the errors to which. they
give rise can be compensated by modifying the decoder as
shown in Fig. 12. Since it is always possible to choose one
of the Hadamard sequences to be all ones, in the decoder
of Fig. 12, ug[n} is assumed to be the all-ones sequence. To
compensate for the effects of a.., the »*F channel of the decoder
is multiplied by 1/(1 + a..). To remove the errors associated
with ¢, and d., the M—length periodic sequence

: oo M-1 ‘
fln] = - Zh[k] Z ur[n = ko] [erunln — k — L] + dy] -
k=0 r=0

is simply added to the ITATADC output. Similarly, to remove
the error associated with b, the output of the first channel is
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multiplied by the M-length periodic sequence

M-1
g[n] = - }: b [n— ko]

" =0

and added to the IIAXADC output.

Aside from the problem of added complexity, the main
draw-back of this digital trimming approach is that the actual
values of .a,, b,, ¢, and d, must be determined for each
channel. This requires either an extra manufacturing step or the
implementation of an auto-calibration mode in the IIAYADC.
Alternatively, it may be possible to determine the values
dynamically because the form of the error they introduce
is known explicitly, but establishing the details of such an
algorithm is currently an open problem.

Fig. 13(a)—(d) shows simulation data that illustrate the effect
of the reconstruction error subcomponent and its digital com-
pensation for the case of the 16-channel IIAYXADC example
considered in the previous section. Fig. 13(a)—(c) each show
the power spectral density of the equalized IIAXADC output
corresponding to the simulation conditions of Fig. 9 except
with channel gain errors, channel offset errors, and analog
Hadamard level errors. Specifically, these errors were chosen
randomly within +0.01% for Fig. 13(a), £0.1% for Fig. 13(b),
and +1.0% for Fig. 13(c). The harmonics and intermodulation
components predicted by (12) are clearly visible and increase
as a function of the error magnitude as expected. The powers
of the A/D conversion errors in the three cases, obtained by
integrating the data in the three figures, are —85, —65, and
—45 dB respectively. The spurious-free dynamic ranges are
87, 67, and 47 dB, respectively.

Fig. 13(d) corresponds to the simulation conditions of
Fig. 13(c) except that digital trimming was used in the decoder
per Fig. 12. To simulate measurement error, the values used
for a,., by, cr, and d; were chosen with random errors within
4+0.1%. The power of the A/D conversion error in this case
is -104 dB and the spurious-free dynamic range is 118 dB.
As is evident from the figure, the digital trimming scheme is
effective even with imperfect values for a.., b, ¢, and d,.

Numerous additional simulations along the lines of those
leading to Fig. 13(a)-(d) has been performed by the authors
with similar results. For example, performing the simulations
with different random number seeds (i.e., with different spe-
cific error values), and with different input sequences (e.g.,
different sinusoid frequencies, multiple sinusoids, etc.) did not
change the nature of the results.

An additional comment is in order regarding the use of AX
modulators in a nonoversampling system. Oversampling in
conventional AY modulator A/D converters allows for relaxed
anti-aliasing filter specifications. Of course, if the IIAXADC
is operated without any oversampling, its anti-aliasing filter
specifications can not be relaxed. Indeed, the anti-aliasing filter
issues are the same for the IIAYXADC as they are for any
other nonoversampling A/D converter. Hence, the IIAXADC
does not share one of the major advantages of conventional
AY. modulator A/D converters. However, this does not imply
that the AY. modulators in the IIAXADC must have the full-
rate bandwidth. Because each AY. modulator is followed by a
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Fig. 13. Power spectral densities of equalized IIAXADC outputs with
channel gain, channel offset, and analog Hadamard level errors: (a)-(c)
correspond to ITASZADC’s with randomly chosen errors of £0.01%, £0.1%,
and £1.0%, respectively, and (d) corresponds to the IIAXADC of (c) except
that digital trimming was used with nonideal values of ar, by, ¢, and d;.. The
A/D conversion error powers are -85, -65, -45, and -104 dB, respectively, and
the spurious-free dynamic ranges are 87, 67, 47, and 118 dB, respectively.

lowpass filter, H(z), with a bandwidth that is approximately
an M of the desired A/D convetter bandwidth, it follows that
the bandwidth of the A3 modulators can be considerably less
than the full-rate bandwidth just as in the case of conventional
AY. modulator A/D converters.

VI. CONCLUSION

A new architecture for A/D conversion has been introduced
and analyzed. The system is so far unique in that it performs
AY. modulator-based A/D conversion without time oversam-
pling or time interlacing. Through the use of Hadamard
modulation on multiple channels the system achieves the effect
of oversampling without the need for clock rates that are higher
than the A/D conversion rate. The analysis presented is general
in that it does not place significant restrictions on the types
of AY modulators that can be used. The effects of nonideal
circuit behavior were considered and it was shown that, after
digital trimming, the architecture is not significantly more
sensitive to nonideal circuit behavior than are its constituent
AY. modulators. A sixteen channel system with sixth-order
AY. modulators was considered in detail as an example and
shown to have a theoretical precision of approximately 16 b.

The ideas presented in this paper may allow the application
of AY modulator technology to higher-bandwidth applications
than are currently feasible. Whether the approach can compete
favorably with other full-rate approaches such as pipelined
A/D converters is yet to be seen. Additional experimental work
is necessary to establish the limitations of the approach with
respect to VLSI implementation.

APPENDIX A

The following theorem asserts that, provided the A¥ mod-
ulators fit the paradigm of Fig. 2, the IIAXADC is equivalent
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to an LTI filter H'(z) plus an additive quantization error
source, e[n), where e[n] is a linear combination of the guan-
tization error components from each of the AY. modulators.
Therefore, the theorem identifies the overall signal and overall
quantization error components in the output of the IIAXADC.

Theorem Al: If the AX modulators in the IIAY modulator
can be modeled as shown in Fig. 2, then the output of the
HAY modulator has the form yn] = w[n] + e[n] where
e[n] is a linear combination of the additive quantization error
components introduced by the AY modulators, and win] =
z[n] * h/[n] where

Wn) = MCyaln — kol sl * hlal],

h[n] is the impulse response of H(z), and Cy[n] is the comb
sequence defined in (9).

Progf: The decoder is a linear system, so e[n] must
be a linear combination of the additive quantization error
components introduced by the AX modulators. Because w[n]
is, by definition, not a function of the quantization error
components from the AY modulators, superposition can be
used to determine the expression for wln]. Specifically, w(n]
would be the output of the ITASADC if the quantization error
source, eq[n], in each AY modulator were set to zero.

Consider the 7" channel of the TAYADC with the quan-
tization error source set to zero. Let g[n] = s[n] * h[n]. The
output of each channel can be written as

H

Zq Klur[n — klurn — ko).

k=0

The overall signal component is just the sum of the M ¢.[n]
sequences:

M-—1
wn] = te[n]
r=0
oo M-1
= qlklzln — k] > uoln — klupln — ko). (13)
k=0 r=0

By definition, u,[n] is the 7 row of an M x M Hadamard
matrix repeated periodically. It follows that

M-1
M, if k — ko is a multiple of M
D urln—Hlun[n—ko] = {0 other\xzisoe. '

Hence,

MCulk — ko,

M- ‘
Z Elupn — ko] =
so (13) becomes
win] = MY qlk]zln — KChlk — kol,
k=0

from which the result follows.

APPENDIX B

In Section IV it is shown that the overall signal component
is just a delayed version of the input sequence provided the
AY. modulators have S(z) = 2z~ L and (3) is satisfied. Since (3)
only constrains every M*? value of h[n], the remaining values
may be chosen so as to minimize P,. A method for choosing
these unconstrained coefficients optimally is developed in this
appendix. )

Combining (5) and (10) with F'(z) = 1 results in

1 /" Az = J{w—2mk /M) j(w=27k/M) 2
reg [ B e fa

Since discrete-time Fourier transforms are periodic-2, this
can be written as

MAZ (7 : NG
P = oY /_ﬂ[N(eJ“)H(eJ“‘)l' dw. (14)

By Parseval’s Theorem, this is equivalent to

Mgsz Z [h[m]*n[m}]z,

m=—0o0

P =

where n[m] is the 1mpulse response of N (z) With some
algebra, this becomes

P.=M Z h(j Z h[k]R; i,
j=—00 =—00
where
A2 & ,
R, = E'm:—oon[m = jlnfm — k]

If H(z) is an odd length-N FIR filter, a more compact
notation is P, = MhTRh, where

R{0]
h= L
AN — 1]
and
Roo -+ Ron-1
R = : ' :
Ry-1,0 Ry_1,n-1

From (3} the center element of h is constrained to be ﬁ,
and each element with an index equal to the index of the center
element plus a multiple of M is constrained to be zero. Each
of these constrained indexes will be referred to as a constraint
index.

The following theorem provides a formula for a vector
consisting of the unconstrained values of h[n]—that is, the
vector formed by deleting the elements of h with constraint
indexes. This vector and (3) completely deﬁne the 1mpulse
response of the optimal H(z).
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Theorem BI: Let R be the submatrix formed by deleting
the columns and rows of R with constraint indexes, let b be
the vector formed from the center column of R by deleting
the elements with constraint indexes, and let ﬁopt be the
vector formed from the optimal h by deleting the elements
with constraint indexes. Then, provided N (e?*) is nonzero on
some interval, Ris nonsingular and

~

1 ~_ 1~
hope = —77R 'p.

Proof: The first problem is to prove that R is nonsin-
gular. Since H(e’*) is rational, it can only have a finite
number of zeros in the interval [—, 7]. By hypothesis, N (e?*)
is nonzero on some interval in {—m,n] (N (e*) is periodic
with period 27), so from (14) it follows that P. > 0. Since
P, = MhTRh for any h, R must be positive definite which
implies that all its eigenvalues are positive.

By definition, R is Hermitian. From Theorem 4.3.15 of
[14] the eigenvalues of a submatrix of a Hermitian matrix
with positive eigenvalues are also positive. Therefore, the
eigenvalues of R are positive. Since any submatrix of a
Hermitian matrix is also Hermitian, it follows that R is
nonsingular. R

The next problem is to prove that hopt = — 4R ™'b. Let
h correspond to any length-N FIR filter constrained by (3),
and let ¢ = hTRh. Let

and let X = h — y. Then,
¢=(x+y)"R(x+y).

Since R is Hermitian and Toeplitz, this reduces to
é=x"Rx+ %bTx-i— —Z\/lIERO’O’
where b is equal to the center column (or row) of R. The
elements of x whose indexes are not constraint indexes are
equal to those of h and the elements of x with constraint
indexes are zero, so
Cerar, 2or 1
¢=h"Rh+ Mb h+ Vil
where h is the vector formed from h by deleting the elements
with constraint indexes. N R
Because ¢ is a quadratic function of h, the value of h that
minimizes ¢, namely hope, must satisfy Vé = 0 where V¢
is the multivariable derivative of ¢. From (15),

Ry o, (15)

~—~ 2~
V¢ = 2Rh + +b.

Therefore, hope = —4;R™'b.
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Provided the AX modulators have S(z) = ™ and generate
quantization error whose power spectral density is that of
white noise driving an LTI filter, N(z), then Theorem B1
provides a closed form solution for the impulse response of
the odd length—-N FIR filter H(z) that minimizes P, under the
constraint that the overall signal component is just a delayed

-version of the input.

Although a large class of A modulators, including most of
the multistage AY modulators, have these properties [1], [15],
[10], there exist many useful AY modulators for which S(z)
is not just a delay. For example, in most of the single-loop
higher-order AY modulators, S(z) corresponds to a lowpass
IIR filter [16]. Although the power spectral density of the
quantization error from these AY. modulators is often modeled
as that of white noise driving an LTI filter, N(z), there is not
yet a rigorous theoretical basis for doing so. Nevertheless, if
the quantization error is at least quasistationary or can be well
approximated by a quasistationary sequence, and its power
spectral density is known then the problem of choosing an
optimal H(z) is well posed and in principal can be solved.
However, there is no obvious general formula for choosing the
optimal constrained H(z); it appears that for AY. modulators
outside the class of AY modulators considered above, the
optimization must be performed on a case by case basis.
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