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Analog-Input Digital Phase-Locked Loops for
Precise Frequency and Phase Demodulation

Ian Galton, Member, IEEE

Abstract—Most conventional analog-input digital phase-locked
loops (ADPLL’s) suffer from the effects of in-loop quantization
and from nonlinear behavior caused by the approximations
inherent in practical digitally controlled oscillators (DCO’s). The
resulting errors limit the accuracy of ADPLL-based frequency
demodulation and usually make ADPLL-based phase demodu-
lation impractical because of severe phase-drift problems. This
paper presents a new class of ADPLL’s that are insensitive
to the deleterious effects of quantization, and do not exhibit
nonlinear behavior when implemented with practical DCO’s.
The ADPLL’s are well suited to applications requiring precise
frequency demodulation, and can also be used for phase demod-
ulation because their quantization error is well behaved even
after discrete-time integration. The paper establishes an analogy
between the ADPLL’s and delta—sigma modulators, and applies
existing delta—sigma modulator results to predict the frequency
and phase demodulation accuracy of the ADPLL’s. A mechaniza-
tion of the general architecture consisting of easily implemented
components such as analog integrators, digital flip-flops, and
digital counters is then presented and analyzed.

I. INTRODUCTION

NALOG-INPUT digital phase-locked loop (ADPLL) cir-

cuits are often used to generate digital estimates of
the instantaneous frequency of angle-modulated analog input
signals [1], {2]. In such cases the ADPLL simultaneously
performs the operations of an all-analog phase-locked loop
and an analog-to-digital (A/D) converter.

Most of the known ADPLL mechanizations approximate
the ideal ADPLL shown in Fig. 1 [1]. The system consists
of a sampled phase detector, a discrete-time loop filter, and
a digitally controlled oscillator (DCO). The input signal,
x,(t), is assumed to be an angle-modulated sinusoid possibly
corrupted by noise. The sampled phase detector generates a
sequence proportional to the instantaneous phase difference
between its two input signals at times ¢,,,n = 0,1,2,.... The
loop filter attenuates high-frequency noise components, and
the DCO generates a feedback signal whose phase at time
tn+1 varies as a linear function of the DCO input at time £,,.

Ideally, the output of the loop filter y[n] corresponds to the
instantaneous frequency of the input signal z.,.(¢) and can be
accumulated modulo-27 to obtain the instantaneous phase of
x,(t). Thus, in principle, ADPLL’s can be used as either fre-
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Fig. 1. The ideal ADPLL.

quency demodulators or phase demodulators. However, errors
introduced by most practical ADPLL implementations place
an upper limit on the accuracy of ADPLL-based frequency
demodulators. Moreover, ADPLL-based phase demodulators
are rarely used because the instantaneous frequency errors
accumulate and cause the estimated instantaneous phase to
drift rapidly from the actual instantaneous phase.

The errors introduced by practical ADPLL mechanizations
usually stem from two approximations. The first approximation
is that the phase detector is followed by or combined with a
very coarse A/D converter (rarely more than a few bits) to
simplify implementation of the DCO. The resulting quantiza-
tion error often limits ADPLL performance [3]. The second
approximation is associated with the DCO implementation.
Although it is difficult to build an ideal DCO, it is relatively
simple to build a digital device whose output period varies as
a linear function of its input [1]. For example, such a period
linear device can be easily built using a digital counter or shift
register. Hence, the ideal DCO usually is approximated by a
period linear DCO. This results in nonlinear loop equations
and gives rise to errors such as asymmetric signal acquisition
and tracking behavior [2], [4].

This paper presents a class of practical ADPLL’s that
avoid the above-mentioned problems and, therefore, can be
used for highly accurate frequency and phase demodulation.
Although the ADPLL’s use very coarse A/D conversion,
they employ quantization noise shaping so that most of the
quantization error power lies outside the signal baseband and
can be removed by subsequent lowpass filtering. As will be
shown, the ADPLL’s operate on the frequency modulation
of their input signals in an analogous fashion to the way
that delta—sigma (AXY) modulator data converters operate
on the amplitude of their input signals [5]. Hence, they
are referred to as AXPLL’s. One of the benefits of the
approach is that instantaneous phase estimation using modulo-
2m accumulation is practical because the quantization error
is well behaved even after it is accumulated (i.e., it remains
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bounded and noise shaped). Moreover, the ADPLL’s can
be mechanized using simple period linear DCO’s without
introducing nonlinearities into the loop equations, so the
attractive properties of AXPLL’s can be preserved in practical
implementations.

In addition to providing improved performance in applica-
tions requiring simultaneous frequency demodulation and A/D
conversion, the suitability of AXPLL’s for phase demodula-
tion opens the possibility of new ADPLL applications. For
example, AXPLL’s can be used for coherent demodulation of
continuous phase modulation signal formats such as minimum
shift keying [6]. Conventional ADPLL’s usually are not suit-
able for such applications because of the phase-drift problem
mentioned above.

The paper is divided into three main sections and an
appendix. Section II motivates the subsequent presentation by
first describing how AYPLL’s can be used for frequency and
phase demodulation. Section III and the Appendix present a
detailed analysis of the general AYXPLL architecture. Existing
AY, modulator theory is applied to predict the accuracy of
AXYPLL-based instantaneous frequency and phase estimation.
Section IV presents a mechanization of the general AXPLL
architecture consisting of easily implemented components such
as analog integrators, digital flip—flops, and digital counters.

The approach taken in this paper was first proposed in [7]
and [8]. A distinct approach that gives rise to ADPLL’s that are
approximately analogous to AY, modulators was presented in
[9]. However, the ADPLL’s presented in [9] are quite different
than those presented in this paper, and they generate a digital
approximation of the instantaneous period of the input rather
than the instantancous frequency.

II. FREQUENCY-TO-DIGITAL AND
PHASE-TO-DIGITAL CONVERSION

Before considering specific AYXPLL’s, motivation will be
provided by treating them as “black boxes” and considering
how they can be used for frequency and phase demodulation.
The AYPLL’s to be presented operate on z,.(¢) and output a
coarsely quantized sequence of the form

yln] = cy[n] + eL[n] (1)

where ¢ and L are constants that depend on the particular
AYPLL, ¢[n] corresponds to the instantaneous frequency of
z,(t) at time t,,, and ey [n] is quantization error. In particular,
L is a positive integer referred to as the order of the AYPLL,
and ey, [n] is well modeled as the output of a filter with transfer
function

Np(z)=(1-z"1* )

driven by white noise. Consequently, the power spectral den-
sity (PSD) of e[n] is proportional to sin*%(w/2), so most of
the error power resides at high frequencies. Thus, the AYPLL
quantizes instantaneous frequency in the same manner that a
AY modulator quantizes amplitude [5].

A AXYPLL-based frequency demodulator consists of a
AYPLL followed by a lowpass filter as shown in Fig. 2(a).
The sample-rate of the AYXPLL is chosen to be many times
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Fig. 2. The high-level structure of (a) a ASFDC and (b) a AXPDC.

higher than the Nyquist rate of the instantaneous frequency of
z,(t), so {ﬁ\[n] is restricted to a low frequency baseband. The
lowpass filter is chosen to pass signal components within this
baseband and reject higher frequency components, thereby
removing the out-of-band quantization error. The result is
a digital estimate of the instantaneous frequency of x,(t)
that can be made increasingly accurate by increasing the
sampling rate of the AXPLL and appropriately decreasing the
passband of the lowpass filter. In the next section, existing
AY. modulator results will be used to quantify this tradeoff.

Fig. 2(b) shows the corresponding AY¥PLL-based phase
demodulator. It consists of a AYPLL-based frequency de-
modulator followed by a modulo-27 integrator that operates
according to

G,ln] = [Jm[n] T - 1]] mod 27.

As will be shown, 6,, [n] is equivalent (i.e., equal, modulo-27)
to the instantaneous phase of z,.(t) at time ¢,, plus a constant
plus an error term that is well modeled as the output of a filter
with transfer function Ny_;(z)H(z) driven by white noise,
where Nz _1(z) is the highpass transfer function given by (2)
except with L replaced by L — 1, and H{z) is the transfer
function of the lowpass filter in Fig. 2(b). Consequently, the
comments made above with respect to the AXPLL-based
frequency demodulator also apply to the AXPLL-based phase
demodulator.

As described above, both AXPLL-based frequency de-
modulators and AYPLL-based phase demodulators perform
A/D conversion simultaneously with frequency and phase
demodulation. Therefore, for the remainder of the paper, they
will be referred to as delta—sigma frequency-to-digital convert-
ers (AYXFDC’s), and delta—sigma phase-to-digital converters
(AXPDC’s), respectively.

III. THE GENERAL AYPLL ARCHITECTURE AND THEORY

A. The AYXPLL Architecture

Fig. 3 shows the general form of the class of AYPLL’s
considered in this paper. The number L can be any positive
integer and the corresponding system is referred to as the
Lth-order AXPLL. Each AYPLL consists of a sampled phase
detector, a forward path transfer function equivalent to L — 1
cascaded discrete-time integrators, an N-bit A/D converter, a
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Fig. 3. The Lth-order ATPLL.
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and a DCO. The DCO operates on the digital sequence v[n]
and generates an output signal whose instantaneous phase at
time ¢,, is
wetn + Ka Y v[k — 1]+ 6 3)
k=1

where w,. is the nominal center frequency of z.(t), Ky is
a positive constant referred to as the DCO gain, and 6,
is an arbitrary initial phase of the DCO at time ty. The
sampled phase detector outputs a sequence proportional to
the phase difference between its two inputs; the nth value of
the sequence is K, times the instantaneous phase difference
between the two phase detector inputs measured at time £,
where K, is a constant referred to as the phase detector gain.
The forward path gain factor is G = (K,K4)~!, and the
A/D converter performs uniform mid-tread quantization with
step-size A.

B. The Assumed Input Signal

It is assumed that the input signal has the form
2 (t) = Asin(wet + 0,(t)) )

where A is a constant amplitude, and 6, () is the instantaneous
phase relative to w.t. The instantaneous phase can be written
as

0.(t) = / Y(r)dr + 6y )

where 9(t) is the instantaneous frequency relative to w,, and
B is an arbitrary initial value of #,(¢) at time ¢¢. Note that the
nominal center frequency, w., may not correspond exactly to
the actual center frequency of z,.(¢). For example, an error in
the frequency reference used to generate z,.(¢) may cause these
values to differ. In general, the mean of )(t) is equal to the
difference between the actual and nominal center frequencies.

C. The AY Modulator Analogy

From (3)~(5), it follows that the output of the sampled phase
detector at the nth sample time, t,,, is

n

dn] = K, [/tt B(r)dr = Kay " ofk = 1]+ 60— 1],

k=1

1
- —| ~>——audfn]
A (I-271) TG

Gy

v{n]

Fig. 4. The processing performed on #[n] by the combination of the DCO
and the sampled phase detector.
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Fig. 5. The processing performed on a[n] by the Lth-order AXPLL.

With the definition
t
Y[n] :/ Y(r)dr (6)
th—1

d[n] can be written as

n

dln] = K, K4 Z(Kidi[k] — ok — 1]) +a

k=1
where

= Kp(90 — 01)

Hence, the combination of the DCO and sampled phase
detector can be interpreted as the system shown in Fig. 4
with ¢ = 1/K and initial condition d[0] = «. Accordingly,
the AYPLL of Fig. 3 processes {p\[n] as shown in Fig. 5
wherein the DCO and sampled phase detector have been
replaced by the system of Fig. 4 and the A/D converter has
been replaced by an additive quantization noise source. The
quantization noise, £[n], is defined as e[n] = y[n] — g[n],
so no approximation has been made by considering the A/D
converter as an additive noise source.

In Fig. 5, let Si.(z) be the transfer function between the
J[n] input and the output, let Ny (z) be the transfer function
between the e[n| input and the output, and let Qr(z) be
the transfer function between the e[n] input and the node
corresponding to g[n]. Then, as proven in the Appendix,

Ni(z) = (1 —27HE

and
L-1
Quiz)= =13 (1=
n=0

It follows that (1) holds with ¢ = 1/Ky and er[n] equal to
the output of a filter with transfer function Ny (z) driven by
e[n]. It remains to characterize e[n].

The system of Fig. 5 can be viewed as a AY. modulator in
that it is a special case of the generic AY. modulator presented
and analyzed in [10]. It can also be rearranged to verify that



624 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 1995

the A/D converter sees the same input sequence as the A/D
converter in the L-loop AY modulator first presented in [11],
and later considered in [12] and [13]. It follows from the results
of [10}-[13] that, provided N > L and v[n] is appropriately
bounded (the bound is derived below), the quantization noise,
e[n], introduced by the A/D converter in the AYXPLL is well
modeled as asymptotically white noise with power A%/12 that
is asymptotically independent from J{n]. Therefore, the PSD
of er[n] is well modeled as

2 2

» A , A .
Se (€)= TZINL()|* = 52 sin™ (w/2). @)

D. AYXFDC Performance

It follows from the results presented in [12] that if {p\[n] is
restricted to a baseband of bandwidth (—z /R, 7 /R), then the
power of the portion of ey[n] that lies within the baseband
is given by

9 A2 7‘.ZL

== ._° . p-@L+l) 9
Moo = 19 2L +1 ©

If the lowpass filter rejects signal components outside of the
baseband and passes those within the baseband, then the power
of the quantization error measured at the output of the lowpass
filter is n2 - Thus, n?,L represents the minimum achievable
quantization error power for a AXFDC with given values of
L and R. It follows from (9) that for a given bandwidth of
1 (t), doubling the sample-rate of the sampled phase detector
and halving the passband of the lowpass filter increases the
precision of the AYFDC by approximately 6(L + 1/2) dB
which corresponds to L + % bits.

Computer simulations show very close agreement with these
theoretical results. For example, Fig. 6 shows AYPLL simula-
tion data corresponding to L = 2, 3, and 4. For each AYPLL,
Fig. 6(a) shows the estimated PSD of the quantization error,
and Fig. 6(b) shows the corresponding values of n?,L versus R
as calculated from the data in Fig. 6(a). The AYXPLL’s were
each simulated with an L-bit A/D converter (where L is the
AYPLL order), and 9[n] = —0.3183 - K4A. Each spectral
estimation was performed by averaging ten periodograms
corresponding to nonoverlapping Hanning windowed length-
8192 segments of the simulated AXPLL output. Each value of
n%L was calculated by integrating the corresponding PSD over
the interval (—x/R,w/R). As is evident from the figure, the
simulated AXPLL’s perform as predicted by theory. The data
in Fig. 6(a) and (b) closely support (8) and (9), respectively.
Moreover, Fig. 6(b) indicates that for each doubling of R, n? .
decreases by 6(L + 1/2) dB as predicted.

If a fewer-than- L-bit A/D converter is used in an L-loop AY
modulator or the amplitude of the input sequence is too large,
the A/D converter can become overloaded (i.e., its usable input
range can be exceeded) [12]. By analogy, the same must be
true for an Lth-order AXPLL. Whenever the A/D converter
is overloaded, the AYXPLL also is said to be overloaded. At
best, the in-band quantization error power of an overloaded
AYPLL is higher than the value of n2 predicted above. At
worst, the AXPLL can become unstable.
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Fig. 6. (Top) Estimated power spectra of the quantization error introduced
by simulated second, third, and fourth-order AXPLL’s and (Bottom) in-band
quantization error power calculated from the data in (top).

It follows from a more general result shown in the Appendix
that overload can be avoided in an Lth-order AXPLL provided

K ARV — 287 1 1] < gn] < KgA[2N T - 2571
(10)
for all n (this result could have been derived using an extension
of the corresponding argument presented in {13] for the L-loop
AY. modulator). This input amplitude range is referred to as
the no-overload range of the AYPLL. Note that, as in the
case of the L-loop AY modulator, if N < L then there is no
positive no-overload range. Nevertheless, double-loop, second-
order AY modulators with one-bit A/D converters have been
experimentally shown to perform well for sufficiently smalil-
amplitude input sequences because such sequences cause
overload relatively infrequently [12]. As would be expected,
this behavior is also evident in the second-order AXPLL.

E. AXPDC Performance
It will now be shown that the output of the AXPDC of Fig.
2(b) is equal, modulo-27, to

O] = bl = [0u(t0) + b0+ Kaeoalul] (D)
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Fig. 7. A modified ATFDC-based phase demodulator for derivation pur-
poses.

where h[n] is the impulse response of the lowpass filter, ¢
1s a constant, and ey,_; is equal to the output of a filter with
transfer function Ny _;(z) driven by e[n]. Therefore, using the
arguments made above for the AXFDC, if 6, (¢, ) is restricted
to a baseband of bandwidth (—7/R,w/R), and the lowpass
filter scales signal components within the baseband by K
and rejects signal components outside the baseband, then the
output of the AYXPDC is equal, modulo-27, to

bm[n] = 0.(t,) + do + EL[n)

where {z[n] has power K3 - n2,  (provided the AXPLL is
not allowed to overload). The significance is that the AXPDC
generates a phase modulation estimate that does not drift away
from the actual phase modulation (because N, (/) has a zero
at w = 0), and that the estimation accuracy can be calculated
using (9).

To verify (11) consider a modified phase demodulator in
which the modulo-27 operator is omitted. Denoting the output
of the modified phase demodulator as ,,[n] it follows that

O.m[n] = 6, [n] mod 21 (12)

Omitting the modulo-27 operator reduces the modulo-27

accumulator to a discrete-time integrator which may be inter-

changed with H(z) without affecting the output of the system

(because the integrator and H(z) are linear time-invariant

systems). The modified phase demodulator can thus be drawn

as shown in Fig. 7. It follows from the figure that
pln] = > ylk] + p[0]

k=1

(13)

where p[0] is the initial condition of the integrator. From the
derivation above

1 [t

vl =g [ s a9

d Jt,_,
Because er[n] corresponds to e[n] filtered by (1 — z=1)E it
follows that er[n] = ep_1[n] — e _1[n — 1]. Using this and
substituting (14) into (13) gives

1

pln] = X, (02 (tn) + Kaer—1[n] - Kae1[0] - 6. (to) +p[0]].
From Fig. 7, 0,,[n] = h[n] x p[n] (11) follows with ¢g =
[)[0] — KdCL_l[O] — Hm(t()).

F. Acquisition Mode and Tracking Mode

As in the case of conventional ADPLL’s, AYPLL’s can be
viewed as having two modes of operation: acquisition mode
and tracking mode. However, the definition of these two modes
is somewhat different than for ADPLL’s. The difference arises
because AYPLL’s do not attenuate their own quantization
error as do conventional ADPLL'’s.

625

When an input signal is first applied to the ideal ADPLL of
Fig. 1, there is an initial transient response that depends on the
initial conditions of the loop filter and the initial phase of the
DCO. The ADPLL is said to be in acquisition mode until the
transient response has died out (below a level determined by
the precision requirements of the application) and then is said
to be in tracking mode. However, this definition does not have
a clear meaning if the ADPLL performs quantization, as do
most conventional ADPLL mechanizations, because it is not
possible to fully differentiate between the quantization error
and the transient response in the ADPLL output. Nevertheless,
most ADPLL mechanizations attenuate their quantization error
to the point where it can be neglected to first-order so the
definition can be applied as an approximation.

The problem with applying such a definition to the AXPLL
is that the quantization error component of the output can
be larger than the signal component (prior to the external
lowpass filtering). Nevertheless, a useful definition of the two
modes does exist for AYPLL’s. Specifically, a AXPLL is
said to be in tracking mode at time n if the A/D converter
is not overloaded at time n and did not overload at times
n—1,n-2,---,n— 2L + 1; otherwise, it is said to be in
acquisition mode. The rational behind this definition is that the
desired characteristics of the AYXPLL occur when overload is
avoided, and it can be verified using the results presented in
the Appendix that none of the nodes in the AXPLL depend on
more than the 2L — 1 most recent values of the quantization
noise. Hence, the AYPLL is not affected by A/D converter
overload error introduced more than 2L — 1 sample-times in
the past.

G. Sampled Phase Detector Operating Range

As will be shown in Section IV, knowledge of the maximum
operating range of the sampled phase detector output, d[n],
during tracking mode is necessary in order to properly design
the AXPLL. Practical phase detectors have a maximum range,
[—0max; Omax], Over which they can measure phase differences.
Therefore, it is important to choose the AYXPLL parameters
such that dyax < Opax Where dp.x is the maximum value
attained by |d[n]| during tracking mode. As shown in the
Appendix, d[n] does not contain a dc component during
tracking mode so its operating range is symmetric about zero.
Moreover, it is shown that if the AXPLL is in tracking mode
at time n, then

dmax = I{;JQL_2 [{b\max_{p\min] +KpKd2L-2(2L_1)A (15)

where @max and {[:min are the upper and lower limits of {/)\[n],
respectively. If overload is avoided by choosing @max and
¥min to be the extremes of the no-overload range given by
(10), then (15) reduces to

dmax = Ky KgA2FTN 2, (16)

This bound is useful in the design of the AY.PLL presented
in Section IV.
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H. Tracking Behavior in the Presence of Noise

In ADPLL applications, the input signal is often corrupted
by additive noise. In such cases, the corrupted input signal
can be written in the form

zr(t) = (A + ro(t)) sin(wet + 02(£) + On (1))

where 7,(t) and 6,(t) are envelope and phase deviations,
respectively, arising from the additive input noise [14]. Usu-
ally, the envelope deviation is removed prior to frequency
demodulation (e.g., using a bandpass limiter). Therefore, the
output of an ideal frequency demodulator operating on such
an input signal is 1(t) + ¥, (t) where ¥, (t) = d8,(t)/dt is
an undesired instantaneous frequency error term arising from
the additive noise.

R In the case of a AYFDC, the additive input noise causes
[n] to have the form

] = / " () + ()]

n—1

From the results presented above, provided (10) is satisfied
and dpax < Omax then the AYXFDC operates as an ideal
frequency demodulator aside from quantization error. If ¢, (t)
is bounded, then N, K, and K can be chosen such that these
conditions are satisfied. In general, the sensitivity of a AXPLL
to additive input noise can be reduced by increasing N and
choosing K, and Kj so as to reduce dmax.

When the input noise is such that (10) is not satisfied,
the AYPLL may overload. In such cases, by the AY. mod-
ulator analogy derived above, the error introduced by the
overloaded AYPLL is identical in form to that introduced
by an overloaded AY. modulator (provided dmax < Omax)-
While few theoretical results describing the error introduced by
overloaded AY modulators are available currently, the approx-
imate tradeoff between input amplitude and overload error are
known from simulation results [5]. For example, for sinusoidal
inputs the A/D conversion performance smoothly degrades as
a function of input amplitude once (10) is exceeded. If the
input noise is such that dpayx > Omax, then it is likely that the
error introduced by the AYXPLL will deviate from that of the
corresponding AY modulator. Additional research is necessary
to characterize this error and the corresponding performance
tradeoffs.

IV. AYPLL MECHANIZATION

Thus far, the analysis of the AYPLL has assumed that
the DCO and sampled phase detector are ideal. However, as
mentioned in the introduction, conventional DCQO’s are usually
based on period linear devices that introduce nonlinearities into
the loop equations thereby spoiling the achievable frequency
and phase demodulation performance. This section presents a
practical combined DCO and sampled phase detector mecha-
nization that implements the ideal equations up to the analog
accuracy of the components. To simplify the notation and
figures, the specific example of a second-order AXPLL is
considered. The extension of the approach to higher-order
AYPLL’s requires no new ideas.
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Fig. 8. (a) A mechanization of the second-order AYPLL and (b) the general
form of the second-order AXPLL.

Fig. 8(a) shows the proposed mechanization as applied to the
second-order AYXPLL. For reference, the general form of the
second-order AYPLL (corresponding to Fig. 3 for the special
case of L = 2) is shown in Fig. 8(b). As will be shown, the
proposed mechanization of Fig. 8(a) is functionally equivalent
to the AYPLL of Fig. 8(b) because the subsystems contained
within the dashed boxes in the two figures are functionally
equivalent.

The system of Fig. 8(a) uses a hard limited version of
the input signal to clock a D flip—flop whose data input is
always high. The flip—flop is cleared on the rising edge of a
signal, s(t), that is generated as the carry bit of a digital up-
counter. A scaled version of s(t) is subtracted from the output
of the flip—flop and the result is scaled by G = (K, Kq4)™*
(these parameters will be derived below), integrated, and
sampled-and-held on the rising edge of s(t). The output of
the sample-and-hold is converted to an /N-bit digital sequence
by a mid-tread A/D converter.

The subsystem within the dashed box of Fig. 8(b) consists of
the DCO and sampled phase detector followed by a discrete-
time integrator. Therefore, it is sufficient to show that, in the
system of Fig. 8(a)

gln] = Gidlk] +q[0] (17)
k=1

where d[n] has the form of (7) for some, as yet to be deter-
mined, constants K,, K4, and a. To this end, the following
definitions are useful:

1) to,t1,ta,..., are the times of the rising edges of the
Q-output of the D flip—flop;

2) T9,T1,T2,..., are the times of the falling edges of the
Q-output of the D flip—flop labeled such that {5 < 79 <
tl < Ty -

3) for each n, g[n], y[n], and v[n] all correspond to the
time interval 7,, < ¢ < T,41; and
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Fig. 9. Typical plots of x,(t), w(t), and s(t).

4) the logical high and low levels of the Q-output of the D
flip—flop are V}, and 0, respectively.

From Fig. 8, it follows that
g[n] = G/ w(T)dr + ¢[0].
To
This can be rewritten as (17) with the definition that

dn] = / w(r)dr.

n—

(18)

Therefore, it remains to show that (18) is equivalent to (7) for
some constants K,, Kg, and a.

As will be evident from the following derivation, during
tracking mode each positive-going zero crossing of z,(t)
occurs at one of the times ¢,, and each rising edge of s(t)
occurs at one of the times 7,. In the following derivation it
will be assumed that after time £, the AXPLL is in tracking
mode. Fig. 9 shows typical plots of the signals w(¢) and s(t)
with z,.(t) shown for reference. From the figure and (18), it
follows that

dn] = Va(mn — tn) — v4p15, (19)

where A, and T, are the amplitude and duration, respectively,
of the s(t) pulses. To make further progress, expressions are
required for 7, and £, in terms of v[n] and ¥[n).

To derive an expression for 7,, the operation of the up-
counter must be considered. The up-counter is clocked at a rate
fm = M f. where M is a positive integer and f. = w./(27).
It operates as a variable-period pulse generator. When the
counter reaches its terminal value of 2M — 1, the carry bit
(and, therefore, s(¢)) goes high. On the next rising edge
of the f,,-rate clock, the counter is loaded with the value
M + v[n — 1]/A Thus, M — v[n — 1]/A time intervals
of duration 1/f,, = T./M separate 7, and 7,_;, where
T, = 1/f.. With the definition that A, = 7, — 7,_1, it

follows that
1

!The factor of 1/A arises because it is customary to consider the LSB of a
counter to be unity, but in this case the LSB of the counter corresponds to that
of the A/D converter which has an implicit value of A (assuming mid-tread
quantization). If mid-rise quantization were used, the factor would be 2/A
which would ultimately require fr to be twice as large to achieve the same
K.

(20)
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By definition

Tn = ZAk + 710.
k=1

Expanding Ay using (20) leads to

o = éTC [1 - (ﬁ)v[k - 1]} + 7o

To derive an expression for #,, an expression for 6, =
tn — tn—1 will be derived and substituted into

t, = Z Sk + to.
k=1

The phase of z,.(t) can be written as p,(t) = 27 fct+6.(t), so

px(tn) - p:c(tn—l) = 27rfc6n + gz(tn) - gw(tn-‘l)
=27 f.bn + {Z;[n]

ey

22)

Because the positive-going zero crossings of z,(t) occur at
times t,, it follows that p,(t,) — pz(tn—1) = 27, so (22) can
be rearranged as

5, = Tc(l - %) 23)
Therefore
< (k]
tn = kZ::TC<1 - §> + to. (24)

1

Substituting (21) and (24) into (19) and collecting terms
results in

d[n] = Vh - 'yApr.

g%(% - U[J]:/[_Al]) + 70— %o

with the definitions

VT, 2
= K; = ——
P o2’ ‘T MA
and
_ 27K,

a= (10 — to) — vApTp

TC
this reduces to (7) as required.

It remains to select values for the scale factor v and for the
parameter M. Notice from the expressions for K, Kq4, and o
that v only appears in the expression for «. At first glance, one
might be tempted to eliminate the circuitry associated with vy in
Fig. 8(a), effectively setting v = 0. However, this would result
in an unstable system. If v were zero, then w(¢) > 0 for all
t (see Fig. 9). But w(t) is integrated prior to A/D conversion
(see Fig. 8(a)), so the magnitude of the A/D converter input
would grow without bound and the AXPLL would be unstable
thereby violating the assumption made above that the AXPLL
is in tracking mode.

To avoid this problem, v must be chosen to “bias” (19)
so that d[n] can attain both positive and negative values. In
tracking mode, 0 < 7, — t, < On41, so the right side of
(19) has a limited range of possible values. Because d[n] does
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not have a dc component during tracking mode, the maximum
range of the right side of (19) that is symmetric about zero
can be interpreted as the maximum phase detection range,
[_emaxy amax]'

The worst-case range of (19) occurs when the separation
between t,1 and ¢, is at its minimum. To maximize @max,
this worst-case range must be symmetric about zero, which
requires that d[n] equal zero when 7, is midway between
minimally separated values of ¢, and ¢,. From (19), this
occurs when

- Vh6min
1T 2A,T,
where 6., is the minimum separation between ¢,+1 and ¢,.
Therefore, 0,,0x = Vibmin/2. From (23), it follows that

b = 1:(1 - 75).

If 9[n] is kept within the no-overload range of the ATPLL,
then from the right-side term of (10)

Prmax = KdA[zN‘l - 2L—1] - ZM” [21\'—1 _ 21:_1}

SO

B = V’LTT [1 _ i(2N-1 - 2L"1)]. 25)

M

From (16) and the expressions derived above for K, and K4,
it follows that

W .9L+N-2

dmax = i 26)

Substituting (26) and (25) into the inequality dmax < Omax
gives

M Z 2L+N—-l + 2N—1 _ 2L—1. (27)

Therefore, if M satisfies this inequality and ¢[n] is within the
no-overload range of the AYPLL, then tracking mode can be
maintained. For example, if a two-bit A/D converter is used in
the AXPLL of Fig. 8(a), then L = N = 2 so (27) reduces to
M > 8. 1t follows that tracking mode can be maintained if f,,
is at least eight times greater than f. and —27/M < @[n] <0
for all n.

Simulations indicate that, under these conditions, the
AYPLL can achieve tracking mode from an otherwise
arbitrary initial state provided the state variable of the analog
integrator is clipped so that it does not exceed the no-overload
range of the A/D converter. For example, if the integrator
consists of an operational amplifier with a feedback capacitor,
this requires that the operational amplifier output be limited
to the no-overload range of the A/D converter.

Fig. 10 shows the in-band quantization error power, n?,Q,
as a function of R for a simulated second-order AYPLL
mechanized as described in this section. The simulation was
performed at the block diagram level of Fig. 8 using Simulink
[15]. The Runge-Kutta 23 integration method was used with
a minimum step-size of 1/(20f,,). The AXPLL parameters
were M = 8 N =2, V, =1, and ¥(t) = 0.0867w,.. The
spectral estimation and integration used to obtain the in-band

In-band Quantization Error Power (dB)

;
10°

10°
R

10

Fig. 10. In-band quantization error power from a simulated second-order
ATYPLL of the form shown in Fig. 8(a).

quantization error were performed as described in Section III
for the simulations corresponding to Fig. 6(b). As predicted by
theory, the in-band quantization error power is virtually identi-
cal to that of the second-order AY.PLL simulated in Section III.
Although not shown, the quantization error from the simulated
AYPLL has a PSD that is similarly indistinguishable from that
of the second-order AYPLL simulated in Section IIL

The mechanization presented above illustrates an important
point on which AYPLL’s are not analogous to A modu-
lators. In a multi-loop AY modulator, the noise introduced
by the D/A converter does not undergo filtering as does
the noise introduced by the A/D converter [5]. For this
reason, the overall precision of practical AY modulator A/D
converters employing multi-bit quantization is often limited
by the precision of the D/A converter reference voltages.
Moreover, greater than double-loop AY modulators do not
enjoy widespread use because the benefits they offer with
respect to better in-band quantization noise rejection usually
are mitigated by their sensitivity to D/A conversion noise.
However, the AYPLL mechanization presented above does
not contain an explicit D/A converter. Instead, the the D/A
converter function is performed by the 2M — 1 up-counter,
and the D/A converter output levels correspond to the times
at which the D flip-flop is cleared. Therefore, the accuracy
of the AYPLL is not limited by errors in D/A converter
reference voltages, but rather by the jitter introduced by the
master clock. Since it is considerably easier to generate low-
jitter clock signals than high-precision reference voltages, the
use of multi-bit quantization in AXPLL’s does not present the
same level of difficulties as in the case of AY modulators.

V. CONCLUSION

A new class of ADPLL’s, referred to as AYXPLL’s, has
been presented. The AYPLL’s have been shown to compare
favorably to conventional ADPLL’s in that their quantization
error is well behaved and they can be implemented using
practical DCO’s without inducing nonlinear tracking mode
behavior. With external digital filtering to remove out-of-band
quantization error, the AXPLL’s can be used to accurately
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estimate the instantaneous frequency of an analog angle-
modulated input signal. Moreover, the estimated instantaneous
frequency can be discrete-time integrated modulo-27 to obtain
an instantaneous phase estimate that does not drift away
from the actual instantaneous phase. Consequently, AXPLL’s
can be used for coherent demodulation of continuous phase
modulation communication signals in addition to the usual
ADPLL frequency demodulation applications. An analogy be-
tween AYPLL’s and AY modulators has been established, and
existing A3 modulator theory has been applied to predict the
performance of AXPLL-based frequency and phase demod-
ulators. A specific mechanization of the general architecture
that consists of easily implemented components also has been
presented. Additional research is necessary to characterize the
performance of AYXPLL’s during acquisition mode, and with
nonideal components and noisy input signals.

APPENDIX

Theorem Al: InFig. 5 for each positive integer L, let S1.(z)
be the transfer function between the 9[n] input and the output,
let Np(z) be the transfer function between the e[n] input and
the output, and let Q1 (2) be the transfer function between the
e[n] input and the node corresponding to g[n]. Then

1

S = M@ = (-2

and

L-1
2)=—z"1) (1-z"H)"
n=0
Proof: The proof involves the application Mason’s Gain
Formula to the signal flow graph equivalent of Fig. 5 [16].
The first step is to find the determinant of Fig. 5, Ap(z). By
inspection

_12 (1—2z714)m
A =1— n= 0 ) 2
1(2) = (28)
Therefore, for any positive integer k
51
Alc+1( ) Ak( ) m
If A(z) = (1 = 271)~*, this implies Apy1(2) = (1 —

~1)=(k+1) | From (28), Ay(z) =
principle of induction

AL(Z) =

for all positive integers L. Dividing the corresponding forward
path transfer functions by Ap(z) yields the expressions for
Sp(z), Np(z), and Qr(2). U

Theorem A2: Suppose that the A/D converter in the
AYPLL of Fig. 3 performs uniform quantization with step-
size A and no-overload range (0, 51). Then the AXPLL will
not overload at time n provided it has not overloaded at times
n—1n-2---,n— L, and

(1 — 271)71, so, by the

(1-z"H* (29)

Ky [,Bl + (28 - 1)%] < J[n] < Ky [ﬂh —(2F - 1)%] 30)
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Proof: In the system of Fig. 5, the transfer function
between the @[n] input and the node corresponding to g[n]
is Sp(2) = K, and the transfer function between the [n]
input and the node corresponding to g[n] is

L-1
z)=—z"1! Z(l -z Hm
n=0

Therefore, g[n] only depends on the current value of the input
sequence and the previous L values of the quantization noise
sequence. Since the A/D converter did not overload at any of
the previous L sample-times, it follows that |e[k}| < A/2 for
k=n-—1,n-2,---,n— L. Therefore

vl Lo, <dlnl < 1/’[ ] + 31)

K; 2 QL“*

where
Liax Z | qar "]l

and gr[n] is the impulse response associated with Qr(z).
It follows from the expression for Q1 (z) and the definition
of the z-transform that Q. = Qr(-1). Thus, Qr .. =
Y EZlon or, equivalently, Qr,.., = 2L — L.

To avoid overload at time n, it is sufficient to have
B < g{n] < Bh-

Therefore, from (31) the following two conditions are suffi-
cient to ensure that overload does not occur at time n:

12’\["] AL
—— — —(2 1
K, 2 ( ) > B
and
P[n]
oL 1 .
K, t3 ( ) < Bn
These can be rearranged and combined as (30). O

Theorem A3: In the AXPLL of Fig. 3 with L > 1, the
zero-frequency component of the output of the sampled phase
detector, d[n], is zero during tracking mode. Moreover, if the
modulator loop is in tracking mode at time n, then

|d[n]| < Kp2E 2 [$max—Prmin] +EpKa2E2(28-1)A (32)

where Pmax = max{¢[n]} and Drmin = mgn{aZ[n]} are the

upper and lower limits of " [n], respectively.
Proof: In Fig. 5, let Da(z) be the transfer function

between the ¥[n] input and the node corresponding to d[n],
and let D.(z) be the transfer function between the ¢[n] input
and the node corresponding to d[n]. It follows from (29) and
Mason’s Gain Formula that

Dy(z) = Kp(1 = 271!

and

Da(z) ES —KpKdZ 1 -z

LlZ].—Z n'
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Both of these transfer functions have a zero at zero-frequency,
so the zero-frequency component of d[n] must be zero pro-
vided 1[n] and e[n] are bounded (as is the case during tracking
mode).

Let

Zld/\[n]l and Zid [n]]
where da[n] and d.[n] are the impulse responses associated
with Da(z) and D.(z), respectively. It follows from the
expressions for DA(z) and D.(z) and the definition of the
z-transform that DA =Dy(-1) = Ky2t=tand D, =
D.(-1) = K Kd2L 1(2L 1).

From the expression for D~ 1p( z), it follows that the largest

5max

1/)ma.x

possible contribution to |d[n]| from ¥[n] occurs when P[n]
alternates between ?Pmax and wmm Thus, the contribution
to ld[n]l from t[n] is less than or equal to Q[zlzmax -
¢m,n] . The largest possible contribution to ]d[nH from
g[n] is Dme times the largest value of Ie[n]| over the previous
2L —1 time indices. Because the AXPLL is in tracking mode at
time n, it follows that this value is bounded by A /2. Therefore

1.~ . A
Id[nH S 5 [¢max - wmin] D’:b\;nax + EDemax

from which (32) follows. |
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