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A Rigorous Error Analysis of D/A Conversion
with Dynamic Element Matching

lan Galton, Member, IEEE, and Paoclo Carbone, Student Member, IEEE

Abstract—A known approach to reducing harmonic distortion
in D/A converters involves a technique called dynamic element
matching. The idea is not to reduce the power of the overall
conversion error but rather to give it a random, noise-like
structure. By reducing the correlation among successive samples
of the conversion error, harmonic distortion is reduced. This
paper presents the first rigorous and quantitative theoretical
analysis of the conversion error introduced by an important type
of D/A converter with dynamic element matching. In addition
to supporting previously published experimental results that
indicate the conversion error consists of white noise instead of
harmonic distortion, the analysis provides an expression for the
power of the white noise in terms of the power of the input
sequence and the component matching errors. A yield estimation
technique based on the expression is presented that can be used to
estimate how the power of the white noise varies across different
copies of the same D/A converter circuit for any given component
matching error statistics.

1. INTRODUCTION

DEALLY, a digital-to-analog (D/A) converter transforms a

sequence of values represented as b-bits numbers to exactly
the same sequence of values represented as analog voltages.
Consequently, from a signal processing point of view, an
ideal D/A converter implements the identity operation on its
input and is therefore a linear system. However, practical D/A
converters introduce errors that cause the values represented
as analog voltages to differ from the corresponding values
represented as b-bits numbers. Thus, the sequence of output
values can be written as y(n) = z(n)+¢(n) where z(n) is the
sequence of input values and e(n) is a sequence representing
the D/A conversion error. In general, ¢(n) is a nonlinear
function of the input sequence, so practical D/A converters
are generally nonlinear devices.

The nonlinearity of ¢(n) gives rise to harmonic distortion
that in many applications proves to be the limiting factor
in overall system performance. For example, direct digital
synthesizers have been shown to be performance limited by the
harmonic distortion arising from the nonlinearity of currently
available D/A converters [1], [2]. Similarly, the accuracy of
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delta-sigma A/D converters are often limited by D/A converter
linearity [3].

Interestingly, in many applications that require D/A conver-
sion and are sensitive to harmonic distortion, the bit width, b,
of the sequence to be D/A converted is not large. Therefore,
relatively coarse D/A converters often suffice provided they
do not introduce too much harmonic distortion. For example,
it has recently been shown that direct digital synthesizers
with highly linear 8-b D/A converters (i.e., D/A converters
wherein b = 8) can achieve 90 dBc spur suppression [1].
Even coarser D/A converters are typically used in delta-sigma
A/D converters [3], [4].

In principle, reducing the power of e(n) reduces the har-
monic distortion, but for a given D/A converter architecture
the power of €(n) can only be reduced at the expense of
increasing the precision of the circuit technology. Hence, the
limitations of the circuit technology generally place a lower
bound on the power of ¢(n). An alternative approach to
reducing harmonic distortion in D/A converters involves a
technique called dynamic element matching [5]-[9). The idea
is not so much to reduce the power of e(n), but rather to give
it a random, noise-like structure. By reducing the correlation
among successive samples of e(n), harmonic distortion is
reduced. A particular version of the approach introduced
by Carley [8], [9] is an extension of the well known flash
technique often used for fast A/D conversion [10]. Carley’s
approach, which will be reviewed in detail below, involves the
use of a randomizing digital encoder to effectively decorrelate
successive samples of e(n). For lack of an existing name, this
paper will refer to D/A converters based on Carley’s approach
as stochastic flash D/A converters.

The main contribution of this paper is a rigorous and quan-
titative theoretical analysis of the conversion error introduced
by stochastic flash D/A converters. Although Carley demon-
strated a 3-b stochastic flash D/A converter for use as part
of a 15-b delta-sigma modulator D/A converter and showed
experimentally that the system introduces very little harmonic
distortion, no mathematical analysis of the stochastic flash
D/A converter has been published previously. The analysis
developed in this paper indicates that, under mild circuit
performance assumptions, the only distortion introduced by
e(n) is that of a gain error, a dc offset, and an additive
white noise component. Hence, in principle, stochastic flash
D/A converters introduce no harmonic distortion whatsoever.
In addition to supporting Carley’s observations, the analysis
provides expressions for the gain error, dc offset, and the
power of the white noise in terms of the mean and power of the

1057-7130/95$04.00 © 1995 IEEE



764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 12, DECEMBER 1995

Y (n}

2 5
) | £9
Q
54
Fig. 1. The stochastic flash D/A converter.

input sequence, and the specific component matching errors.
A general yield estimation technique based on the expression
for the power of the white noise is presented that can be used
to estimate the distribution of the white noise power across
different copies of the same D/A converter circuit for any set
of component matching error statistics.

The remainder of the paper is divided into four main
sections. Section II reviews the stochastic flash D/A converter
approach in detail. Additionally, an efficient digital encoder
architecture based on a Benes network [11] is proposed that
is appropriate for a monolithic 8-b stochastic flash D/A con-
verter. Theoretical results are developed in Section III and the
Appendix that characterize the conversion error in terms of the
time-average mean and autocorrelation of the D/A converter
output. The yield estimation technique is also presented in
Section III. Simulation results are presented in Section IV.
Section V describes the application of an 8-b stochastic flash
converter to direct digital synthesis, and presents simulation
results of the overall system.

II. ' THE STOCHASTIC FLASH D/A CONVERTER ARCHITECTURE

The stochastic flash D/A converter architecture is shown
in Fig. 1. It operates on a sequence of digital numbers,
z(n), and produces a sequence of analog output values, y(n).
In a manner that will be described below, the stochastic
encoder maps each input value to N 1-b output values,
ai1(n),as(n),---,an(n). These are converted into analog
voltages or currents by the NV 1-b D/A converters and then
summed to produce y(n).

The input sequence, x(n), is assumed to be a deterministic
sequence of numbers with values z(n) € {ZTmin + kA : k =
0,1,-++,N} where A is the step-size of the D/A converter
and N > 1. Thus, Zmin < 2(n) < Tmax Where Tpax =
Zmin+NA. For each value of z(n), the stochastic encoder sets
K (n) of its output lines to one and the remaining N — K (n)
of its output lines to zero where

ml’ﬂlll

K(n) = S0~ Tmin i, 1)

For each value cf z(n), this ¢an be done in ( K](\; )) different
ways. The idea behind dynamic element matching is to have
the stochastic encoder choose among the ( Klzfn)) possibilities
randomly.

Formally, the operation of the stochastic encoder can be
described as follows. Let a(n) = [ai1(n)---an(n)]T. Then
the stochastic encoder chooses its outputs such that

a(n) € {0,1}", 2)
and

a’(n)a(n) = K(n), 3
where a(n) is a sequence of independent random variables

such that for every value of z(n) each of the ( KI(V )

) possible
values of a(n) are equiprobable.

The 1-b D/A converters each operate according to.

| wn +ep,, if ar(n)zl
yr(n) = {wl te,, ifay(n)=0

where wp, = Tmax /N, Wi = Zmin/N (hence, wy, — w; = A),
and ey, e, represent D/A conversion errors.
If the 1-b D/A converters are ideal, e;, = ¢;, = 0 for all
r, and
Wp, wy
+af(n)
Wh : Wi

y(n) = a’(n)

where @ (n) represents the one’s-complement of a”(n). This
can be rewriften as

al(n)a(n)]w

By factoring and using (3), this becomes

y(n) = a” (n)a(n)wy + [N ~

H

T(n)a(n)[wh - wl] -|— Ny
z(n)

= ——'ir‘n‘EA + Tmin = -T(n) (4)

y(n)

Thereforé in the case of ideal 1-b D/A converters, the analog
output equals the digital input signal z(n).
Now suppose the 1-b D/A converters are not ideal. Then,
ep # 0 or e; # 0 where
€hy €1
€y = )
Ep N (4} N

In this case, the output y(n) can be written as

Wh €hy
yny=a"(m)| | : |+
W, Chn
wi €l
+a(n)| ||+
wi ey
Applying (4), this becomes
y(n) = z(n) + aT(n)e, + a5 (n)e;. 5)

Thus the conversion error introduced by the nonideal 1-b D/A
converters is

e(n) = aT(n)e, +a%(n)ey. (6)
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Fig. 2. A 4-b stochastic encoder based on a randomized Bene§ network.

Equation (5) holds regardless of whether e, and e; are fixed
vectors, deterministic functions of z(n), or random variables.
However, if the 1-b D/A converters and the N-input summing
node are designed carefully, then to a very good approximation
ey and e; can be considered to be fixed vectors. For example,
such would be the case if each 1-b D/A conversion were
performed by selecting or shunting the output of regulated
gate cascode current source [12]. The outputs of the D/A
converters would simply be connected and passed through
a resistive load to implement the N-input summing node.
Therefore, throughout the remainder of this paper e, and e;
will be assumed to be fixed vectors.

At this point, it is worth digressing briefly to discuss an
efficient method of implementing the stochastic encoder. In
order to conserve digital hardware, Carley used a butterfiy-type
randomizer that only partially implemented the operation of a
stochastic encoder in his 3-b stochastic flash D/A converter.
However, hardware-efficient approaches exist in the field of
parallel computing with which to implement the full stochastic
encoder. In particular, a Benes network [11] is an efficient N-
input, N-output structure capable of connecting its inputs to
its outputs in any of the N! possible permutations. Such a
network consists of N log, N — N/2 binary switches. Each
binary switch connects two 1-b inputs to two 1-b outputs either
with or without the two inputs swapped. By controlling each of
these switches with 1-b of a pseudorandom number generator,
the Bene§ network randomly permutes its N-inputs to its N-
outputs. A 4-b stochastic encoder based on such a randomized
Bene§ network is shown in Fig. 2.

1t appears reasonable that at least an 8-b monolithic version
of the stochastic encoder could be practically implemented us-
ing high-density CMOS circuit technology. For an 8-b system,
the required number of binary switches is 1920. To implement
the randomization, each of these switches could be controlled
by one bit of a linear feedback shift register (LFSR). For
example, 62 31-b LFSR’s would then be required to generate
the necessary control signals. Although pipelining circuitry
would be necessary and routing of the control circuitry would
be nontrivial, the complexity of the overall circuit is not
excessive by current digital circuit standards.

III. SECOND-ORDER STATISTICS OF THE
STOCHASTIC FLASH D/A CONVERTER

Before analyzing the conversion error introduced by the
stochastic flash D/A converter, it is illustrative to first consider
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a similar system except with an encoder that does not perform
randomization. Suppose for a moment that instead of the
stochastic encoder a deterministic encoder were used that
chooses its outputs according to (2) and (3) but for each
value of z(n) only chooses one of the K](Vn)) possible output

values. It is easy to verify that (5) would still be valid. Such
a system can be thought of as a (nonstochastic) flash D/A

" converter because it is analogous to a flash A/D converter. It

is easy to show that this system introduces harmonic distortion.
For example, suppose that z(n) is a sinusoid with period M
quantized to b-bits. Because ey, and e; are fixed and a% (n) is
a memoryless, deterministic function of 2(n), ¢(n) must be a
memoryless, deterministic function of z(n) and therefore must
be periodic with maximum period M. Therefore, it consists
solely of harmonics of the input sinusoid which, together,
constitute harmonic distortion.

In contrast, with a stochastic encoder, e(n) is a discrete-
valued random variable. As will be shown, the randomization
performed by the stochastic encoder decorrelates e(n) such
that harmonic distortion is theoretically eliminated although a
gain error, an offset error, and white noise are introduced.
This statement will be quantified in the remainder of this
section, and an example will be presented that uses the result
to estimate the statistics with which the noise power varies
across different copics of the same circuit.

In accordance with the usual definitions, the time-average
mean and autocorrelation of the input sequence z(n) are
defined as

P
M,= lim —

n=1

and

_ 1 &
Ruw(k) = Jlim - > a(n)z(n + k)

n=1

respectively. The time-average mean and autocorrelation of the
output sequence, y(n), are defined analogously with z replaced
by y in the above definitions.
As proven in the Appendix, the time-average autocorrelation
of the output of the stochastic flash D/A converter is
Ryy(k) = (1 + @) Reow(k) + B+ 526(k) ™
with probability 1, where o, 8, and 2 are constants that de-
pend on the 1-b D/A converter errors, e; and ey,. Therefore, no
matter how much error is introduced by the 1-b D/A converters
or how these errors are distributed, the stochastic flash D/A
converter behaves exactly like an ideal D/A converter aside
from a white noise term and fixed gain and dc offsets. The
practical implication is that there is no theoretical lower bound

_on the harmonic distortion suffered by physical stochastic flash

D/A converter circuits.

This property of stochastic flash D/A converters has been
reported by Carley on the basis of heuristic reasoning and
experimental results. The analysis presented in the Appendix
not only provides rigorous theoretical support for Carley’s



766 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 12, DECEMBER '1995

observation, but it also quantifies the result. In particular, the
analysis yields the following expressions for o, 3, and 7

a=co(2+e), B=2e(l+e))M,+ei
and
32 = €2 [_mminwmax - Fz:v (0) + (wmin + xma.x)M—:c] (8)
where
: 1
€ = N—A_ Z(ehk - elk))
k=1
1
€1 = ’ZV_A’ ;(wminehk - xma,xelk)y ®
and
_ 1
2T (N-1)A?

1 i ) 1 i 2
— % (en, —e€1,)° — (— (en, — 61,)) ].(10)
N k=1 N k=1

As will be shown in the remainder of this section, these
expressions provide useful information regarding the theo-
retical performance of the stochastic flash D/A converier.
In particular, various properties of the stochastic flash D/A
converter will be deduced from the expression for 72. As will
be evident, similar arguments can be applied to « and §. To
simplify the notation, it will be assumed for the remainder of
the section that i, = —Zmax SO (8) reduces to

- R.2(0)].

0'2—-62[

1n
Let
€ = ep, — €y, — &,

where

N
e= N kz_:(ehh - elk)'

Using the terminology of [13], €; and € can be viewed as the
local variation and global variation, respectively, of e, — ey,
across a particular copy of the stochastic flash D/A converter
circuit under consideration. With these definitions, (10) and
(11) reduce to

1
=2 __ 2
o Trmax —

N
¥>) ~2
= Ny —T)a7 e~ Fea(0)] ;ek, (12)
from which it is clear that 7> only depends on the local
variation of ep, — eg,.

Before considering how o“varies as a function of its input
sequence or how it varies across different copies of the same
circuit, it is interesting to calculate a practical upper bound on
72, Since Tmax = NA/2 and R,,(0) > 0, it follows from
(12) that

2 N?

o <

T AN

=2

2

max{e} = 7 max{e).

—1) 4

For example, suppose the 1-b D/A converters are based on
current sources as described in the previous section. Then
e; depends on how well the current source transistors can
be matched in the given circuit technology. For carefully
designed CMOS current sources, € can be modeled as a
random function of %k that has zero mean and is normally
distributed with standard deviation o, ~ 0.005 - A [13], [14].
Because ¢; has zero mean and is normally distributed, the
probability that |ex| < 4o, for all k on all copies of the circuit
is extremely high. Hence, with a very high likelihood, every
copy of the circuit will introduce wh1te noise with power
2 < 0.0001 - NAZ

For certain applications, this practical upper bound on 7~
is negligibly low. For example, this is often the situation in
applications such as direct digital synthesis where z(n) is a
uniformly quantized representation of a continuous-amplitude
signal. In such cases, z(n) can be viewed as consisting of
the continuous-amplitude signal plus quantization noise, and
the quantization noise often is well modeled as white noise
with power AZ?/12. Since the white noise introduced by
the stochastic flash D/A converter is independent from the
quantization noise, it will only have a significant effect on
the mean squared error of the output if & is at least of
the same order of magnitude as A%/12. However as shown
above, even for relatively large values of N (e.g., N = 255),
under reasonable circuit assumptions the upper botnd on &2 is
small compared to A2/12. Therefore, in such applications, the
theoretical performance of the stochastic flash D/A converter
is essentially equivalent to that of an ideal D/A converter.
Simulation results performed in the next two sections support
this conclusion. k

Nevertheless, in some applications the noise introduced by
the stochastic flash D/A converter can be problematic. For
example, such is the case with delta-sigma modulator A/D
converters. Delta-sigma modulators typically contain a coarse
A/D converter in the feed-forward path, and a coarse D/A
converter in the feedback path. Although the quantization noise
introduced by the A/D converter as seen at the output is highly
attenuated in the band-of-interest, the noise introduced by the
D/A converter is passed to the output without any attenuation
[3]. Consequently, the power of the noise introduced by.the
D/A converter often must be several orders of magnitude lower
than that of the quantization noise lest it limit the overall A/D
conversion accuracy. In such cases, it is desirable to know
how 72 varies as a function of the input sequence, and how
it varies across different copies of the same stochastic ﬂash
D/A converter circuit.

It follows from (11) that the power of the white noise is
greatest when z(n) = 0 for all n and is zero when z(n) =
Zmax for all n. A sinusoidal input: z(n) = Asin{wn) has
power R, (0) = A%/2. Therefore, the white noise floor of a
stochastic flash D/A converter will be 3 dB below its maximum
value for a full-scale sinusoidal input (i.e., A = Zpax), and
reducing the power of the sinusoidal input increases the noise
floor proportionally.

To the extent that the statistics of e, and e;, are known
for the given circuit technology, (8) and (10) can be used
as the basis of a yield estimation technique to predict how
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Fig. 3. Yield estimation data for (a) 3-b, (b) 4-b, (c) 6-b, and (d) 8-b
stochastic flash D/A converters with values of oo /A ranging from 0.0005
to 0.02. In each case, from top to bottom the four curves show the largest of
the smallest 95%, 65%, 35%, and 5% of the calculated values of @2 (in dB
relative to 22, ), respectively.

72 will vary across different copies of the same circuit. The

most general approach involves computer analysis. The idea
is to repeatedly generate samples of ey, and e;, with the
appropriate statistics and use them in (10) and (8) to calculate
samples of 2. Provided a large number of samples of 7>
are so calculated, the distribution of the calculated values will
closely approximate the underlying statistical distribution. The
calculated distribution thus provides an estimate of the number
of copies of the circuit that will achieve a > below any given
value of interest.

For example, Fig. 3(a)—(d) shows yield estimation data
corresponding to 3-b, 4-b, 6-b, and 8-b stochastic flash D/A
converters, respectively. From top to bottom, the four curves
shown in each figure represent the largest of the smallest
95%, 65%, 35% and 5% of the calculated values of &2
(plotted in units of dB as 10 - log, (7 /22,,,)), respectively.
Each figure shows data from from 40 yield estimations with
values of o./A ranging from 0.0005 to 0.02. For example,
as can be seen from Fig. 3(a), the yield estimation for a 3-
b D/A converter with o, = 0.01 - A predicts that 95% of
the devices will have &2 below —45 dB, and that 5% of the
devices will have 2 below —55 dB. Each yield estimation
was based on 1000 calculated values of 2. The values of
en, — €1, were calculated as samples of independent normally
distributed random variables each with a standard deviation
o., although any other statistics for ej, — e;, .could have been
used without otherwise affecting the calculations. A different
random number seed was used for each yield estimation, so
the relative smoothness of the curves indicates that there was
little variance in the yield estimation results. It follows that
the data are good approximations of the underlying statistical
distribution of &2.

As is evident from Fig. 3(a)-(d), the predicted spread of
the white noise floor introduced by the stochastic flash D/A
converter becomes small as the number of bits is increased.
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Fig. 4. Estimated power spectral density (PSD) in dB relative to the power
of a full scale dc input of (a) the input sequence, (b) the stochastic flash
D/A converter output sequence, and (c) the deterministic flash D/A converter
output sequence.

This is reasonable because as the number of bits is increased,
the 1-b D/A converter errors, which are measured relative to
A, become smaller relative to .. If the yield estimations
were performed with errors measured relative t0 Tmayx, this
phenomenon would not be observed. However, the local
variation of CMOS current sources is not strongly dependent
on the nominal magnitude of the current [14], so for the case
where the 1-b D/A converters are based on CMOS current
sources it is more realistic to present the data as shown.

-IV. SIMULATION RESULTS

This section presents simulation data that support the the-
oretical results derived above. As will be shown, for an 8-b
stochastic flash D/A converter with a dithered sinusoidal input,
no harmonic distortion is evident in the simulated output
sequence.

The simulations used an input sequence that was generated
by adding a dither sequence to a sinusoid and then quantizing
the result to 8-b. The sinusoid had an amplitude of 127A.
The dither sequence was an independent identically distributed
(iid) sequence with a triangular probability density function

supported on (—A, A). As shown in [15], the power spectral

density of such a dithered sinusoid is equal to that of the
original sinusoid plus an independent white noise sequence
with power %2. Thus, by design the input sequence behaved
as an ideal sinusoid plus white noise.

Fig. 4(a) shows the estimated power spectral density of the
dithered sinusoid input sequence in dB/radian relative to 127A.
The data were obtained by averaging 15 periodograms [16]
each corresponding to 2'9 = 524288 points of the dithered
sinusoid input sequence. The frequency of the sinusoid was set
to 1600007 /524288 radians so as to avoid spectral leakage.
As expected, no harmonics of the sinusoid are evident in the
figure and the noise caused by the operations of adding dither
and quantizing appears white with a power spectral density of
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Fig. 5. Direct digital synthesizer block diagram as presented in [1].
approximately —54 dB/radian (which corresponds to a total

power of % ).

Fig. 4(b) shows the estimated power spectral density of the
output of an 8-b stochastic flash D/A converter operating on
the dithered sinusoidal input sequence. The spectral estimation
was performed in an identical manner to that of Fig. 4(a). The
1-b D/A converter errors, ep, and e, 1 < 7 < 256, were
chosen as normally distributed independent random variables
with a standard deviation of 0.005-A. As predicted by the
theory outlined in Section III, no harmonic distortion is evident
in the figure. Indeed, there is little visible difference between
the estimated power spectral densities of the input and output
sequences. For comparison, Fig. 4(c) shows the estimated
power spectral density of the output of the same flash D/A
converter except with the stochastic encoder replaced by a
deterministic encoder -as described in Section III. As predicted
in Section III, the figure clearly indicates the presence of
numerous harmonics of the sinusoid frequency.

V. APPLICATION TO HIGH SPECTRAL
PURITY FREQUENCY SYNTHESIS

In principle, a high spectral purity direct digital synthesizer
could be implemented by proceeding as in the simulations
described above. A sequence consisting of a sinusoid and
an iid dither sequence with a triangular probability density
function could be accurately generated by a floating point
processor and then quantized to b-bits. As discussed above
and supported by the simulation results shown in Fig. 4(a),
the resulting sequence, which will be referred to below as an
ideally dithered and quantized sinusoid, would have a power
spectral density equal to that of an ideal sinusoid plus white
noise. The problem with this approach is that to achieve a
wide range of sinusoid frequencies, the hardware required to
implement the floating point processor would be excessive.

To circumvent this problem, Flanagan and Zimmerman have
proposed an alternate approach to generating a dithered and
quantized sinusoid that requires significantly less digital hard-
ware than the approach outlined above [1]. An 8-b example
of their approach is shown in Fig. 5. The system consists of
a dithered phase accumulator and a dithered sinusoid look-
up table. They showed that by dithering and quantizing both
phase and amplitude, the power of each harmonic in the final
8-b sequence is at least 90 dB below the power of the sinusoid
(i.e., the sequence has 90 dBc spur suppression), and the noise
power is only a few dB above that of the corresponding ideally
dithered and quantized sinusoid. This result is supported by
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Fig. 6. Estimated power spectral density (PSD) in dB relative to the power
of a full scale dc input of (a) the sequence generated by the system of Fig.
5, (b) the corresponding stochastic flash D/A converter output sequence, and
(c) the corresponding deterministic flash D/A converter output sequence.

the simulation data presented in Fig. 6(a) which shows the
estimated power spectral density of the output of the system
shown in Fig. 5.

Typically, direct digital frequency synthesis. is used to
generate analog signals. Therefore, the system of Fig. 5 would
usually be followed by an 8-b D/A converter. 'Becau‘se the
digital portion of the system has 90 dBc spur suppression, it
would be desirable to use a D/A converter that introduces no
more than -90 dB harmonic distortion relative to its maximum
signal power. For applications with sample rates above 20
MHz, it does not appear that D/A converters with such a low
level of harmonic distortion are commercially available at the
present time. Nevertheless, the results of this paper indicate
that provided the 1-b D/A converters can be implemented such
that e;, and e; are essentially static and the N-input summing
node can be implemented with sufficient linearity, it may be
possible to design a stochastic flash D/A converter with the
required specifications. »

Assuming for the moment that such a design is feasible,
the theoretical results of Section III indicate that a properly
designed stochastic flash D/A converter will operate almost
as well as an ideal D/A converter except that the analog
output signal will have a slightly higher than ideal noise floor
and will contain a dc offset. Fig. 6(b) shows the estimated
power spectral density of the output of a stochastic flash
D/A converter operating on the 8-b sequence generated by
the system of Fig. 5. As in the previous section, the 1I-
b.D/A converter errors, es, and e, 1 < r < 256, were
chosen as normally distributed independent random variables
with a standard deviation of 0.005-A. As expected, aside
from a dc offset and a slight increase in the noise floor,
the data in Fig. 6(b) are similar to those in. Fig. 6(a). In
particular, no harmonic distortion is evident. For reference,
Fig. 6(c) shows the estimated power spectral density -of the
stochastic flash D/A converter with the stochastic encoder
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replaced by a deterministic encoder. As is evident from a
comparison of Fig. 5(b) and (c), the randomization performed
by the stochastic encoder is in this case sufficient to suppress
harmonic distortion.

VI. CONCLUSION

A rigorous and quantitative analysis of the conversion
error introduced by an important type of D/A converter with
dynamic element matching has been presented. The analy-
sis supports previously published experimental results that
indicate dynamic element matching introduces white noise
instead of harmonic distortion. Moreover, the analysis results
in an expression for the power of the white noise in terms
of the mean and power of the input sequence and the spe-
cific component matching errors. A general yield estimation
technique is presented that uses the expression to estimate the
statistics of the white noise power across different copies of a
given D/A converter circuit for arbitrary component matching
error statistics. Simulation results are presented that support
the theory, and an application to the design of a practical,
high spectral purity, direct digital synthesizer is discussed.
Additionally, an efficient digital encoder architecture based
on a Bene§ network is proposed that appears appropriate for
a monolithic 8-b version of the D/A converter.

APPENDIX

The detailed analysis of the conversion error of the sto-
chastic flash D/A converter is presented in this appendix.
First, a lemma is presented that provides intermediate results
required to support the subsequent analysis. Then, a theorem
is presented that provides the results used in the body of the
paper.

Lemma: Suppose that K(n) is an integer-valued function
such that 0 < K(n) < N, and that a(n) = [a1---an]” is a
sequence of independent random variables satisfying

a(n) € {0,1}",
and
a%(n)a(n)

where for every value of K(n) each of the ( K](Vn)) possible
values of a(n) are equiprobable. Then, for N > 1,

= K(n),

1
lan] = 57 ¢ (13)
1
Ela(n)a”(n)] = ﬁ?\f—)([jlé(—l)l—-):ﬂAN
@J\%%::IT{)L@IM (14)
and, ‘
Bla(mat] = %::@(AN ~In).  (19)

where I represents the NV x N identity matrix and Ay the
N x N all-ones matrix.
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Proof: Let N be the number of different vectors a(n)
such that the sum of their elements is equal to K(n). By

definition K(n) € {0,---,N}, so Ng = (
definition of the expectation operator,

- % a® (n)P(a(n) = a(i)("))’
i=1

KZ(Vn) . From the

(16)

where a(¥)(n) represents the i-th vector a(n) that obeys the
constraint. By hypothesis, the different values of a(n) are
equiprobable, so (16) becomes

Ela(n)] = — Z a®(n

z—l

a7

Suppose K(n) # 0. Consider the r-th element, a(l)(n) of
a(®(n). The number of distinct values of i for which al (n)
is equal to 1 corresponds to the number of times the sum of
the N — 1 elements with index different from r is equal to
K(n) — 1, ie, ( K?’n')il). Since this reasoning applies for
each 0 < r < N, expression (17) becomes

() [
Ela(n)] = ~—2=~ 11 |
which can be further simplified as
1
K(n) |.
Ela(n)] = —Zif_) :
1
If K(n) = 0then Ng =1, a%(n) = [0---0] and (13) follows
trivially. :
By definition,
E[a(n)a” (n)]
= Za(’) (n)a(’)T(n)P(a(n)aT(n) =al® (n)a(’)T(n)).
=1

By virtue of the equiprobability of the vectors a(®)(n), this
becomes
1 X
Ela(n)aT(n)] = = a®(n)a®T(n).
[an)a” ()] = 5= 32O (m)
The principal diagonal of the matrix a(n)a’(n) is equal to

a(n) and, therefore, by the reasoning employed in the proof
of (13), it follows that

Z 2

Now consider an off-diagonal element a() of matrix
(‘)(n)a(’)T(n) Assume K (n) > 1. Consider the number

lasi = , Nx. If the element agc )k

diag{
1

of times ag %

on the principal diagonal is cqual to zero, then ay;c = 0.

O] (t) =

Therefore, the number of times a;; = 1 and a;; = 1, is
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equal to the number of times the sum of the N — 2 elements
of column k with row index different from 7 and from k, is
equal to K(n)—2, ie., ( KJ(\; _)32) Therefore, the expectation

of each off-diagonal element is equal to

1 O r
N—K;ai(n)ai (n)(An ~ IN)
N-—2

B (K<n) - z) (Kzzjn)r(AN ~In)

_KWE@ -1,

N(N-1) 1

By combining (18) and (19), (14) follows for K (n) >

L If K(n) = 0 then E[a(n)aT(n)] equals the all-zeros

matrix and (14) trivially follows. If K(n) = 1 then the off-

diagonal elements of matrix a(n)a” (n) are equal to zero. As

a consequence E[aT(n)] = KI(\,”) In and (14) again follows.
By definition,

E[a(n)a” (n)]

Nx '
=3 a® (n)a@T(n)P(a(n)aT(n) =2 (n)a®7(n)).
i=1 :
Using the equiprobability hypothesis, this becomes
1
=T _ & (\OT
Efa(n)a” (n)] = e ;a (nya®%(m). (0

By construction, the principal diagonal elements of matrix
a(n)a’ (n) equal zero. Suppose 0 < K(n) < N. The number
of times an off-diagonal element aﬁ of matrix a(n)a% (n) is
equal to 1 corresponds to the number of times the sum of the
N -2 elements of column % with row index different from

J and from k, is equal to K(n) — 1, ie., (KJ(\:;)EI . Thus
expression (20) becomes
( KN—zl)
Ela(ma’ (n)] = 7 (A - Ty)

()
K(m)[N —~ K(n)

= = =7 (AN —In).

If K(n) = 0 or K(n) = N then, by direct inspection, the

matrix a(n)a’ (n) is identically equal to the all-zeros matrix.

As a consequence (15) still holds. o
Theorem: If M, and R, (k) exist, then!

My =M,(1+e) + e, @2n
and
Ryy(k) = (14 &) Rou(k) + B + 725(),

!The function 6(k) is the Kronecker delta defined as

_J1, ifk=g;
o(k) = {0, otherwise;

(22)

and the symbol 17 is defined as the all-ones vector: [1--.1].

with probability 1, where

€g = N—A (1Teh - 1Tel),
€1 = L (zmianeh - xmax]-Tel)y
NA
a:60(2+60), 32261(1+60)Mw+6%,

and

(en —e))" (en — el)}

=2 _ L 2
Ny [‘30 NA?

: ,:wminmmax + Ezm(o) - (wmin + Emax)ﬁz} .

Proof: Because e;, and e; are fixed, it follows from &)
that

E[y(n)] = Blz(n)] + E[a”(n)]es + E[a"(n)]e,

where E['] represents the statistical expectation operator. By
applying the lemma presented above and using the fact that
z(n) is deterministic, this becomes

K(n) N - K(n)

E[y(n)] =z(n) + TlTeh + I 17e;.  (23)
Expanding K'(n) using (1) and collecting terms gives
E[y(n)] = 2(n)(1 + eo) + e1. 24)

Because M, exists, it follows that

lim
P—oo

% D Ey(n)] = Mo(1+ o) + ey
n=1

To deduce that (21) holds with probability 1, it is sufficient
to show that the sequence y(n) obeys the strong law of large
numbers. Note that there must exist some number C' such that
Var[y(n)] < C for of all n because #(n) is bounded and
a(n) € {0,1}". Therefore, y(n) satisfies the Kolmogorov
Criterion [17] which implies that it satisfies the strong law of
large numbers.

Now consider Ry, (n, k), the statistical autocorrelation of
y(n) defined as Ry, (n, k) = B [y(n)y(n + k)]. Because z(n)
is deterministic and a(n) is a sequence of independent random
variables, it follows from (5) that y(n) is also a sequence of
independent random variables. Therefore,

Ryy(n, k) = E[y(n)] Ely(n + k)],
when k£ # 0. It follows that, in general, _
Ryy(n,k) = BEly(n)] E[y(n + k)] + o(n)(k),

where
2
o*(n) = B[y’ (n)] - [Bly(m)]] 25)
Applying (24) and the definition of o gives
Ryy(n, k) = s(n)z(n + k)(1 + @)
+ [=(n) + z(n + k)] en(1+ ep)
+€f + 0% (n)6(k). (26)
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To complete the calculation of R,y (n, k), it remains to find
an equation for o ( ). From (5) , it follows that

E[y’(n)] = 2%(n) + 2z(n) E[a” (n)en + a7 (n)ey)

+E [aT(n)eh +a’(n)e] z, @7

It is convenient to evaluate the second two terms in (27)
separately. Applying the first equation of the lemma presented
in the appendix, the second term becomes

E[a”(n)ey + ﬁT(n)el] = Kj@l’-’"eh
N-K(n). r

+ N 1 e;.

(28)
Expanding the third term in (27) gives

E[a”(n)e, + ET(n)el]z = ef E[a(n)a”(n)]es,
+ef E[a(n)a’(n)]e
+2!E [a(n)ﬁT(n)] e;.
With A defined as the N x N all-ones matrix and Iy defined
as the N x N identity matrix, note that for any N-length
vectors aand b, aT Ayb = (1Ta)(17b), and aTIxb = a’b.

Using these relationships and the second and third equations
of Lemma presented in the appendix gives

2

E [aT(n)eh +a” (n)ey]
_K®)[K(n) - 1] (17ep)?
T N(N-1) h
4 KMIN - K()] 7
N(N-1) »**
[N K(Z)g[N_ 1})'{( ) ] (1Tel)2
Kn)[N — K(n)] r
N(N-1)
g e
—efel. (29)

Substituting (28) and (29) into (27), substituting the result

and (23) into (25) , collecting terms and using the identity:
T T T, _ T :

eren +efe; —2efe; = (en —e;) (en —e;) gives

o%(n) = [N(eh - el)T(eh —e) — (17ey — 1Tel)2}

Km)(N - K(n))
N (N-1)

Expanding K (n) using (1) and applying the definition of eg
gives

2 (n) = (en —er)” (en — ez)}

1 2
(N 1) [ NA?
. [mminxmax + 2%(n) — (Tmin + wmax)w(n)} .
(€]
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It follows from (26), (30), and the definitions of 3 and &2
that

[im
P-—oo

,
=3 Ryy(n, k) = (14 )R (k) + B + 3°5(k).

Therefore, to finish the proof it is sufficient to show that

Ryy(k) = lim PZRyy n, k) 31)

n=1

with probability 1, or, equivalently, that for each & the se-
quence y(n)y(n + k) obeys the strong law of large numbers.
As above, the Kolmogorov Criterion will be used. Because
of symmetry, it is sufficient to prove the result for £ > 0.
Choose any fixed k > 0. For each p = 0,---,k — 1,
consider the subsequence ,(n) = y(n(k + 1) + p)y(n(k +
1) 4+ p + k). Because y(n) is a sequence of independent
random variables, it follows that, for each p, rp(n) is a
sequence of independent random variables. Moreover, since
y(n) is a bounded sequence, r,(n) must also be a bounded
sequence. Therefore, there exists some number C’ such that
Var[rp(n)] < C’ for all n and all p. It follows from the
Kolmogorov Criterion that for each p, r,(n) obeys the strong
law of large numbers.

Since, by definition, E[rp(n)] = Ryy(n(k + 1) + p, k),

lim ——er n) = ll_{Iéoszyy (n(k +1) +p, k)

with probability 1. This holds for p = 0,---,k — 1, so it
follows that .
P k-1 P k-1
Ph_r)réoﬁ Z ZTP n) = hm 0 5 ZZRW (k+1)+p, k)
n=1p=0 n=1p=0
with probability 1 which is equivalent to (31) . . ]

Note that the theorem includes an ergodic result. Although it
is convenient to define the behavior of the stochastic encoder
in terms of its statistics, in most applications it is the time-
averages rather than the statistical averages that are of interest.
Hence, the theorem was framed in terms of time-averages
rather than statistical averages. Nevertheless, similar results
concerning statistical averages are contained in the proof of
the theorem. In particular, suppose that z(n) is a wide-sense-
stationary (wss) random process that is independent of a(n).
Then the theorem would hold if all of the time averages were
replaced by the corresponding statistical averages (e.g., (21)
would be valid if M, and M, were teplaced by E[y(n)]
and E[z(n)], respecﬂvely) Similarly, the theorem can be
trivially modified to apply to the class of quasi-stationary input
sequences (for a discussion of quasi-stationary sequences, see
[18]). The quasi-stationary version of the theorem explic-
itly contains both the theorem as presented and the version
pertaining to wss sequences as special cases. However, it
is the opinion of the authors that this slight generalization
unnecessarily complicates an otherwise simple and elegant
result.



772

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 12, DECEMBER 1995

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers and
Dr. G. Zimmerman of the Jet Propulsion Laboratory for their
suggestions on how to improve the paper. The authors are also
grateful to Professor T. Lang of the University of California,
Irvine for introducing them to the Bene¥ Network.

(11
(21
(3]

4

finr}

[5]
[6]

[71

(8]
191
{10]
[11]

REFERENCES

M. J. Flanagan, G. A. Zimmerman, “Spur-reduced digital sinusoid
synthesis,” IEEE Trans. Commun., to be published.

D. Buchanan, “Choose DAC’s for DDS system applications,” Mi-
crowaves & RF, Aug. 1992.

J. C. Candy and G. C. Temes, “Oversampling methods for A/D and
D/A conversion,” Oversampling Delta-Sigma Data Converters Theory,
Design and Simulation. New York: IEEE Press, 1992, pp. 1-25.

1. Galton, “Granular 'quantization noise in a class of delta-sigma modu-
lators,” IEEE Trans. Inform. Theory, vol. 40, pp. 848-859, May 1994,
K. B. Klaassen, “Digitally controlled absolute voltage division,” IEEE
Trans. Instrum. Meas., vol. IM-24, pp. 106-112, June 1975.

R. J. van de Plassche, “Dynamic element matching for high-accuracy
monolithic D/A converters,” IEEE J. Solid-State Circuits, vol. SC-11,
pp. 795-800, Dec. 1976.

R. J. van de Plassche and D. Goedhart, “A monolithic 14-bit D/A
converter,” IEEE J. Solid-State Circuits, vol. SC-14, pp. 552-556, June
1979.

L. R. Carley, “A noise shaping coder topology for 15+ bits converters,”
IEEE J. Solid-State Circuits, vol. 24, pp. 267-273, Apr. 1989.

L. R. Carley and J. Kenney, “A 16-bit 4th order noise-shaping D/A
converter,” in IEEE Proc. CICC,1988, pp. 21.7.1-21.7.4.

R. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog
Converters. Boston, MA:' Kluwer Academic, 1994.

R. T. Leighton, An Introduction to Parallel Algorithms and Architec-
tures: Arrays - Trees - Hypercubes. San Mateo, CA: Morgan Kauf-
mann, 1992.

[12]
[13]

{14]

(15}
{16]
[17]

[18]

B. J. Hosticka, “Improvement of the gain of MOS Amplifiers,” IEEE J.
Solid-State Circuits, vol. SC-14, pp. 1111-1114, Dec. 1979.

J. B. Shyu, G. C. Temes, and F. Krummenacher, “Random error effects
in matched MOS capacitors and current sources,” IEEE J. Solid-State
Circuits, vol. SC-19, pp. 948-955, Dec. 1984.

M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching
properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp.
1433-1440, Oct. 1989.

R. M. Gray, T. G. Stockham Jr., “Dithered quantizers,” IEEE Trans.
Inform. Theory, vol. 39, pp. 805-812, May 1993.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989,

W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. I, 3rd ed.  New York: Wiley, 1950.

L. Ljung, System Identification: Theory for the User.
NI: Prentice-Hall, 1987.

Englewood Cliffs,

Ian Galton (M’92) for a photograph and biography, see p. 630 of the October
1995 issue of this TRANSACTIONS.

Paolo Carbone was born in Bolzano, Italy in 1965.
He received the laurea degree and the Ph.D. degree
in electronic engineering from the University of
Padua in 1990 and 1994, respectively.

Since 1994 he has been a Researcher with the
Third University of Rome. His research interests
include digital signal processing and A/D-D/A con-
version techniques. '



