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ABSTRACT

An approach to reducing harmonic distortion in
D/A converters involves a technique called dynamic el-
ement matching. The idea is not so much to reduce
the power of overall conversion error but rather to give
it a random, noise-like structure. This paper presents
the first rigorous theoretical analysis of the conversion
error introduced by an important class of D/A convert-
ers based on dynamic element matching. Specifically,
the paper develops the rather surprising result that, un-
der mild circuit performance assumptions, the only non-
linear distortion introduced by this class of D/A convert-
ers is that of additive white noise with a DC offset.

INTRODUCTION

Ideally, a digital-to-analog (D/A) converter trans-
forms a sequence of values represented as b-bit numbers
to exactly the same sequence of values represented as
analog voltages. Consequently, from a signal processing
point of view, an ideal D/A converter is a linear system.
However, practical D/A converters introduce errors that
cause the values represented as analog voltages to differ
from the corresponding values represented as b-bit num-
bers. Thus, the sequence of output values can be written
as y(n) = z(n) + ¢(n) where z(n) is the sequence of in-
put values and ¢(n) is a sequence representing the D/A
conversion error. In general, ¢(n) is a non-linear func-
tion of the input sequence, so practical D/A converters
introduce harmonic distortion.

An approach to reducing harmonic distortion in
D/A converters involves a technique called dynamic ele-
ment matching [1]. The idea is not so much to reduce the
power of €(n), but rather to give it a random, noise-like
structure. By reducing the correlation among successive
samples of e(n), harmonic distortion is reduced. A par-
ticular version of this approach, introduced by Carley
[1], is an extension of the well known flash technique
often used for fast A/D conversion. For lack of an exist-
ing name, this paper will refer to D/A converters based
on Carley’s approach as stochastic flash D/A convert-
ers. The main contribution of this paper is a rigorous
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Figure 1: The stochastic flash D/A converter.
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theoretical analysis of the conversion error introduced
by stochastic flash D/A converters.

THE D/A CONVERTER ARCHITECTURE

The stochastic flash D/A converter architecture is
shown in Figure 1. It operates on a sequence of digital
numbers, z(n}), and produces a sequence of analog out-
put values, y(n). In a manner that will be described be-
low, the stochastic encoder maps each input value to N
one-bit output values, a,(n),...,an{n). These are con-
verted into analog voltages or currents by the NV one-bit
D/A converters and then summed to produce y(n).

The input sequence, z(n), is assumed to be a deter-
ministic sequence of numbers with values z(n) € {Zpin+
kA : k = 0,1,...,N} where N > 1. Thus, T <
z2(n) < Tome, Where z,.,, = Zmin + NA. For each value
of z(n), the stochastic encoder sets K'(n) of its output
lines to one and the remaining N — K(n) of its output
lines to zero where

K(n) = [z(n) = Tminl/A. (1)

For each value of z(n), this can be done in N, = (K’(V”))
different ways. The idea behind dynamic element match-
ing is to have the stochastic encoder choose among the
N, possibilities randomly. Formally, the operation of
the stochastic encoder can be described as follows. Let
a(n) = [a;(n)---an(n)]T. Then the stochastic encoder
chooses its outputs such that

a(n) € {0,1}" and a"(n)a(n)=K(n), (2)
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where a(n) is a sequence of independent random vari-
ables such that for every value of z(n) each of the N}
possible values of a(n) are equiprobable. The one-bit
D/A converters each operate according to

_Jwstes,
¥r(n) = {wl + ées,

ifa.(n)=1;
if a.(n) = 0;

where Wy = Zynaz /N, Wi = Tmin/N (hence, w, —w; =
A), and e, e, represent D/A conversion errors. If the
one-bit D/A converters are ideal, e;, = e;, = 0 for all 7,
and

y(n) = a’(n)[wy ... wi)" + @7 (n)[w;... w7,

where a7 (n) represents the one’s-complement of aT(n).
It can be easily shown that, in this case, y(n) = z(n).

Now suppose the one-bit D/A converters are not
ideal. Then, e, # O or €; # O where e, = [es; ... ean]”
and e; = [er; ... e;n]7. In this case, the output y(n) can
be written as

y(n) = aT(n) ([wa... wa]” +[en1 ... ean]")

+a (n) (fwr... w]" +[en...ew]"),
which can be simplified as

y(n) = z(n) + aT(n)e, + a7 (n)e,. (3)
Thus the conversion error introduced by the non-ideal
one-bit D/A converters is €(n) = a7 (n)e, + a7 (n)e;.

SECOND-ORDER STATISTICS
OF THE D/A CONVERTER

It will now be shown that provided the one-bit D/A
converter level errors do not change over time, the ran-
domization performed by the stochastic encoder decor-
relates e(n) such that harmonic distortion is eliminated.
In accordance with the usual definitions, the time-average
autocorrelation and mean of the input sequence z(n)
are defined as: R,.(k) = limy_.c & S0 z(n)2(n +
k), and M, = limpy_.o, % E..N=1 z(n) respectively. The
time-average autocorrelation and mean of the output
sequence are defined analogously. The following the-
orem asserts that with probability 1 the time-average
autocorrelation of y(n) is the linear combination of the
time-average autocorrelation of z(n), a constant, and a
white noise term. Thus, instead of introducing harmonic
distortion, the stochastic flash D/A converter introduces
white noise with a DC component.

Theorem: If M, and I_-Z,,(k) exist and e, and e, are
not functions of time, then

Tl-y=ﬁ,(l+co)+c,, (4)

and
R,,(k) = (1+ a)R,. (k) + B + 726(k), (5)

with probability 1, where the function §(-) is the Kro-
necker delta, the symbol 17 is defined as the all-ones
vector: [1.--1] and

e = (zmianeh - mmnlee)
’ - NA ’

o = (lTe,, - lTe;)
0 NA

o =cy(2+4¢c), B=2c(1+c)M, + ¢,

en—e) (en—e) _
NA?

” = el

. [:L',,..'..:vmu + Rzz(o) - (xmin + Tmaz )Hz] .

Proof: Only the proof of (5) will be presented, be-
cause the proof of (4) is similar. Consider R,,(n, k), the
statistical autocorrelation of y(n) defined as R,,(n, k) =
E[y(n)y(n+k)]. Because z(n) is deterministic and a(n)
is a sequence of independent random variables, it follows
from (3) that y(n) is also a sequence of independent ran-
dom variables. Therefore,

R,,(n, k) = E["J(")] E[y(" + k)] + ‘72(")6(19),

2
where 0*(n) = E[y*(n)] - [E[y()]] -

From (1), (3) and the lemma presented in the Ap-
pendix it follows that

Ely(n)] = z(n)(1 + ¢) + ;. (6)

Applying (6) and the definition of o gives

Ryy(n,k) = z(n)z(n + k)(1 + a)
+ [z(n) + z(n + k)] (L + o) + ¢ + 02 (n)b(k).
7
From (3), it follows that ™

E[y*(n)] = 2*(n) + 2z(n) E[a" (n)es+

8)
a’(n)e;] + E[a"(n)es + ET(n)e,]z. (
It is convenient to evaluate the second two terms in (8)
separately. Applying the first equation of the lemma
presented in the appendix, the second term becomes

K -
E[aT(n)e, +aT(n)e)] = (n)lre,. + N-K(n) 17e,.
N N ©)
With Ay defined as the N x N all-ones matrix and Iy

defined as the N x N identity matrix, note that for any
N-length vectors a and b, aT Ayb = (1Ta)(17b), and




a”Iyb = aTb. Using these relationships and the results
of the Lemma presented in the appendix gives

K(n)[K(n) - 1]

E[aT(n)e;l + ET(n)e,] = NV = 1) (1T )2
K@V -K@m)] ;. E@IN - K@)
N(N-1) *™* NN-1) 7
[V - K(n)][N - K(n) - 1]
+ NN =1 (17e)’
K(n)[N - K(n)] T
+2W—[ 1 e,)—ehe,]

(10)

Substituting (9) and (10) into (8), collecting terms, us-
. 1 T T T T

ing the identity: e] e,+e]e,—2eje; = (ex—e;) (e,—e;)
and expanding K (n) using (1) gives

(er —e) " (en — et)]_

NA?

o*(n) = (Nl_ 0 [c% -
i [z,,..»nzmu + 23(n) = (Tmin + wmnz)w(”)]~

(11)
It follows from (7), (11), and the definitions of 3 and 7
that imy oo & 30 RByy(nk) = 1+ )R, (k) + 5 +
@26(k). Therefore, to finish the proof it is sufficient to
show that

R,,(k) = lim WZR,,,,(n, (12)

with probability 1, or, equivalently, that for each & the
sequence y(n)y(n + k) obeys the strong law of large
numbers. Because of symmetry, it is sufficient to prove
the result for £ > 0. Choose any fixed ¥ > 0. For
each p=0,...,k — 1, consider the subsequence r,(n) =
y(n(k+1)+p)y(n(k+1)+p+k). Because y(n) is a se-
quence of independent random variables, it follows that,
for each p, r,(n) is a sequence of independent random
variables. Moreover, since y(n) is a bounded sequence,
»(n) must also be a bounded sequence. Therefore, there
exists some number C" such that Var[r,(n)] < C’ for all
n and all p. It follows from the Kolmogorov Criterion
[2] that for each p, r,(n) obeys the strong law of large
numbers.

Since, by definition, E[r,(n)] = R,, (n(k+1)+p, k),
imy—o EnN=1 rp(n) = imy o Z.. 1 Rw( (k+1)+
P, k) with probability 1. This holds for p =0,...,k -1,
so it follows that

N k-1

Jim £33 ry(n) =

n=1 p=0

Ry, (n(k+1) +p,k)
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Figure 2: Estimated power spectral density (PSD) in dB relative
to the power of a full scale DC input of (a) the input sequence,
(b) the stochastic flash D/A converter output sequence, and (c)
the deterministic flash D/A converter output sequence.

with probability 1, which is equivalent to (12).
»

SIMULATION RESULTS

This section presents simulation data that support
the theoretical results derived above. As will be shown,
no harmonic distortion is evident in the simulated out-
put sequence of an 8-bit stochastic flash D/A converter
with a dithered sinusoidal input. The simulations used
an input sequence that was generated by adding a dither
sequence to a sinusoid and then quantizing the result to
8-bits. The sinusoid had an amplitude of 127A, where A
is the value of the least-significant-bit of the quantizer.
The dither sequence was an independent identically dis-
tributed sequence with a triangular probability density
function supported on (—A,A). Thus, by design the
input sequence behaved as an ideal sinusoid plus white
noise [3].

Figure 2a shows the estimated power spectral den-
sity of the dithered sinusoid input sequence. The data
were obtained by averaging 15 periodograms each cor-
responding to 2'® = 524288 points of the dithered sinu-
soid input sequence. The frequency of the sinusoid was
set to 1600007 /524288 radians so as to avoid spectral
leakage. Figure 2b shows the estimated power spectral
density of the output of an 8-bit stochastic flash D/A
converter operating on the dithered sinusoidal input se-
quence. The one-bit D/A converter errors, e, and e,,,
1 < r < 256, were chosen randomly within a range of
+2.5% of A. As predicted by the theory developed in
the previous section, no harmonic distortion is evident



in the figure. For comparison, Figure 2c shows the esti-
mated power spectral density of the output of a version
of the D/A converter in which no encoder randomization
is performed.

CONCLUSION

It has been shown in this paper that, in principle,
the stochastic flash D/A converter introduces no har-
monic distortion whatsoever. In particular, no matter
how much error is introduced by the one-bit D/A con-
verters within the stochastic flash D/A converter or how
these errors are distributed, the system behaves exactly
like an ideal D/A converter aside from a white noise
term and gain and DC offsets.
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APPENDIX

Lemma: Suppose that K(n) is an integer-valued func-
tion such that 0 < K(n) < N, and assume a(n) =
[a,+--ay]” as a sequence of independent random vari-
ables satisfying a(n) € {0,1}", and a7 (n)a(n) = K(n),
where for every given value of K(n) each of the N, =
( K(")) possible values of a(n) are equiprobable. Then,
for N > 1,

E[a(n)] = KJE,")[1...1]T, (13)
Blawa’(n)] = ST,
KW -K@),
NN-1) ™
Blaa”(n)] = Lo =Ty -1, (9

where Iy represents the N x NV identity matrix and Ay
the N x N all-ones matrix.

Proof: Let Nx be the number of different vectors a(n)
such that the sum of their elements is equal to K(n).
By definition K(n) € {0,...,N}, so Nx = (K’:ﬂ)).
From the definition of the expectation operator and the
equiprobability of the different values of a(n), E[a(n)] =
== TN a®(n) where al(n) represents the i-th vector
K
a(n) that obeys the constraint. Suppose K(n) # 0.
Consider the r-th element, a{(n), of a)(n). The num-
ber of distinct values of i for which a{"’(n) is equal to
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1 corresponds to the number of times the sum of the
N — 1 elements with index different from r is equal to

K(n)-1,ie., (Kﬁ_)il

). Since this reasoning applies for
each 0 < r < N, E[a(n)] = £&[1...1]7. If K(n) = 0
then Ny =1,aT(n) = [0---0] and (13) follows trivially.

By explomng the definition and the the equiproba-
bility of the vectors at®)(n),

Bla(n)a’(n)] = 57

Nk

> a®(n)a®(n).

=1

The principal diagonal of the matrix a(n)a”(n) is equal
to a(n) and, therefore, by the reasoning employed in the
proof of (13), it follows that

Z a® n)a(’)T(n)}

Consider an off-diagonal element a(') of matrix a®(n)
a®T(n). Assume K(n) > 1. Consider the number of
times a(') =1lasi=1,...,Ng. If the element aﬁ % on
the pnnc1pa.l diagonal is equa.l to zero, then a_‘,f) =0.
Therefore, the number of times a(') =1 and af,)k =1,
is equal to the number of times the sum of the N — 2
elements of column & with row index different from j and

from £, is equal to K(n) — 2, i.e., (K’(v"‘)fz

the expectation of each off-diagonal element is equal to

diag{ n) —1... 1%

(16)

) . Therefore,

Za,(n)a (n)(Ax —In) = (K]E,n)——22) .
N\ K(n)[K(n) - 1]
' (mn)) (=l = TN —gy A Iv)
(17)

By combining (16) and (17), (14) follows for K(n) >
1. If K(n) = 0 then E[a(n)a”(n)] equals the all-zeros
matrix and (14) trivially follows. If K(n) = 1 then the
off-diagonal elements of matrix a(n)a”(n) are equal to
zero. As a consequence E[a’(n)] = X211y and (14)
again follows.
The proof of (15) is similar to that of (14).

"
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