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ABSTRACT

Techniques have recently been proposed for simul-
taneously performing angle-demodulation and A /D con-
version that offer the potential of reduced circuit com-
plexity over conventional approaches. The techniques
give rise to systems that operate on the instantaneous
frequency of an angle modulated input signal in the same
manner that AY modulators operate on instantaneous
amplitude. This paper presents various new structures
that are analogous to higher-order AY modulators in
terms of their quantization noise shaping capabilities.
The tradeoffs associated with the higher-order systems
are discussed, and simulations are presented.

INTRODUCTION

Phase-tracking circuits are used in a multitude of
communications and instrumentation applications such
as phase-coherent demodulation, carrier tracking, tim-
ing recovery, bit synchronization, and Doppler measure-
ment. Because of the trend toward digital signal pro-
cessing, it is increasingly necessary to perform analog-to-
digital (A/D) conversion in addition to phase-tracking.
In such cases, phase-tracking and A/D conversion are
usually performed separately, and relatively precise ana-
log circuitry is required for even moderate levels of digi-
tal conversion accuracy. Two related techniques have re-
cently been proposed that simultaneously perform phase-
tracking and A/D conversion and offer the potential of
reduced analog circuit complexity [1], [2]. This paper
extends the technique proposed in [1].

The technique gives rise to a family of systems re-
ferred to as delta-sigma frequency-to-digital converters
(AZFDCs). Like a phase-locked loop, each ASFDC
tracks the phase and frequency of its input signal. How-
ever, unlike a phase-locked loop, it performs coarse ana-
log phase measurements using a low resolution A /D con-
verter sampled at many times the Nyquist rate of the
modulation bandwidth, and employs quantization noise
shaping and decimation filtering to obtain an accurate
digital estimate of the instantaneous frequency of its in-
put. Accordingly, AXFDCs operate on instantaneous
frequency in the manner that AT modulator A/D con-
verters operate on amplitude.

This paper briefly reviews the basic idea presented
in [1] and then develops an extension of the idea that
allows AXFDCs with higher-order noise shaping capa-
bility to be developed. Like higher-order AY modulator
A/D converters, higher-order AXFDCs offer the poten-

tial of increased digital conversion accuracy for a given
circuit clock rate. Furthermore, as discussed below,
higher-order AXFDCs offer advantages with respect to
settling time.

THE AXFDC APPROACH

In the following, it is assumed that each AXFDC
operates on a signal of the form:

z,(t) = Acos(21rfct +or /_; #(r)dr) + n(2),

where A is a constant amplitude, £, is a constant carrier
frequency, ¢(t) is a frequency modulation signal with
bandwidth B < f., and n(t) is an undesired noise term
that will be referred to as channel noise. The purpose
of each AZFDC is to produce an accurate digitized es-
timate of ¢(¢).

The high-level structure of each ALFDC is shown
in Figure 1. It is similar to that of a AY modulator A/D
converter in that it consists of a modulator loop and a
lowpass decimation filter. The modulator loop operates
on the input signal, z.(t), and produces a coarsely quan-
tized sequence, y[n], at a sample rate many times the
Nyquist rate of ¢(t). As discussed in [1], the modulator
loop output can be considered the sum of three compo-
nents: a component corresponding to ¢(t), a component
corresponding to n(t), and a component corresponding
to quantization error. The component corresponding
to ¢(t) is restricted to a low frequency portion of the
spectrum because of the high sampling rate, and the
modulator loop shapes the spectra of the other compo-
nents so that most of the their power resides at high
frequencies. The decimation filter preserves the com-
ponent corresponding to ¢(t) while removing the out-
of-band portions of the other components. The result,
¢[m], is a multi-bit digitized representation of ¢(t).

The simplest AXFDC modulator loop is the first
order structure shown in Figure 2 [1]. It consists of a
phase detector, a sample-and-hold, a (K,K,T,)™" gain
element, an N-bit A/D converter, and a controlled os-
cillator. Ideally, the phase detector produces a voltage
equal to a positive constant, K,,, times the difference in
phase of its two analog inputs (ignoring any amplitude
modulation), and the controlled oscillator produces a
continuous-phase sinusoid with instantaneous frequency
equal to f. plus a positive constant, K, times its input
value. The subsystem consisting of the phase detector,
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sample-and-hold, and controlled oscillator is common to
all of the higher order modulator loops and will be re-
ferred to as the modulator front end (MFE).

At the n'* sample time, the output of the sample-
and-hold can be written as

dln] = K, | [ ': $(r)dr - K, /_ Z y(r)dr],

where y(t) is the zero-order hold continuous-time version
of y[n], and T, = 1/§, is the sample interval. This can
be simplified as

dnl =K, 3 [Blk] - Kol - 117,

k=—oco

where T
a[n] =[ . @(r)dr.

Hence, the MFE can be interpreted as the system shown
in Figure 3. This implies that the system of Figure 2 is
equivalent to a first-order AT modulator [3] in terms of

-~

how it processes ¢[n]. Because f, is much greater than

the Nyquist rate of ¢(t), it follows that ¢[n] ~ T,$(nT,)
with a high degree of accuracy. With the definition that
quantization noise, €[n], is the difference between the
output and the input of the A/D converter at time 7, a
network analysis shows that the output of the modulator
loop is

y[n] = —I—(l—vqb(nT,) + e[n].

where e[n] = ¢[n]—e[n—1]. The sequence e|n] is the error
at the output of the modulator loop due to the quanti-
zation performed by the A/D converter and is referred
to as quantization error. The modulator loop thus sub-
jects the quantization noise to the first-order highpass
filter 1 — 27!, As a result, the quantization error has
zero DC power and tends to be weighted toward high
frequencies.

Higher-order modulator loops subject the quantiza-
tion noise to sharper highpass filters, so the quantization
error power tends to be weighted toward still higher fre-
quencies. As with AY modulators, increasing the order
offers the potential of increased digital conversion preci-
sion for a given sampling rate. Another potential benefit
of higher-order ASFDC modulator loops relates to set-
tling time. The speed at which a ATFDC settles after
the modulator loop coarsely locks to an input signal is
a function of the group delay of the decimation filter
which is inversely related to the filter transition band-
width. Since for a given digital conversion accuracy,
the transition bandwidth of the filter can be increased
with the AZFDC modulator loop order, higher-order
AXFDCs can be made to settie faster than lower-order
AXFDCs with the same digital conversion accuracy.

It follows that any AT modulator with a frort-end
equivalent to the system of Figure 3 has a corresponding
AXFDC modulator loop. For example, a second-order

.

AZXFDC was proposed in [1] based on the classic double-
loop second-order AX modulator. However, a problem
with this and other such structures arises because one of
the feedback paths is through the controlled oscillator,
and the other is through a traditional D/A converter.
It is desirable to avoid structures requiring a D/A con-
verter in addition to the controlled oscillator because
generating sinusoids at precise frequencies is consider-
ably easier than generating precise D/A reference lev-
els. This is especially important for modulator loops
that employ multi-bit A/D converters because as in the
case of AX modulators, the error introduced by the D /A
converters is not noise-shaped [3].

MULTI-LOOP STRUCTURES

This need for a separate D/A converter is avoided
in the modulator loop of Figure 4a. Redrawing the sys-
tem with the MFE replaced by the system of Figure 3,
results in the system of Figure 4b which has the form of
a single-stage second-order AY modulator [3]- Hence,
this modulator loop operates on the instantaneous fre-
quency of its input signal as a single-stage second-order
AY modulator. Accordingly,

vinl % Z-#(nT.) +eln),

where e[n] = ¢[n] — 2¢[n — 1] + ¢[n — 2].

The idea involves the equivalent of both frequency
and phase modulating the controlled oscillator. In the
modulator loop of Figure 4a, the transfer function be-
tween the A/D converter and the controlled oscillator
is 2 — z7'. Thus, the controlled oscillator is controlled
by the sum of the A/D converter output, y[n], and its
discrete-time derivative, y[n] — y[n—1]. The effect of the
discrete-time derivative is to modulate the phase of the
controlled oscillator (as measured at each sample time).
Thus the phase detector and controlled oscillator gains
control the gain of both feedback paths in Figure 4b.

The approach can be used to generate still higher-
order ALFDCs. For example, the modulator loop of
Figure 5 corresponds to a three-loop, third-order AY
modulator [3]. For an L**-order modulator loop of this
form, the feed-forward path contains L — 1 discrete-time
integrators and the transfer function between the A/D
converter and controlled oscillator is

i:(l - z7h)E,

As with the corresponding AY modulator, such an Lt-
order modulator loop is unconditionally stable only if it
has an L-bit or greater precision A/D converter.
Computer simulations support these results. For
example, Figure 6 shows the estimated power spectral
densities of the simulated outputs of the modulator loops
of Figures 4a and 5. The FM modulation signal was a
sinusoid of frequency 0.0098f,, and the spectral estima-
tion was performed by averaging overlapping Hanning
windowed periodograms of length 4096 from an array of
163,840 points. The smoother of the two curves cor-
responds to the third-order modulator loop, and the
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rougher curve corresponds to the second-order modu-
lator loop. The data are clearly consistent with the the-
ory.

MULTI-STAGE STRUCTURES

Modulator loops corresponding to multi-stage AX
modulators can be generated using a similar technique.
For example, the multi-stage modulator loop of Fig-
ure 7a operates on the instantaneous frequency of its
input signal as the two-stage second-order AY modula-
tor of Figure 7b [3]. Accordingly,

yin] ~ 1; $(nT,) + 2e[n),

where e[n] = &;[n] - 2e;[n — 1]+ €,[n — 2], and €, [n] is the
quantization noise introduced by the upper A/D con-
verter shown in Figure 7a. The modulator loop uses the
same frequency and phase modulation principle as the
modulator loop of Figure 4a It consists of two stages: the
lower modulator loop stage controls the frequency mod-
ulation of both controlled oscillators while the upper
modulator loop only controls the phase modulation of its
own controlled oscillator. Hence, the frequency tracking
dynamics are controlled solely by the lower modulator
loop.

Provided the phase detectors approximate linear
behavior, gain matching of the stages in the two-stage
second-order modulator loop of Figure 7a is determined
completely by the controlled oscillators. This is because
there is no connection from inside the feedback loop of
one stage to the other. Therefore, there is no need to
match the gains of the individual stages as there is in
two-stage second-order AX modulators. The two-stage
second-order modulator loop appears to be special in
this respect. Higher-order multi-stage modulator loops
with this property are not known to the author.

The modulator loop of Figure 7a is is has an im-
portant special property. Unlike the second-order mod-
ulator loop of Figure 4a, this modulator loop is uncon-
ditionally stable, and has a non-zero no-overload range
with only one-bit A/D converters. Specifically, the one-
bit A/D converters within the modulator loop will not
overload provided |¢(t)] < K,/2 for all t. Moreover,
with one-bit A/D converters the modulator loop is not
sensitive to variations in phase detector gain. This is
evident from Figure 7a where the only gain terms de-
pendent upon K, immediately precede the one-bit D/A
converters (where their magnitudes have no effect on the
A/D converter outputs). The gain, K,, of most prac-
tical phase detectors is input amplitude dependent, so
without such K, insensitivity, the gain and no-overload
range of a modulator loop will depend upon the am-
plitude of the input signal. Therefore, the modulator
loop of Figure 7a is appropriate in cases (e.g., low input
SNR cases) where bandpass limiting z,(t) prior to the
modulator loop is undesirable.

MFE CONSIDERATIONS

The modulator loops presented in the previous sec-
tion require controlled oscillators with multi-bit inputs.
Moreover, they are sensitive to frequency errors in their

controlled oscillators just as AY modulators are sensi-
tive to level errors in their D/A converters. Fortunately,
generating sinusoids at precise frequencies is consider-
ably easier than generating precise D/A reference lev-
els. For example, very high-precision frequency con-
trol can be achieved using a direct digital synthesizer
(DDS). Moreover, the DDS technique is amenable to ef-
ficient VLSI implementation. For example, VLSI DDS’s
are widely available with bandwidths exceeding 40MHz
(e.g., the Analog Devices AD9955).

Moreover, simulations indicate that high-precision
D/A converters are not necessary for the DDS approach.
For example, Figure 8a shows the estimated power spec-
tral density of the output of a simulated ideal two-stage
second-order modulator loop, and Figure 8b shows the
corresponding data for a simulation wherein a 6-bit D/A
converter was used for the DDS. Although degradation
of the noise shaping is evident, it is not severe. This is
generally true because quantization noise introduced by
the controlled oscillators tends to be noise-shaped along
with the quantization noise from the A/D converters.

Phase detector non-linearity and wrap-around can
be problematic in AXFDCs as they are in phase-locked
loops. For example, multiplier type phase detectors in-
troduce a sinusoidal non-linearity into the loop, and can
only resolve phase differences between +n radians. If
the sample-rate, f,, is large compared to the controlled
oscillator gain, K, and the signal to channel noise ratio
(SNR) of the input signal, =, (t), is large, then such phase
detectors behave approximately as linear phase detec-
tors, and phase wrap-around is not a problem. For ex-
ample, the simulation data shown in Figure 8c was gen-
erated in the same manner as that of Figure 8a except
that a phase detector with a sinusoidal non-linearity was
used. In this high-SNR case, no performance degra-
dation is evident. However, the phase modulation ap-
proach utilized to develop the structures described above
assumes phase detector linearity. Therefore, as the SNR,
of z.(t) decreases, the performance of these modulator
loops degrade. This is evident in the simulation of Fig-
ure 8d which corresponds to that of Figure 8c except
that the input SNR was 20dB.
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Figure 5: A 3-loop 3"-order modulator loop.

Fidgure 6: Estimated power spectra of simulated 2°¢ and
3r¢-order modulator loops.
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Fi§ure 8: Estimated power spectra of simulated 2-stage
2*<-order modulator loops.




