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Granular Quantization Noise in the First-
Order Delta—Sigma Modulator

Ian Galton, Member, IEEE

Abstract—Delta—-sigma (A3) modulators are attractive can-
didates for oversampling analog-to-digital (A/D) converters
because they are amenable to VLSI implementation and have
low component sensitivity. However, because they are nonlinear
systems, they have proven difficult to analyze. Rigorous analyses
have been performed only for a small number of artificial input
sequences such as constant, sinusoidal, and Gaussian white
noise input sequences. By allowing for the inevitable presence of
small amounts of noise in the A modulator circuitry, a gen-
eral framework is developed which extends the repertoire of
tractable input sequences to a large class of stochastic se-
quences in addition to handling many input sequences for which
results have been previously presented. Under the assumptions
that some circuit noise is present and that the input sequence
does not cause overload, a simple autocorrelation expression is
developed that is only locally dependent upon the input se-
quence. Ergodic properties are derived and various examples
are presented.

Index Terms—Sigma—-delta, delta—sigma, oversampling, ana-
log-to-digital conversion, quantization.

1. INTRODUCTION

HE first-order A modulator [1] is the simplest of a

class of systems generally referred to as A% modula-
tors that employ sampled-data filters and coarse quantiz-
ers within feedback loops. They are widely used in high-
precision oversampling A /D converters because they are
well suited to VLSI implementation and tend to be robust
with respect to nonideal components. Accordingly, they
have received much attention from both academic and
industrial researchers. Nevertheless, most of the previ-
ously published rigorous theoretical analyses of A% mod-
ulators apply only to a small set of input sequences. In the
current work, we concentrate on the first-order A% modu-
lator and provide rigorous results for a large class of input
sequences.

The first-order A3, modulator consists of a sampled-data
integrator, a uniform midrise quantizer [2], and a negative
feedback loop surrounding the integrator and quantizer,
as shown in Fig. 1(a). The system operates on a sampled-
data input x(n) and produces a quantized output y(n).
The quantizer can be interpreted as an additive quantiza-
tion noise source, as depicted in Fig. 1(b). A straightfor-
ward linear systems analysis shows that the input se-
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Fig. 1. (a) The first-order AS modulator. (b) An equivalent form of the
system with the quantizer represented as an additive quantization noise
source. (c) An equivalent form of the system showing the different filters
that act on the input and quantization noise sequences, respectively.

quence sees the one-sample delay S(z) = z~' while the
quantization noise sequence sees the high-pass filter N(z)
=1 — z~'. Thus, as shown in Fig. 1(c), the output consists
of two components: a component corresponding to the
input sequence, and a component corresponding to the
quantization noise sequence.

Note that N(z) is a high-pass filter with a zero at zero
frequency. This causes the spectral energy of the quanti-
zation error at the output of the A3 modulator to be
weighted toward the high-frequency end of the spectrum
for most input sequences [3]. It is this property of the A%
modulator that makes it useful in oversampling A/D
converters.

An oversampling A /D converter consists of a A2 mod-
ulator followed by a low-pass decimation filter, as shown
in Fig. 2. The input to the AS modulator x(n) is obtained
by sampling a bandlimited analog signal at a rate Nf
where N is a positive integer and f is the Nyquist rate.
Therefore, the spectrum of x(n) is nonzero only on
(—m/N,m/N) where 27 corresponds to the sampling
rate. Provided N is sufficiently large, the spectral energy
of the quantization error will fall mostly outside
(—m/N,m/N). The low-pass filter removes the out-of-

0018-9448 /93$03.00 © 1993 IEEE



GALTON: QUANTIZATION NOISE IN AZ MODULATOR

x(n)
———)‘ AL

Fig. 2. A AT modulator based on oversampling A /D converter.

v(n)

H(z) LN

band quantization error, and the decimator reduces the
output sequence to the Nyquist rate.

Although conceptually simple, the system has proven
difficult to analyze because of the nonlinearity introduced
by the quantizer. As will be shown, the quantization noise
has a complicated structure that is globally dependent
upon the input sequence. If two input sequences differ at
just one sample time, say n = n,, then the corresponding
quantization noise sequences will appear very different
for all n > n,.

The quantizer imposes the following nonlinearity on its
input:

x A
AlZJ+E if—’ySX<'y
A
q(x) = taairs ifx>vy 1)
A
—y+5 ifx < —y

where vy is usually an integer multiple of A. When the
input to the quantizer has absolute value greater than vy,
the quantizer is said to overload. It is desirable to avoid
the overload condition because the resulting distortion
tends to be severe and difficult to characterize [4]-[10].
Most of the existing A3 modulator analyses, including
ours, assume that the overload condition is avoided. Since
the quantizer will not overload provided the A modula-
tor input sequence is bounded in absolute value by y —
A /2 [8], this is not an unreasonable assumption. Further-
more, simulations show that if the overload condition
occurs, but does so only rarely, then the performance of
the AS modulator is not significantly degraded [11]. We
can therefore expect any exact results obtained under the
no-overload assumption to approximately hold if the over-
load condition has a low frequency of occurrence.

Even under the no-overload restriction, the system does
not yield to a straightforward analysis. Most analyses rely
on approximations [1], [3], [12], or apply only to specific
input sequences such as constant [4], [5), sinusoidal [6], or
Gaussian white noise sequences [7].

In the current work, we develop rigorous results by
assuming that the input sequence contains an additive
independent identically distributed (iid) random compo-
nent. The assumption is not very restrictive because the
random component can have an arbitrarily small variance.
Moreover, since thermal noise in the analog front end of
the AS modulator can be modeled as an iid random
sequence, the assumption is reasonable in practice. The
approach has the benefit that it can be applied to a large
class of input sequences. We develop a simple expression
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for the autocorrelation of the quantization error R, (n, p),
and show that it is equal in probability to the correspond-
ing time-averaging autocorrelation. The autocorrelation
expression is convenient because it is only locally depen-
dent on the input sequence. This property makes tractable
many desired input sequences that cannot be handled
using previously presented theory, such as the class of
arbitrary stochastic sequences respecting the no-overload
constraint.

In Section II, we derive the theory outlined above, and
in Section III we apply it to specific input sequences. By
considering constant and sinusoidal inputs, the theory is
shown to contain many of the existing results concerning
the first-order A3 modulator as special cases, although
new observations are also presented. In particular, for a
sinusoidal input, we develop a closed-form expression for
the quasi-stationary autocorrelation of the quantization
error. Additional classes of sequences, which heretofore
have not been rigorously analyzed in conjunction with the
AS modulator, are then considered. We also present
simulation results to support our theoretical analysis.

II. THEORETICAL ANALYSIS

Instead of considering the A3 modulator in isolation,
our system of study will be the A, modulator followed by
a causal, stable, linear time-invariant digital filter with
transfer function H(z) and impulse response h(n), as
shown in Fig. 3. The reason for not considering the A3
modulator in isolation is that, in practice, it is almost
always followed by a filter and, as we will show, the
statistics of the output are dependent upon the filter.
Since we could choose H(z) = 1, the isolated A% modu-
lator is a special case of our system.

We will distinguish between the quantization noise se-
quence, €(n), and the quantization error sequence, e(n). As
shown in Fig. 1(b), the quantization noise sequence is the
difference between the output and the input of the quan-
tizer. It is the noise injected into the system by the
quantizer. The quantization error sequence is the compo-
nent of the output of the system in Fig. 3 corresponding to
the quantization noise. As mentioned above, the AX
modulator subjects the quantization noise sequence to the
filter N(z) =1 — z~!. Thus, the quantization error se-
quence is equivalent to the output of the filter a-
z"1)H(z) when driven by the quantization noise se-
quence. From the argument leading to Fig. 1(0), it follows
that we can write the output of the system in Fig. 3 as

r(n) = w(n) + e(n), (2)
where w(n) can be interpreted as the response of the
filter z7'H(z) to the input sequence x(n).

As alluded to above, we will assume that the input
sequence seen by the AS modulator consists of a desired
input sequence, x,(n), plus an input noise sequence, {n,}:

x(n) =x,(n) + n,. 3)
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Fig. 3. A first-order AZ modulator followed by the filter H(z).

We require that the 7, are independent and identically
distributed with a distribution that has a density. The
desired input sequence is the sampled-data signal that is
to be converted into a digital sequence by the A2 modu-
lator (e.g., the music signal, the video signal, etc.), and the
input noise sequence is an unrelated sequence that is
assumed to be present in the analog front-end of the A%
modulator. The assumption is realistic in practice because
thermal noise which is ubiquitous in analog circuity can
be accurately modeled as an iid random sequence in
sampled data systems.

A. An Expression for the Quantization Error Sequence

In the calculations to follow, we will consider the A%
modulator to have been “turned on” at a specific time in
the past. For all n < a, we will take the input sequence
and all storage elements in the A3, modulator and filter to
be zero. In some cases, we will consider the system in the
limit as @ — —c°. This corresponds to a system that has
always been running.

Gray [8] has shown that the quantization sequence can
be written as

)

provided n > a.! For convenience, we will take e(n) =0
whenever n < a.

Since H(z) is causal, its impulse response, A(n), is zero
for all n < 0. Therefore, for n > a, we can write the
quantization error sequence as

1n-a A
—_ x(n—i)+5

()—A
e\n —E—A Ai:l

e(n) = ¥ [h(k) = h(k — D]e(n — k).

k=0

&)

Again, for convenience, we will take e(n) = 0 whenever
n < a. Combining these two equations gives

n—a-—1
e(n) =AY, [h(k) —h(k - D]
k=0
1 n—-k—a A
<_A. E‘l [x(n—k—l)-i—z > (6)

Although (6) is an exact formula for the quantization
error sequence, it does not give great insight into the
long-term behavior of the quantization error sequence. In
particular, the specific quantization error sequence ob-
tained for a given input sequence is globally dependent
upon each value of the input sequence. For example,

"The angle brackets denote the fractional part operator. This operator
is defined as (x) =x —{x]for all x €R.
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consider two input sequences x,(n) and x,(n), which are
identical except for their first value at time n = a. That is,
suppose

x,(n), ifn+*a

x(n) + B,

x,(n) = .
2 ifn=a

for some nonzero B8 € R (such that the no-overload con-
dition is maintained). Then the quantization error se-
quence associated with x,(n) is

n—a-1
e(m) =AY [h(k) — h(k ~ D]
k=0
1 n—k-a ( X ) A
3 i; [xln— —l)+5 ,

while the quantization error sequence associated with
x,(n) is

n—a-1

e,(n) =A Y, [h(k) = h(k—-1)]

k=0
1 1 n—k-a A
.<BZ+K i; [xl(n—k—i)+5>.

Because of the presence of B, each term of the first sum
in the equation for e,(n) differs in a complicated fashion
from the corresponding term in e(n); the two quantiza-
tion error sequences typically look very different.

B. Quantization Noise Statistics

Chou and Gray [13] have investigated the statistics of
the quantization noise sequence of the first-order A%
modulator under the assumptions that overload is avoided
and that the input sequence consists of a deterministic
sequence plus a so-called dither sequence that is iid with a
density. Mathematically, the dither sequence assumption
is equivalent to (3); our input noise sequence plays the
role of the dither sequence. The reason that we do not
refer to the input noise sequence as a dither sequence is
that the term dither is usually applied to sequences that
are intentionally introduced. From a practical point of
view, we are making the opposite assumption. We con-
sider the presence of the input noise sequence to be an
inevitable result of the AY modulator having an analog
front-end. The practical consequence of our distinction is
that the results presented in this paper hold regardless of
whether a dither sequence is intentionally added. Never-
theless, the results presented by Chou and Gray can be
applied directly to our system.

In particular, they proved that the quantization noise
sequence converges in distribution to a random variable
that is uniformly distributed on (—A /2, A/2) and is inde-
pendent of the desired input sequence. In order to extend
their work, it is convenient to begin by stating this result
in a slightly different form. We do this in the following
lemma.
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Lemma 1: For each r = 1,2,+-+, let

U={p+ Yecn) @)

i=1

where { p,} is any deterministic sequence, ¢ is any nonzero
real number, and {»;} is a sequence of independent, iden-
tically distributed random variables whose distribution has
a density. Then, as r — o, U, converges in distribution to
a random variable U that is uniformly distributed on [0,
1.

Proof The proof is essentially the same as that pre-
sented in [13]. ]

The following lemma generalizes this result to stochas-
tic sequences { u,}.

Lemma 2: Let {U}, ¢, and {n} be as defined in the
hypothesis of Lemma 1. Let {u,} be any stochastic se-
quence that is independent of {n;}. Then, as r > x, [
converges in distribution to a random variable U that is
uniformly distributed on [0, 1).

Proof: The moments of U, are defined as E(U}"), for
n=1,2,---. Because U, < 1 with probability 1, each mo-
ment exists and has absolute value less than or equal to
one. Thus, the distribution of U, is uniquely determined
by its moments, and it is sufficient to show that the
moments of U, converge to the corresponding moments of
Uasr— o?

Since the sequences {n,} and { u,} are independent, for
any integer n we can write

EWU") = ELEWU" | pys g5 )]

By Lemma 1, for any deterministic real sequence

{a, a5, ),
EQU" | gy = ay, iy = ay, ) = EU™)
as r — o, It follows that
EWU™ | g, po, ) = E(U™)

with probability 1 as r — .

By definition, E(U" | uy, p, -+ ) < 1 with probability 1.
Therefore, it follows from the Lebesgue dominated con-
vergence theorem that

ELEWU | py» iy, )] = EU™)

as r — . ]

In accordance with the usual definitions, we will take
the mean and autocorrelation of the quantization noise
sequence to be

M (n) = lim E[e(n)],

and

R.(n,p) = lim Ele(n)e(n + p)l,

a— —«

respectively. We will take the cross correlation of the
quantization noise sequence and the desired input se-

2See, for example, 14, Theorems 30.1 and 30.2].
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quence to be

R, (n,p)= lim E[x,(n)e(n + p)].

We will take the mean, autocorrelation, and cross correla-
tion of the quantization error sequence, namely, M, (n),
R..(n, p), and R, (n, p) to be analogously defined.

The following theorem is an extension of a result proven
by Chou and Gray. They proved the result under the
restriction that the desired input sequence is determinis-
tic. The current result holds for deterministic and stochas-
tic desired input sequences.

Theorem 3: For deterministic or stochastic desired in-
put sequences, M(n) and R, (n,p) are zero. Conse-
quently, M,(n) and R, ,(n, p) are also zero.

Proof: If M(n) and R, (n, p) are zero, then by the
linearity of H(z), it follows that M,(n) and Rxde(n, p) are
zero. Therefore, it is sufficient to show that M.(n) and
Rm(”’ p) are zero.

From (4), for each n > a, we can write e(n) = (A/2) —
AU,_, where U,_, corresponds to U, in Lemma 1 with

n—a

¢ =1/A and

1 - A
,.L,=Ki=zl[xd(n—i)+-2—

From Lemma 2,

lim E(U) = 3, (8)

row

which implies that M_(n) = 0. Moreover, (8) holds regard-
less of the value taken on by x,(n). Hence,

lim E[x,(m)U,] = 3E[x,(n)],

y—> 0

which implies that R, (n, p) = 0. [ ]

Assuming for now that autocorrelation functions for
e(n) and w(n) exist, Theorem 3 in conjunction with (2)
implies that the autocorrelation of the output of the
system of Fig. 3 can be written as

Rrr(n>p) = wa(n’p) + Ree(n’p)'

Therefore, the significance of Theorem 3 is that the
autocorrelation of the quantization error sequence, if it
exists, characterizes the second-order statistics of the
quantization error.

The following theorem shows that R, (n, p) indeed
exists and provides a convenient expression for its evalua-
tion.

Theorem 4: The autocorrelation of the quantization
noise sequence can be written as

R_(n,p) = Elr(n,n + p)l, )
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where
AZ
E?
fn=m
1[a 1 n=1 AT\]? a2
_— —_— = J— +_ [ —
rn.m) =1 2|2 <A,.=Zm[x“) z> 2%’
ifn>m
1[A 1 m=1 AN a2
2|7 <z,§”[’““)+5> "%
ifn<m
10)

Consequently, the autocorrelation of the quantization er-
ror sequence can be written as

R, (n,p) =Y, Y [h(j) —h(j — DIA(k) — h(k — D]
j=0k=0

‘R (n—k,n+p—J). (1)
Proof: As in the proof of Theorem 3, write e(n) =

(A/2) — AU, _,. Then,
2 2 2

A
Ele(n)e(n + p)]l = il —E(U,,,,,) - —E,

? n+p—a

)

+ ANE(U,_

a n+p ﬂ)
From Lemma 2, it follows that
lim E[e(n)e(n + p)]
a— - AZ
-7t A? lim E(U,_

a—- —x

a n+p a)

Therefore, to prove (9), it is sufficient to show that

1 1
lim EU,_,U, )= E[r(n n+p)l+—. (12)

dor o a“n+p-a
If p =0, (12) holds as a direct consequence of Lemma 2.
Therefore it is sufficient to prove that (12) holds for
p=1

The fractional part operator has the property that for
any x,y €RR, {x +y) = {{x) +y). It follows that for

p=1
A>

U [x(n+i)+—2—

n+p-a

172}
Up_o+ ~
n—-a A Z

Therefore, by Lemma 2,

lim EU,_,U )

4o - aYn+p-a

p-1

Y x(n+i)+3

A
)| o
i=0

where U is uniformly distributed on [0, 1). The expecta-
tion on the right side of (13) can be evaluated in closed

1
- E{U{U + —
v
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form. However, the algebra is messy so it has been rele-
gated to the Appendix as Lemma Al. Applying Lemma
Al to (13) for p > 1 gives

lim EU,_U,., ,)

1 1E 1111 s D ATV
==+ +i)+ =
3772 vrroTy
1 /1 A
2 <A120 X(n l) >

This can be rearranged as (12) so the proof of (9) is
complete.
Combining (5) and the autocorrelation definition gives

R, (n,n +p)
=Y Y () - h(j = DIk — h(k — D]
j=0k=0
- lim Ele (n—jeln+p -kl

which is equivalent to (11). The term-by-term multiplica-
tion of the series for e(n) and e(n + p) and the inter-
change of the limit and the sums are justified because the
impulse response, A(n), is absolutely summable (because
H(z) is stable). Hence, (11) is a direct consequence of (9)
and the stability of the filter. |

Several observations can be made regarding (9). Note
that r(n, m) is formally a constant offset plus the squared
quantization error of a uniform midrise quantizer operat-
ing upon a finite partial sum of the input sequence. Thus,
the quantization error autocorrelation is the weighted
sum of the mean-squared errors of multiple uniform
quantizers operating on various partial sums of the input
sequence.

Another observation which we anticipated in the Intro-
duction is that the quantization error autocorrelation is
only locally dependent upon the input sequence. That is,
for a given p, the dependence of R,.(n, p) upon the set
of input values {x(k): k < n — N} can be made arbitrarily
small by increasing N. This is a consequence of the
impulse response of the filter, A(n), being absolutely
summable. If H(z) is an FIR filter, then the stronger
assertion can be made that R,.(#n, p) is only dependent
upon a finite number of values from the input sequence
for a given p.

Suppose we were given M systems, all operating on the
same desired input sequence at the same time. Each
system would produce a quantization error sequence e;(n)
that would differ from the other quantization error se-
quences because of the random variables 7,. In this case,
by the law of large numbers,

M-1

1
— Y en)en+p) =R, (n,n+p)
M =

(14)

provided M is large (and a < n).
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If Theorem 4 were useful only to the extent that we
could predict the average behavior of many identical
systems per (14), it would be of limited use. It is more
often the case in practice that we are interested in the
long-term time-average behavior of e(n)e(n + p). The
question therefore arises as to what bearing the statistical
autocorrelation has on the time-average behavior of
e(n)e(n + p).

Relationships between time and ensemble averages are
usually referred to as ergodic properties [15], [16). The
following theorem and corollary present ergodic results
which greatly extend the utility of Theorem 4.

Theorem 5: The following equations:

1 N-1
lim — Y e(n) =0 (15)
N== IV =g
and
N-1
Al/iinx ~ ngoxd(n)E(n +p) =0, (16

hold in probability. Moreover, whenever one of the limits
exists,

1 N-1 1 NI
lim — Y e(n)eln +p) = Jiinwﬁn‘éo&f(mp)

N—x n=0

an

holds in probability. In particular, the limits exist if the
desired input sequence is quasi-stationary.

Proof: As in the proof of Theorem 3, we begin by
writing e(n) = (A/2) — AU, _,. Without loss of general-
ity, we will assume that a = 0. It follows from the proof of
Theorem 3 that

1
E, | Mo M Moy s ™™ ) - P
with probability 1 (and, consequently, in probability) as
k—j—wwithk>j=0.
Applying Lemma A2 (presented in the Appendix) with
U, — 1 playing the role of X, gives

in probability. Therefore, (15) holds in probability. The
argument that (16) holds in probability is almost identical.

To show that (17) holds in probability provided either
limit exists, it is sufficient to show that

1 N1
lim — Y [e(we(n +p) —R.(n,p)] =0 (18)

No= N n=0
holds in probability. Since e(n) = (A/2) — AU, a suffi-
cient condition for (18) to hold in probability is that both

1 N=d 1
lim ¥ Yy [Un— —} -0 19

N 0 2
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N-1
lim — ¥ |00,

N-ox n=0

1 1
o= Rlnp) = 7| =0 QO
hold in probability. We have already shown that (19) holds
in probability, so we can conclude that (18) holds in
probability if (20) holds in probability.

Define

1 1
X, = UnUn+p - Xz_Rze(nap) - Z

From the proof of Theorem 4, it follows that
E(X; | M5, My Bos g, 7) = 0

with probability 1 as k — j — o« with k > j > 0. It follows
from Lemma A2 that (20) holds in probability, which
completes the proof that (17) holds in probability pro-
vided either limit exists.

If the desired input sequence is quasi-stationary, then
the quantization noise sequence is also quasi-stationary
[13], and so the limit on the right side of (17) exists. In this
case, since (18) holds in probability, (17) must hold in

probability. [ |
Corollary 6: The following equations
1 N-1
Al[iinxﬁng,o e(n) =0 21
and
N-1
1$iinx ~ n§0 x,(m)e(n +p) =0 (22)

hold in probability. Moreover, whenever one of the limits
exists,
1 N-1 1 N1
}\lllinoc ~ 'Eoe(n)e(n +p) A}linx N ng() R,.(n,p)
(23)

holds in probability. In particular, the limits exist if the
desired input sequence is quasi-stationary.

Proof: Each equation follows formally by expanding
e(n) with (5) and applying Theorem 5. In each case, the
various limits and sums can be interchanged because the
impulse response of H(z) is absolutely summable. n

There are various ergodic theorems that have been or
can be applied to the first-order A% modulator for spe-
cific classes of input sequences [16]-[19]. However, the
published ergodic theorems do not apply to the class of
input sequences considered in the current work.

We now develop procedures for applying the theory
presented thus far to arbitrary input sequences. Recall
that our theory requires the input sequence to contain the
random variables 7,. Therefore, even if the desired input
sequence is deterministic, the actual input sequence is
stochastic. As argued in the Introduction, this assumption
is realistic in practice. However, many of the existing
results for the AS modulator are in terms of purely
deterministic signals. So that we can later compare our
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theory to existing work, we first develop a systematic
approach to annexing the deterministic case into our
theory. We then consider the more important class of
arbitrary stochastic input sequences with known statistics.
Finally, we present a procedure for obtaining approximate
results when the statistics of the desired input sequence
are not fully known. To avoid cluttering the development,
specific examples are deferred to the next section.

C. Deterministic Input Sequences

Most of the treatments concerning deterministic input
sequences involve the evaluation of the quasi-stationary
autocorrelation R (p). In this case,

N-1
R.(p) Jim n);O [e(n)e(n + p)]
since the input sequence does not contain a random
component (see [8] and [20] for a discussion of quasi-
stationary processes).

To circumvent the restriction that the input sequence
contain the random variables 7,, we take the limiting case
as the distribution function of the 7, approaches a unit
step function at the origin (i.e., as the 7, converge in
distribution to a random variable that is zero with proba-
bility 1). From Theorem 5 and the definition of the
quasi-stationary autocorrelation,

N-1
R(p) = lim — EOR“(H’ p) 4
in probability. Consider a sequence of absolutely continu-
ous probability distribution functions (i.e., probability dis-
tributions with densities) {P,(x)} such that

. 1 ifx>0
Jim P,(x) = {0 otherwise.
Let R (n, p) | p,, be the value of R, (n, p) correspond-
ing to =, with distribution function P,(x). From (9) and

(10), we have
khm Res(n’ p) I Pr(x)

AZ
67
ifp=20
'A p n+p—1 2 2
—|= - A(= ) -
1303 <2 A E:n x,(0) e
ifp>0
- 2
1 p n-1 2
———A—+—Zx(z)> YR
2|2 <2 A } 24
ifp<o0
(25)
Define
. 1 N-1
RE(P) = I\EIEL N ngo kh_I)Ilee(n’ P) IPk(X)'
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Applying (25) gives
A2 N-1]1 p 1 ntlpl—1 2
R(p)=lim — ¥ |=— (= +~ :
Ap) Jim nZ::O [2 < >t 3 E,n x4(0)
A2
- — 26
24 (26)

Care must be taken to properly interpret Iéf( p). It is
tempting to consider it to be the quantization noise auto-
correlation corresponding to the deterministic input signal
x4(n), without any contribution from the 7,. As we shall
see, in some cases, this interpretation is valid, and in
other cases, it is not. In general, what can be said is that
given a deterministic input signal, for any e > 0 there is
an uncountable infinity of deterministic signals, each of
which has a mean-squared difference from the original
signal of less than € and a quasi-stationary autocorrela-
tion equal to R.(p). In cases where R,(p) = R.(p), the
existence of the limit in (25) implies that the ideal result
for the purely deterministic input sequence is approxi-
mately valid if some noise is present. It becomes increas-
ingly accurate as the noise level is reduced. Of course, this
can be determined from simulations and observations of
actual systems, but the argument above provides a theo-
retical basis for the behavior. In cases where R(p)#
R.(p), we should be wary of applying the deterministic
analysis to a physical A3, modulator implementation. With
the slightest amount of noise per (3), the autocorrelation
will differ from that of the noiseless case and be very close
to R_(p) in probability. In this sense, the purely determin-
istic result is not a physically stable solution. Examples of
such physically unstable deterministic solutions are pre-
sented in Section III.

D. Stochastic Input Sequences

In conjunction with existing results concerning uniform
quantizers, our theory can be used to handle stochastic
desired input sequences respecting the no-overload con-
straint. The first task is to evaluate the autocorrelation
function R, (n, p) of the quantization error sequence.

As is evident from Theorem 4 and the observations
following it, to evaluate this expression, we must evaluate
the mean-squared quantization error corresponding to
various quantized partial sums of the input sequence. It is
in solving this part of the problem that we benefit from
existing results concerning uniform quantizers. If the re-
sulting expression for R, (n, p) is not dependent upon #,
then the quantization error sequence is wide-sense sta-
tionary, and we are done. Otherwise, we may perform a
time average of R,.(n, p) to obtain the quasi-stationary
autocorrelation function. In either case, Corollary 6 en-
sures that the resulting function, if it exists, converges to
the time average of e(n)e(n + p) in probability.

For a given input sequence, the success of our approach
depends upon evaluating the mean-squared quantization
error of partial sums of the input sequence. Fortunately,
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considerable attention has been devoted to analyzing the
effect of uniform quantization upon stochastic sequences
[8], [21]1-[24]. In particular, Sripad and Snyder [24] have
derived an exact expression for the probability density
function of a quantized sequence. If the statistics of x(n)
are known, then, using Sripad and Snyder’s expression,
R,,(n, p) can be evaluated easily. In particular, if the filter
has length M and we know all 2M and lower joint
probability distribution functions of the input sequence,
we can calculate the mean-squared quantization error
0.} = R, (n,n). If we know the 2M + N and lower joint
probability distribution functions of the input sequence,
we can calculate R,,(n, p) for all |p| < N. As will be
demonstrated in the next section, the first step is to apply
Sripad and Snyder’s expression to calculate the probability
distributions of the quantized partial sums. It is then
straightforward to evaluate R _(n, p).

E. Approximate Analysis

Sometimes, the statistics of the input sequence are not
known or are only partially known. For many such input
sequences, our theory gives rise to approximate analyses.
As with deterministic and stochastic input sequences, we
benefit from having reduced the problem to one of evalu-
ating the mean-squared error of a uniform quantizer
operating on partial sums of the input sequence.

If the input to a uniform midrise quantizer is suffi-
ciently “busy” or “active” on a scale that is larger than
the quantization step size, A, it is common to approximate
the quantization noise as uniformly distributed on
(—=A/2,A/72) [8], [21]-[24]. In many cases, the partial
sums of such a sequence also satisfy this property. Indeed,
even if the individual members of the sequence do not
satisfy the property, it is possible that partial sums of
several members do satisfy the property.

Because (10) is an offset plus the squared quantization
error of a partial sum of the input sequence, it follows
that if all the partial sums are busy in the sense described
above, then

AZ
R (n,p) =15 1p=0
0, otherwise.

In this case, from (11), we have

2

A
R,(n,p) = ?[(h(n)* h(=m)(p)

—(h(n)* h(=n))(p + DI.

In a A3 modulator based oversampling A /D converter,
it is not likely that the individual members of the desired
input sequence are busy on a scale that is larger than A.
However, the desired input sequence might be busy on a
smaller scale. In this case, sequences of partial sums
containing many terms might be busy on a scale that is
larger than A. Thus, if we know only enough of the
low-order statistics of the desired input sequence to evalu-
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ate (10) for all the cases where the uniform quantization
noise approximation is not valid, we can obtain a good
approximation to R_(n, p).

Of course, the accuracy of the uniform quantization
noise approximation is highly dependent upon the nature
of the input sequence, and must be assessed on an indi-
vidual basis. Fortunately, there exists a large body of work
addressing issues of applicability and accuracy associated
with the approximation.

III. APPLICATION TO SPECIFIC INPUT SEQUENCES
A. Constant-Amplitude Input Sequences

Although constant-amplitude input sequences have
been considered by several people, Gray [5] was the first
to perform an exact analysis. With A = 1 and for an input
sequence x(n) = x, where x is an irrational number
bounded in absolute value by 3, he showed that the
quantization error sequence has a quasi-stationary auto-
correlation given by

rior= -l ol )

An equivalent result can be obtained from our theory.
From (26), for any x € (— 3, 3),
S|
+ —_ —
* 24

L N-IT 1 1
am o8 E |2 P(z

53 {elz - (ol )

which agrees with (27). Therefore, provided x is irra-
tional, R.(p) = R.(p). '

The form of R_(p) is not dependent on whether x is
rational or irrational. However, (27) does not hold for
rational x [S]. It follows that R.(p)# R.(p) if x is
rational. Since it is not possible to generate a perfectly
constant rational voltage, there is little practical signifi-
cance to this discrepancy. Adding a vanishingly small
amount of noise to a rational constant input in accor-
dance with (3) causes the quasi-stationary autocorrelation
to approach R(p) in probability. Hence, the purely de-
terministic result is not a physically stable solution in the
case of a rational constant input.

R.(p)

B. Sinusoidal Input Sequences

Because the AS modulator is not a linear system, its
overall performance cannot be completely characterized
by its response to sinusoidal inputs. Nevertheless, sinu-
soidal inputs are often used to test and partially character-
ize A/D converters. Therefore, sinusoidal input se-
quences have received considerable attention in the AX
modulator literature. Gray et al. [6] were the first to
perform an exact analysis. As in the constant-input case,
they showed that the quantization noise sequence is
quasi-stationary, and derived an exact expression for the
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quasi-stationary autocorrelation function. Unlike the con-
stant input case, their expression is not in closed form. In
contrast, our theory does yield a closed-form result.

Suppose x,(n) = Acos nw, where |A| <y —(A/2).
From (26), we have

. 1 N
R = lim —
Ap) Jim = Yy

-1
n=

0

A p 1n+|p|—1 2
- —A{ — + — ; —
5 >t 3 Y Acosio,

i=n

AZ
2—4‘.

After some trigonometric manipulation, this becomes

A~ N-1TA 1
R = lim — — _AlZ
(p) = lim — nzo[z A<A {B(wo,p)
. pAV\]? A
.sm[won+0(w0,p)]+7} ~ 5
where
sin( wyl pl/2)
B s =4— 2
(@, p) sin( w,,/2) (28)
and

2
Note that for each even p, R_(p) is equal to a constant
plus the average squared error of a quantizer operating
on a sinusoid. Similarly, for each odd p, it is equal to a
constant plus the averaged squared error of a quantizer
operating on a sinusoid offset by A/2. Closed-form ex-
pressions for these quantities have been derived by Clavier
et al. [25] and reformulated by Gray [8]. Our theory has
thus reduced the problem to one that can be solved by
applying results from another problem that has a known
solution.

When w, /27 is an irrational number, we can apply the
results to obtain

1
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ate. From (28), it follows that B(w,, p) < Alp| for w,.
Thus, each sum has at most (A|p|/A) + 1 terms. Since
the autocorrelation is most interesting for values of p
near the origin, and since 4 /A is usually less than one in
practice, the sums rarely involve many terms.

Once again, it is interesting to answer the question of
whether R_(p) and R(p) are equal. Because the expres-
sion for R ( p) presented in [6] is a double infinite summa-
tion of Bessel functions, a quantitative comparison of the
two functions for all values of p is difficult. A simpler
approach is to compare the functions when p = 0. In this
case,

2 o 1

A
_,A2Z

R.(0) =
12 =0 (w21)

(= D'1,Qmig/sin(w,/2)).

whereas I@E(O) = A?/12. Clearly, the two expressions are
not equal. A similar, but more involved analysis shows
that they are not equal for most finite values of p. As in
the case of rational constant inputs, that R.(p) and
R.(p) differ indicates that the purely deterministic result
is not a physically stable solution. For example, the slight-
est amount of noise added according to (3) causes the
second term in the expression for R.(0) to vanish in
probability.

C. A Simple Class of Stochastic Input Sequences

In the following, we will assume that the variance of the
input noise sequence is so small that we can ignore its
effect when evaluating (9). This is not a necessary assump-
tion, but it makes the calculations simpler. In an actual
AS, modulator, the assumption is equivalent to assuming
that the circuit noise floor is significantly below the quan-
tization noise floor.

As a first test of our theory for stochastic input se-
quences, suppose that x,(n) is a sequence of independent
random variables with characteristic functions satisfying

A2
7 r=t
A? (R 1)2 gz e 25 1 2 2

A - = + - in_ — —

Rs(p) = 2 2 o Trk§l 2 sin 2 é‘ k ’ peven

(2 4 2R

ot 2

T k=

where ¢ =(1/A)B(wy,p), R=1[{1, and S=|{+ 3]
(when comparing these results to those in [8], note that
various algebraic errors have been corrected). Similar
results apply to the less important case in which w,/27 is
a rational number.

_Although not an intuitive result, the expression for
R_(p) is a closed-form expression and is simple to evalu-

1 2
[(2k+1)sin1(k+2)+2\/§2—(k+1) l} podd
¢ 2 '

®, 27n/A) =0 for all n+ 0. For example, a se-
quence satisfies this property if each member has a mean
of B, and is uniformly distributed on [B, — A/2, B, +
A/2) (respecting the no-overload constraint). Such a se-
quence might be created by adding a stochastic dither
sequence d,, satisfying the characteristic function equa-

tion above, to a deterministic sequence, S,.
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Since the members of the sequence are independent,
adding them together corresponds to multiplying their
characteristic functions. Hence, any partial sum of the
form

n-1 A
Spm = 2 [x(i) + 5]
=m
has a characteristic function satisfying ®; (27n/A) =0
for all n # 0. This is a necessary and sufficient condition
for the error produced by quantizing S, ,, to be uniformly
distributed [24), [26]. Applying this result to evaluate (10)
gives .

AZ
Elr(n,m)]={ 33> Hr=m
0, if n #m.

For the case of a AY modulator with a 1-bit quantizer
(i.e., the case of y =1 and A = 1), Chou and Gray [13]
have presented an equivalent result. They pointed out
that the result is of limited use because in order to satisfy
the no-overload constraint, the input sequence must have
zero mean (i.e., B, = 0 must hold for all n). Although the
A3 modulator is most commonly implemented with a
1-bit quantizer, multibit quantizers are sometimes used
(see, for example, [27]). In such cases, the restriction on
the input sequence (when each member of the input
sequence is uniformly distributed on [ B8, — A/2, B, +
A/2) is that —y+ A < B, <y—A for all n. Since
A =2y/(2R = 1), where R is the number of quantizer
bits, this is not necessarily a severe restriction. For exam-
ple, if an 8-bit quantizer with y = 3 is used in the AX
modulator, then the allowed range of the input sequence
means is [—(A/2) + (1/255),(A/2) — (1/255)], which is
99.6% of the full dynamic range of the input.

D. Gaussian Input Sequences

As outlined in the previous section, the general proce-
dure for determining R,,(n, p) involves calculating the
mean-squared quantization error of various partial sums
of the input sequence. In the example just considered, this
was particularly simple because all the partial sums had
uniformly distributed quantization error. For arbitrary
nonstationary stochastic input sequences, the method is
still straightforward, but the calculations can be tedious
because each partial sum may have a different distribu-
tion. In such cases, the calculations are most easily per-
formed using a computer.

To illustrate the general method, but nevertheless ob-
tain results that can be verified by hand, we consider the
case of a stationary Gaussian desired input sequence.
Because all partial sums of such sequences have Gaussian
distributions, we need not explicitly determine the distri-
bution of each partial sum so the tedium mentioned
above is avoided.

The specifics of the example are as follows. Let x,(n)
be a stationary Gaussian sequence with autocorrelation

R, . (p)=(oc’a” where o? is the variance of the se-
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quence and |e| < 1. Let the A% modulator have y = =
and A = 1, and let H(z) have the form H(z) = F*(2),
where

1 Mil
F(z) = — z7L.
M n=0

It is necessary to have y = « so that the overload condi-
tion is avoided. If y were finite, the A modulator would
be sure to overload sooner or later because Gaussian
distributions do not have finite support. However, the
example can be applied as a good approximation when vy
is finite provided y > o? because, in such cases, the
overload condition is rare.

Using the easily derived fact that each partial sum Sy
of N consecutive samples of the desired input sequence
has a Gaussian distribution with variance

2N(a —a ) -2a¥+2

1 ’

2 _
T 2—-a-—aoa
it is straightforward to evaluate (10) using standard tech-
niques (see, e.g., [24]). Fig. 4 shows the autocorrelation so
calculated for the case of M =16, o2 = 0.05, and a =
~0.8, along with the autocorrelation as found by com-
puter simulation. As is evident from the figure, the theo-
retical and simulated autocorrelations are in close agree-
ment.

As shown in the previous section, if the statistics of the
desired input sequence are only partially known, it is
often possible to obtain approximate results. We illustrate
this by applying the approximation to the previous exam-
ple.

For arbitrary stochastic desired input sequences, in
order to calculate R_(n, p) using Theorem 4, it is neces-
sary to know all |p| and lower order statistics of the
desired input sequence. For example, if we only know the
fifth and lower order statistics, we can only calculate
R, .(n, p) when |p| < 5. In this case, to apply the approxi-
mation of the previous section, we would set R.(n, p) = 0
whenever | p| > 5. Although we know all the statistics of
the Gaussian desired input sequence considered in the
previous example, we can nevertheless apply the approxi-
mation and compare the approximate results to the exact
result.

Fig. 5 shows the results of the approximation for the
cases where R_.(n, p) is only calculated for [p| <5 and
for | p| < 10. The curves are labeled in terms of the order
of statistics that would generally be required to obtain the
corresponding approximations if the input sequence were
not Gaussian. The approximation is quite good in both
cases.

I'V. CONCLUSION

We have presented a unified approach to analyzing the
granular quantization error of the first-order A3, modula-
tor. The approach handles many of the previously ana-
lyzed input sequences in addition to a large class of new
input sequences. By averaging over the arbitrarily small
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Theoretical and Simulated Autocorrelations
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Fig. 4. The autocorrelation function as predicted by theory and as obtained by simulation. In this example, M = 16,
a2 =005, and @ = —0.8. Each point of the simulation was generated by averaging two-million consecutive points of the

form e(n)e(n + p).
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Fig. 5. The theoretically predicted autocorrelation function of Fig. 4 and approximations to it as predicted by the theory
when only tenth and lower order and fifth and lower order statistics are known.

amount of circuit noise assumed to be present at the
analog input to the A3, modulator, we have derived a
simple expression for the autocorrelation of the quantiza-
tion error. Each term in the expression is formally equal
to the quantization error of a nonoverloaded uniform
quantizer operating upon a finite partial sum of consecu-
tive input sequence samples. Hence, existing results con-

cerning uniform quantizers are directly applicable in eval-
uating the autocorrelation expression for specific input
sequences. In particular, if the statistics of the desired
input sequence are known, then the autocorrelation can
be calculated using standard techniques. If only partial
statistics are known, an approximate result can be ob-
tained. The theory is also applicable to deterministic input
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sequences, and has been applied to obtain a new closed-
form result for sinusoidal input sequences. We have pre-
sented ergodic results which assert that under mild condi-
tions, the autocorrelation equals the time-average auto-
correlation in probability. We have applied the theory to
various input sequences, some of which have been previ-
ously considered and some of which are new. Simulation
results have been presented that closely support the
theory.

APPENDIX
SUPPORTING LEMMAS
Lemma Al: Let a be a random variable that is uni-
formly distributed on [0, 1). Then, for any x,y € R.

1 1
EQa+x)a+y) =3 +=((x -y —Lx - ).

Proof: We will prove the lemma in two steps. In the
first step, we derive the relation

1 1
EQa+x)a+y)) =3+ 2((x) = ()

1
—5|<x> — Ayl (29)

In the second step, we show the surprising result that
given u,v € R,

u+v) = ud) = Ku + v) — wdl = () = ().
(30)

The lemma follows by combining (29) and (30) with u =y
and v =x — y.

To prove (29), we proceed as follows. By the properties
of the fractional part operator,

Ea+x)a+y)) = [01<a+x><a+y>da

= [01<a + X a - (y)) da.

Defining 4, = min{l — {(x),1 — {y)} and u, = max{1 —
{(x),1 — {y)}, we can write

Ea+x)a+y))
_ fo"l(a + () a+ () da

+ [*(a + max{(x), ()} =
(a + min{{x),(y)}) da
M+ () = D@+ (y) - Dda.

Expressing the integrands in terms of u;, and u, gives

EQa+x)a+y)) = [()"‘(a —uy + D(a—u, + Dda
+ [ (e —up(a—u, + D da

+f1(a —u)e—u,))da.
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Expanding the integrands and collecting terms gives

Ea+x)a+y)) = fol(oz2 — au, — au, + uu,) da
+j0"2(a ~u)de

+](.]1(a+ 1—u,)de.

Evaluating the integrals, collecting terms, and expanding
u, and u, gives
1 1 1

§+Eul—5u2+

E{a+xXa+y)) E(u1 —u,)’

1 1 2
= g + 5(<x) —<{y»

1 1
- Emax{<x>, O + Emin{<x>,<y>}

from which (29) follows.

It remains to prove (30). Because {u + v) = {{u) + v),
without loss of generality, we can assume u € [0, 1). For
convenience, define

flo,u) = Cu + o) = ) = Ku +v) = .
Choose any v € R. Then, there exists some integer P
such that v € [P, P + 1). Hence, we must have either
v+uec[P,P+Dorv+ucl[P+1,P+ 2).Inthe first
case,

f(u,u)=(u+v—P—u)2—|u+U—P—u|

=(w-PY-(w-P)
= () — (V).
In the second case,
fow=w+vo-P+D-w —lu+v—(P+1 —ul
=02 - 20(P+ D+ P+ 1 —(P+1) +v
=(w-PY-@-P)
= (o) = (V).
Hence, f(v,u) = (o) — (v)forall u,v €R. ]
Lemma A2: Foreach k = 1,2,--, let f,: R?***? —» R be
a measurable function that has absolute value less than B.

Let {ng, -, m;} and { g, *, w;} be two sequences of ran-
dom variables where the 7, are independent of each oth-

er and independent of the u,, and let X, =
FielMg5*s Mies Bos™**» My ). Suppose that
E(Xk“Io,"‘»”fb, /-"Oa#q,'“) -0 (31)

in probability as k — j — « with k > j > 0. Then,

— Y X,-0
N n=0
in probability as N — .
Proof: Define the random variable S, as
1 N-1
Sy = — X,.
N N Z n

n=0
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For each € > 0, Chebyshev’s inequality [14] gives
E(S3)
Prob{|Sy| > €} < —5—. (32)
€

By the linearity of the expectation operator,

N-1N-1
E(S}) = = Y Y EXX. (33)
j=0 k=0
By hypothesis,
|E(X, X < B?, (34)

for all j, k > 1. However, to find a tighter upper bound on
E(S3), it is necessary to consider |E(X,X,)| when [k — jl
is large. Since the 7, are independent and X; is indepen-
dent of the variables {n,: n > j}, for each k >j we can
write

E()(ij) = E[XjE(Xk [ 79,y Mjis Mos Kp> """ )] i
Because of (31),

X,E(X, | Mgy, M5 Moo Hgsoe) = 0

in probability as k —j — = with k > j > 0.

By definition, X]E(X,( [ 9575 My Mo by ™ ) < B2 with
probability 1. Therefore, it follows from the Lebesgue
dominated convergence theorem that E(X,;X,) — 0 as
k —j — o with k£ > j > 0. In particular, this means that

there exists a positive integer M such that
63

|E(X; X,)I < > whenever [j — k| >M and j, k=>0.

(35)
Choose
M + 1)p?
N’ = max{ | ———,
€ /2

Dividing the terms on the right side of (33) into two
groups corresponding to |j — k| <M and |j —kl>M
and applying the upper bounds (34) and (35), respectively,
with N = N’ gives E(S3) < €°. From (32), it follows that
for each N > N',

Prob{|Sy| > €} < €
This implies that S, — 0 in probability as N — .
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